JP5433254B2 - メタクリル系樹脂組成物の製造方法 - Google Patents

メタクリル系樹脂組成物の製造方法 Download PDF

Info

Publication number
JP5433254B2
JP5433254B2 JP2009047389A JP2009047389A JP5433254B2 JP 5433254 B2 JP5433254 B2 JP 5433254B2 JP 2009047389 A JP2009047389 A JP 2009047389A JP 2009047389 A JP2009047389 A JP 2009047389A JP 5433254 B2 JP5433254 B2 JP 5433254B2
Authority
JP
Japan
Prior art keywords
mass
block copolymer
polymer
methacrylic resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009047389A
Other languages
English (en)
Other versions
JP2009227999A (ja
Inventor
克二 三宅
宙 小沢
啓之 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2009047389A priority Critical patent/JP5433254B2/ja
Publication of JP2009227999A publication Critical patent/JP2009227999A/ja
Application granted granted Critical
Publication of JP5433254B2 publication Critical patent/JP5433254B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐候性、耐衝撃性、透明性及び成形品の外観に優れたメタクリル系樹脂組成物の製造方法に関する。
ポリメタクリル酸メチルに代表されるメタクリル系樹脂の成形品は、透明性に優れ、美麗な外観を有する。このような点から、メタクリル系樹脂成形品は、例えば、看板部品、ディスプレイ部品、照明部品、インテリア部品、建築用部品、輸送機器関係部品、電子機器部品、医療関係部品、光学関係部品、交通関係部品等に用いられている。ところが、メタクリル系樹脂は、耐衝撃性が低いという欠点を有し、さらに広く用途展開することが制限されている。
メタクリル系樹脂の耐衝撃性を改良する方法として、様々な方法が提案されている。例えば、特許文献1に、乳化重合法によって製造した多層構造アクリルゴム粒子をメタクリル系樹脂にブレンドする方法が挙げられている。この方法は現在最も広く工業的に実施されている。この多層構造アクリルゴム粒子は、3層あるいはそれ以上の層からなり、メタクリル酸メチルを主成分とする硬質層とアクリル酸n−ブチルなどのアクリル酸アルキルエステルを主成分とする軟質層とが、実質的に交互に重なった球状構造を有している。しかしながら、この方法によるメタクリル系樹脂の耐衝撃性の改善効果は十分なものとは言えない。また、多層構造アクリルゴム粒子をメタクリル系樹脂にブレンドする際に、多層構造アクリルゴム粒子同士が凝集して、塊(ゲルコロニー)を生じることがあり、この塊に起因して成形品にブツ(フィッシュアイ)が発生し、成形品の外観が損なわれることがあった。
特許文献2には、ブタジエン−アクリル酸ブチル共重合体からなるゴム状物質の存在下でメタクリル酸メチルを主成分とする単量体を重合する方法が開示されている。しかしながら、この方法では、該ゴム状物質の分散不良に起因して生ずる、成形品の外観不良などが依然として残されている。
特許文献3には、部分水添共役ジエン重合体の存在下でメタクリル酸メチルを主成分とする単量体を重合する方法が開示されている。しかしながら、該方法で用いる部分水添共役ジエン重合体はメタクリル酸メチルに溶解しないため、他の溶剤に溶解させることが必要になり、製造プロセスが複雑になる。さらに、該方法は、相反転による粒子化、特に粒子サイズの制御が困難な場合がある。
特許文献4には、特許文献3の部分水添共役ジエン重合体の代わりに、変性ブロック共重合体を用いた方法が開示されている。該方法で用いる変性ブロック共重合体は(メタ)アクリル酸アルキルエステルに由来する繰り返し単位と芳香族ビニル単量体に由来する繰り返し単位とからなる共重合体である。しかしながら、特許文献4に記載の方法は、相反転による分散相の径制御は容易であるが、得られる成形品の耐衝撃性が十分でないという問題を有していた。
特許文献5には、(a)成分:アクリル酸エステル系重合体又はメタクリル酸エステル系重合体1質量部以上50質量部以下と、(b)成分:同一分子内に、ビニル芳香族化合物を主体とする重合体ブロックAと、共役ジエン化合物を主体とする重合体ブロックBとからなるブロック共重合体の共役ジエン化合物の不飽和炭素の二重結合をエポキシ化したエポキシ変性ブロック重合体50質量部以上99質量部以下とを含んでなる重合体組成物が開示されている。特許文献5の重合体組成物は、メタクリル系樹脂とエポキシ変性ブロック重合体との相溶性が改善されているものの、耐衝撃性においては未だ十分でない。
特許文献6には、ポリメタクリル酸メチルまたはメタクリル酸メチルを主成分とする共重合体50〜99質量%、エチレン−酢酸ビニル共重合体0〜50質量%、およびポリメタクリル酸メチルまたはメタクリル酸メチルを主成分とする共重合体とポリ酢酸ビニルおよび/またはエチレン−酢酸ビニル共重合体とからなるグラフト共重合体、および/またはポリメタクリル酸メチルまたはメタクリル酸メチルを主成分とする共重合体とポリ酢酸ビニルまたはエチレン−酢酸ビニル共重合体とからなるブロック共重合体0.5〜50質量%よりなり、鋳型重合してなるメタクリル系樹脂組成物が開示されている。ところが、特許文献6のメタクリル系樹脂組成物は、透明性が低く、耐衝撃性においても未だ十分でない。
特許文献7には、ビニル結合に富む共役ジエン重合体成分とアクリル酸エステルまたはメタクリル酸エステル重合体成分とからなるブロック共重合体にメタクリル酸メチルをその重合条件下で反応させることを特徴とする耐衝撃性および加工性の良好なメタクリル系樹脂成形材料の製造方法が開示されている。この方法で得られた成形材料は、これを成形するためにラボプラストミル等で混練すると、モルフォロジーが崩れ、耐衝撃性が低下するものであった。
特公昭59−36645号公報 特公昭45−26111号公報 国際公開WO 96/032440号公報 特開2000−313786号公報 特開平07−207110号公報 特開平06−345933号公報 特開昭49−45148号公報
本発明の目的は、メタクリル系樹脂が有する優れた耐候性、透明性、耐擦傷性および剛性を犠牲にすることなく、耐衝撃性が改良されたメタクリル系樹脂組成物の製造方法を提供することにある。
本発明者らは、上記目的を達成するために種々の検討を行った。その結果、特定のブロック共重合体を、メタクリル酸メチル、該メタクリル酸メチルと共重合可能な他のビニル単量体、および必要に応じて溶剤からなる液に溶解し、単量体の重合転化率が70質量%〜95質量%となるまで重合し、次いで脱揮処理して未反応単量体および溶剤を除去することにより、メタクリル系樹脂が本来持つ耐候性、透明性及び剛性を損なうことなく、耐衝撃性を大幅に改善したメタクリル系樹脂組成物を得ることができることを見出し、本発明を完成させるに至った。
すなわち、本発明は、メタクリル酸メチル50〜100質量%およびメタクリル酸メチルと共重合可能な他のビニル系単量体0〜50質量%からなる単量体混合物(A)100質量部、(メタ)アクリル酸アルキルエステルに由来する繰り返し単位からなる重合体ブロック(a)と共役ジエン化合物に由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B)1〜80質量部、および溶剤(C)0〜100質量部を含有してなる原料液を、単量体混合物(A)の重合転化率が70質量%〜95質量%となるまで重合し、次いで脱揮処理して未反応単量体および/または溶剤を除去すること含む、単量体混合物(A)の重合体からなる連続相中にブロック共重合体(B)が分散相として含有するメタクリル系樹脂組成物の製造方法である。
また、本発明は、前記製造方法で得られたメタクリル系樹脂組成物からなる成形品である。
本発明の製造方法によれば、メタクリル系樹脂が有する優れた耐候性、透明性、耐擦傷性および剛性を犠牲にすることなく、耐衝撃性が改良されたメタクリル系樹脂組成物及びそれの成形品を容易に得ることができる。
以下、本発明をさらに詳しく説明する。
本発明の製造方法は、単量体混合物(A)の重合体からなる連続相中にブロック共重合体(B)が分散相として含有するメタクリル系樹脂組成物を製造する方法である。
該製造方法は、メタクリル酸メチル50〜100質量%およびメタクリル酸メチルと共重合可能な他のビニル系単量体0〜50質量%からなる単量体混合物(A)100質量部、(メタ)アクリル酸アルキルエステルに由来する繰り返し単位からなる重合体ブロック(a)と共役ジエン化合物に由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B)1〜80質量部、および溶剤(C)0〜100質量部を含有してなる原料液を、単量体混合物(A)の重合転化率が70質量%〜95質量%となるまで重合すること、 次いで脱揮処理して未反応単量体および/または溶剤を除去することを含む。
〔単量体混合物(A)〕
単量体混合物(A)は、メタクリル酸メチルおよびメタクリル酸メチルと共重合可能な他のビニル系単量体からなるものである。
本発明に用いられるメタクリル酸メチルと共重合可能な他のビニル単量体として、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどのアクリル酸アルキルエステル;メタクリル酸エチル、メタクリル酸ブチルなどのメタクリル酸メチルを除くメタクリル酸アルキルエステル;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、スチレン、α−メチルスチレン等;の一分子中にアルケニル基を一個だけ有する非架橋性単量体が挙げられる。
メタクリル酸メチル/他のビニル系単量体の質量比は、50/50〜100/0、好ましくは80/20〜99/1、より好ましくは90/10〜98/2である。
以後、本明細書では、この単量体混合物(A)の重合体を「メタクリル系樹脂」と言うことがある。
〔ブロック共重合体(B)〕
ブロック共重合体(B)は、(メタ)アクリル酸アルキルエステルに由来する繰り返し単位からなる重合体ブロック(a)と共役ジエン化合物に由来する繰り返し単位からなる重合体ブロック(b)とを有するものである。ブロック共重合体(B)はエラストマーであることが好ましい。
重合体ブロック(a)を構成する(メタ)アクリル酸アルキルエステルに由来する繰り返し単位は、(メタ)アクリル酸アルキルエステルの付加重合によって得られるものである。なお、「(メタ)アクリル」は、メタクリルまたはアクリルの意である。
メタクリル酸アルキルエステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシルなどが挙げられ、アクリル酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸i−ブチル、アクリル酸2−エチルヘキシル等が挙げられる。これらは1種単独で重合されていてもよいし、2種以上を組合せて共重合されていてもよい。これらの中でも、ガラス転移温度(Tg)が23℃以下の重合体ブロック(a)を与える単量体または単量体の組合せが好ましく、Tgが0℃以下の重合体ブロック(a)を与える単量体または単量体の組合せがより好ましく、Tgが−10℃以下の重合体ブロック(a)を与える単量体または単量体の組合せが更に好ましい。このような単量体としては、アクリル酸n−ブチル及び/又はアクリル酸2−エチルヘキシルが好ましく、アクリル酸n−ブチルがより好ましい。
重合体ブロック(b)を構成する共役ジエン化合物に由来する繰り返し単位は、共役ジエン化合物の付加重合によって得られるものである。
共役ジエン化合物としては、1,3−ブタジエン、イソプレン、ペンタジエン、2,3−ジメチルブタジエン等が挙げられる。これらは1種単独で重合されていてもよいし、2種以上を組合せて共重合されていてもよい。これらの中でも、ガラス転移温度(Tg)が0℃以下の重合体ブロック(b)を与える単量体または単量体の組合せが好ましく、Tgが−10℃以下の重合体ブロック(b)を与える単量体または単量体の組合せがより好ましい。また、汎用性、経済性、取り扱い性の点から1,3−ブタジエン及び/又はイソプレンが好ましく、1,3−ブタジエンがより好ましい。
共役ジエン化合物は、1,4−付加重合するものと、1,2−又は3,4−付加重合するものとがある。共役ジエン化合物が1,4−付加重合すると分子主鎖中に炭素−炭素二重結合を有するようになる。共役ジエン化合物が1,2−又は3,4−付加重合すると分子主鎖に結合するビニル基(側鎖ビニル結合)を有するようになる。この分子主鎖中の炭素−炭素二重結合及び/又は分子主鎖に結合するビニル基は、グラフト反応や架橋反応の起点となる。共役ジエン化合物の1,2−又は3,4−付加重合の割合は反応系にエーテル類などの極性化合物を加えることにより増加させることができる。
重合体ブロック(b)中の側鎖ビニル結合量は、連続相となるメタクリル系樹脂とのグラフト反応性および分散相の架橋反応性や、メタクリル系樹脂組成物の耐衝撃性を考慮して選択される。
重合体ブロック(b)中の側鎖ビニル結合量は、1,3−ブタジエンの場合において、1,2−付加重合した繰り返し単位の量として、10〜60mol%が好ましい。1,3−ブタジエンの1,2−付加重合した繰り返し単位の量がこの範囲内にあると、メタクリル系樹脂とのグラフト反応性および分散相の架橋反応性が良好となり、メタクリル系樹脂組成物の柔軟性や耐衝撃性が高くなる。なお、側鎖ビニル結合量は、共役ジエン化合物1モルの内、1,2−付加重合または3,4−付加重合した共役ジエン化合物の割合[mol%]で表される。
重合体ブロック(b)は、前述の分子主鎖中の炭素−炭素二重結合及び/又は分子主鎖に結合するビニル基を部分的に水素添加したものであってもよい。本発明の効果を維持する観点から、重合体ブロック(b)の水素添加率は70mol%未満であることが好ましく、50mol%未満であることがさらに好ましい。水素添加の方法は、特に限定されず、例えば、特公平5−20442号公報に開示された方法によって達成される。
重合体ブロック(a)と重合体ブロック(b)との質量比は、特に制限されないが、重合体ブロック(a)と重合体ブロック(b)との合計を100質量%としたときに、重合体ブロック(a)は、通常30〜65質量%、好ましくは40〜60質量%である。重合体ブロック(b)は、通常35〜70質量%、好ましくは40〜60質量%である。
本発明に用いられるブロック共重合体(B)は、重合体ブロック(a)および重合体ブロック(b)をそれぞれ1つずつ有するものであってもよいし、重合体ブロック(a)および/または重合体ブロック(b)を2つ以上有するものであってもよい。
該ブロック共重合体の結合様式としては、a―b型ジブロック共重合体、a―b―a型トリブロック共重合体、b―a―b型トリブロック共重合体、a―b―a―b型テトラブロック共重合体やb―a―b―a型テトラブロック共重合体に代表される線状マルチブロック共重合体、(b―a―)n、(a―b―)n等で表される星型(ラジアルスター型)ブロック共重合体、a―g―bで表されるグラフト共重合体などが挙げられる。なお、gはグラフト結合を表す結合記号であり、nは2より大きい値である。ブロック共重合体(B)は、重合体ブロック(a)と重合体ブロック(b)との間に傾斜連結部を有するものであってもよい。傾斜連結部は、重合体ブロック(a)の繰り返し単位の組成から、重合体ブロック(b)の繰り返し単位の組成に、漸次変化していく繰り返し単位組成を有する部分である。これらブロック共重合体は、1種単独で用いてもよいし、2種以上を組み合わせて用いても良い。
ブロック共重合体(B)としては、アクリル酸n−ブチル単量体に由来する繰り返し単位からなる重合体ブロックと1,3−ブタジエン単量体に由来する繰り返し単位からなる重合体ブロックよりなるジブロック共重合体やラジアルスター型共重合体、アクリル酸2−エチルヘキシル単量体に由来する繰り返し単位からなる重合体ブロックと1,3−ブタジエン単量体に由来する繰り返し単位からなる重合体ブロックよりなるジブロック共重合体やラジアルスター型共重合体、メタクリル酸メチル単量体に由来する繰り返し単位からなる重合体ブロックとアクリル酸n−ブチル単量体に由来する繰り返し単位からなる重合体ブロックと1,3−ブタジエン単量体に由来する繰り返し単位からなる重合体ブロックよりなるトリブロック共重合体やラジアルスター型共重合体が例示される。
本発明に用いるブロック共重合体(B)として、星型ブロック共重合体が、分散相の機械的強度の観点から、特に好ましい。
星型ブロック共重合体は、複数の腕重合体ブロックが多官能性単量体や多官能性カップリング剤等に由来する基(カップリング剤残基)によって連結した共重合体を含むものである。
星型ブロック共重合体を構成する腕重合体ブロックは、重合体ブロック(a)及び/又は重合体ブロック(b)を有するものであれば、その結合態様によって制限されない。腕重合体ブロックとしては、a―b型のジブロック共重合体、a―b―a型のトリブロック共重合体、b―a―b型のトリブロック共重合体、a―b―a―b型のテトラブロック共重合体、重合体ブロック(a)と重合体ブロック(b)とが四つ以上結合したマルチブロック共重合体などが挙げられる。星型ブロック共重合体を構成する複数の腕重合体ブロックは、同じ種類のブロック共重合体であってもよいし、異なる種類のブロック共重合体であってもよい。
本発明では、化学構造式:
(重合体ブロック(b)―重合体ブロック(a)―)n
(式中、Xはカップリング剤残基、nは2を超える数を表す。)で表される星型ブロック共重合体が特に好ましい。
本発明に用いられる星型ブロック共重合体は、GPCにより算出したポリスチレン換算の数平均分子量において、 式:
〔星型ブロック共重合体の数平均分子量〕>2×〔腕重合体ブロックの数平均分子量〕
を満たすことが好ましい。
なお、〔星型ブロック共重合体の数平均分子量〕/〔腕重合体ブロックの数平均分子量〕の比は腕数と呼ばれることがある。
星型ブロック共重合体の数平均分子量を、腕重合体ブロックの数平均分子量の2倍を超える範囲にすることで、連続相中に分散した星型ブロック共重合体の粒子のせん断に対する機械的強度が高くなり、所望の耐衝撃性能を得ることができるようになる。なお、星型ブロック共重合体の数平均分子量が、腕重合体ブロックの数平均分子量の100倍より大きいものは合成が難しいので、工業的に好ましい星型ブロック共重合体の数平均分子量は、腕重合体ブロックの数平均分子量の2倍より大きく且つ100倍以下であり、より好ましくは2.5〜50倍であり、さらに好ましくは3〜10倍である。
なお、本発明に用いる星型ブロック共重合体は、カップリング剤残基によって腕重合体ブロックが連結されたものを主成分とするものであるが、カップリング剤残基によって連結していない腕重合体ブロックが含まれていてもよい。
ブロック共重合体(B)は、その製造方法によって特に限定されず、公知の手法に準じた方法で得られたものから採用することができる。一般に、分子量分布の狭いブロック共重合体を得る方法としては、構成単位である単量体をリビング重合する方法が採用される。リビング重合の手法としては、例えば、有機希土類金属錯体を重合開始剤として用いて重合する方法、有機アルカリ金属化合物を重合開始剤として用い、アルカリ金属またはアルカリ土類金属の鉱酸塩等の存在下でアニオン重合する方法、有機アルカリ金属化合物を重合開始剤として用い、有機アルミニウム化合物の存在下でアニオン重合する方法、原子移動ラジカル重合(ATRP)法等が挙げられる。
上記の製造方法のうち、有機アルカリ金属化合物を重合開始剤として用い、有機アルミニウム化合物の存在下でアニオン重合する方法は、比較的緩和な温度条件下で、より分子量分布の狭く且つ残存単量体が少ないブロック共重合体を製造でき、工業的生産における環境負荷(主に重合温度を制御するために必要な冷凍機の消費電力)が少ないという点で好ましい。
上記のアニオン重合に用いられる有機アルカリ金属化合物としては、有機リチウム化合物が好適である。
有機リチウム化合物の具体例としては、メチルリチウム、エチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、イソブチルリチウム、tert−ブチルリチウム、n−ペンチルリチウム、n−ヘキシルリチウム、テトラメチレンジリチウム、ペンタメチレンジリチウム、ヘキサメチレンジリチウム等のアルキルリチウムおよびアルキルジリチウム;フェニルリチウム、m−トリルリチウム、p−トリルリチウム、キシリルリチウム、リチウムナフタレン等のアリールリチウムおよびアリールジリチウム;ベンジルリチウム、ジフェニルメチルリチウム、トリチルリチウム、1,1−ジフェニル−3−メチルペンチルリチウム、α−メチルスチリルリチウム、ジイソプロペニルベンゼンとブチルリチウムの反応により生成するジリチウム等のアラルキルリチウムおよびアラルキルジリチウム;リチウムジメチルアミド、リチウムジエチルアミド、リチウムジイソプロピルアミド等のリチウムアミド;メトキシリチウム、エトキシリチウム、n−プロポキシリチウム、イソプロポキシリチウム、n−ブトキシリチウム、sec−ブトキシリチウム、tert−ブトキシリチウム、ペンチルオキシリチウム、ヘキシルオキシリチウム、ヘプチルオキシリチウム、オクチルオキシリチウム、フェノキシリチウム、4−メチルフェノキシリチウム、ベンジルオキシリチウム、4−メチルベンジルオキシリチウム等のリチウムアルコキシドが挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
上記のアニオン重合において用いられる有機アルミニウム化合物としては、例えば、下記の一般式:
AlR123
(式中、R1、R2およびR3はそれぞれ独立して置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアリールオキシ基またはN,N−二置換アミノ基を表すか、またはR1が前記したいずれかの基を表し、R2およびR3は一緒になって置換基を有していてもよいアリーレンジオキシ基を表す。)で表される有機アルミニウム化合物が挙げられる。
上記の一般式で表される有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリn−ブチルアルミニウム、トリs−ブチルアルミニウム、トリt−ブチルアルミニウム、トリイソブチルアルミニウム、トリn−ヘキシルアルミニウム、トリn−オクチルアルミニウム、トリ2−エチルヘキシルアルミニウム等のトリアルキルアルミニウム、トリフェニルアルミニウム等のトリアリールアルミニウム、ジメチル(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、ジメチル(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、ジエチル(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、ジエチル(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、ジイソブチル(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、ジイソブチル(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、ジ−n−オクチル(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、ジ−n−オクチル(2,6−ジ−tert−ブチルフェノキシ)アルミニウム等のジアルキルフェノキシアルミニウム、メチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、メチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、エチル〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム、エチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、エチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、エチル〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム、イソブチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、イソブチル〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム、n−オクチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、n−オクチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、n−オクチル〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム等のアルキルジフェノキシアルミニウム、メトキシビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、メトキシビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、メトキシ〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム、エトキシビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、エトキシビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、エトキシ〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム、イソプロポキシビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、イソプロポキシビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、イソプロポキシ〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム、tert−ブトキシビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、tert−ブトキシビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、tert−ブトキシ〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム等のアルコキシジフェノキシアルミニウム、トリス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、トリス(2,6−ジフェニルフェノキシ)アルミニウム等のトリフェノキシアルミニウム等を挙げることができる。これらの有機アルミニウム化合物の中でも、イソブチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、イソブチル〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウムは、取り扱いが容易であり、また、比較的緩和な温度条件下で失活することなくアニオン重合反応を進行させることができる点で特に好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。
上記のアニオン重合においては、必要に応じて、反応系内に、ジメチルエーテル、ジメトキシエタン、ジエトキシエタン、12−クラウン−4−エーテル等のエーテル類;トリエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン、ピリジン、2,2’−ジピリジル等の含窒素化合物を、重合反応の安定のためにさらに共存させることができる。
星型ブロック共重合体は、上記のアニオン重合等によって得られたブロック共重合体の反応液に多官能性単量体を添加して共重合することによって、またはブロック共重合体の反応液に多官能性カップリング剤を添加してカップリング反応させることによって得られる。
多官能性単量体は、エチレン性不飽和基を2以上有する化合物であり、具体的には、メタクリル酸アリル、ジメタクリル酸エチレングリコール、ジメタクリル酸1,3−ブチレングリコール、ジビニルベンゼン、1,6−ヘキサンジオールジアクリレートなどが挙げられる。
多官能性カップリング剤は、反応性基を3以上有する化合物であり、具体的には、トリクロロメチルシラン、テトラクロロシラン、ブチルトリクロロシラン、ビス(トリクロロシリル)エタン、テトラクロロスズ、ブチルトリクロロスズ、テトラクロロゲルマニウムなどが挙げられる。
ブロック共重合体(B)は、その屈折率によって特に制限されないが、メタクリル系樹脂組成物に透明性が要求される場合は、ブロック共重合体(B)の屈折率は単量体混合物(A)の重合体の屈折率と一致していることが好ましい。具体的には、ブロック共重合体(B)の屈折率は、好ましくは1.48〜1.50、より好ましくは1.485〜1.495である。
ブロック共重合体(B)の屈折率は、重合体を構成する繰り返し単位の種類、組成比や重合体ブロック(b)中の側鎖ビニル結合量等を選択することによって調整できる。例えば、アクリル酸n−ブチルに由来する繰り返し単位からなる重合体ブロック(a)と1,3−ブタジエンに由来する繰り返し単位からなる未水添の重合体ブロック(b)からなるジブロック共重合体では、ジブロック共重合体全体の質量に対してアクリル酸n−ブチルの含量を30〜65質量%、1,3−ブタジエンの含量を70〜35質量%にすると、ポリメタクリル酸メチルの屈折率とほぼ一致し、透明なメタクリル系樹脂組成物を得ることができる。
本発明に用いるブロック共重合体(B)の全体の数平均分子量(Mn)は、得られるメタクリル系樹脂組成物の耐衝撃性を向上させる観点から、5,000〜1,000,000であることが好ましく、10,000〜800,000であることがより好ましく、50,000〜500,000であることがさらに好ましい。
〔溶剤(C)〕
本発明に使用する溶剤(C)は、単量体混合物(A)、単量体混合物(A)の重合体、およびブロック共重合体(B)に対して溶解能を有するものであれば特に制限されない。例えば、ベンゼン、トルエン、エチルベンゼン等の芳香族炭化水素等が望ましいものとして挙げられる。また、必要に応じて、2種類以上の溶剤を混合して用いて良い。混合溶剤を用いる場合には、単量体混合物(A)、単量体混合物(A)の重合体およびブロック共重合体(B)を溶解できる混合溶剤であれば、単量体混合物(A)、単量体混合物(A)の重合体およびブロック共重合体(B)を溶解できない溶剤が混合溶剤に含まれていても良い。例えば、メタノール、エタノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;ヘキサン等の炭化水素;シクロヘキサン等の脂環式炭化水素等が混合溶剤に含まれていてもよい。
本発明に用いられる原料液は、前記、単量体混合物(A)、ブロック共重合体(B)および溶剤(C)を含むものである。
原料液中のブロック共重合体(B)の量は、単量体混合物(A)100質量部に対して、1〜80質量部、好ましくは2〜30質量部、より好ましくは4〜20質量部である。ブロック共重合体(B)の量が1質量部未満になるとメタクリル系樹脂組成物の耐衝撃性向上の効果が小さい。ブロック共重合体(B)の量が80質量部よりも多くなると、ブロック共重合体(B)を含んでなる分散相が形成され難くなる。また、メタクリル系樹脂組成物の弾性率が低下し、メタクリル系樹脂が本来有している優れた剛性を失うことになる。
原料液中の溶剤(C)の量は、単量体混合物(A)100質量部に対して、0〜100質量部、好ましくは0〜90質量部である。溶剤の量が多いほど、原料液の粘度が下がり取り扱い性が良好となるが、連鎖移動反応などの副反応を引き起こし、グラフト反応および架橋反応を阻害することがあり、生産性が低下傾向になる。
原料液は、ブロック共重合体(B)を、単量体混合物(A)に均一に溶解することにより調製できる。溶解は攪拌によって促進され、30〜60℃程度に加熱することによりさらに促進される。また、原料液を調製する際、必要に応じて上記溶剤(C)を使用することができる。
本発明の製造方法では、次に、原料液を重合する。原料液の重合によって、単量体混合物(A)の重合反応が進行するのと同時に、ブロック共重合体(B)と単量体混合物(A)との間でグラフト反応および/または架橋反応が進行する。
原料液の重合には、ラジカル重合開始剤が用いられる。また必要に応じて連鎖移動剤が用いられる。
重合開始剤は反応ラジカルを発生するものであれば特に限定されない。重合開始剤としては、アゾビスイソブチロニトリル、アゾビスシクロヘキシルカルボニトリル等のアゾ化合物;ベンゾイルパーオキサイド、t−ブチルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、1,1−ジ(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート等の有機過酸化物などが挙げられる。これら重合開始剤は単独で用いてもよいし、2種類以上を組合せて用いてもよい。また、重合開始剤の添加時期や添加方法等は、所定の重合反応が進行すればよく、特に限定されるものでないが、重合開始時に仕込んだ重合開始剤で前段重合を行い、反応の途中で重合開始剤を追加添加して後段重合を行うことが好ましい。
連鎖移動剤としては、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、1,4−ブタンジチオール、1,6−ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス−(β−チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネート等のアルキルメルカプタン類;α−メチルスチレンダイマー;テルピノレン等を挙げることができる。これらは、単独でまたは2種以上を組み合わせて用いることができる。
原料液の重合は、重合初期から相反転が生じるまでは、塊状重合法または溶液重合法で行うことが好ましい。塊状重合法または溶液重合法で重合を行うと、重合初期では、単量体混合物(A)の重合が主に進行してメタクリル系樹脂が生成する。重合転化率の増加とともに、単量体混合物(A)の重合で生成したメタクリル系樹脂の溶液相の割合が多くなり、メタクリル系樹脂の溶液相とブロック共重合体(B)の溶液相とが相分離してくる。重合転化率がさらに増加すると、相全体を安定化させる為の作用が働き、撹拌によるせん断力によって、メタクリル系樹脂の溶液相とブロック共重合体(B)の溶液相とが相反転し、メタクリル系樹脂の溶液相が連続相になりブロック共重合体(B)の溶液相が分散相になる。このとき粘度が低下する。この相反転が起きる際の単量体混合物(A)の重合転化率は、メタクリル系樹脂の溶液相とブロック共重合体(B)の溶液相の体積比、ブロック共重合体(B)の分子量、相反転前までのブロック共重合体(B)へのグラフト率、溶剤を用いた場合には溶剤量や溶剤種によって変化する。
原料液の重合では、重合初期から相反転が生じるまでは、原料液にせん断力を与えることが好ましい。従って、原料液の重合を行う装置としては、攪拌機付きの槽型反応器、攪拌機付きの筒型反応器、静的攪拌能力を有する筒型反応器等が好ましいものとして挙げられる。これら装置は、1基以上であっても良く、また、異なる反応器2基以上の組合せでもよい。また、重合は回分式または連続式のどちらであっても良い。
分散相の径は、攪拌機付反応器であれば攪拌回転数などの因子によって;塔型反応器に代表される静的攪拌反応器であれば反応液の線速度、重合系の粘度、相反転前までのブロック共重合体(B)へのグラフト率など種々の因子によって制御可能である。
相反転が生じた後は、塊状重合法または溶液重合法が適用できるが、これら以外に懸濁重合法、注型重合法も適用できる。
本発明においては、単量体混合物(A)の重合転化率を70質量%以上95質量%以下にすることが重要である。好ましい重合転化率は80質量%以上である。重合転化率がこれよりも低いと、相反転により形成したブロック共重合体(B)を含んでなる分散相内の架橋反応およびグラフト反応が十分に進行しにくい。架橋反応およびグラフト反応が十分に進行していない場合、メタクリル系樹脂組成物中の分散相は、押出機や、混練機などの機械的なせん断により容易に破壊され、耐衝撃強度が十分とは言えなくなると同時に、成形加工法によって機械的強度が変化する恐れがある。架橋反応及びグラフト反応をより進め、耐衝撃強度を高めるためには、重合開始剤を反応途中において追加添加することが好ましい。一方、重合転化率が95質量%を超えると単量体混合物(A)の重合体からなる連続相の分子量分布が広くなり、耐衝撃性が低下する場合があり好ましくない。
本発明の製造方法では、単量体混合物(A)の重合体のGPCで測定された重量平均分子量を7万〜20万にすることが好ましく、8万〜15万にすることがより好ましく、特に9万〜12万にすることが好ましい。重量平均分子量が7万未満ではメタクリル系樹脂組成物の耐衝撃性が低下傾向になる。重量平均分子量が20万を超えるとメタクリル系樹脂組成物の流動性が低下して成形加工性が低下傾向になる。
本発明の製造方法では、単量体混合物(A)の重合体のGPCで測定された分子量分布(=重量平均分子量/数平均分子量)を3.0以下にすることが好ましく、2.5以下にすることがより好ましく、2.3以下にすることが特に好ましい。単量体混合物(A)の重合体の分子量分布は重合開始剤および連鎖移動剤の種類や量等を調整することによって制御できる。分子量分布が3.0を超えるとメタクリル系樹脂組成物の耐衝撃性が低下傾向になる。
連続相であるメタクリル系樹脂中に分散しているブロック共重合体(B)を含んでなる分散相の径は、0.05〜2μmの範囲であることが好ましい。更に0.1〜1μmの範囲であることがより好ましい。分散相の径が0.05μmより小さいと耐衝撃性が低下し、2μmを超えると剛性、透明性が低下しやすいので好ましくない。
尚、重合途中におけるブロック共重合体(B)を含んでなる分散相生成の有無及び分散相の径は、重合途中の原料液の一部を抜き取り、それを懸濁重合し、得られたメタクリル系樹脂組成物のモルフォロジーを走査型電子顕微鏡で観察する方法あるいは、重合途中の原料液の一部を抜き取り、それを乾燥、脱揮することで未反応単量体、溶剤を除去し、その組成物のモルフォロジーを走査型電子顕微鏡で観察する方法により確認できる。
単量体混合物(A)の重合転化率が70質量%〜95質量%になった後、脱揮処理して、未反応単量体及び溶剤を除去する。脱揮法としては、平衡フラッシュ方式や断熱フラッシュ方式が挙げられる。特に断熱フラッシュ方式では、好ましくは180〜300℃、より好ましくは200〜270℃の温度で脱揮を行う。180℃未満では脱揮に時間を要し、脱揮不十分なときには成形品にシルバー等の外観不良を起こすことがある。逆に300℃を超えると酸化、焼けなどによってメタクリル系樹脂組成物に色が着くことがある。脱揮に用いられる装置としては、フラッシュドラム、二軸脱揮器、薄膜蒸発器、押出機などが挙げられる。残存揮発分は0.5質量%以下が好ましく、0.4質量%以下がより好ましく、0.3質量%以下が更に好ましい。残存揮発分が0.5質量%を超えると熱変形温度などが低下傾向になる。
本発明の製造方法で得られたメタクリル系樹脂組成物には、必要に応じて公知の酸化防止剤、紫外線吸収剤、光安定化剤、滑剤、離型剤、帯電防止剤、高分子加工助剤、難燃剤、染顔料、光拡散剤、耐衝撃性改質剤、蛍光体などを添加することができる。また、本発明の製造方法で得られたメタクリル系樹脂組成物は、通常のメタクリル系樹脂(D)で希釈して使用することもできる。また、その他AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、MS樹脂、MBS樹脂、スチレン樹脂、ハイインパクトポリスチレン樹脂、塩化ビニル樹脂等他の樹脂と混合して使用することもできる。
また、本発明の製造方法で得られたメタクリル系樹脂組成物には、他の耐衝撃性改質剤を用いてもよい。他の耐衝撃性改質剤としては、アクリル系ゴムもしくはジエン系ゴムをコア層成分として含むコアシェル型改質剤、ゴム粒子を複数包含した改質剤などが挙げられる。他の耐衝撃性改質剤はいくらかの特性を改善させるために通常のレベルより少量添加することが好ましい。
本発明の製造方法で得られたメタクリル系樹脂組成物を用いれば、強靱化された成形品を得ることができる。例えば、射出成形、圧縮成形、押出成形、真空成形等、従来より知られる溶融加熱成形により成形品が得られる。その成形品において、ブロック共重合体(B)を含んでなる分散相の径の大きさや形はある程度変化するかもしれないが、外見上の変化は見られない。加熱溶融成形された成形品は、相当するメタクリル系樹脂組成物と少なくとも同等の特性を有している。
本発明の製造方法で得られたメタクリル系樹脂組成物は、耐衝撃性のみならず、耐候性、透明性に優れているので、各種の成形用品、または成形部品に適している。その用途としては、例えば広告塔、スタンド看板、袖看板、欄間看板、屋上看板等の看板用品;ショーケース、仕切板、店舗ディスプレイ等のディスプレイ用品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリア等の照明用品;ペンダント、ミラー等のインテリア用品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根等の建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバー等の輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機等の電子機器部品;保育器、レントゲン部品等の医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓等の機器関係部品;液晶保護板、導光板、導光フィルム、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板等の光学関係部品;道路標識、案内板、カーブミラー、防音壁等の交通関係部品;自動車内装用表面材、携帯電話の表面材、マーキングフィルム等のフィルム部材;洗濯機の天蓋材やコントロールパネル、炊飯ジャーの天面パネル等の家電製品用部材;その他、温室、大型水槽、箱水槽、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、溶接時の顔面保護用マスク等の用途が挙げられる。
以下に実施例を示して本発明をより具体的に説明するが、本発明は以下の例によって何ら制限されるものではない。実施例および比較例に用いたブロック共重合体(B)の合成では、常法により乾燥精製した薬品を用い、以下に示す合成例によって実施した。その際、重合転化率の測定や合成したブロック共重合体(B)の分析は、以下の方法によって実施した。また、メタクリル系樹脂組成物の分析、力学及び光学測定は、以下の方法によって行った。
(1)ゲルパーミエーションクロマトグラフィー(GPC)による数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)およびブロック共重合体の生成率の測定
装置:東ソー社製ゲルパーミエーションクロマトグラフ(HLC−8020)
カラム:東ソー社製TSKgel G2000HHR(1本)およびGMHHR−M(2本)を直列に連結
溶離液:テトラヒドロフラン
溶離液流量:1.0ml/分
カラム温度:40℃
検出方法:示差屈折率(RI)計
検量線:標準ポリスチレンを用いて作成
(2)ガスクロマトグラフィー(GC)による仕込み単量体の重合転化率の測定
装置:島津製作所製ガスクロマトグラフ GC−14A
カラム:GL Sciences Inc.製 INERT CAP 1(df=0.4μm、0.25mmI.D.×60m)
分析条件:injection温度180℃、detector温度180℃、60℃(5分間保持)→昇温速度10℃/分→200℃(10分間保持)
(3)モルフォロジー
成形品をダイヤモンドナイフを用いて切り出し超薄切片を得、この切片を四酸化オスミウムで染色し、透過型電子顕微鏡を用いて観察像を写真撮影した。無作為に30個のブロック共重合体(B)を含んでなる分散相を選択し、それら分散相の径を測定し、それらの平均値で表した。
なお、上記の染色によってブロック共重合体(B)中の重合体ブロック(b)が染色され、メタクリル系樹脂組成物のモルフォロジーを観察できるようになる。本発明のメタクリル系樹脂組成物は、染色されていない単量体混合物(A)の重合体(メタクリル系樹脂)からなる連続相と染色されたブロック共重合体(B)を含んでなる分散相とを含有し、分散相には染色された部分(ブロック共重合体(B)からなる海相)と染色されていない部分(メタクリル系樹脂からなる島相)との海島構造をなしたものが含まれている。
(4)側鎖ビニル結合量
ブロック共重合体を重クロロホルムに溶解し試験液を得、1H−NMR(日本電子社製核磁気共鳴装置(JNM−LA400)を用いて該試験液を分析し、化学シフト4.7〜5.2ppm(以後、シグナルC0という。)の1,2−ビニルによるプロトン(=CH2)と、化学シフト5.2〜5.8ppm(以後、シグナルD0という。)のビニルプロトン(=CH−)の積分強度を求め、次式によって、側鎖ビニル結合量V0[mol%]を計算して求めた。
0=〔(C0/2)/{C0/2+(D0−C0/2)/2}〕×100
(5)核磁気共鳴スペクトル(1H−NMRスペクトル)によるブロック共重合体の分子構造の解析
機器:日本電子社製核磁気共鳴装置(JNM−LA400)
溶媒:重クロロホルム
(6)ガラス転移温度(Tg)
重合体ブロック(a)として用いたポリアクリル酸n−ブチル(以下、「PBA」とする。)のガラス転移温度(Tg)は、「POLYMER HANDBOOK FOURTH Edition, VI/199頁, Wiley Interscience, New York, 1998」に記載の値(−49℃)を用いた。
また、重合体ブロック(b)として用いたポリ1,3−ブタジエン(以下、「PBD」とする。)のガラス転移温度(Tg)は、「ANIONIC POLYMERIZATION, 434頁, MARCEL DEKKER,Inc. 1996」に記載の1,2−ビニル結合量とTgの関係より導かれる値を用いた。
(7)屈折率(nd)
ブロック共重合体(B)が30質量%となるようトルエンに均一に溶解した。室温にて当該溶液およびトルエンの密度、屈折率を測定し、下記(式1)〜(式3)の式を用いブロック共重合体(B)の屈折率を求めた。さらに、屈折率既知のポリメタクリル酸メチル(nd=1.492)を同じ方法で測定し、この方法による屈折率測定の較正係数を求めて、ブロック共重合体(B)の屈折率を較正した。
(nd2−1)/(nd2+2)×V=r=一定・・・(式1)
3=w11+w22・・・(式2)
2=1/ρ1−1/w2(1/ρ1−1/ρ3)・・・(式3)
nd:屈折率、V:比容、r:分子屈折、w:質量分率 ρ:密度
下付き1:トルエン 下付き2:ブロック共重合体(B) 下付き3:溶液
実測:V3、nd3、V1、nd1
式(1)および式(2)出典:高分子実験学 第12巻 熱力学的・電気的および光学的性質 昭和59年 共立出版
式(3)出典:高分子実験学 第11巻 高分子溶液 昭和57年 共立出版
(8)成形品の耐衝撃性の評価
ISO179−1eAに準拠して、ノッチ付きのシャルピー衝撃強度を測定した。
(9)成形品の曲げ弾性率の測定
ISO178に準拠して、曲げ弾性率を測定した。
(10)成形品の透明性の評価
ISO14782に準拠して、厚さ1mmの成形品のヘイズを測定した。
《合成例1》ブロック共重合体(B−1)の製造
(1)攪拌機付1.5リットルのオートクレーブ容器に、トルエン801mlおよび1,2−ジメトキシエタン0.006mlを投入し、20分間窒素パージを行った。そこに濃度1.3mol/lのsec−ブチルリチウムのシクロヘキサン溶液0.8mlを加え、次いで1,3−ブタジエン87mlを加えて、30℃で3時間反応させて、1,3−ブタジエン重合体を含む反応混合物を得た。
得られた反応混合物の一部をサンプリング分析した結果、該反応混合物中の1,3−ブタジエン重合体は、数平均分子量(Mn)が100,000、分子量分布(Mw/Mn)が1.07、側鎖ビニル結合量が49mol%であり、1,3−ブタジエン重合体(重合体ブロック(b))のガラス転移温度は−60℃であった。
(2)上記(1)で得られた反応混合物を−30℃に冷却し、0.45mol/lのイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムを含有するトルエン溶液7.9mlおよび1,2−ジメトキシエタン8.1mlを添加し、10分間撹拌して均一な溶液とした。
(3)次いで、上記(2)で得られた溶液を激しく撹拌しながら、アクリル酸n−ブチル78mlを添加し、−30℃で1時間重合させた。得られた反応混合物の一部をサンプリングし、GPC(ポリスチレン換算)により分子量を分析した結果、反応混合物中のブタジエン―アクリル酸n−ブチルジブロック共重合体は数平均分子量が180,000であり、その重量平均分子量/数平均分子量の比(Mw/Mn)が1.03であり、屈折率が1.492であることが判明した。また、アクリル酸n−ブチルの重合で得られた重合体ブロック(a)のガラス転移温度は−49℃であった。
(4)上記(3)で得られた反応混合物をメタノール8000mlに入れて析出させることにより、ブロック共重合体(B−1)が得られた。得られたブロック共重合体(B−1)の収率はほぼ100%であった。表1にブロック共重合体(B−1)の特性を示す。なお、表中のBAはアクリル酸n−ブチル、Bdは1,3−ブタジエンを意味する。
《合成例2》ブロック共重合体(B−2)の製造
(1)攪拌機付1.5リットルのオートクレーブ容器に、トルエン801ml及び1,2−ジメトキシエタン0.007mlを投入し、20分間窒素パージを行った。そこに濃度1.3mol/lのsec−ブチルリチウムのシクロヘキサン溶液1.9mlを加え、次いで1,3−ブタジエン97mlを加えて、30℃で3時間反応させて1,3−ブタジエン重合体を含む反応混合物を得た。得られた反応混合物の一部をサンプリング分析した結果、該反応混合物中の1,3−ブタジエン重合体は、数平均分子量(Mn)が48,700、分子量分布(Mw/Mn)が1.06、側鎖ビニル結合量が30mol%であり、1,3−ブタジエン重合体(重合体ブロック(b))のガラス転移温度は−77℃であった。
(2)上記(1)で得られた反応混合物を−30℃に冷却し、0.45mol/lのイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムを含有するトルエン溶液18.1mlおよび1,2−ジメトキシエタン8.1mlを添加し、10分間撹拌して均一な溶液とした。
(3)次いで、上記(2)で得られた溶液を激しく撹拌しながら、アクリル酸n−ブチル71mlを添加し、−15℃で3時間重合させた。得られた反応混合物の一部をサンプリングし、GPC(ポリスチレン換算)により分子量を分析した結果、反応混合物中のブタジエン―アクリル酸n−ブチルジブロック共重合体(腕重合体ブロック)は数平均分子量が80,000であり、その重量平均分子量/数平均分子量の比(Mw/Mn)が1.02であることが判明した。また、アクリル酸n−ブチルの重合で得られた重合体ブロック(a)のガラス転移温度は−49℃であった。
(4)上記(3)で得られた反応混合物を−15℃で保持し、激しく攪拌したまま、1,6−ヘキサンジオールジアクリレート2.1mlを加え30分間重合した。次いでメタノール約1mlを添加して重合を停止させた。
(5)上記(4)で得られた反応混合物をメタノール8000mlに入れて析出させることにより、ブロック共重合体(B−2)が得られた。得られたブロック共重合体(B−2)の収率はほぼ100%であった。
得られたブロック共重合体(B−2)は、星型ブロック共重合体とジブロック共重合体との混合物であった。ブロック共重合体(B−2)は、GPCの面積比より算出した星型ブロック共重合体の割合が92質量%であった。
星型ブロック共重合体の数平均分子量(Mn)は310,000(腕数=3.88)、そのMw/Mnは1.16であった。また、ジブロック共重合体は、1,3−ブタジエンに由来する繰り返し単位からなる重合体ブロック(b)49質量%と、アクリル酸n−ブチルに由来する繰り返し単位からなる重合体ブロック(a)51質量%とからなるもの、すなわち腕重合体ブロックであった。ブロック共重合体(B−2)の屈折率は1.492であった。表1にブロック共重合体(B−2)の特性を示す。
Figure 0005433254
<実施例1>
攪拌機及び採取管付オートクレーブに、メタクリル酸メチル56.1質量部、アクリル酸メチル2.9質量部、トルエン35質量部およびブロック共重合体(B−1)6質量部を加え、30℃で8時間攪拌し、ブロック共重合体(B−1)を均一に溶解させた。次いで1,1−ジ(t−ブチルパーオキシ)シクロヘキサン(「パーヘキサC」 日本油脂社製)0.027質量部およびn−ドデシルメルカプタン0.17質量部を加え、均一に溶解した。窒素により反応系内の酸素を追出し、115℃で3時間重合を行った(前段重合)。採取管より反応液(d−1)を採取した。ガスクロマトグラフィーによって測定された重合転化率は60質量%であった。
次いで、該反応液(d−1)に1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.08質量部を加え、120℃で1.5時間重合した(後段重合)。得られた反応液(d−2)のガスクロマトグラフィーによって測定された重合転化率は90質量%であった。
次に反応液(d−2)を200℃に加温し、2軸押出機へ連続的に供給して230℃で未反応モノマーを主成分とする揮発分を分離除去し、メタクリル酸メチルに由来する繰り返し単位95質量%およびアクリル酸メチルに由来する繰り返し単位5質量%からなるメタクリル系樹脂からなる連続相90質量部に、アクリル酸n−ブチルに由来する繰り返し単位からなる重合体ブロック(a)とブタジエンに由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B−1)10質量部が分散してなるペレット状メタクリル系樹脂組成物を得た。該メタクリル系樹脂組成物の残存揮発分は0.1質量%であった。当該ペレット状メタクリル系樹脂組成物を射出成形にて厚さ3mmの成形品と厚さ1mmの成形品を作製して評価用の試験片とした。評価結果を表2に示す。
Figure 0005433254
<実施例2>
実施例1において用いたブロック共重合体(B−1)をブロック共重合体(B−2)に変更した以外は実施例1と同じ手法で前段重合を行った。採取管より反応液(d−3)を採取した。ガスクロマトグラフィーによって測定された重合転化率は60質量%であった。
次いで実施例1と同じ手法により、反応液(d−3)に1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.08質量部を加え、120℃で1.5時間、後段重合を行った。得られた反応液(d−4)のガスクロマトグラフィーによって測定された重合転化率は90質量%であった。
次に反応液(d−4)を200℃に加温し、2軸押出機へ連続的に供給して230℃で未反応モノマーを主成分とする揮発分を分離除去し、メタクリル酸メチルに由来する繰り返し単位95質量%およびアクリル酸メチルに由来する繰り返し単位5質量%からなるメタクリル系樹脂からなる連続相90質量部に、アクリル酸n−ブチルに由来する繰り返し単位からなる重合体ブロック(a)とブタジエンに由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B−2)10質量部が分散してなるペレット状メタクリル系樹脂組成物を得た。該メタクリル系樹脂組成物の残存揮発分は0.1質量%であった。当該ペレット状メタクリル系樹脂組成物を射出成形にて厚さ3mmの成形品と厚さ1mmの成形品を作製して評価用の試験片とした。評価結果を表2に示す。
<実施例3>
攪拌機及び採取管付オートクレーブに、メタクリル酸メチル60.8質量部、アクリル酸メチル3.2質量部、トルエン30質量部およびブロック共重合体(B−2)6質量部を加え、30℃で8時間攪拌し、ブロック共重合体(B−2)を均一に溶解させた。次いで1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.022質量部およびn−ドデシルメルカプタン0.17質量部を加え、均一に溶解した。窒素により反応系内の酸素を追出し、115℃で3時間重合を行った。採取管より反応液(d−5)を採取した。ガスクロマトグラフィーによって測定された重合転化率は60質量%であった。
次いで、該反応液(d−5)に1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.04質量部を加え、120℃で1.5時間重合した。得られた反応液(d−6)のガスクロマトグラフィーによって測定された重合転化率は82質量%であった。
次に反応液(d−6)を200℃に加温し、2軸押出機へ連続的に供給して230℃で未反応モノマーを主成分とする揮発分を分離除去し、メタクリル酸メチルに由来する繰り返し単位95質量%およびアクリル酸メチルに由来する繰り返し単位5質%からなるメタクリル系樹脂からなる連続相90質量部に、アクリル酸n−ブチルに由来する繰り返し単位からなる重合体ブロック(a)とブタジエンに由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B−2)10質量部が分散してなるペレット状メタクリル系樹脂組成物を得た。該メタクリル系樹脂組成物の残存揮発分は0.1質量%であった。当該ペレット状メタクリル系樹脂組成物を射出成形にて厚さ3mmの成形品と厚さ1mmの成形品を作製して評価用の試験片とした。評価結果を表2に示す。
<比較例1>
攪拌機及び採取管付オートクレーブに、メタクリル酸メチル71.3質量部、アクリル酸メチル3.7質量部、トルエン20質量部およびブロック共重合体(B−1)5質量部を加え、30℃で8時間攪拌し、ブロック共重合体(B−1)を均一に溶解させた。次いで1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.020質量部およびn−ドデシルメルカプタン0.17質量部を加え、均一に溶解した。窒素により反応系内の酸素を追出し、115℃で3時間重合を行った。採取管より反応液(d−7)を採取した。ガスクロマトグラフィーによって測定された重合転化率は60質量%であった。
次に該反応液(d−7)を200℃に加温し、2軸押出機へ連続的に供給して230℃で未反応モノマーを主成分とする揮発分を分離除去し、メタクリル酸メチルに由来する繰り返し単位95質量%およびアクリル酸メチルに由来する繰り返し単位5質量%からなるメタクリル系樹脂からなる連続相90質量部に、アクリル酸n−ブチルに由来する繰り返し単位からなる重合体ブロック(a)とブタジエンに由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B−1)10質量部が分散してなるペレット状メタクリル系樹脂組成物を得た。該メタクリル系樹脂組成物の残存揮発分は0.2質量%であった。当該ペレット状メタクリル系樹脂組成物を射出成形にて厚さ3mmの成形品と厚さ1mmの成形品を作製して評価用の試験片とした。評価結果を表2に示す。
<比較例2>
比較例1において用いたブロック共重合体(B−1)をブロック共重合体(B−2)に変更した以外は比較例1と同じ手法で115℃で3時間重合を行った。採取管より反応液(d−8)を採取した。ガスクロマトグラフィーによる重合転化率は60質量%であった。
次に該反応液(d−8)を200℃に加温し、2軸押出機へ連続的に供給して230℃で未反応モノマーを主成分とする揮発分を分離除去し、メタクリル酸メチルに由来する繰り返し単位95質量%およびアクリル酸メチルに由来する繰り返し単位5質量%からなるメタクリル系樹脂からなる連続相90質量部に、アクリル酸n−ブチルに由来する繰り返し単位からなる重合体ブロック(a)とブタジエンに由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B−2)10質量部が分散してなるペレット状メタクリル系樹脂組成物を得た。該メタクリル系樹脂組成物の残存揮発分は0.2質量%であった。当該ペレット状メタクリル系樹脂組成物を射出成形にて厚さ3mmの成形品と厚さ1mmの成形品を作製して評価用の試験片とした。評価結果を表2に示す。
<比較例3>
攪拌機及び採取管付オートクレーブに、メタクリル酸メチル55.6質量部、アクリル酸メチル2.9質量部、トルエン35質量部およびブロック共重合体(B−2)6.5質量部を加え、30℃で8時間攪拌し、ブロック共重合体(B−2)を均一に溶解させた。次いで1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.025質量部およびn−ドデシルメルカプタン0.17質量部を加え、均一に溶解した。窒素により反応系内の酸素を追出し、115℃で3時間重合を行った。採取管より反応液(d−9)を採取した。ガスクロマトグラフィーよって測定された重合転化率は60質量%であった。
次いで、該反応液(d−9)に1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.12質量部を加え、120℃で2時間重合した。得られた反応液(d−10)のガスクロマトグラフィーによって測定された重合転化率は97質量%であった。
次に反応液(d−10)を200℃に加温し、2軸押出機へ連続的に供給して230℃で未反応モノマーを主成分とする揮発分を分離除去し、メタクリル酸メチルに由来する繰り返し単位95質量%およびアクリル酸メチルに由来する繰り返し単位5質量%からなるメタクリル系樹脂からなる連続相91質量部に、アクリル酸n−ブチルに由来する繰り返し単位からなる重合体ブロック(a)とブタジエンに由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B−2)9質量部が分散してなるペレット状メタクリル系樹脂組成物を得た。該メタクリル系樹脂組成物の残存揮発分は0.1質量%であった。当該ペレット状メタクリル系樹脂組成物を射出成形にて厚さ3mmの成形品と厚さ1mmの成形品を作製して評価用の試験片とした。評価結果を表2に示す。
<比較例4>
メタクリル系樹脂(Mw/Mn=2.2)75質量部に粒径0.25μmのスチレン―アクリル酸n−ブチルランダム共重合体ゴム40質量%を含有するコアシェル型重合体粒子25質量部を練り込んだ重合体組成物のペレットを用い、実施例1と同じ手法によって射出成形にて厚さ3mmの成形品と厚さ1mmの成形品を作製して評価用の試験片とした。シャルピー衝撃強度は3.8KJ/m2、曲げ弾性率は2400MPa、およびヘイズは0.9%であった。
表2の結果から、本発明の構成を満足する特定のブロック共重合体とメタクリル酸メチル系単量体混合物を、本発明を満足する特定の範囲の重合転化率になるように重合することで得られたメタクリル系樹脂組成物は、比較例1〜3と比較して耐衝撃性が優れていることが分かる。また、本発明の構成とはエラストマー成分及び結合様式の点で異なる乳化重合よりなる多層構造粒子を含有したメタクリル系樹脂組成物(比較例4)と比較しても、耐衝撃性が改善されていることが分かる。
以上のように、本発明のメタクリル系樹脂組成物の製造方法によれば、特定のブロック共重合体を含み、優れた耐衝撃性、透明性および剛性を有するメタクリル系樹脂組成物を提供できる。本発明により、従来のメタクリル系樹脂では使用困難であった耐衝撃性を求められる用途の各種成形品を提供できるのみならず、欠陥の極めて少ない成形品を提供できる。

Claims (4)

  1. メタクリル酸メチル50〜100質量%およびメタクリル酸メチルと共重合可能な他のビニル系単量体0〜50質量%からなる単量体混合物(A)100質量部、(メタ)アクリル酸アルキルエステルに由来する繰り返し単位からなる重合体ブロック(a)と共役ジエン化合物に由来する繰り返し単位からなる重合体ブロック(b)とを有するブロック共重合体(B)1〜80質量部、および溶剤(C)0〜100質量部を含有してなる原料液を、単量体混合物(A)の重合転化率が70質量%〜95質量%となるまで重合し、
    次いで脱揮処理して未反応単量体および/または溶剤を除去すること含む、単量体混合物(A)の重合体からなる連続相中にブロック共重合体(B)が分散相として含有するメタクリル系樹脂組成物の製造方法。
  2. ブロック共重合体(B)が星型ブロック共重合体であって、星型ブロック共重合体が腕重合体ブロックで構成され、ゲルパーミエーションクロマトグラフィー(GPC)により算出したポリスチレン換算の数平均分子量が、式:
    [星型ブロック共重合体の数平均分子量]>2×[腕重合体ブロックの数平均分子量]
    を満たす請求項1に記載のメタクリル系樹脂組成物の製造方法。
  3. 星型ブロック共重合体が、化学構造式:
    (重合体ブロック(b)―重合体ブロック(a)―)n
    (式中、Xはカップリング残基、nは2を超える数を表す。)で表されるものである請求項2に記載のメタクリル系樹脂組成物の製造方法。
  4. 単量体混合物(A)の重合体のGPCで測定された分子量分布(=重量平均分子量/数平均分子量)が3.0以下になるようにする、請求項1〜3のいずれか1項に記載のメタクリル系樹脂組成物の製造方法。
JP2009047389A 2008-02-28 2009-02-27 メタクリル系樹脂組成物の製造方法 Expired - Fee Related JP5433254B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047389A JP5433254B2 (ja) 2008-02-28 2009-02-27 メタクリル系樹脂組成物の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008048848 2008-02-28
JP2008048848 2008-02-28
JP2009047389A JP5433254B2 (ja) 2008-02-28 2009-02-27 メタクリル系樹脂組成物の製造方法

Publications (2)

Publication Number Publication Date
JP2009227999A JP2009227999A (ja) 2009-10-08
JP5433254B2 true JP5433254B2 (ja) 2014-03-05

Family

ID=41243742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047389A Expired - Fee Related JP5433254B2 (ja) 2008-02-28 2009-02-27 メタクリル系樹脂組成物の製造方法

Country Status (1)

Country Link
JP (1) JP5433254B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023873B2 (ja) * 1972-09-07 1975-08-11
JPH0578433A (ja) * 1991-09-20 1993-03-30 Asahi Chem Ind Co Ltd ゴム変性ビニル芳香族系樹脂組成物
JPH0597905A (ja) * 1991-10-11 1993-04-20 Kuraray Co Ltd 重合体微粒子の製造法
JP4057123B2 (ja) * 1998-01-19 2008-03-05 株式会社ブリヂストン 重合体の製造方法、重合体及びその重合体を用いたゴム組成物
JP5177466B2 (ja) * 2001-09-26 2013-04-03 電気化学工業株式会社 ゴム変性共重合樹脂の製造方法

Also Published As

Publication number Publication date
JP2009227999A (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5190269B2 (ja) メタクリル樹脂組成物及び樹脂改質剤並びに成形体
JP5615755B2 (ja) 複層フィルム
JP5844262B2 (ja) 重合体組成物および成形品
JP5416438B2 (ja) メタクリル系樹脂組成物からなる導光体
TWI609912B (zh) (甲基)丙烯酸樹脂組成物之製造方法、光學構件之製造方法及偏光板之製造方法
JP5281976B2 (ja) ゴム変性メタクリル系樹脂組成物およびそれからなる成形品
JP5186415B2 (ja) メタクリル系樹脂フィルム
JP5227847B2 (ja) メタクリル系樹脂組成物
JP5433254B2 (ja) メタクリル系樹脂組成物の製造方法
JP5048023B2 (ja) メタクリル系樹脂組成物およびその製造方法
JP5248427B2 (ja) メタクリル系樹脂組成物及びその製造方法
JP5214494B2 (ja) メタクリル系樹脂組成物の製造方法
JP5237858B2 (ja) メタクリル系樹脂用改質剤
JP5317768B2 (ja) メタクリル系重合体組成物
JP5485095B2 (ja) メタクリル系重合体組成物および成形品
JP6186189B2 (ja) (メタ)アクリル樹脂組成物の製造方法
JP5186416B2 (ja) 表示窓保護板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5433254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees