JP5428394B2 - 固体撮像装置とその製造方法、および撮像装置 - Google Patents

固体撮像装置とその製造方法、および撮像装置 Download PDF

Info

Publication number
JP5428394B2
JP5428394B2 JP2009050130A JP2009050130A JP5428394B2 JP 5428394 B2 JP5428394 B2 JP 5428394B2 JP 2009050130 A JP2009050130 A JP 2009050130A JP 2009050130 A JP2009050130 A JP 2009050130A JP 5428394 B2 JP5428394 B2 JP 5428394B2
Authority
JP
Japan
Prior art keywords
gate electrode
element isolation
isolation region
semiconductor substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009050130A
Other languages
English (en)
Other versions
JP2010205950A (ja
Inventor
史彦 古閑
義治 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009050130A priority Critical patent/JP5428394B2/ja
Priority to TW099103016A priority patent/TWI396279B/zh
Priority to KR1020100016129A priority patent/KR20100100615A/ko
Priority to US12/711,345 priority patent/US8368161B2/en
Priority to CN2010101251954A priority patent/CN101826539B/zh
Publication of JP2010205950A publication Critical patent/JP2010205950A/ja
Application granted granted Critical
Publication of JP5428394B2 publication Critical patent/JP5428394B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Element Separation (AREA)

Description

本発明は、固体撮像装置とその製造方法、および撮像装置に関するものである。
CMOSイメージセンサの画素の微細化が進むにつれ、単位画素内でフォトダイオードに対して画素トランジスタが占める面積が増大している。
単位画素内で画素トランジスタが占める割合が大きくなると、フォトダイオードの占有面積が減少するため、感度の低下を来たすことになる。また図13に示すように、画素トランジスタのゲート電極120で入射光Lの一部(例えば斜め入射光)が反射もしくは吸収されてしまい、フォトダイオード110へ到達する光が減少することによっても、感度の低下を来たすという問題が発生する。
また、画素トランジスタの素子分離領域上へのオーバラップ分だけの面積を確保する必要があるため、フォトダイオード面積を拡大することができず、飽和電子数が低下するという問題が発生する。
また近年、画素サイズの縮小により感度電子数・飽和電子数は低下している。その結果、画素の信号出力電圧が低下するという問題が発生している。そのため画素内で電子を電圧に変換する効率(変換効率)の向上が望まれている。しかし、図14に示すように、素子分離領域130上へのゲート電極120のオーバラップ量が大きいと、ゲート容量が増大するという問題が発生する。
さらに、素子が微細化したときに、素子分離領域130上へのゲート電極120のオーバラップ量が大きいと、フォトダイオード110の占有面積を小さくせざるを得なくなり、感度の低下を来たすことになる。
上記問題を解決するためには、トランジスタの素子分離領域上へのオーバラップ量を縮小する必要がある。しかし、ゲート電極のオーバラップ量を縮小すると、露光装置の合わせずれが発生した場合に、図15に示すように、ゲート電極120のゲート幅方向に隙間125を生じるような合わせずれを発生することがある。この場合、ソース・ドレイン領域141、142を形成するイオン注入の際に、上記隙間125部分から半導体基板100にイオンが注入され、ソース・ドレイン領域141、142がショートした状態に形成されてしまう。
またSRAM等ではポリシリコンゲートのオーバラップを解消する手法として、セルフアラインでゲート電極を形成する製造方法が提案されている(例えば、特許文献1参照)。この製造方法で作製すると、周辺回路部のロジック回路でゲート長(L長)の短いトランジスタを作製しようとした場合に、コンタクトを取ることが困難となる。このため、固体撮像素子のように、周辺回路部の微細パターンを必要とするゲート電極と画素部のゲート電極とがチップ内で混在するものに適用することが困難であった。
特開2006−93222号公報
解決しようとする問題点は、画素サイズの縮小化に伴い、周辺回路部のゲート電極を、コンタクトをとるために素子分離領域上にオーバラップして形成すると、画素トランジスタ部のゲート電極も素子分離領域上にオーバラップして形成される点である。
本発明は、画素トランジスタ部のゲート電極が素子分離領域上にオーバラップさせずに形成されることで、画素サイズの縮小化に伴う光電変換部(フォトダイオード)の占有面積の縮小化を抑え、感度の向上を可能にする。
本発明の固体撮像装置は、半導体基板に、入射光を光電変換して信号電荷を得る光電変換部と、前記光電変換部で生成された信号電荷を出力する画素トランジスタ部と、前記光電変換部と前記画素トランジスタ部を有する画素部の周辺に形成された周辺回路部と、前記光電変換部と前記画素トランジスタ部と前記周辺回路部を電気的に分離する素子分離領域を有し、前記画素トランジスタ部の周囲の前記素子分離領域は、前記半導体基板表面より高く形成された絶縁体部を有し、前記画素トランジスタ部のトランジスタの第1ゲート電極は前記半導体基板上にゲート絶縁膜を介して前記絶縁体部間に形成され、前記周辺回路部のトランジスタの第2ゲート電極の少なくとも一端は、前記周辺回路部を分離する前記素子分離領域上に形成されている。
本発明の固体撮像装置では、画素トランジスタ部のみ、トランジスタの第1ゲート電極が素子分離領域の絶縁体部間に形成されるので、第1ゲート電極は素子分離領域上にオーバラップされないで形成されている。これによって、画素サイズの縮小化に伴う光電変換部の占有面積の縮小化が抑制され、感度の低下が抑えられる。もしくは感度の向上が得られる。
本発明の固体撮像装置の製造方法は、半導体基板に形成される光電変換部、画素トランジスタ部および周辺回路部を電気的に分離していて、前記半導体基板表面より高く形成された絶縁体部を有する素子分離領域を形成する工程と、前記半導体基板の前記画素トランジスタ部の形成領域にゲート絶縁膜を形成する工程と、前記半導体基板上の全面を被覆する第1ゲート電極形成膜を形成する工程と、前記画素トランジスタ部の形成領域に前記第1ゲート電極形成膜を残すように前記第1ゲート電極形成膜を除去して前記素子分離領域の前記絶縁体部上面を露出させる工程と、前記画素トランジスタ部に前記第1ゲート電極形成膜で第1ゲート電極を形成するとともに、前記光電変換部上および前記周辺回路部上の前記第1ゲート電極形成膜を除去する工程と、前記第1ゲート電極を被覆するエッチング防止膜を形成する工程と、前記半導体基板上の全面を被覆する第2ゲート電極形成膜を形成する工程と、前記エッチング防止膜が形成された前記第1ゲート電極を残した状態で、前記第2ゲート電極形成膜で前記周辺回路部のトランジスタの第2ゲート電極を形成する工程を有し、前記周辺回路部のトランジスタの第2ゲート電極の少なくとも一端を、前記周辺回路部を分離する前記素子分離領域上に形成する。
本発明の固体撮像装置の製造方法では、画素トランジスタ部のみ、トランジスタの第1ゲート電極を素子分離領域の絶縁体部間に形成するので、画素トランジスタ部の第1ゲート電極は素子分離領域上にオーバラップされずに形成される。これによって、画素サイズの縮小化に伴う光電変換部の占有面積の縮小化が抑制され、感度の低下が抑えられる。もしくは感度の向上が得られる。
本発明の撮像装置は、入射光を集光する集光光学部と、前記集光光学部で集光した光を受光して光電変換する固体撮像装置を有する撮像部と、光電変換された信号を処理する信号処理部を有し、前記固体撮像装置は、半導体基板に、入射光を光電変換して信号電荷を得る光電変換部と、前記光電変換部で生成された信号電荷を出力する画素トランジスタ部と、前記光電変換部と前記画素トランジスタ部を有する画素部の周辺に形成された周辺回路部と、前記光電変換部と前記画素トランジスタ部と前記周辺回路部を電気的に分離する素子分離領域を有し、前記画素トランジスタ部の周囲の前記素子分離領域は、前記半導体基板表面より高く形成された絶縁体部を有し、前記画素トランジスタ部のトランジスタの第1ゲート電極は前記半導体基板上にゲート絶縁膜を介して前記絶縁体部間に形成され、
前記周辺回路部のトランジスタの第2ゲート電極の少なくとも一端は、前記周辺回路部を分離する前記素子分離領域上に形成されている。
本発明の撮像装置では、画素トランジスタ部のみ、トランジスタの第1ゲート電極が素子分離領域の絶縁体部間に形成されている高感度な本願発明の固体撮像装置が用いられている。
本発明の固体撮像装置は、画素トランジスタ部の第1ゲート電極は素子分離領域上にオーバラップされずに形成されるため、画素サイズの縮小化に伴う光電変換部の占有面積の縮小化を抑え、感度が向上されるという利点がある。
本発明の固体撮像装置の製造方法は、画素トランジスタ部の第1ゲート電極は素子分離領域上にオーバラップされずに形成されるため、画素サイズの縮小化に伴う光電変換部の占有面積の縮小化を抑え、感度が向上されるという利点がある。
本発明の撮像装置は、画素サイズの縮小化しても高感度の撮像ができる本発明の固体撮像装置を用いているので、高感度な撮像ができるという利点がある。
第1実施の形態に係る固体撮像装置の構成の第1例を示した概略構成断面図である。 固体撮像装置の構成の第2例を示した概略構成断面図である。 本発明の固体撮像装置が適用されるCMOSイメージセンサの回路図である。 第2実施の形態に係る固体撮像装置の製造方法の第1例を示した製造工程断面図である。 固体撮像装置の製造方法の第1例を示した製造工程断面図である。 固体撮像装置の製造方法の第1例を示した製造工程断面図である。 固体撮像装置の製造方法の第1例を示した製造工程断面図である。 第2実施の形態に係る固体撮像装置の製造方法の第2例を示した製造工程断面図である。 固体撮像装置の製造方法の第2例を示した製造工程断面図である。 固体撮像装置の製造方法の第2例を示した製造工程断面図である。 固体撮像装置の製造方法の第2例を示した製造工程断面図である。 本発明の撮像装置に係る一実施の形態を示したブロック図である。 従来技術の問題点を示した概略構成断面図である。 従来技術の問題点を示した平面レイアウト図である。 従来技術の問題点を示した平面レイアウト図である。
以下、発明を実施するための最良の形態(以下、実施の形態とする)について説明する。
<1.第1の実施の形態>
[固体撮像装置の構成の第1例]
本発明の第1実施の形態に係る固体撮像装置の構成の第1例を、図1の概略構成断面図によって説明する。
図1に示すように、半導体基板11には、入射光を光電変換して信号電荷を得る光電変換部12、上記光電変換部12で生成された信号電荷を出力する画素トランジスタ部13が形成されている。さらに、上記光電変換部12と上記画素トランジスタ部13を有する画素部の周辺に形成された周辺回路部14が形成されている。そして、上記光電変換部12と上記画素トランジスタ部13と上記周辺回路部14を電気的に分離する素子分離領域15が形成されている。この素子分離領域15は、上記画素トランジスタ部13の周囲に上記半導体基板11表面より高く形成された絶縁体部16を有している。
上記半導体基板11には、例えば通常のシリコン基板が用いられている。上記光電変換部12は、N型領域12Nとその上層に形成されたP+型領域12Pから構成されている。
また上記素子分離領域15は、例えばSTI(Shallow Trench Isolation)構造となっている。
また、上記半導体基板11の画素トランジスタ部13の形成領域および周辺回路部14のトランジスタの形成領域には、しきい値電圧(Vth)調整用の不純物領域17、18が形成されている。
上記半導体基板11の上記画素トランジスタ部13の形成領域には、ゲート絶縁膜21を介して第1ゲート電極22が形成されている。そして上記第1ゲート電極22は上記半導体基板11上にゲート絶縁膜21を介して上記絶縁体部16間に形成されている。
したがって、第1ゲート電極22は、素子分離領域15上にオーバラップして形成されていない。
上記ゲート絶縁膜31は、例えば酸化シリコン膜で形成されている。もちろん、酸化シリコン膜以外の通常のMOSトランジスタに用いられるゲート絶縁膜材料で形成することもできる。
上記第1ゲート電極22は、例えば導電性のポリシリコンで形成されている。
また、図示はしていないが、上記第1ゲート電極22の両側の半導体基板11には、ソース・ドレイン領域が形成されている。このように画素トランジスタ部13に画素トランジスタが構成されている。
図面では、代表して、一つのトランジスタを示したが、通常、画素トランジスタ部13は、転送トランジスタ、リセットトランジスタ、増幅トランジスタ、選択トランジスタの4トランジスタ構成となっている。もしくは3トランジスタ構成となっている。
また、例えば、リセットトランジスタ、増幅トランジスタおよび選択トランジスタの画素トランジスタ群が二つの光電変換部の共通の画素トランジスタとなっていてもよい。もしくは上記トランジスタ群が四つの光電変換部の共通の画素トランジスタとなっていてもよい。
一方、周辺回路部14のトランジスタでは、上記半導体基板11上にゲート絶縁膜31を介して第2ゲート電極32が形成されている。この第2ゲート電極32は、少なくともその一端側は、上記周辺回路部14を分離する上記素子分離領域15上にオーバラップする状態に形成されている。
上記素子分離領域15上に形成された第2ゲート電極32の部分は、別の配線等を接続するためのコンタクト部33となっている。このコンタクト部33は、例えば上記第2ゲート電極32の上記素子分離領域15上に形成された部分が幅広に形成されたものである。
上記ゲート絶縁膜31は、例えば酸化シリコン膜で形成されている。もちろん、酸化シリコン膜以外のゲート絶縁膜の用いられる絶縁膜材料で形成することもできる。例えば、高誘電率膜の酸化ハフニウム、酸化アルミニウム等を用いることもできる。
上記第2ゲート電極形成膜43は、例えばポリシリコン膜で形成されている。または、例えば、タングステン(W)等の金属膜を用いることもできる。
また、図示はしていないが、上記第1ゲート電極22、第2ゲート電極32両側には、ソース・ドレイン領域が形成されている。さらに、上記光電変換部12、上記画素トランジスタ部13、上記周辺回路部14上には、保護膜が形成され、さらにカラーフィルター、マイクロレンズ等が形成されている。このように、固体撮像装置1が形成されている。
上記固体撮像装置の第1例では、画素トランジスタ部13のみ、トランジスタの第1ゲート電極22が素子分離領域15の絶縁体部16間に形成されている。このため、画素トランジスタ部13の第1ゲート電極22は素子分離領域15上にオーバラップされずに形成されている。これによって、画素サイズの縮小化に伴う光電変換部12の占有面積の縮小化が抑制され、感度の低下が抑えられる。もしくは感度の向上が得られる。
また素子分離領域15上に第1ゲート電極22がオーバラップした状態に形成されていないので、画素トランジスタがオンすることによって、素子分離領域15下にキャリアが発生することはない。よって、従来のようなキャリアが光電変換部12に混入することでノイズの原因となる問題が解決されるので、高画質な撮像が可能になる。
また、周辺回路部14においては、第2ゲート電極32のゲート長を最先端プロセスのゲート長としても、第2ゲート電極32の両端部分を素子分離領域15上にオーバラップさせる状態で形成されている。このため、第2ゲート電極32では、素子分離領域15上の第2ゲート電極32部分のコンタクトがとれるコンタクト部33を有することが可能になる。
[固体撮像装置の構成の第2例]
本発明の第2実施の形態に係る固体撮像装置の構成の第2例を、図2の概略構成断面図によって説明する。第2例の固体撮像装置は、第1例の固体撮像装置1と、概ね同様であるが、以下の点で異なる。それは、画素トランジスタ部13の周囲における素子分離領域15の半導体基板11表面からの高さを、周辺回路部14の周囲における素子分離領域15の半導体基板11表面からの高さよりも高く形成されている点である。
すなわち、図2に示すように、半導体基板11には、入射光を光電変換して信号電荷を得る光電変換部12、上記光電変換部12で生成された信号電荷を出力する画素トランジスタ部13が形成されている。さらに、上記光電変換部12と上記画素トランジスタ部13を有する画素部の周辺に形成された周辺回路部14が形成されている。そして、上記光電変換部12と上記画素トランジスタ部13と上記周辺回路部14を電気的に分離する素子分離領域15が形成されている。この素子分離領域15は、上記画素トランジスタ部13の周囲に上記半導体基板11表面より高く形成された絶縁体部16を有している。
そして、上記素子分離領域15は、画素トランジスタ部13の周囲における素子分離領域15の半導体基板11表面からの高さを、周辺回路部14の周囲における素子分離領域15の半導体基板11表面からの高さよりも高く形成されている。例えば、30nm〜100nm程度高く形成されている。また、画素トランジスタ部13の周囲における素子分離領域15は、高く形成された分、浅く形成することができる。
上記半導体基板11には、例えば通常のシリコン基板が用いられている。上記光電変換部12は、N型領域12Nとその上層に形成されたP+型領域12Pから構成されている。
また上記素子分離領域15は、例えばSTI(Shallow Trench Isolation)構造となっている。
また、上記半導体基板11の画素トランジスタ部13の形成領域および周辺回路部14のトランジスタの形成領域には、しきい値電圧(Vth)調整用の不純物領域17、18が形成されている。
上記半導体基板11の上記画素トランジスタ部13の形成領域には、ゲート絶縁膜21を介して第1ゲート電極22が形成されている。そして上記第1ゲート電極22は上記半導体基板11上にゲート絶縁膜21を介して上記絶縁体部16間に形成されている。
したがって、第1ゲート電極22は、素子分離領域15上にオーバラップして形成されていない。
上記ゲート絶縁膜31は、例えば酸化シリコン膜で形成されている。もちろん、酸化シリコン膜以外の通常のMOSトランジスタに用いられるゲート絶縁膜材料で形成することもできる。
上記第1ゲート電極22は、例えば導電性のポリシリコンで形成されている。
また、図示はしていないが、上記第1ゲート電極22の両側の半導体基板11には、ソース・ドレイン領域が形成されている。このように画素トランジスタ部13に画素トランジスタが構成されている。
図面では、代表して、一つのトランジスタを示したが、通常、画素トランジスタ部13は、転送トランジスタ、リセットトランジスタ、増幅トランジスタ、選択トランジスタの4トランジスタ構成となっている。もしくは3トランジスタ構成となっている。
また、例えば、リセットトランジスタ、増幅トランジスタおよび選択トランジスタの画素トランジスタ群が二つの光電変換部の共通の画素トランジスタとなっていてもよい。もしくは上記トランジスタ群が四つの光電変換部の共通の画素トランジスタとなっていてもよい。
一方、周辺回路部14のトランジスタでは、上記半導体基板11上にゲート絶縁膜31を介して第2ゲート電極32が形成されている。この第2ゲート電極32は、少なくともその一端側は、上記周辺回路部14を分離する上記素子分離領域15上にオーバラップする状態に形成されている。
上記素子分離領域15上に形成された第2ゲート電極32の部分は、別の配線等を接続するためのコンタクト部33となっている。このコンタクト部33は、例えば上記第2ゲート電極32の上記素子分離領域15上に形成された部分が幅広に形成されたものである。
上記ゲート絶縁膜31は、例えば酸化シリコン膜で形成されている。もちろん、酸化シリコン膜以外のゲート絶縁膜の用いられる絶縁膜材料で形成することもできる。例えば、高誘電率膜の酸化ハフニウム、酸化アルミニウム等を用いることもできる。
上記第2ゲート電極形成膜43は、例えばポリシリコン膜で形成されている。または、例えば、タングステン(W)等の金属膜を用いることもできる。
また、図示はしていないが、上記第1ゲート電極22、第2ゲート電極32両側には、ソース・ドレイン領域が形成されている。さらに、上記光電変換部12、上記画素トランジスタ部13、上記周辺回路部14上には、保護膜が形成され、さらにカラーフィルター、マイクロレンズ等が形成されている。このように、固体撮像装置1が形成されている。
上記固体撮像装置の第2例では、画素トランジスタ部13のみ、トランジスタの第1ゲート電極22が素子分離領域15の絶縁体部16間に形成されている。このため、画素トランジスタ部13の第1ゲート電極22は素子分離領域15上にオーバラップされずに形成されている。これによって、画素サイズの縮小化に伴う光電変換部12の占有面積の縮小化が抑制され、感度の低下が抑えられる。もしくは感度の向上が得られる。
また、周辺回路部14においては、第2ゲート電極32のゲート長を最先端プロセスのゲート長としても、第2ゲート電極32の両端部分を素子分離領域15上にオーバラップさせる状態で形成されている。このため、第2ゲート電極32では、素子分離領域15上の第2ゲート電極32部分のコンタクトがとれるコンタクト部33を有することが可能になる。
さらに、画素トランジスタ部13の素子分離領域15の高さを、例えば周辺回路部14の素子分離領域15の高さよりも高く形成しているので、その分、画素トランジスタ部13の素子分離領域15の深さを従来よりも浅く形成できる。これによって、素子分離領域15下の部分を光電変換部12として使用できるようになる。そのため、感度を向上させることができる。
また素子分離領域15上に第1ゲート電極22がオーバラップした状態に形成されていないので、画素トランジスタがオンすることによって、素子分離領域15下にキャリアが発生することはない。よって、従来のようなキャリアが光電変換部12に混入することでノイズの原因となる問題が解決されるので、高画質な撮像が可能になる。
ここで、参考例として、CMOS型固体撮像装置の一例にして、画素部と周辺回路部の一例を、図3の回路構成図によって説明する。
図3に示すように、固体撮像装置(CMOS型イメージセンサ)201は、光電変換素子を含む画素211が行列状に2次元配置されてなる画素部210を有する。またその周辺回路部として、制御信号線を独立に制御する駆動回路221、画素用垂直走査回路223、タイミング発生回路225、水平走査回路227等の周辺回路部220を有する構成となっている。
画素211の行列状配列に対して、列毎に出力信号線241が配線され、画素211の各行毎に制御信号線が配線されている。これらの制御信号線は、例えば、転送制御線242、リセット制御線243および選択制御線244が配線されている。さらに、画素211の各々に、リセット電圧を供給するリセット線245が配線されている。
画素211の回路構成の一例が示されている。本回路例に係る単位画素は、受光部231に光電変換素子としてフォトダイオードを備え、転送トランジスタ232、リセットトランジスタ233、増幅トランジスタ234および選択トランジスタ235の4つのトランジスタを有する画素回路となっている。ここでは、転送トランジスタ232、リセットトランジスタ233、増幅トランジスタ234および選択トランジスタ235として、例えばNチャネルのMOSトランジスタを用いている。これらのトランジスタを前記説明では画素トランジスタと称している。
転送トランジスタ232は、受光部231のフォトダイオードのカソード電極と電荷電圧変換部であるフローティングディフュージョン部236との間に接続されている。そして、受光部231で光電変換され、ここに蓄積された信号電荷(ここでは、電子)を、ゲート電極(制御電極)に転送パルスが与えられることによってフローティングディフュージョン部236に転送する。
リセットトランジスタ233は、リセット線245にドレイン電極が、フローティングディフュージョン部236にソース電極がそれぞれ接続されている。そして、受光部231からフローティングディフュージョン部236への信号電荷の転送に先立って、ゲート電極にリセットパルスRSTが与えられることによってフローティングディフュージョン部236の電位をリセット電圧Vrstにリセットする。
増幅トランジスタ234は、フローティングディフュージョン部236にゲート電極が、画素電源Vddにドレイン電極がそれぞれ接続されている。そして、リセットトランジスタ233によってリセットされた後のフローティングディフュージョン部236の電位をリセットレベルとして出力する。さらに転送トランジスタ232によって信号電荷が転送された後のフローティングディフュージョン部236の電位を信号レベルとして出力する。
選択トランジスタ235は、例えば、ドレイン電極が増幅トランジスタ234のソース電極に接続され、ソース電極が出力信号線241に接続されている。そしてゲート電極に選択パルスSELが与えられることによってオン状態となり、画素211を選択状態として増幅トランジスタ234から出力される信号を出力信号線241に出力する。なお、選択トランジスタ235については、画素電源Vddと増幅トランジスタ234のドレイン電極との間に接続した構成を採ることも可能である。
駆動回路221は、画素部210の読み出し行の各画素211の信号を読み出す読み出し動作を行う構成となっている。
画素用垂直走査回路223は、シフトレジスタもしくはアドレスデコーダ等によって構成されている。そして、リセットパルス、転送パルスおよび選択パルス等を適宜発生することで、画素部210の各画素211を電子シャッタ行と読み出し行それぞれについて行単位で垂直方向(上下方向)に走査される。またこの走査をしつつ、電子シャッタ行に対してはその行の画素211の信号掃き捨てを行うための電子シャッタ動作を行う。そして、駆動回路221による読み出し走査よりもシャッタ速度に対応した時間分だけ前に同じ行(電子シャッタ行)に対して電子シャッタ動作を行う。
水平走査回路227は、シフトレジスタあるいはアドレスデコーダ等によって構成され、画素部210の画素列ごとに順に水平走査する。
タイミング発生回路225は、駆動回路221、画素用垂直走査回路223等の動作の基準となるタイミング信号や制御信号が生成される。
<2.第2の実施の形態>
[固体撮像装置の製造方法の第1例]
本発明の第2実施の形態に係る固体撮像装置の製造方法の第1例を、図4〜図5の製造工程断面図によって説明する。
図4(1)に示すように、半導体基板11に形成される光電変換部12、画素トランジスタ部13および周辺回路部14を電気的に分離していて、上記半導体基板11表面より高く形成された絶縁体部16を有する素子分離領域15を形成する。
上記半導体基板11には、例えば通常のシリコン基板を用いる。上記光電変換部12は、N型領域12Nとその上層に形成されたP+型領域12Pから構成されている。
上記素子分離領域15は、例えばSTI(Shallow Trench Isolation)構造とする。その製造方法は、例えば、上記半導体基板11に素子分離溝を形成するときのマスク用絶縁膜(図示せず)を所定の高さ、例えば素子分離領域15の絶縁体部16の高さに形成しておく。そして素子分離溝内に素子分離領域15を形成する素子分離用絶縁膜を埋め込み、上記マスク用絶縁膜上の余剰な素子分離用絶縁膜を除去する。この除去加工は、例えば化学的機械研磨(CMP)によって行う。その後、上記マスク用絶縁膜を除去することで、上記絶縁体部16を含めた素子分離領域15を形成することができる。
上記素子分離領域15を形成した後、例えば、上記半導体基板11の画素トランジスタ部13の形成領域および周辺回路部14のトランジスタの形成領域のそれぞれにしきい値電圧(Vth)調整用のイオン注入を行って不純物領域17、18を形成する。なお、イオン注入に先立ち、半導体基板11上には、例えば酸化シリコン膜からなるバッファ層61を形成しておく。
次に、図4(2)に示すように、上記半導体基板11表面の酸化シリコン膜等を除去した後、上記画素トランジスタ部13の形成領域に、画素トランジスタのゲート絶縁膜21を形成する。このゲート絶縁膜21は、例えば酸化シリコン膜で形成する。この酸化シリコン膜は、例えば熱酸化で形成するが、その他の成膜方法を用いて形成することもできる。
さらに、上記半導体基板11上の全面を被覆する第1ゲート電極形成膜41を形成する。この第1ゲート電極形成膜41は、例えばポリシリコン膜で形成される。このポリシリコン膜は、例えば化学気相成長(CVD)法によって形成されるが、その他の成膜方法であってもよい。また、ポリシリコンに限定されず、例えば、タングステン(W)等の金属膜を用いることもできる。
次に、図4(3)に示すように、上記画素トランジスタ部13の形成領域に上記第1ゲート電極形成膜41を残すように上記第1ゲート電極形成膜41を除去して上記素子分離領域15の上記絶縁体部16上面を露出させる。この露出工程は、例えば化学的機械研磨(CMP)法を用いる。
次に、図5(4)に示すように、上記画素トランジスタ部13に上記第1ゲート電極形成膜41で第1ゲート電極22を形成するとともに、上記光電変換部12上および上記周辺回路部14上の上記第1ゲート電極形成膜41を除去する。
上記工程では、まず通常のレジスト塗布技術によって、上記第1ゲート電極形成膜41上にレジスト膜(図示せず)を形成する。次いで、リソグラフィー技術によってそのレジスト膜を露光、現像、ベーキングして画素トランジスタ部13の第1ゲート電極を形成するためのマスクパターン51を形成する。次に、このマスクパターン51をエッチングマスクに用いて、上記第1ゲート電極形成膜41をエッチングし、上記第1ゲート電極22を形成する。それとともに、その他の領域に形成された上記第1ゲート電極形成膜41をエッチングにより除去する。このエッチングでは、上記第1ゲート電極22のエッチング加工を高精度に行うために、異方性ドライエッチングが可能な反応性イオンエッチング(RIE)を用いることが好ましい。
このようにして、上記画素トランジスタ部13の第1ゲート電極22は、上記素子分離領域15の絶縁体部16間の上記半導体基板11上にゲート絶縁膜21を介して形成される。
通常、画素トランジスタ部13は、上記説明したような転送トランジスタ、リセットトランジスタ、増幅トランジスタ、選択トランジスタ等で構成されている。したがって、転送トランジスタ、リセットトランジスタ、増幅トランジスタ、選択トランジスタ等が上記第1ゲート電極22で形成される。ここでは4トランジスタ構成としたが、3トランジスタ構成であっても、本願発明を適用できる。
また上記ドライエッチングでは、素子分離領域15等を構成する酸化シリコン膜と第1ゲート電極形成膜41とのエッチング選択性が確保できるエッチング条件とする。
なお、周辺回路部14のトランジスタの第2ゲート電極は、周辺回路部14の素子分離領域上にオーバラップさせて形成するため、上記第1ゲート電極形成膜41では形成することができない。そこで、上記ドライエッチングによって、周辺回路部14上の上記第1ゲート電極形成膜41は除去しておく。このとき、上記ゲート絶縁膜21もエッチングされるが、場合によっては、周辺回路部14、光電変換部12上に上記ゲート絶縁膜21が残される場合がある。このように、この時点では、上記ゲート絶縁膜21が残されていてもかまわない。
その後、上記マスクパターン51を除去する。図面では、上記マスクパターン51を除去する直前の状態を示した。
次に、図5(5)に示すように、上記第1ゲート電極22を被覆するエッチング防止膜42を形成する。このエッチング防止膜42は、例えば窒化シリコン膜で形成される。この成膜方法は、化学気相成長(CVD)法のように全面に形成される方法を用いる。
次に、図5(6)に示すように、通常のレジスト塗布技術によって、上記エッチング防止膜42を介して第1ゲート電極22を被覆するレジスト膜(図示せず)を形成する。次いで、リソグラフィー技術によってそのレジスト膜を露光、現像、ベーキングして上記第1ゲート電極22を被覆するマスクパターン52を形成する。次に、このマスクパターン52をエッチングマスクに用いて、上記エッチング防止膜42をエッチングし、上記第1ゲート電極22を被覆する以外の上記エッチング防止膜42を除去する。よって、上記エッチング防止膜42は第1ゲート電極22を被覆した状態に残される。このエッチングは、エッチング防止膜42が窒化シリコン膜で形成されているため、上記半導体基板11へのエッチングダメージを与えないように、熱リン酸を用いたウエットエッチングで行うことが好ましい。
このように、ウエットエッチングで行うことで、上記窒化シリコン膜は等方的にエッチングされるので、素子分離領域15の側壁等に窒化シリコン膜が残ることはない。
また、この工程では、周辺回路部14にゲート絶縁膜を形成するために、周辺回路部14の半導体基板11表面に残されている上記ゲート絶縁膜21(前記図4(2)参照)等を異方性エッチングにより除去しておく。
なお、上記第1ゲート電極22の厚さを確保するために、上記素子分離領域15の絶縁体部15を厚く設定した場合には、前記図5(6)の上記異方性エッチング処理により、周辺回路部14の素子分離領域15の高さを低く形成する。こうすることで、従来プロセスと同等の素子分離領域の高さに合わせることができる。このように周辺回路部14の素子分離領域15の半導体基板11表面からの高さを低くすることで、周辺回路部14のゲート電極を形成した後のサイドウォール形成プロセスにおいて、素子分離領域15の側壁にサイドウォール膜の残留を抑制することが可能となる。
また、周辺回路部14の素子分離領域15の高さを低くする工程は、例えば前記図5(4)によって説明した工程で行うこともできる。例えば、マスクパターン52を形成した直後に、周辺回路部14の素子分離領域15を選択的にエッチング処理することによって、その素子分離領域15の高さを低くすることが可能になる。
その後、上記マスクパターン52を除去する。図面では、上記マスクパターン52を除去する直前の状態を示した。
次に、図6(7)に示すように、周辺回路部14の半導体基板11上にゲート絶縁膜31を形成する。このゲート絶縁膜31は、例えば酸化シリコン膜で形成する。この酸化シリコン膜は、例えば熱酸化で形成するが、その他の成膜方法を用いて形成することもできる。もちろん、酸化シリコン膜以外の通常のMOSトランジスタのゲート絶縁膜の用いられる絶縁膜材料で形成することもできる。例えば、高誘電率膜の酸化ハフニウム、酸化アルミニウム等を用いることもできる。
次に、図6(8)に示すように、上記半導体基板11上の全面を被覆する第2ゲート電極形成膜43を形成する。この第2ゲート電極形成膜43は、例えばポリシリコン膜で形成される。このポリシリコン膜は、例えば化学気相成長(CVD)法によって形成されるが、その他の成膜方法であってもよい。また、ポリシリコンに限定されず、例えば、タングステン(W)等の金属膜を用いることもできる。
次に、図6(9)に示すように、上記エッチング防止膜42が形成された上記第1ゲート電極22を残した状態で、上記第2ゲート電極形成膜43で上記周辺回路部14のトランジスタの第2ゲート電極32を形成する。それとともに、上記光電変換部12上および上記画素トランジスタ部13上の上記第2ゲート電極形成膜43を除去する。
上記工程では、まず通常のレジスト塗布技術によって、上記第2ゲート電極形成膜43上にレジスト膜(図示せず)を形成する。次いで、リソグラフィー技術によってそのレジスト膜を露光、現像、ベーキングして周辺回路部14のトランジスタの第2ゲート電極を形成するためのマスクパターン53を形成する。次に、このマスクパターン53をエッチングマスクに用いて、上記第2ゲート電極形成膜43をエッチングし、上記第2ゲート電極32を形成する。それとともに、その他の領域に形成された上記第2ゲート電極形成膜43をエッチングにより除去する。このエッチングでは、上記第2ゲート電極32のエッチング加工を高精度に行うために、異方性ドライエッチングが可能な反応性イオンエッチング(RIE)を用いることが好ましい。
上記ドライエッチングにおける上記画素トランジスタ部13の上記第2ゲート電極形成膜43のエッチングでは、上記エッチング防止膜42によって、エッチングが停止される。このため、第1ゲート電極22はエッチングされない。なお、上記エッチング防止膜42は、上記第2ゲート電極形成膜43のエッチングを停止させることができる膜であればよく、窒化シリコン膜に限定されず、例えば、酸化シリコン膜、酸窒化シリコン膜、酸化炭化シリコン膜等であってもよい。
ただし、上記第2ゲート電極形成膜43のエッチングの際に、第1ゲート電極22脇の素子分離領域15の絶縁体部16がエッチングされ過ぎる場合には、トランジスタ特性が変動してしまう恐れがあるため、窒化シリコン膜を使用することが望ましい。
その後、上記マスクパターン53を除去する。図面では、上記マスクパターン53を除去する直前の状態を示した。
次に、図7(10)に示すように、上記エッチング防止膜42(2点鎖線で示す)を除去する。このエッチング防止膜42の除去は、例えば熱リン酸によるウエットエッチングによって行う。
この結果、図7(11)に示すように、画素トランジスタ部13の半導体基板11上にゲート絶縁膜21を介して、かつ素子分離領域15の絶縁体部16間に第1ゲート電極22が形成される。したがって、第1ゲート電極22は、素子分離領域15上にオーバラップして形成されない。また周辺回路部14の第2ゲート電極32は、半導体基板11上にゲート絶縁膜21を介して、その両端部を素子分離領域15上にオーバラップする状態に形成される。
その後、図示はしていないが、ソース・ドレイン領域の形成、保護膜の形成、カラーフィルターの形成、マイクロレンズの形成等の工程を経て、固体撮像装置1が完成する。
また、上記製造方法では、上記素子分離領域15を形成する際に、上記素子分離領域15の上記絶縁体部16を上記第1ゲート電極22の高さよりも高く形成しておく。さらに上記第1ゲート電極形成膜41を形成する際に、上記第1ゲート電極形成膜41の膜厚を上記第1ゲート電極22の所望の膜厚よりも厚く形成しておく。そして、上記素子分離領域15の上記絶縁体部16上面を露出させる工程で、上記絶縁体部16とともに上記第1ゲート電極形成膜41の膜厚を上記第1ゲート電極22の所望の高さまで薄くしてもよい。
なお、上記製造方法では、素子分離領域15の半導体基板11表面からの高さによって第1ゲート電極22の厚さが決まる。通常のMOSプロセスでは、素子分離領域15の高さは数十nm程度となっており、第1ゲート電極22の膜厚(数百nm)よりも薄くなっている。しかし第1ゲート電極22が極端に薄膜化してしまうと、例えばソースドレインイオン注入のように、第1ゲート電極22をマスクとして注入されるイオン注入が第1ゲート電極22を突き抜けて、トランジスタ特性のばらつきが増えてしまう恐れがある。そのため、例えば図4(1)の状態における素子分離領域15は、通常のゲート電極相当の高さに形成しておくことが望ましい。
また、素子分離領域15上にオーバラップさせない第1ゲート電極22の電極形状にすることで、素子分離領域15端のゲート電界が弱まってしまい、トランジスタの動作能力が低下してしまう懸念がある。このような場合には、例えば図4(1)によって説明した工程で素子分離領域15を形成した後、プルバック(Pull Back)のような等方性のエッチング処理を行い、素子分離領域15をトランジスタのチャネル領域から後退させておく。これによってゲート電界が弱まってトランジスタの動作能力が低下することを抑制することができる。
上記固体撮像装置の製造方法の第1例では、画素トランジスタ部13のみ、トランジスタの第1ゲート電極22を素子分離領域15の絶縁体部16間に形成する。このため、画素トランジスタ部13の第1ゲート電極22は素子分離領域15上にオーバラップされずに形成される。これによって、画素サイズの縮小化に伴う光電変換部12の占有面積の縮小化が抑制され、感度の低下が抑えられる。もしくは感度の向上が得られる。
また、上記製造方法では、絶縁体部16間に上記第1ゲート電極形成膜41を埋め込み、それをパターニングして第1ゲート電極22を形成している。いわば、ゲート幅方向は絶縁体部16間の距離で決定され、自己整合的に形成される。これにより、画素トランジスタ部13の第1ゲート電極22の素子分離領域15上へのオーバラップをなくすことができ、ソース、ドレイン間のショートの懸念もなくなる。よって、固体撮像装置1の特性の向上、信頼性の向上が図れる。
また、周辺回路部14においては、第2ゲート電極32のゲート長を最先端プロセスのゲート長としても、第2ゲート電極32の両端部分を素子分離領域15上にオーバラップさせる状態で形成することが可能になる。このため、第2ゲート電極32では、素子分離領域15上の第2ゲート電極32部分をコンタクトがとれる大きさのコンタクト部33に形成することが可能になる。
また、第2ゲート電極32を形成する際に、第1ゲート電極22上にはエッチング防止膜42が形成され、その上に第2ゲート電極形成膜43を形成して、第2ゲート電極32を形成する。このため、第2ゲート電極32を形成する際には、第1ゲート電極22はエッチング防止膜42で保護されるので、エッチングされない。よって、第1ゲート電極22と素子分離領域15の絶縁体部16との間に隙間は生じない。
この点からも、信頼性の高い固体撮像装置を製造することができる。
[固体撮像装置の製造方法の第2例]
本発明の第2実施の形態に係る固体撮像装置の製造方法の第2例を、図8ないし図11の製造工程断面図によって説明する。第2例の製造方法は、第1例の製造方法と、概ね、第1例の製造方法と同様であるが、以下の点で異なる。それは、画素トランジスタ部13の周囲における素子分離領域の半導体基板表面からの高さを、周辺回路部の周囲における素子分離領域の半導体基板表面からの高さよりも高く形成する点である。それ以外の工程は、第1例と同様である。
まず、図8(1)に示すように、半導体基板11に形成される光電変換部12、画素トランジスタ部13および周辺回路部14を電気的に分離していて、上記半導体基板11表面より高く形成された絶縁体部16を有する素子分離領域15を形成する。
そして、上記素子分離領域15は、画素トランジスタ部13の周囲における素子分離領域15の半導体基板11表面からの高さを、周辺回路部14の周囲における素子分離領域15の半導体基板11表面からの高さよりも高く形成する。例えば、30nm〜100nm程度高く形成する。また、画素トランジスタ部13の周囲における素子分離領域15は、高く形成された分、浅く形成することができる。
上記半導体基板11には、例えば通常のシリコン基板を用いる。上記光電変換部12は、N型領域12Nとその上層に形成されたP+型領域12Pから構成されている。
また上記素子分離領域15は、例えばSTI(Shallow Trench Isolation)構造とする。
上記素子分離領域15を形成した後、例えば、上記半導体基板11の画素トランジスタ部13の形成領域および周辺回路部14のトランジスタの形成領域のそれぞれにしきい値電圧(Vth)調整用のイオン注入を行って不純物領域17、18を形成する。なお、イオン注入に先立ち、半導体基板11上には、例えば酸化シリコン膜からなるバッファ層61を形成しておく。
次に、図8(2)に示すように、上記半導体基板11表面の酸化シリコン膜等を除去した後、上記画素トランジスタ部13の形成領域に、画素トランジスタのゲート絶縁膜21を形成する。このゲート絶縁膜21は、例えば酸化シリコン膜で形成する。
さらに、上記半導体基板11上の全面を被覆する第1ゲート電極形成膜41を形成する。この第1ゲート電極形成膜41は、例えばポリシリコン膜で形成される。
次に、図8(3)に示すように、上記画素トランジスタ部13の形成領域に上記第1ゲート電極形成膜41を残すように、その他の上記第1ゲート電極形成膜41を除去して上記素子分離領域15の上記絶縁体部16上面を露出させる。この露出工程は、例えば化学的機械研磨(CMP)法を用いる。
次に、図9(4)に示すように、上記画素トランジスタ部13に上記第1ゲート電極形成膜41で第1ゲート電極22を形成するとともに、上記光電変換部12上および上記周辺回路部14上の上記第1ゲート電極形成膜41を除去する。
上記工程では、まず上記第1ゲート電極形成膜41上に画素トランジスタ部13の第1ゲート電極を形成するためのマスクパターン51を形成する。次に、このマスクパターン51をエッチングマスクに用いて、上記第1ゲート電極形成膜41をエッチングし、上記第1ゲート電極22を形成する。それとともに、その他の領域に形成された上記第1ゲート電極形成膜41をエッチングにより除去する。このエッチングでは、上記第1ゲート電極22のエッチング加工を高精度に行うために、異方性ドライエッチングが可能な反応性イオンエッチング(RIE)を用いることが好ましい。
このようにして、上記画素トランジスタ部13の第1ゲート電極22は、上記素子分離領域15の絶縁体部16間の上記半導体基板11上にゲート絶縁膜21を介して形成される。
上記ドライエッチングでは、素子分離領域15等を構成する酸化シリコン膜と第1ゲート電極形成膜41とのエッチング選択性が確保できるエッチング条件とする。
また、上記ドライエッチングによって、周辺回路部14上の上記第1ゲート電極形成膜41は除去しておく。このとき、上記ゲート絶縁膜21もエッチングされるが、場合によっては、周辺回路部14、光電変換部12上に上記ゲート絶縁膜21が残される場合があるが、この時点では、上記ゲート絶縁膜21が残されていてもかまわない。
その後、上記マスクパターン51を除去する。図面では、上記マスクパターン51を除去する直前の状態を示した。
次に、図9(5)に示すように、上記第1ゲート電極22を被覆するエッチング防止膜42を形成する。このエッチング防止膜42は、例えば窒化シリコン膜で形成される。この成膜方法は、化学気相成長(CVD)法のように全面に形成される方法を用いる。
次に、図9(6)に示すように、上記第1ゲート電極22を被覆するマスクパターン52を形成する。次に、このマスクパターン52をエッチングマスクに用いて、上記エッチング防止膜42をエッチングし、上記第1ゲート電極22を被覆する以外の上記エッチング防止膜42を除去する。よって、上記第1ゲート電極22がエッチング防止膜42に被覆された状態に形成される。このエッチングは、エッチング防止膜42が窒化シリコン膜で形成されているため、上記半導体基板11へのエッチングダメージを与えないように、熱リン酸を用いたウエットエッチングで行うことが好ましい。
この工程では、周辺回路部14にゲート絶縁膜を形成するために、周辺回路部14の半導体基板11表面に残されている上記ゲート絶縁膜21(前記図9(4)参照)等を異方性エッチングにより除去しておく。
その後、上記マスクパターン52を除去する。図面では、上記マスクパターン52を除去する直前の状態を示した。
次に、図10(7)に示すように、周辺回路部14の半導体基板11上にゲート絶縁膜31を形成する。
次に、図10(8)に示すように、上記半導体基板11上の全面を被覆する第2ゲート電極形成膜43を形成する。この第2ゲート電極形成膜43は、例えばポリシリコン膜で形成される。
次に、図10(9)に示すように、上記エッチング防止膜42が形成された上記第1ゲート電極22を残した状態で、上記第2ゲート電極形成膜43で上記周辺回路部14のトランジスタの第2ゲート電極32を形成する。それとともに、上記光電変換部12上および上記画素トランジスタ部13上の上記第2ゲート電極形成膜43を除去する。
上記工程では、まず、上記第2ゲート電極形成膜43上に周辺回路部14のトランジスタの第2ゲート電極を形成するためのマスクパターン53を形成する。次に、このマスクパターン53をエッチングマスクに用いて、上記第2ゲート電極形成膜43をエッチングし、上記第2ゲート電極32を形成する。それとともに、その他の領域に形成された上記第2ゲート電極形成膜43をエッチングにより除去する。このエッチングでは、上記第2ゲート電極32のエッチング加工を高精度に行うために、異方性ドライエッチングが可能な反応性イオンエッチング(RIE)を用いることが好ましい。
上記ドライエッチングにおける上記画素トランジスタ部13の上記第2ゲート電極形成膜43のエッチングでは、上記エッチング防止膜42によって、エッチングが停止される。このため、第1ゲート電極22はエッチングされない。
その後、上記マスクパターン53を除去する。図面では、上記マスクパターン53を除去する直前の状態を示した。
次に、図11(10)に示すように、上記エッチング防止膜42(2点鎖線で示す)を除去する。
この結果、図11(11)に示すように、画素トランジスタ部13の半導体基板11上にゲート絶縁膜21を介して、かつ素子分離領域15の絶縁体部16間に第1ゲート電極22が形成される。したがって、第1ゲート電極22は、素子分離領域15上にオーバラップして形成されない。また周辺回路部14の第2ゲート電極32は、半導体基板11上にゲート絶縁膜21を介して、その両端部を素子分離領域15上にオーバラップする状態に形成される。
その後、図示はしていないが、ソース・ドレイン領域の形成、保護膜の形成、カラーフィルターの形成、マイクロレンズの形成等の工程を経て、固体撮像装置2が完成する。
上記固体撮像装置の製造方法の第2例では、第1例と同様に、画素トランジスタ部13のみ、トランジスタの第1ゲート電極22を素子分離領域15の絶縁体部16間に形成する。このため、画素トランジスタ部13の第1ゲート電極22は素子分離領域15上にオーバラップされずに形成される。これによって、画素サイズの縮小化に伴う光電変換部12の占有面積の縮小化が抑制され、感度の低下が抑えられる。もしくは感度の向上が得られる。
また、画素トランジスタ部13の第1ゲート電極22の素子分離領域15上へのオーバラップをなくすことができ、さらにソース、ドレイン間のショートの懸念もなくなる。よって、固体撮像装置2の特性の向上、信頼性の向上が図れる。
また、周辺回路部14においては、第2ゲート電極32のゲート長を最先端プロセスのゲート長としても、第2ゲート電極32の両端部分を素子分離領域15上にオーバラップさせる状態で形成することが可能になる。このため、第2ゲート電極32では、素子分離領域15上の第2ゲート電極32部分をコンタクトがとれる大きさのコンタクト部に形成することが可能になる。
さらに、第2ゲート電極32を形成する際に、第1ゲート電極22上にはエッチング防止膜42が形成され、その上に第2ゲート電極形成膜43を形成して、第2ゲート電極32を形成する。このため、第2ゲート電極32を形成する際には、第1ゲート電極22はエッチング防止膜42で保護されるので、エッチングされない。よって、第1ゲート電極22と素子分離領域15の絶縁体部16との間に隙間は生じない。
この点からも、信頼性の高い固体撮像装置を製造することができる。
<3.第3の実施の形態>
[撮像装置の構成の一例]
次に、本発明の撮像装置に係る一実施の形態を、図12のブロック図によって説明する。この撮像装置は、本発明の固体撮像装置を用いたものである。
図12に示すように、撮像装置300は、撮像部301に固体撮像装置(図示せず)を備えている。この撮像部301の集光側には像を結像させる集光光学部302が備えられ、また、撮像部301には、それを駆動する駆動回路、固体撮像装置で光電変換された信号を画像に処理する信号処理回路等を有する信号処理部303が接続されている。また上記信号処理部303によって処理された画像信号は画像記憶部(図示せず)によって記憶させることができる。このような撮像装置300において、上記撮像部301の固体撮像装置には、前記各実施の形態で説明した固体撮像装置1,2を用いることができる。
本発明の撮像装置300では、本願発明の固体撮像装置1,2を用いることから、感度が高くなるので、高感度な撮像が可能になる。よって、画質の劣化が抑制され、感度の高い撮像ができるため、暗い撮像環境であっても、例えば夜間撮影等であっても、高画質な撮影が可能になるという利点がある。
なお、本発明の撮像装置300は、上記構成に限定されることはなく、固体撮像装置を用いる撮像装置であれば如何なる構成のものにも適用することができる。
上記撮像装置は、ワンチップとして形成された形態であってもよいし、撮像部と、信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。ここで、撮像装置は、例えば、カメラや撮像機能を有する携帯機器のことをいう。また「撮像」は、通常のカメラ撮影時における像の撮りこみだけではなく、広義の意味として、指紋検出なども含むものである。
1…固体撮像装置、11…半導体基板、12…光電変換部、13…画素トランジスタ部、14…周辺回路部、15…素子分離領域、16…絶縁体部、22…第1ゲート電極

Claims (9)

  1. 半導体基板に、
    入射光を光電変換して信号電荷を得る光電変換部と、
    前記光電変換部で生成された信号電荷を出力する画素トランジスタ部と、
    前記光電変換部と前記画素トランジスタ部を有する画素部の周辺に形成された周辺回路部と、
    前記光電変換部と前記画素トランジスタ部と前記周辺回路部を電気的に分離する素子分離領域を有し、
    前記画素トランジスタ部の周囲の前記素子分離領域は、前記半導体基板表面より高く形成された絶縁体部を有し、
    前記画素トランジスタ部のトランジスタの第1ゲート電極は前記半導体基板上にゲート絶縁膜を介して前記絶縁体部間に形成され、
    前記周辺回路部のトランジスタの第2ゲート電極の少なくとも一端は、前記周辺回路部を分離する前記素子分離領域上に形成されている
    固体撮像装置。
  2. 前記素子分離領域上に形成された前記第2ゲート電極部分がコンタクト部に形成されている
    請求項1記載の固体撮像装置。
  3. 前記画素トランジスタ部の周囲における前記素子分離領域の前記半導体基板表面からの高さは、前記周辺回路部の周囲における前記素子分離領域の前記半導体基板表面からの高さよりも高い
    請求項1記載の固体撮像装置。
  4. 半導体基板に形成される光電変換部、画素トランジスタ部および周辺回路部を電気的に分離していて、前記半導体基板表面より高く形成された絶縁体部を有する素子分離領域を形成する工程と、
    前記半導体基板の前記画素トランジスタ部の形成領域にゲート絶縁膜を形成する工程と、
    前記半導体基板上の全面を被覆する第1ゲート電極形成膜を形成する工程と、
    前記画素トランジスタ部の形成領域に前記第1ゲート電極形成膜を残すように前記第1ゲート電極形成膜を除去して前記素子分離領域の前記絶縁体部上面を露出させる工程と、
    前記画素トランジスタ部に前記第1ゲート電極形成膜で第1ゲート電極を形成するとともに、前記光電変換部上および前記周辺回路部上の前記第1ゲート電極形成膜を除去する工程と、
    前記第1ゲート電極を被覆するエッチング防止膜を形成する工程と、
    前記半導体基板上の全面を被覆する第2ゲート電極形成膜を形成する工程と、
    前記エッチング防止膜が形成された前記第1ゲート電極を残した状態で、前記第2ゲート電極形成膜で前記周辺回路部のトランジスタの第2ゲート電極を形成する工程を有し、
    前記周辺回路部のトランジスタの第2ゲート電極の少なくとも一端を、前記周辺回路部を分離する前記素子分離領域上に形成する
    固体撮像装置の製造方法。
  5. 前記素子分離領域の前記絶縁体部を前記第1ゲート電極の高さよりも高く形成しておき、
    前記第1ゲート電極形成膜を形成する際に、前記第1ゲート電極形成膜の膜厚を前記第1ゲート電極の所望の膜厚よりも厚く形成し、
    前記素子分離領域の前記絶縁体部上面を露出させる工程で、前記絶縁体部とともに前記第1ゲート電極形成膜の膜厚を前記第1ゲート電極の所望の高さまで薄くする
    請求項4記載の固体撮像装置の製造方法。
  6. 前記画素トランジスタ部の周囲における前記素子分離領域の前記半導体基板表面からの高さを、前記周辺回路部の周囲における前記素子分離領域の前記半導体基板表面からの高さよりも高く形成する
    請求項4記載の固体撮像装置の製造方法。
  7. 入射光を集光する集光光学部と、
    前記集光光学部で集光した光を受光して光電変換する固体撮像装置を有する撮像部と、
    光電変換された信号を処理する信号処理部を有し、
    前記固体撮像装置は、
    半導体基板に、
    入射光を光電変換して信号電荷を得る光電変換部と、
    前記光電変換部で生成された信号電荷を出力する画素トランジスタ部と、
    前記光電変換部と前記画素トランジスタ部を有する画素部の周辺に形成された周辺回路部と、
    前記光電変換部と前記画素トランジスタ部と前記周辺回路部を電気的に分離する素子分離領域を有し、
    前記画素トランジスタ部の周囲の前記素子分離領域は、前記半導体基板表面より高く形成された絶縁体部を有し、
    前記画素トランジスタ部のトランジスタの第1ゲート電極は前記半導体基板上にゲート絶縁膜を介して前記絶縁体部間に形成され、
    前記周辺回路部のトランジスタの第2ゲート電極の少なくとも一端は、前記周辺回路部を分離する前記素子分離領域上に形成されている
    撮像装置。
  8. 前記固体撮像装置の前記素子分離領域上に形成された前記第2ゲート電極部分がコンタクト部に形成されている
    請求項7記載の撮像装置。
  9. 前記固体撮像装置の前記画素トランジスタ部の周囲における前記素子分離領域の前記半導体基板表面からの高さは、前記周辺回路部の周囲における前記素子分離領域の前記半導体基板表面からの高さよりも高い
    請求項7記載の撮像装置。
JP2009050130A 2009-03-04 2009-03-04 固体撮像装置とその製造方法、および撮像装置 Expired - Fee Related JP5428394B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009050130A JP5428394B2 (ja) 2009-03-04 2009-03-04 固体撮像装置とその製造方法、および撮像装置
TW099103016A TWI396279B (zh) 2009-03-04 2010-02-02 固態影像擷取裝置、固態影像擷取裝置之製造方法及影像擷取設備
KR1020100016129A KR20100100615A (ko) 2009-03-04 2010-02-23 고체 촬상 장치와 그 제조 방법, 및 촬상 장치
US12/711,345 US8368161B2 (en) 2009-03-04 2010-02-24 Solid-state image capturing device, method of manufacturing solid-state image capturing device, and image capturing apparatus
CN2010101251954A CN101826539B (zh) 2009-03-04 2010-02-25 固态图像捕获装置、制造该装置的方法以及图像捕获设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050130A JP5428394B2 (ja) 2009-03-04 2009-03-04 固体撮像装置とその製造方法、および撮像装置

Publications (2)

Publication Number Publication Date
JP2010205950A JP2010205950A (ja) 2010-09-16
JP5428394B2 true JP5428394B2 (ja) 2014-02-26

Family

ID=42677909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050130A Expired - Fee Related JP5428394B2 (ja) 2009-03-04 2009-03-04 固体撮像装置とその製造方法、および撮像装置

Country Status (5)

Country Link
US (1) US8368161B2 (ja)
JP (1) JP5428394B2 (ja)
KR (1) KR20100100615A (ja)
CN (1) CN101826539B (ja)
TW (1) TWI396279B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847319B2 (en) 2012-03-09 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy structure for multiple gate dielectric interface and methods
US9362272B2 (en) 2012-11-01 2016-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Lateral MOSFET
JP2015012127A (ja) * 2013-06-28 2015-01-19 ソニー株式会社 固体撮像素子および電子機器
JP2017079272A (ja) * 2015-10-20 2017-04-27 株式会社東芝 固体撮像装置および固体撮像装置の製造方法
JP2020031136A (ja) 2018-08-22 2020-02-27 キヤノン株式会社 撮像装置およびカメラ
CN113720455A (zh) * 2021-03-26 2021-11-30 北京北方高业科技有限公司 基于cmos工艺的红外探测器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405757B2 (en) * 2002-07-23 2008-07-29 Fujitsu Limited Image sensor and image sensor module
JP2004297044A (ja) * 2003-03-10 2004-10-21 Toshiba Corp 半導体装置及びその製造方法
US7354812B2 (en) * 2004-09-01 2008-04-08 Micron Technology, Inc. Multiple-depth STI trenches in integrated circuit fabrication
JP4761745B2 (ja) 2004-09-21 2011-08-31 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP4867152B2 (ja) * 2004-10-20 2012-02-01 ソニー株式会社 固体撮像素子
JP2006216617A (ja) * 2005-02-01 2006-08-17 Sony Corp 半導体装置及びその製造方法
JP4224036B2 (ja) * 2005-03-17 2009-02-12 富士通マイクロエレクトロニクス株式会社 フォトダイオード領域を埋め込んだイメージセンサ及びその製造方法
TWI366916B (en) * 2006-12-19 2012-06-21 Sony Corp Solid-state imaging device and imaging apparatus
JP4420039B2 (ja) * 2007-02-16 2010-02-24 ソニー株式会社 固体撮像装置

Also Published As

Publication number Publication date
CN101826539B (zh) 2012-06-06
TWI396279B (zh) 2013-05-11
JP2010205950A (ja) 2010-09-16
KR20100100615A (ko) 2010-09-15
US20100225775A1 (en) 2010-09-09
TW201106476A (en) 2011-02-16
CN101826539A (zh) 2010-09-08
US8368161B2 (en) 2013-02-05

Similar Documents

Publication Publication Date Title
JP4340248B2 (ja) 半導体撮像装置を製造する方法
JP4816768B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP5999402B2 (ja) 固体撮像素子および製造方法、並びに電子機器
US9570496B2 (en) Solid-state imaging element and electronic device
JP5428394B2 (ja) 固体撮像装置とその製造方法、および撮像装置
JP4646577B2 (ja) 光電変換装置、その製造方法及び撮像システム
JP5272281B2 (ja) 固体撮像装置およびその製造方法、並びにカメラ
TW202205651A (zh) 具有增加的有效通道寬度之電晶體
JP5407282B2 (ja) 固体撮像装置とその製造方法、及び電子機器
US20060001062A1 (en) Method for fabricating CMOS image sensor
JP2011243996A (ja) 固体撮像装置とその製造方法、及び電子機器
JP4241527B2 (ja) 光電変換素子
JP2011014808A (ja) 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP2007134639A (ja) 光電変換装置及びそれを用いた撮像素子
JP6163511B2 (ja) 固体撮像装置、及び電子機器
JP2008227357A (ja) 固体撮像装置及びその製造方法
JP4857773B2 (ja) 固体撮像素子及びその製造方法
JP5943025B2 (ja) 固体撮像装置、及び電子機器
JP5700945B2 (ja) 光電変換装置及びその製造方法
JP4815769B2 (ja) 固体撮像装置及びその製造方法
JP2009302103A (ja) 固体撮像装置およびその製造方法および撮像装置
JP2013191869A (ja) 固体撮像装置及び電子機器
JP5624644B2 (ja) 光電変換装置の製造方法
JP6390759B2 (ja) 固体撮像装置、及び電子機器
JP2009123865A (ja) 固体撮像装置およびその製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

LAPS Cancellation because of no payment of annual fees