JP5427584B2 - 光加入者端局装置及び光回線送受信システム - Google Patents

光加入者端局装置及び光回線送受信システム Download PDF

Info

Publication number
JP5427584B2
JP5427584B2 JP2009286428A JP2009286428A JP5427584B2 JP 5427584 B2 JP5427584 B2 JP 5427584B2 JP 2009286428 A JP2009286428 A JP 2009286428A JP 2009286428 A JP2009286428 A JP 2009286428A JP 5427584 B2 JP5427584 B2 JP 5427584B2
Authority
JP
Japan
Prior art keywords
optical
signal
bias
parameter
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009286428A
Other languages
English (en)
Other versions
JP2011130164A (ja
Inventor
英也 吉内
博樹 池田
シー イン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009286428A priority Critical patent/JP5427584B2/ja
Publication of JP2011130164A publication Critical patent/JP2011130164A/ja
Application granted granted Critical
Publication of JP5427584B2 publication Critical patent/JP5427584B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は光加入者端局装置及び光回線送受信システムに関し、特に増幅器直流バイアス最適化のバーストモデル光受信器を採用した光加入者端局装置及び光回線送受信システムに関する。
パッシブ光ネットワーク(PON:Passive Optical Network)において、複数の光回線終端装置(ONU:Optical Network Unit)はツリー型トポロジーによって光加入者端局装置(OLT:Optical Line Terminal)と接続し、時間多重の形式で上り帯域を共有する。光加入者端局装置は固定帯域割り当てまたは動的帯域割り当て(DBA:Dynamic Bandwidth Allocation)を利用してそれぞれの光回線終端装置にタイムスロットを割り当てる。光回線終端装置は割り当てられたタイムスロットの中で光加入者端局装置にバーストデータパケットを送信するとともに、光加入者端局装置中の光受信器は異なる光回線終端装置から送信されるバーストデータパケットを受信する。
異なる光回線終端装置から光加入者端局装置に送信されるバーストデータパケットのパワーの大きさが異なるため、光加入者端局装置の光受信器はバーストデータパッケットを受信したときそのパワーに基づいて制限増幅器の判定閾値を調整して制限増幅を行うことで、デジタル信号の判定を正しく行う。或いは、光加入者端局装置の光受信器が制限増幅器の入力信号の直流バイアスを調整して制限増幅器の判定閾値の調整と同じ効果にすることでデジタル信号の判定を正しく行うことも可能である。ただし、従来の技術における連続モデル増幅器は通常入力端においてACカップリングを使用し、その中のカップリングキャパシタの充放電過程は信号歪みを発生し、比較的長いハードウェア設定タイムを使って増幅器の判定閾値を調節しなければならない。しかし、バーストモデルでは一つのバーストデータパケットを受信するごとにこのような調節を行わなければならないので、帯域の利用率を低下させてしまうことになる。
一方、従来の技術におけるACカップリングを使用する制限増幅器は通常自動バイアスフィードバック制御回路を用いて増幅器の判定閾値をゼロ電圧レベルに安定させる。ところで、特にバーストモデルでよく発生する入力信号パワーの過大による光電変換前端の飽和などの原因は、制限増幅器に送信される信号に別の種類の波形歪みを引き起こす。この歪み信号の最適受信判定閾値は、例えばゼロ電圧レベルより大きくなるが、自動バイアスフィードバック制御回路によって相変わらずゼロ電圧レベルの判定閾値に安定され、受信器はデジタル信号の最適受信から逸脱し、受信器の感度は低下してしまう。
公開特許文献1において光加入者端局装置のMAC制御部は、帯域割り当て情報を利用して次のバーストデータパケットのパワーを予測し、この予測パワーの大きさに基づいて信号の直流バイアスを制御し、キャパシタの充放電による直流成分と反対する直流信号を用いてキャパシタの充放電の影響を相殺することで、信号歪みを除去し増幅器のハードウェア設定タイムを短縮してシステムの効率を向上させる。しかし、この方法において、相変わらず従来のACカップリング制限増幅器を使用し、その判定閾値は自動バイアスフィードバック制御回路によって決められ、信号直流バイアスはカップリングキャパシタによって決められる(ゼロに固定されている)。従って、信号波形状況に基づいて調整を行うことで最適受信を維持することができない。
また、この方法において直流バイアス制御信号を発生させるパラメータテーブルは固定された検索テーブルである。そのため、システムが例えば素子の老化や環境温度の変化などの原因で変化した場合、パラメータテーブル中のパラメータはその変化に応じて変えられないので、バースト受信器は最適状態から逸脱し、受信器の感度は低下する。
さらに、この方法において、システムの初期化時に光加入者端局装置が信号の送信を始めたばかりの未登録光回線終端装置の信号パワーをどのように予測するかについては説明をしていない。しかし、光加入者端局装置が比較的短いハードウェア設定タイムを使用する場合、このような未登録光回線終端装置の登録リクエストを成功に受信することができず、システムの初期化時或いは中断後の回復時の光回線終端装置の登録が難しくなってしまう。
公開特許文献2においては、フォワードエラーコレクションデコーダから出力されるエラーコード指示信号に基づいた制御信号を用いて増幅器の判定閾値を調節し、0/1と1/0のそれぞれのエラーコード数をつり合わせることで判定閾値を最適判定閾値点に維持し、システムの感度を向上させる。しかし、フォワードエラーコレクションデコーダとエラーコード指示信号を出力するのに比較的長い時間が必要であるため(例えば20us)、この方法は相対的に短い時間内に、例えば、パッシブ光ネットワークにおける一つのバーストデータパケットの開始から1/10時間内(例えば1〜10us)にフィードバック制御を完成することは非常に困難である。
アメリカ公開特許US2007/0264031A1号公報。 アメリカ公開特許番号US6715113号公報。
上記の問題を解決するために、本発明はバーストモデル光受信器を有する光加入者端局装置を提供し、前記バーストモデル光受信器は増幅器直流バイアス最適化を利用してハードウェア設定タイムを短縮するとともに等価の増幅器判定閾値を最適判定閾値点に維持することで、システムの帯域効率と感度を同時に向上させる。また、前記光加入者端局装置は可変直流バイアス制御パラメータと可変ハードウェア設定タイムパラメータを記憶して、柔軟な直流バイアス制御とシステムの正常な初期化の能力を提供する。
本発明による最良の実施形態は、複数の光回線終端装置と接続する光加入者端局装置であって、光回線終端装置から受信した光信号を電気信号に変換し、直流バイアスを制御する直流バイアス制御信号を受信するとともに直流バイアスを監視する直流バイアス監視信号を出力する光受信器及び前記電気信号中のエラーコードを検出してエラーコード指示信号を出力するエラーコード検出器を有する光ネットワークインターフェースと、それぞれの光回線終端装置の直流バイアス制御パラメータに対応する直流バイアスを示す直流バイアステーブル、及びそれぞれの光回線終端装置に割り当てられた通信タイムスロット情報を示す動的帯域割り当て情報テーブルを記憶するストレージと、前記光受信器から出力される直流バイアス監視信号と前記エラーコード検出器から出力されるエラーコード指示信号を受信するとともに、直流バイアス制御信号を前記光受信器に出力することで、前記光ネットワークインターフェースと一つのフィードバック回路を形成する制御部と、を有することを特徴とする。
上記構成において、前記直流バイアス制御信号は、制御部が前記直流バイアス監視信号と前記エラーコード指示信号を受信し、ストレージ中の直流バイアステーブルから読み出した直流バイアス制御パラメータと動的帯域割り当て情報テーブルから読み出した通信タイムスロットに基づいて計算して得られた信号であることが好ましい。
上記構成において、エラーコード検出器はフォワードエラーコレクションデコーダであることが好ましい。
上記構成において、前記光受信器は、光回線終端装置から受信した光信号を電気信号に変換させるフォトダイオードと、前記フォトダイオードに接続されて前記フォトダイオードから出力される電気信号を増幅するトランスインピーダンス増幅器と、ACカップリングのキャパシタを介して前記トランスインピーダンス増幅器と接続し、前記トランスインピーダンス増幅器の出力信号に対して制限増幅を行う制限増幅器と、前記トランスインピーダンス増幅器の出力端と前記制限増幅器の入力端を接続させて前記トランスインピーダンス増幅器と前記制限増幅器との間のACカップリングを実現するカップリングキャパシタと、前記制限増幅器の入力端に接続されて前記制限増幅器に入力された信号に基づいて直流バイアス監視信号を出力する監視インターフェースと、をさらに含み、前記制限増幅器の入力信号は前記トランスインピーダンスの出力信号と直流バイアス制御信号との和であることが好ましい。
上記構成において、前記直流バイアステーブル中の直流バイアス制御パラメータには光回線終端装置を識別するユーザID、第一電圧パラメータと第二電圧パラメータ、及び時間定数が含まれており、動的帯域割り当て情報テーブル中の通信タイムスロット情報には光回線終端装置を識別するユーザID及び第一時間パラメータと第二時間パラメータが含まれていることが好ましい。
特に、前記制御部から出力される直流バイアス制御信号は、動的帯域割り当て情報テーブル中のユーザIDに対応する第一時間パラメータの示す時刻が直流バイアステーブル中の同じユーザIDに対応する第一電圧パラメータと等しく、且つ前記第一時間パラメータの示す時刻から直流バイアステーブル中の同じユーザIDに対応する時間定数によって決められた指数関係で増加して直流バイアステーブル中の同じユーザIDに対応する第二電圧パラメータに達し、前記第二電圧パラメータと等しい値を前記動的帯域割り当て情報テーブル中のユーザIDに対応する第二時間パラメータまで維持することが好ましい。
さらに、前記制御部は前記エラーコード指示信号の示すエラーコード率を最小化することで前記直流バイアス制御パラメータ中の第二電圧パラメータを最適化し、前記直流バイアス監視信号と前記第二電圧パラメータとの差を最小化することで前記直流バイアス制御パラメータ中の第一電圧パラメータを最適化することが好ましい。
上記構成において、前記ストレージにはそれぞれの光回線終端装置における光加入者端局装置の光受信器ハードウェアの設定に必要な時間に対応するハードウェア設定タイムを示すハードウェア設定タイムパラメータをさらに記憶することが好ましい。
特に、通信初期化の際にハードウェア設定タイムパラメータは比較的長い第一パラメータ値であり、光加入者端局装置が光回線終端装置の登録プロセスと直流バイアス制御パラメータの最適化プロセスを完了した後、前記光加入者端局装置はハードウェア設定タイムパラメータを比較的短い第二パラメータ値に変更するとともに、ハードウェア設定タイムメッセージによって前記第二パラメータ値を前記光回線終端装置に送信することが好ましい。
また、本発明の最良の実施形態に基づいて、上記発明中のいずれかに記載の光加入者端局装置及び前記光加入者端局装置に接続された光回線終端装置を有する光回線送受信システムを提供する。
特に、前記光回線送受信システムにおいて、前記光加入者端局装置は分光器と光ファイバから構成されたツリー型トポロジーリンクによって前記光回線終端装置に接続し、前記リンクを介して前記光回線終端装置にハードウェア設定タイムメッセージを送信する。
本発明による光加入者端局装置はバーストモデル光受信器を有し、前記バーストモデル光受信器は増幅器直流バイアス最適化を利用してハードウェア設定タイムを短縮するとともに等価の増幅器判定閾値を最適判定閾値点に維持することで、システムの帯域効率と感度を向上させることができる。また、前記光加入者端局装置は可変直流バイアス制御パラメータと可変ハードウェア設定タイムパラメータを記憶して、柔軟な直流バイアス制御とシステムの正常な初期化の能力を提供することができる。
光加入者端局装置の構成ブロック図である。 光加入者端局装置におけるPONインターフェースのブロック図である。 光加入者端局装置のPONインターフェースにおける光受信器のブロック図である。 直流バイアスの制御と最適化原理図(ACカップリングの場合)である。 本発明及び従来技術におけるデータ信号、直流バイアス制御信号及び監視信号の概略的波形図(ACカップリングの場合)である。 本発明及び従来技術における光加入者端局装置のストレージ中のテーブルである。 光加入者端局装置から光回線終端装置へ送信されたハードウェア設定タイムメッセージである。 ハードウェア設定タイムを変更するメッセージ時系列である。 光加入者端局装置において制御部が直流バイアス制御信号を設定するフローチャートである。 光加入者端局装置において制御部がVendを最適化するフローチャートである。 光加入者端局装置において制御部がBEを計算するフローチャートである。 光加入者端局装置において制御部がVstartを最適化するフローチャートである。 光回線終端装置において制御部がハードウェア設定タイムメッセージに基づいてハードウェア設定タイムを設定するフローチャートである。 光加入者端局装置において制御部がハードウェア設定タイムを設定するとともにハードウェア設定タイムメッセージを送信するフローチャートである。 直流バイアスの制御と最適化の原理図(ACカップリングの場合)である。 本発明におけるデータ信号、直流バイアス制御信号及び監視信号の概略的波形図(ACカップリングの場合)である。
以下、図面に基づいて本発明の具体的な実施形態ついて説明をする。
図1〜3は光加入者端局装置の構成、及び光加入者端局装置に含まれているPONインターフェースと光受信器の構成を示す。図1に示すように、光加入者端局装置10は、業務側と通信を行う上りインターフェース101、上り/下りデータを交換するレイヤ2スイッチ(Layer2 Switch)102、光ファイバリンクに接続して接続された光回線終端装置と通信を行うPONインターフェース(即ち、ネットワークインターフェース)103、直流バイアステーブル1041と動的帯域割り当て情報テーブル1042とハードウェア設定タイム1043とを記憶するストレージ104、そのほかのモジュールの動作を制御する(例えば、直流バイアス制御信号の出力や直流バイアステーブル1041の更新など)制御部105、及び電源を供給する電源106を含める。
図2に示すように、光加入者端局装置10中のPONインターフェース103は、上りと下り信号に対して波長多重を行う波長多重用部材201、受信された上り信号に対して光電変換を行う光受信器202、送信しようとする下り信号に対して電光変換を行う光送信器203、クロックとデータをリカバリするとともに上りと下り信号に対してシリアル化/逆シリアル化を行うCDR/SerDes(CDR:Clock Data Recovery、SerDes:Serialize Deserialize)204、フォワードエラーコレクション演算を行い、エラーコード指示信号Ierrを出力するフォワードエラーコレクションデコーダ(FEC:Forward Error Correction)205、及びリンク層のデータ処理を行う媒体アクセス制御(MAC:Media Access Control)206をさらに含める。そのうち、光受信器202は制御部105から出力される直流バイアス制御信号VDCを受信し、VDCに基づいて信号の直流バイアスを調整し、調整後の信号を監視して制御部105に直流バイアス監視信号Vmonを出力する。
図3に示すように、光加入者端局装置10のPONインターフェース103中の光受信器202は、光信号を電気信号に変換するフォトダイオード301、変換された電気信号に対して初期増幅を行うトランスインピーダンス増幅器302、増幅された信号に対して制限増幅を行う制限増幅器303、トランスインピーダンス増幅器302と制限増幅器303を接続してACカップリングを行うカップリングキャパシタ304、制限増幅器303の入力端に直流バイアスVDCを重ね合わせするバイアスポイント305、及び重ね合わせした信号を取り出して監視を行う監視インターフェース306をさらに含める。監視インターフェース306は例えばローパスフィルタリングを通して重ね合わせした後の信号の直流成分Vmonを取得し、Vmonを直流バイアス監視信号として制御部105に出力する。図3において、フォトダイオード301とトランスインピーダンス増幅器302からの上り方向の電気信号Vsig1はカップリングキャパシタ304を経由してから電気信号Vsig2になる。そして、Vsig2はバイアスポイント305において制御部105からの直流バイアス制御信号VDCを重ね合わせした後に制限増幅器303への入力信号Vsig3になる(図5中の概略的信号波形を参照)。同時に、監視インターフェース306はVsig3を監視し、例えばローパスフィルタリングを通して制御部105に直流バイアス監視信号Vmonを出力する。制限増幅器303により信号Vsig3に対して増幅を行った後、信号はCDR/SerDes204(未図示)に送信される。
図4は光加入者端局装置10において直流バイアスの制御と最適化(ACカップリングの場合)について原理的に説明をする。図4において、図1〜3と同じ素子は同じ符号を採用し、説明を省略する。
前文の図3に対する説明で記述したように、光受信器202中の素子は信号に対して光電変換、増幅、直流バイアス設置と制限増幅した後、信号をCDR/SerDes204に送信してクロックとデータのリカバリと逆シリアル化を行う。そして、CDR/SerDes204は取得したデータ信号をFEC205に送信する。FEC205は信号に対してフォワードエラーコレクションデコーディングを行い、デコーディングした後のデータ信号をMAC206に送信してリンク層データ処理を行い、エラーコード指示信号Ierrを生成して制御部105に送信する。制御部105はそれぞれ光受信器202中のバイアスポイント305と接続して直流バイアス制御信号VDCを出力し、光受信器202中の監視インターフェース306と接続して直流バイアス監視信号Vmonを入力する。直流バイアス監視信号Vmonはアナログデジタル(AD)変換器1051によってアナログ信号即ち電圧からデジタル信号に変換された後に制御部105に入力され、直流バイアス制御信号VDCはデジタルアナログ(DA)変換器1052によってデジタル信号からアナログ信号即ち電圧に変換された後にバイアスポイント305に出力される。
また、制御部105はFEC205と接続してエラーコード指示信号Ierrを入力し、ストレージ104と接続して直流バイアステーブル1041とDBA情報テーブル1042の読み出しと書き込みをする。このようにして、制御部105、バイアスポイント305、制限増幅器303、CDR/SerDes204、FEC205、及び監視インターフェース306は一つのフィードバック回路を形成する(図3中の光受信器202の詳細回路構成を参照)。制御部105はフィードバック信号に基づいて、即ち直流バイアス監視信号Vmonとエラーコード指示信号Ierr、及びストレージ104中の直流バイアステーブル1041とDBA情報テーブル1042から読み出した直流バイアス制御パラメータと通信タイムスロット情報(図6中の詳細なテーブルフォマットを参照)に基づいて直流バイアス制御信号VDCを計算して取得する(図9中の制御プロセスフローチャートを参照)。そして、直流バイアス制御信号VDCはデータ信号に加えられ、信号Vsig3の直流バイアスVmonを変えて制限増幅器303の判定とFEC205のデコーディングによって得たエラーコード数Ierrを変え、VmonとIerrをフィードバックとして制御部105に提供してフィードバック制御を完成する。同時に、制御部105はさらに以上のフィードバック情報に基づいて直流バイアス制御パラメータを最適化し(図10〜13中のパラメータ最適化プロセスフローチャートを参照)、最適化された直流バイアス制御パラメータをストレージ104中の直流バイアステーブル1041に書き込む。ストレージ104中のDBA情報テーブル1042は制御部の正常な動的帯域割り当てプロセスによって得られる(規格IEEE802.3ahを参照)。
図5(a)〜図5(e)は本発明におけるデータ信号、直流バイアス制御信号及び監視信号の概略的波形である(ACカップリングの場合)。図5(a)はフォトダイオードとトランスインピーダンス増幅器から出力された電気信号Vsig1であり、TstartとTendの間の時間帯はバーストデータパケットのデータで、このバーストデータパケットと前/次のバーストデータパケットの間はプロテクションタイムスロットである。一つのデータパケットは通常数千またはもっと多いbitのデータが含まれているため、図にはバーストデータパケットのエンベロープのみを概略的に示し、具体的な個々のbitの波形は示していない。
上記信号はカップリングキャパシタ304を経由した後、図5(b)に示すように、キャパシタの充放電によって信号歪みが生じ、歪み信号はVsig2である。TstartからTendまでの時間帯において、カップリングキャパシタ304は充電し、Vsig2の直流成分はVsig1と等しい直流成分から(キャパシタの消耗を無視)段々ゼロまで下がり、このとき、カップリングキャパシタ304の両極電圧はVsig1の直流成分のマイナス値に等しい。その後、Vsig2の直流成分はバーストデータパケットの終了まで即ちTendまでゼロを維持する。Tendの後は、Vsig1がゼロであるため、カップリングキャパシタ304は放電を行い、Vsig2はTend時のカップリングキャパシタ304の両極電圧から段々ゼロに戻り、次のバーストデータパケットが来ると上記のプロセスを繰り返す。
信号の直流バイアスを制御してTstartからTendの時間帯の信号歪みを同時に除去するとともにTstartからTendまでの時間帯の信号の直流成分を最適デジタル受信に必要な値にさせるために、本発明は制御部105を用いてカップリングキャパシタ304後に位置するバイアスポイント305に直流バイアス制御信号VDCを提供する。直流バイアス制御信号VDCの概略的波形は図5(c)に示す通りである。プロテクションタイムスロット期間において、VDCは次のバーストデータパケットを送信する光回線終端装置に対応する直流バイアス制御パラメータVstartに等しい。Tstartから、VDCは例えば(数1)の指数式で当該光回線終端装置に対応する直流バイアス制御パラメータVendに達するまで増加し、その後、VDCはTendまでVendを維持する。
[数1]
DC=Vstart*Exp(Tstart−t)/tc
(数1)において、tcは予め設定したパラメータである(例えば、5ns)。
図5(d)はVsig2に上記直流バイアス制御信号VDCを重ね合わせして得られた信号Vsig3である。直流バイアス制御信号VDCの変化がカップリングキャパシタ304の充電による直流バイアスの変化を相殺するため、Vsig3はVsig2に比べて信号歪みを取り除き、直流成分はTstartからTendの間にVendに維持され、制限増幅器の判定閾値が−Vendシフトしたことに等価する。図においてVstartとVendはいずれもマイナス値であるが、実際の応用においてはそれに限定されるものではない。
図5(e)は監視インターフェース306がローパスフィルタリングを通して出力される直流バイアス監視信号Vmonを示す。上述したように、TstartからTendの間において、信号の直流成分はVendに維持される。そのため、Vmonもこの期間中にVendに維持される。
図5(f)〜(i)は従来の技術を使用した場合、信号がカップリングキャパシタ304を経由する前に直流バイアス制御信号を重ね合わせした概略的信号波形を示す。図5(f)はフォトダイオードとトランスインピーダンス増幅器から出力された電気信号Vである。VはVsig1に似ているため、ここではその説明を省略する。
図5(g)はカップリングキャパシタ304に重ね合わせする前の直流バイアス制御信号V’DCを示す。従来の技術において、プロテクション期間中にV’DCを次のバーストデータパケット信号の直流成分と同じく維持するので、カップリングキャパシタ304の充電過程を早めに完成することができ、TstartからTendの間に安定を維持し信号歪みを発生させない。バーストデータパケットが到達するときから、即ちTstartから、V’DCをゼロに切り換えてTendまでゼロに維持する。
このような直流バイアス制御信号V’DCとバーストデータパケット信号Vを重ね合わせして合成信号Vを得る。Vの直流成分は前のバーストデータパケットの終了から図5(h)に示すように、本バーストデータパケットの終了まで変化しない。そのため、カップリングキャパシタ304を経由した後の出力信号Vの直流成分はTstartの前に安定状態に達する。言い換えると、ゼロに達し、なおTstartからTendの間に図5(i)に示すように変化しない。これはTstartからTendまでの時間帯の信号歪みを除去したことになる。しかし、図に示すように、カップリングキャパシタ304の隔離直流成分の効果(隔直効果とも称する)によって、最終的に得られる信号Vの直流成分はゼロにしかなれず、制限増幅器判定閾値がゼロにしかなれないことと等価になり、これは最適化のデジタル信号の受信を行うには不利である。
図6(a)と(b)は本発明の光加入者端局装置のストレージに記憶された直流バイアステーブル1041及び動的帯域割り当て情報テーブル1042である。図6(a)に示すように、直流バイアステーブル1041には光回線終端装置を識別する論理リンク識別子(LLID:Logic Link Identifier)と直流バイアス制御パラメータが含まれている。例えば、直流バイアス制御信号VDCがプロテクションタイムスロット期間に取得する値を示すVstart、VDCが安定期間に取得する値を示すVend、VDCがVstartからVendに増加する速度を決める予め設定された時間定数tc(100pfの電気容量と50omh負荷に対して5nsに予め設定する。図5(c)を参照)、合計エラーコード数を示すNerr及びエラーコードのカウントを開始してからの合計カウント時間Terrなどが含まれている。
図6(b)に示すように、動的帯域割り当て情報テーブル1042には光回線終端装置を示すLLIDと動的帯域割り当てパラメータが含まれている。例えば、LLIDに対応する光回線終端装置に割り当てたタイムスロットの開始時間Tstartと終了時間Tendが含まれている。
図6(c)と(d)は従来技術のパラメータ検索テーブルと光回線終端装置RSSI(Remote Signal Strength Indicator)テーブルである。図6(c)において、パラメータ検索テーブルは前のバーストデータパケットのパワーを識別するパワーX、本バーストデータパケットのパワーを識別するパワーY、及びその二つのパワーに対応する関連パラメータを含む(US2007/0264031 A1を参照)。図6(d)において、光回線終端装置RSSIテーブルは光回線終端装置のONU、及び当該光回線終端装置に対応するパワーを示すパラメータを含める(US2007/0264031 A1を参照)。図6(c)中の固定検索テーブルに比べて、図6(a)中の本発明による直流バイアステーブルは変更可能で且つシステムの作動中に持続する最適化は最適値に維持されるため、もっと柔軟性を有する。
図7は光加入者端局装置10から光回線終端装置40に送信したハードウェア設定タイムメッセージの略図である。パッシブ光ネットワークシステムにおいて、光加入者端局装置10は分路器20と光ファイバ30から構成されるツリー型トポロジーリンクを介して光回線終端装置40と接続し、上記リンクを介して光回線終端装置40にハードウェア設定タイムメッセージ50を送信する。
図8は光加入者端局装置10から光回線終端装置40にハードウェア設定タイムメッセージ50を送信してハードウェア設定タイムを変更するメッセージ時系列を示す。システムの初期化または光回線終端装置40の再接続時に、光加入者端局装置10は固定された周期的ディスカバリウィドウからすべての光回線終端装置40にディスカバリメッセージ(S901)を送信すると同時に、光加入者端局装置10と光回線終端装置40はいずれもハードウェア設定タイムをデフォルト値、例えば800nsに設定する(S901とS902)。光回線終端装置40はディスカバリメッセージを受信した後光加入者端局装置10に登録リクエストを送信する(S903)。そして、光加入者端局装置10は光回線終端装置40に対して正常な登録プロセスを行い(規格IEEE802.3ahを参照)、光回線終端装置40に登録メッセージを送信して(S904)登録成功を示す。上記正常登録プロセスを完成した後、光加入者端局装置10と光回線終端装置40はS901及びS902で設定したハードウェア設定タイムを利用して通信を行い、その間に、光加入者端局装置10は光回線終端装置40に帯域割り当てメッセージを送信して光回線終端装置40にタイムスロットを割り当て(S905)、光回線終端装置40は割り当てられたタイムスロットで光加入者端局装置10に上りデータとレポートを送信する(S906)。それと同時に、光加入者端局装置10は直流バイアステーブルの直流バイアス制御パラメータに対して最適化と調整を行う(S907、図10〜13のパラメータ最適化プロセスフローチャートを参照)。パラメータ最適化の完成後、光加入者端局装置10は自身のストレージに記憶されているハードウェア設定タイムを更新し(S908)、光加入者端局装置10に更新後のハードウェア設定タイムが含まれているハードウェア設定タイムメッセージを送信する(S909)。光回線終端装置40は当該メッセージを受信した後自身のストレージに記憶されているハードウェア設定タイムをメッセージに含まれているハードウェア設定タイムに更新する(S910)。そして、光加入者端局装置10と光回線終端装置40は新しいハードウェア設定タイムのデフォルト値を用いて通信を行い、その間に、光加入者端局装置10は光回線終端装置40に帯域割り当てメッセージを送信して光回線終端装置40にタイムスロットを割り当て(S911)、光回線終端装置40は割り当てられたタイムスロットで光加入者端局装置10に上りデータとレポートを送信する(S912)。
図9は光加入者端局装置10において制御部105の直流バイアス制御信号VDCを設定するフローチャートである。上り方向データを受信すると、光加入者端局装置10は一つのバーストデータパケット及び前のプロテクションタイムスロットを一つのプロセス周期とする。光加入者端局装置10はまず前の周期の終了を待機し、即ち前のバーストデータパケットの終了を待機し(S1001)、その後新しいプロセス周期を開始する。このとき、光加入者端局装置10はDBA情報テーブル1042を検索して通信タイムスロット情報LLID、Tstart及びTendを取得し(S1002)、これによってもうすぐ到達するバーストデータパケットがどの光回線終端装置から送信されるか、及びその開始時間と終了時間を知る。そして、光加入者端局装置10は直流バイアステーブル1041を検索し、上記LLIDに対応する直流バイアス制御パラメータVstart、Vend及びtcを取得する(S1003)。続いて、光加入者端局装置10はVstartと等しい直流バイアス制御信号VDCを出力する(S1004)とともに、次のバーストデータパケットの到達を待機する(S1005)。即ち、DBA情報テーブル1042から得られたTstartの識別する時刻を待機する。Tstartから光加入者端局装置10はVstart/tc*Δtの刻みでVDCを増加させる(S1006)とともに、VDCがVend以上であるかを判断する(S1007)。ステップS1007において、判定結果がいいえ(N)の場合は、ステップS1006に戻って引き続きVDCを増加させ、判定結果がはい(Y)の場合は、安定状態に入り、このバーストデータパケットの終了時間TendまでVendとVstartを最適化し(図10と13のパラメータ最適化フローチャートを参照)(S1008)、その後は次のプロセス周期に入る。
図10は光加入者端局装置10において制御部105が直流バイアス制御パラメータVendを最適化するフローチャートである。光加入者端局装置10が図9のステップS1008の安定状態に入った後、直流バイアス制御パラメータVendとVstartの最適化を始める。まず、光加入者端局装置10はVendの最適化プロセスに入り、一時的変数Vend1をVendと等しく設定する(S1101)。そして、光加入者端局装置10はカレントタイムtがカレントバーストデータパケットの終了時間Tend以上であるかを判断する(S1102)。ステップS1102において、判定結果がはい(Y)の場合は、プログラムからログアウトする(S1103)。判定結果がいいえ(N)の場合は、次のステップに入り一時的変数BE1をエラーコード率BEと等しく設定し、カレントエラーコード率BEの計算と更新を行う(図11のBE計算フローチャートを参照)(S1104)。このステップS1104において、当該光回線終端装置のエラーコード率を初めて計算している場合、BEとBE1をともにゼロに初期化する。そして、光加入者端局装置10はカレントエラーコード率BEが古いエラーコード率BE1と等しいかを判断する(S1105)。ステップS1105において、判定結果がはい(Y)の場合は、エラーコード率の変更なしを示し、ステップS1102に戻ってステップS1102、S1104及びS1105からなるサイクルを継続し、判定結果がいいえ(N)の場合は、次のステップに入ってカレントエラーコード率BEが古いエラーコード率BE1より大きいかを判断し(S1106)、続いてカレントパラメータVendが古いパラメータVend1より大きいかを判断する(S1107或いはS1110)。ステップS1106において、判定結果がはい(Y)の場合は、エラーコード率の増加を示し、ステップS1107において、判定結果がいいえ(N)の場合は、Vendが減少していること示し、あるいはステップS1106において判定結果がいいえ(N)の場合は、エラーコード率の減少を示し、なおステップS1110において、判定結果がはい(Y)の場合は、Vendを増加していることを示し、予め設定された刻みΔVでVendを増加させる(S1108)。ステップS1106において判定結果がはい(Y)の場合は、エラーコード率が増加することを示し、なおステップS1107において判定結果がはい(Y)の場合は、Vendを増加していることを示し、或いはステップS1106において判定結果がいいえ(N)の場合は、エラーコード率の減少を示し、なおステップS1110において判定結果がいいえ(N)の場合は、Vendを減少していることを示し、予め設定された刻みΔVでVendを減少させる(S1109)。そして、光加入者端局装置10はステップS1108またはステップS1109で得られたVendに基づいて直流バイアステーブル1041を更新する(S1111)とともに、直流バイアス制御信号VDCを更新する(S1112)。その後、光加入者端局装置10はステップS1102に戻り、ステップS1102〜S1112から構成されるサイクルを継続する。
図11は光加入者端局装置10において制御部105がBEを計算するフローチャートである。図10のステップS1104において、光加入者端局装置10カレントエラーコード率BEを計算するプロセスに入る(S1201)。光加入者端局装置10はまずエラーコード指示信号Ierrがゼロであるか否かをチェックする(S1202)。ステップS1202において、判定結果がはい(Y)の場合は、新しいエラーの発生がないことを示し、プログラムからログアウトする(S1203)。判定結果がいいえ(N)の場合は、次のステップに入り直流バイアステーブル1041を検索しカレント光回線終端装置LLIDに対応する直流バイアス制御パラメータNerrとTerrを取得する(S1204)。Nerrは合計エラーコード数を示し、Terrは合計カウント時間を示す。続いて、光加入者端局装置10はNerrの値を1増やし、Terrの値をt−Tstart増やす(S1205)。そして、光加入者端局装置10はカレントエラーコード率BE=Nerr/Terrを計算し、直流バイアステーブル1041中のNerrとTerrを更新した(S1206)後(S1203)からログアウトする。
図12は光加入者端局装置10において制御部105が直流バイアス制御パラメータVstartを最適化するフローチャートである。光加入者端局装置10が図9のステップS1008中の安定状態に入った後、直流バイアス制御パラメータVend及びVstartの最適化を開始する。Vstartの最適化プロセスに入った(S1301)後、光加入者端局装置10はカレントタイムtがカレントバーストデータパケットの終了時間Tend以上であるかを判断する(S1302)。ステップS1302において、判定結果がいいえ(N)の場合は、(数2)を計算した(S1303)後、ステップS1302に戻ってステップS1302とS1303から構成されるサイクルを継続する。判定結果がはい(Y)の場合は、次のステップに入り設定された信号の直流成分Vendと検出された信号の直流成分Vmonとの間の差Mがゼロ以上であるかを判断する(S1304)。ステップS1304において、判定結果がはい(Y)の場合は、予め設定された刻みΔVでVstartを減少させる(S1305)。判定結果がいいえ(N)の場合は、予め設定された刻みΔVでVstartを増加させる(S1306)。そして、光加入者端局装置10は直流バイアステーブル1041中の直流バイアス制御パラメータVendとVstartを更新し(S1307)、プログラムからログアウトする。
Figure 0005427584
図13は光回線終端装置40において制御部105がハードウェア設定タイムメッセージ50に基づいてハードウェア設定タイムを設定するフローチャートである。光回線終端装置40が電源オンで起動した(S1401)後、ハードウェア設定タイムをデフォルト値、例えば800nsに設定し(S1402)、その後正常な登録プロセスを行う(S1403、規格IEEE802.3ahを参照)。登録が完了した後、光回線終端装置40はそのハードウェア設定タイムを用いて光加入者端局装置10と正常通信を行う(S1404)。通信期間中、光回線終端装置40はハードウェア設定タイムメッセージ50を受信したかをチェックする(S1405)。ステップS1405において、判定結果がいいえ(N)の場合は、ハードウェア設定タイムメッセージ50を受信していないことを示し、ステップS1404に戻って正常通信を継続する。判定結果がはい(Y)の場合は、ハードウェア設定タイムメッセージ50を受信したことを示し、ハードウェア設定タイムを受信したハードウェア設定タイムメッセージ50に含まれたハードウェア設定タイムに更新した(S1406)後、ステップS1404に戻って更新した後のハードウェア設定タイムを用いて正常通信を行う。光回線終端装置40の通信過程においてステップS1404〜S1406から構成されるサイクルは常に維持される。
図14は光加入者端局装置10において制御部105がハードウェア設定タイムを設定するとともにハードウェア設定タイムメッセージ50を送信するフローチャートである。光加入者端局装置10が登録プロセスを始めた後、光回線終端装置40からの登録リクエストを受信すると(S1501)、直流バイアステーブル1041において対応する光回線終端装置のために一つの記録ラインを初期化し、直流バイアス制御パラメータVstart、Vend、tc、Nerr、及びTerrを予め設定した値、例えば、それぞれ0、0、5ns、0、0に設定し、ハードウェア設定タイムを第一の予め設定した値、即ちデフォルト値、例えば800nsに設定する(S1502)。そして、光加入者端局装置10と光回線終端装置40は正常な登録プロセスを完了する(S1503)。続いて、光加入者端局装置10は直流バイアス制御をオンにした状況で、カレントハードウェア設定タイムを用いて光回線終端装置40と正常通信を行い、同時に、直流バイアス制御パラメータVstartとVendを最適化する(S1504、図10〜13のパラメータ最適化フローチャートを参照)。毎回パラメータの最適化を完成した後、光加入者端局装置10はパラメータ最適化過程で得られたM(Mは(数2)によって計算される)が予め設定した閾値以下であるかを判定する(S1505)。ステップS1505において、判定結果がいいえ(N)の場合は、ステップS1504に戻ってMが予め設定した閾値以下になるまで最適化を継続する。判定結果がはい(Y)の場合は、パラメータの最適化が安定状態に達したことを示し、光加入者端局装置10はハードウェア設定タイムを第二の予め設定した値、例えば8nsに変更し、光回線終端装置40にハードウェア設定タイムメッセージ50を送信する(S1506)。ハードウェア設定タイムメッセージ50には更新されたハードウェア設定タイムが含まれている。そして、光加入者端局装置10は新しいハードウェア設定タイムを用いて光回線終端装置40と正常通信を行い、同時に、直流バイアス制御パラメータVstart及びVendを最適化する(S1507、図10〜13のパラメータ最適化フローチャートを参照)。
以下、図15と図16を参照しながら本発明の実施例2について説明をする。本実施例における光加入者端局装置のブロック図、直流バイアスの制御と最適化の原理図、メッセージ時系列及び各フローチャートは実施例1におけるものと似ているので、説明を簡単にするために、これらの部分に対する説明を省略し、同じ部材に対する記述においては実施例1と同じ番号を使用する。
図15に示すように、光加入者端局装置10におけるPONインターフェース103中の光受信器202は、光信号を光電信号に変換するフォトダイオード301、変換された電気信号に対して初期増幅を行うトランスインピーダンス増幅器302、増幅された信号に対して制限増幅を行う制限増幅器303、制限増幅器303の入力端に直流バイアスVDCを重ね合わせするバイアスポイント305、及び重ね合わせした信号を取り出して監視を行う監視インターフェース306をさらに含める。図15において、フォトダイオード301とトランスインピーダンス増幅器302からの上り方向の電気信号Vsig1はバイアスポイント305において制御部105からの直流バイアス制御信号VDCを重ね合わせした後制限増幅器303への入力信号Vsig3になる(図16中の概略的信号波形を参照)。同時に、監視インターフェース306はVsig3を監視し、例えばローパスフィルタリングを通して制御部105に直流バイアス監視信号Vmonを出力する。制限増幅器303により信号Vsig3に対して増幅を行った後、信号はCDR/SerDes204(未図示)に送信される。
同様に、信号はCDR/SerDes204とFEC205を経由した後MAC206に送信されてリンク層データ処理を行い、同時にエラーコード指示信号Ierrは制御部105に送信される。制御部105、バイアスポイント305、制限増幅器303、CDR/SerDes204、FEC205、及び監視インターフェース306は一つのフィードバック制御ループを形成する。制御部105は直流バイアス監視信号Vmon、エラーコード指示信号Ierr、直流バイアステーブル1041中の直流バイアス制御パラメータとDBA情報テーブル1042中の通信タイムスロット情報(図6中の詳細なテーブルフォマットを参照)に基づいて直流バイアス制御信号VDCを計算して取得し(図9中の制御プロセスフローチャートを参照)、その得られた直流バイアス制御信号VDCをデータ信号に加える。同時に、制御部105はさらに以上のフィードバック情報に基づいて直流バイアス制御パラメータを最適化し(図10〜13中のパラメータ最適化プロセスフローチャートを参照)、最適化された直流バイアス制御パラメータをストレージ104中の直流バイアステーブル1041に書き込む。ストレージ104中のDBA情報テーブル1042は制御部の正常な動的帯域割り当てプロセスによって得られる(規格IEEE802.3ahを参照)。
図16(a)〜(d)は本発明におけるデータ信号、直流バイアス制御信号及び監視信号の概略的波形である(ACカップリングの場合)。図5(a)に示したものと類似に、図16(a)はフォトダイオードとトランスインピーダンス増幅器から出力された電気信号Vsig1を示し、TstartとTendの間の時間帯はバーストデータパケットのデータで、このバーストデータパケットと前/次のバーストデータパケットの間はプロテクションタイムスロットである。バーストデータパケットの間において信号Vsig1の直流成分はVavgである。
本実施例ではDCカップリングを採用するため、信号Vsig1はバイアスポイント305において直接直流バイアス制御信号VDCと重ね合せする。直流バイアス制御信号VDCの概略的波形は図16(b)に示す通りである。プロテクションタイムスロット期間においてVDCは次のバーストデータパケットを送信する光回線終端装置に対応する直流バイアス制御パラメータVstartに等しく、TstartからTendの間にVendに維持する。上記において、Vstartはゼロに近い値であり、Vendは−Vavgに近い値である。
図16(c)はVsig1に直流バイアス制御信号VDCを重ね合せして得られた信号Vsig3である。直流バイアス制御信号VDCの変化が信号Vsig1の直流成分のジャンプを相殺するので、信号Vsig3の直流成分は常にゼロ付近に維持される。特に、TstartからTendの間ではVavg+Vendに等しく、制限増幅器の判定閾値が−(Vavg+Vend)シフトしたことに等価する。図においてはVstartとVendはいずれもマイナス値であるが、実際の応用においてはそれに限らない。
図16(d)は監視インターフェース306がローパスフィルタリングを経由して直流バイアス監視信号Vmonを出力することを示す。上述したように、TstartからTendの間において、信号の直流成分は常にVavg+Vendに維持されるため、Vmonもこの間にはVavg+Vendに等しくなるように維持される。
すでに本発明の典型的な実施例を参照しながら本発明について具体的な説明をしたが、本分野の一般の技術者は、添付された特許請求の範囲に限定された本発明の思想と範囲を逸脱しないことを前提にして、これらの実施例に対して形式と詳細な部分に様々な変更が可能であることを理解しなければならない。
本発明の例示的な実施例において、本発明に係わる直流バイアス最適化機能を有するバースト受信器はパッシブ光ネットワークに応用されているが、本発明は光バーススイッチ(OBS:Optical Burst Switch)ネットワーク中のバースト受信器と無線通信システム中の無線受信器、及びそのほかの信号幅がバースト変化する信号を受信するデジタル信号受信システムにも応用可能である。

Claims (11)

  1. 複数の光回線終端装置と接続する光加入者端局装置であって、
    光回線終端装置から受信した光信号を電気信号に変換し、直流バイアスを制御する直流バイアス制御信号を受信するとともに直流バイアスを監視する直流バイアス監視信号を出力する光受信器及び前記電気信号中のエラーコードを検出してエラーコード指示信号を出力するエラーコード検出器を有する光ネットワークインターフェースと、
    それぞれの光回線終端装置の直流バイアス制御パラメータに対応する直流バイアスを示す直流バイアステーブル、及びそれぞれの光回線終端装置に割り当てられた通信タイムスロット情報を示す動的帯域割り当て情報テーブルを記憶するストレージと、
    前記光受信器から出力される直流バイアス監視信号と前記エラーコード検出器から出力されるエラーコード指示信号を受信するとともに、直流バイアス制御信号を前記光受信器に出力することで、前記光ネットワークインターフェースと一つのフィードバック回路を形成する制御部と、を有することを特徴とする光加入者端局装置。
  2. 前記直流バイアス制御信号は、制御部が前記直流バイアス監視信号と前記エラーコード指示信号を受信し、ストレージの中の直流バイアステーブルから読み出した直流バイアス制御パラメータと動的帯域割り当て情報テーブルから読み出した通信タイムスロットに基づいて計算して得られた信号であることを特徴とする請求項1に記載の光加入者端局装置。
  3. 前記光受信器は、
    光回線終端装置から受信した光信号を電気信号に変換させるフォトダイオードと、
    前記フォトダイオードに接続されて前記フォトダイオードから出力される電気信号を増幅するトランスインピーダンス増幅器と、
    ACカップリングのキャパシタを介して前記トランスインピーダンス増幅器と接続し、前記トランスインピーダンス増幅器の出力信号に対して制限増幅を行う制限増幅器と、
    前記トランスインピーダンス増幅器の出力端と前記制限増幅器の入力端を接続して前記トランスインピーダンス増幅器と前記制限増幅器との間のACカップリングを実現するカップリングキャパシタと、
    前記制限増幅器の入力端に接続されて前記制限増幅器に入力された信号に基づいて直流バイアス監視信号を出力する監視インターフェースと、を含み、
    前記制限増幅器の入力信号は前記トランスインピーダンスの出力信号と直流バイアス制御信号との和であることを特徴とする請求項1に記載の光加入者端局装置。
  4. 前記エラーコード検出器はフォワードエラーコレクションデコーダであることを特徴とする請求項1に記載の光加入者端局装置。
  5. 前記直流バイアステーブル中の直流バイアス制御パラメータには光回線終端装置を識別するユーザID、第一電圧パラメータと第二電圧パラメータ、及び時間定数が含まれており、動的帯域割り当て情報テーブル中の通信タイムスロット情報には光回線終端装置を識別するユーザID、及び第一時間パラメータと第二時間パラメータが含まれていることを特徴とする請求項1〜4のいずれかに記載の光加入者端局装置。
  6. 前記制御部から出力される直流バイアス制御信号は、動的帯域割り当て情報テーブル中のユーザIDに対応する第一時間パラメータの示す時刻が直流バイアステーブル中の同じユーザIDに対応する第一電圧パラメータと等しく、且つ前記第一時間パラメータの示す時刻から直流バイアステーブル中の同じユーザIDに対応する時間定数によって決められた指数関係で増加して直流バイアステーブル中の同じユーザIDに対応する第二電圧パラメータに達し、前記第二電圧パラメータと等しい値を前記動的帯域割り当て情報テーブル中のユーザIDに対応する第二時間パラメータまで維持することを特徴とする請求項5に記載の光加入者端局装置。
  7. 前記制御部は前記エラーコード指示信号の示すエラーコード率を最小化することで前記直流バイアス制御パラメータ中の第二電圧パラメータを最適化し、前記直流バイアス監視信号と前記第二電圧パラメータとの差を最小化することで前記直流バイアス制御パラメータ中の第一電圧パラメータを最適化することを特徴とする請求項5に記載の光加入者端局装置。
  8. 前記ストレージにはそれぞれの光回線終端装置における光加入者端局装置の光受信器ハードウェアの設定に必要な時間に対応するハードウェア設定タイムを示すハードウェア設定タイムパラメータをさらに記憶することを特徴とする請求項1に記載の光加入者端局装置。
  9. 通信初期化の際にハードウェア設定タイムパラメータは比較的長い第一パラメータ値であり、光加入者端局装置が光回線終端装置の登録プロセスと直流バイアス制御パラメータの最適化プロセスを完了した後、前記光加入者端局装置はハードウェア設定タイムパラメータを比較的短い第二パラメータ値に変更するとともに、ハードウェア設定タイムメッセージによって前記第二パラメータ値を前記光回線終端装置に送信することを特徴とする請求項8に記載の光加入者端局装置。
  10. 光回線送受信システムであって、
    請求項1〜9のいずれかに記載の光加入者端局装置及び前記光加入者端局装置に接続された光回線終端装置を有することを特徴とする光回線送受信システム。
  11. 前記光加入者端局装置は分光器と光ファイバから構成されたツリー型トポロジーリンクによって前記光回線終端装置に接続し、前記リンクを介して前記光回線終端装置にハードウェア設定タイムメッセージを送信することを特徴とする請求項10に記載の光回線送受信システム。
JP2009286428A 2009-12-17 2009-12-17 光加入者端局装置及び光回線送受信システム Expired - Fee Related JP5427584B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286428A JP5427584B2 (ja) 2009-12-17 2009-12-17 光加入者端局装置及び光回線送受信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286428A JP5427584B2 (ja) 2009-12-17 2009-12-17 光加入者端局装置及び光回線送受信システム

Publications (2)

Publication Number Publication Date
JP2011130164A JP2011130164A (ja) 2011-06-30
JP5427584B2 true JP5427584B2 (ja) 2014-02-26

Family

ID=44292268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286428A Expired - Fee Related JP5427584B2 (ja) 2009-12-17 2009-12-17 光加入者端局装置及び光回線送受信システム

Country Status (1)

Country Link
JP (1) JP5427584B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197241B (zh) * 2013-03-20 2015-11-18 许继电气股份有限公司 柔性直流输电mmc换流阀运行试验装置及试验方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299987A (ja) * 1992-04-17 1993-11-12 Toshiba Corp 自動識別レベル制御装置
JP3569022B2 (ja) * 1995-03-20 2004-09-22 富士通株式会社 自動識別閾値制御装置
JP4019555B2 (ja) * 1999-05-25 2007-12-12 Kddi株式会社 光受信装置及び方法
US6715113B1 (en) * 2000-12-22 2004-03-30 Applied Micro Circuits Corporation Feedback system and method for optimizing the reception of multidimensional digital frame structure communications
JP2004364059A (ja) * 2003-06-05 2004-12-24 Matsushita Electric Ind Co Ltd 通信システム及び通信方法
JP2005340931A (ja) * 2004-05-24 2005-12-08 Freescale Semiconductor Inc バースト信号受信装置
US7865088B2 (en) * 2006-05-12 2011-01-04 Alcatel Lucent Burst mode optical receiver
JP2008199233A (ja) * 2007-02-13 2008-08-28 Kddi Corp 光受信装置及び方法並びに局側光終端装置

Also Published As

Publication number Publication date
JP2011130164A (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
CN101741469B (zh) 光线路终端以及光线路收发系统
US7076177B1 (en) Bit-rate independent optical receiver and method thereof
EP2944052B1 (en) Downstream burst transmission in passive optical networks
JP5017942B2 (ja) ビットレート混在光通信方法並びに光加入者装置及び光局側装置
US8326152B2 (en) System and method for scheduling timeslots for transmission by optical nodes in an optical network
KR101009806B1 (ko) 광 수신기
WO2011013485A1 (ja) 受信部及び局側装置並びにクロック・データ再生回路における周波数校正方法
KR101988920B1 (ko) 버스트 모드 클럭 및 데이터 복원 성능을 높인 멀티레벨 광수신 장치 및 방법
KR101070934B1 (ko) 특수 목적의 평가 신호를 이용하지 않는 광 통신 시스템
US20100272448A1 (en) Optical burst signal receiving device
JP5172046B1 (ja) 親局側装置
JP2009017265A (ja) 電子回路
JP5427584B2 (ja) 光加入者端局装置及び光回線送受信システム
KR101578191B1 (ko) 수동형 광네트워크를 위한 중계장치 및 중계방법
US7130543B2 (en) Bit rate-independent optical receiver
JP5588814B2 (ja) バースト受信機,バースト受信制御方法、およびシステム
CN101783975A (zh) 通信网络中的测距方法、装置及系统
US11646791B2 (en) Passive optical network systems
JP5420435B2 (ja) 局側装置
JP2005340931A (ja) バースト信号受信装置
KR101338480B1 (ko) 버스트 모드 패킷 신호에 대한 감지 신호 생성 장치 및 수신 장치
JP5058038B2 (ja) 通信システム、局側装置および通信方法
JP6253347B2 (ja) 信号検出回路、光受信器、親局装置及び信号検出方法
US20030223401A1 (en) Mehtod of data packet transmission and associated transmitter and receiver
JP2011029803A (ja) 光信号の受信装置及び受信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees