JP5426939B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP5426939B2
JP5426939B2 JP2009149784A JP2009149784A JP5426939B2 JP 5426939 B2 JP5426939 B2 JP 5426939B2 JP 2009149784 A JP2009149784 A JP 2009149784A JP 2009149784 A JP2009149784 A JP 2009149784A JP 5426939 B2 JP5426939 B2 JP 5426939B2
Authority
JP
Japan
Prior art keywords
light
light source
mirror
displacement
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009149784A
Other languages
English (en)
Other versions
JP2011007936A (ja
Inventor
智生 小堀
敏 大内
欣穂 瀬尾
真弓 長吉
忠義 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009149784A priority Critical patent/JP5426939B2/ja
Publication of JP2011007936A publication Critical patent/JP2011007936A/ja
Application granted granted Critical
Publication of JP5426939B2 publication Critical patent/JP5426939B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Description

本発明は、振動する微小ミラー(鏡)にビーム光を照射し、得られる反射光を対象物に投射表示する表示装置に係り、特に動的な軸調整機構や変化量の検出を、簡易な構造と検出及び制御で実現する表示装置に関する。
半導体レーザは、CDプレーヤやDVDプレーヤ等のAV機器、光通信等の光源に用いられる等、広く一般化している。レーザ光は、発振波長、発光点(出射光)や発振効率等が、デバイス温度や印加電流等の動作条件に大きく依存する。このためデバイス温度を保つべく、熱放散性の良い構造と温度制御器と合わせて使用する事で、安定したレーザ光を得られるようにしている。これは特許文献1にも開示されている。
また、半導体レーザ技術の向上、近年のMEMS(Micro Electro Mechanical Systems)技術の向上、その小型化や低コスト化により、業務用途のみならず民生品への展開も検討されており、これは非特許文献1に開示されている。
一方、特許文献1などに開示されているように、1軸或いは2軸で往復振動するMEMSミラーを用い、MEMSミラーにビーム光を当てて得られる反射光を対象物にラスタスキャンさせることで投射表示するようにした画像表示装置を構成することが可能となってきた。
このシステムには光の直進性に優れるレーザ光源が最適である。さらに近年の半導体技術の向上により、レーザ光源の出力エネルギーや電光変換効率の向上と、可視光内の発振波長の選択性向上が進み、R色/G色/B色それぞれのレーザ光源を組み合わせる事により、色再現範囲が向上し高輝度化も容易で且つ、低コストな画像表示装置を構成できる。
この様な画像表示装置で映像を形成するには、ビーム光の走査位置に対応する画素の画像情報に基づき、R色/G色/B色レーザ光源の発光強度を変調することで画像を形成できる。また直進性に優れるビーム光であることから、何れの投射距離でも焦点が合った画像表示を得られる特徴が有り、平面形状のみならず、様々な凹凸形状を有する物に投射表示しても、焦点のあったボケのない画像を表示できる。
この様な画像表示装置が有する課題は、従来技術の流用や応用により解決できる場合もある。例えば、ビーム走査方法や画像生成技術については、電子ビームを走査して画像表示するブラウン管方式のモニタや、特許文献2などに開示されているようにレーザ光をポリゴンミラーで反射させ走査して画像形成するレーザビームプリンタ装置等の技術が応用できる。さらに、レーザビーム形状や品質を向上させる技術は、CDやDVD等の光ピックアップ装置に用いられる技術が応用できる。複数のレーザ光源で構成される上記画像表示装置は、これらの従来技術の応用や、例えば非特許文献2に開示されるようなレーザ光の扱い方や評価方法の進歩、高度な光源配置や光学レンズ技術並びに補正回路技術を得て、レーザビーム光の形状品質と複数ビーム光の重なりを最適化することで、高品質な画像表示を再現している。
特開2007-10823号公報 特開2003-182153号公報
日本信号株式会社のHP、[平成21年6月1日検索]、<URL: http://www.signal.co.jp/vbc/mems/app/item01_1.html> CVIメレスグリオ社のHP、[平成21年6月1日検索]、<URL:http://www.mgkk.com/products/01_kougaku/guide/2/2gaussian_02c.html>
しかしながら、上記したように環境条件、動作条件、経時変化の影響下においてレーザデバイス動作状態や、構造の歪み等の影響から、R色/G色/B色レーザ光源それぞれのビーム光の形状と、3個の複数ビーム光の重なりが動的に変化する。例えばサブマウント構造上にレーザ素子を配したφ5.6CANパッケージ等の一般的な半導体レーザの場合、レーザの動作状態により、ビーム位置は数百μm程移動してしまう。
初期性能を維持するには、色毎に設けた動的な軸調整機構や、色毎にビーム位置の変化量を計測する検出装置を用いて行う必要があり、装置の大型化、コスト上昇を伴う物であり、上記画像表示装置の用途が限定されてしまう。
上記した動的な変化に対応するためには、R色/G色/B色レーザ光源それぞれのビーム光の形状とビーム光軸の移動量を測定し、それぞれが所定の状態になるように、レーザ光源、レンズ位置を調整する必要がある。また、画像表示装置での使用状態を考えると、ビーム光の形状変化や、ビーム光軸の移動は直ぐ様、色ズレや画素形状の変化を伴い、さらには画質を劣化させてしまう為、画質劣化を視認できない様、上記調整処理の高速化が必要である。
また、R色/G色/B色レーザ光源それぞれのビーム形状と、ビーム光軸の移動(色ズレ)を、投射面で直接確認する事が理想的であるが、高速にラスタスキャンするビーム光を捕らえる事は難しく、装置の複雑化、大型化、高コスト化を伴うので、これを避けることが必要である。しかも、投射型の表示装置の場合は、投射面が固定されず、投射面に何かしらの検出装置を配置する事は現実的でない。
また、R色/G色/B色レーザ光源それぞれを調整する際、調整量の目標値を高く掲げると、調整機構の高精度化、調整時間の長期化を伴う事から、所望の表示装置に見合ったサイズやコストに収まる目標値とすることが必要である。
本発明の目的は、上記画像表示装置の利用形態や利便性を向上するべく、動的な軸調整機構や変化量の検出を、簡易な構造と検出及び制御で実現する画像表示装置を提供することにある。
上記目的を達成するため本発明は、入力された映像信号の有する映像情報を表示する表示装置であって、前記映像情報を表示する表示部と、該表示部に前記映像情報を表示するための照射光を発生する光源と、該光源の照射光を略2mm径以下のスポット径に略ビーム光(平行光)とするレンズと、前記光源の照射光の強度を前記入力信号に基づき変調する光源駆動部と、前記レンズでビーム光とされた前記照射光を反射して前記表示部に投射するミラーと、前記ミラーを少なくとも1軸で揺動するよう駆動するミラー駆動部と、前記ミラーの反射面の後方にあって互いに異なる位置に配した少なくとも2つの光検出部と、前記光源ないし前記レンズを少なくとも1軸方向に変位させる変位部と、前記少なくとも2つの光検出部で検出した光の検出期間と検出強度を計測するタイミング判定部と、前記タイミング判定部の計測結果に基づき前記変位部が与える前記光源ないしレンズの変位量を制御する制御部とを有し、該制御部は、前記少なくとも2つの光検出部で検出した光の検出期間と検出強度が所定の設定値となるよう前記変位部を制御して、前記光源ないしレンズの位置を定めることを特徴としている。
本発明によれば、動的な軸調整機構や変化量の検出を、簡易な構造と検出及び制御で実現する表示装置を提供できる。さらには、これに伴う表示装置の小型化により画像表示装置の用途を拡張できるという効果がある。
本発明による第1の実施例の表示装置を示す構成図である。 本発明による第2の実施例の表示装置を示す構成図である。 本発明による第1の実施例を説明する状態図である。 本発明による第1の実施例を説明する状態図である。 本発明による第1の実施例を説明する状態図である。 本発明による第1の実施例を説明するタイミング図である。 本発明による第1の実施例を説明する状態図である。 本発明による第1と第2の実施例を説明する配置図である。 本発明による第3の実施例の表示装置を示す構成図である。 本発明による第1の実施例を説明する状態図である。 本発明による第3の実施例を説明する状態図である。 本発明による第3の実施例を説明する状態図である。 本発明による第3の実施例を説明するタイミング図である。 本発明による第3の実施例を説明するタイミング図である。 本発明による第1の実施例を説明する状態図である。 本発明による第1の実施例を説明する状態図である。 本発明による第3の実施例を説明する状態図である。 本発明による第1の実施例を説明する状態図である。
以下、本発明を添付の図面を用いて説明する。
図1は本発明の第1の実施例による表示装置を示すブロック図である。図3,4、5,7は、状態の変化を説明する状態図である。図6は実施例の動作を説明するタイミング図である。図8は実施例を説明する配置図である。図10は、ビーム形状の状態一例を示す状態図である。
図1で、1は入力信号、2は変位器、3は光源、4はコリメートレンズ、5はミラー、6は光源駆動器、7は信号変調器、8はタイミング生成器、9はCPU(Central Processing Unit)、10はタイミング判定器、11はミラー駆動器、12はフォトセンサ(光検出器)、13は信号増幅器(AMP)、14は信号変換器(ADC; Analog to Digital Converter)である。もちろん、フォトセンサ12にAMP13とADC14が内蔵される構成であっても良い。
ここで本実施例では、ビーム光を発生し且つ、高速で光量変調が容易なレーザ光源を光源3に用いた場合を説明する。もちろん、レーザ光源の代わりにLED(Light Emitting Diode)、超高圧水銀ランプの何れかを、ビーム状に集光させる光学部品や、光量の変調部品とともに光源として用いても良い。
ミラー駆動器11は、図6のタイミング図で示す様にミラー開始信号w_sp_hと、ミラー5をドライブする信号であるH Drive信号の振幅値を得て駆動条件を定めてミラー5を駆動し、ミラー5が所定の揺動角θを成すよう、開始信号w_sp_hの位相と、H Drive信号の振幅値を微調する。信号変調器7において、後述するようにタイミング発生器8で生成されるミラー5の揺動位置に同期した光源開始信号s_sp_hを基準に入力信号1に基づきレーザ光を強弱情報に変調するよう、光源駆動器6を介して光源3を発光させ、レンズ4でこれを集光しビーム光化する。
ここで、説明の為、ビームの放射強度がピーク値または光軸上の値の1/e2(13.5 %)と成る所をスポット径(ビーム径)とする一般的な定義にて、スポット径をφ1mmの大きさとする。アパーチャーでビーム形状を整えてからミラー5に入射するようにしても良い。
ミラー5の駆動方式は、電磁誘導、圧電駆動、静電駆動等、ミラーを揺動するものであれば何れであっても良い。また、説明の為に一例として、ミラー5はφL=1mmの大きさで、水平同期周波数25kHzを共振周波数とする1軸方向に揺動(H揺動)する構成であって、ビーム光とミラーは直交からの傾斜角ω=20度、揺動角θ=15度、投射距離Y=1000mmとして、投射位置でビーム光のH走査幅U(直線)は、
U = 2Y * tanθ = 2 * 1000mm * tan(15度) = 535.898mm
であるとする。さらにH揺動の往路と復路で、それぞれ時間均等に1000等分し、それぞれに光源3の強弱を指定して駆動するものとする。すなわち光源3の変調周波数は25kHz * 1000* 2 = 50MHzとして示す。
ミラー5のサイズは大きいに越したことはないが、上記共振周波数と揺動角や空気抵抗、ミラー5の反射率と光入射強度に依存した温度上昇による寿命の劣化や、機械・電気特性の変動等の弊害から限界がある等するため、大きさの最適値につき広く研究開発・発表がなされているが、ここでは詳細は省略する。ただし、ミラー5とビーム径の関係を以下に、詳述する。
ここで、H揺動は共振動作のため、加速停止を繰り返すことから、走査位置によってH走査速度が異なり、時間均等に光源3を変調するとH揺動内でピッチ幅は伸縮する。この為、ピッチ幅が均等に成るよう光源3を駆動する手法が一般的である。よって、H方向の解像度1000ではなく、例えばピッチ幅を均等に640個に成るよう光源3を駆動すれば、水平解像度640を得られる。この場合のピッチ幅(画素幅)は約0.8mmである。この関係において、前述したビーム光の位置ズレが数百μm、例えば500μm(=0.5mm)発生すると、画素の表示位置が半画素以上移動してしまう。
H揺動が最大となる角度では、揺動が停止する所であり、ビーム光の移動が少ない、すなわち単一面積あたりの照射時間の増大すなわち光エネルギーが増大する。しかし、ミラーの蹴られにより反射光が減少することで相殺の関係として単一面積あたりの光エネルギーを保つようにしても良い。
ミラー5はφL=1mmに限定されず、例えばφL=1.5mmであっても、ビーム位置ズレを約0.25mm(1/4画素)以内、同φL=2.0mmで約0.5mm(1/2画素)以内に納めることが可能であり、表示装置の用途により、ミラー5のサイズを定めても良い。
図17は、正規分布となるビーム光の光強度分布の一例と、ミラー5の揺動状態の関係、並びにフォトセンサ12の配置の一例を具体的に示した状態図である。センサ12はφL/10=0.1mm□のサイズで、後述するΔs(一例として0.1205mm)を用いてミラー5の中心からφL/2 - Δs /4 = 0.4700mmに配置する場合を示す。同図に示すようにミラー5が上記で揺動時、ミラー5の縁でのビーム光の光強度は、13.5%から約20%で変動する。もちろんこれ以外でも良い。
フォトセンサ12の性能として、ビーム光の最大光強度の20%以下を検出するだけの光感度と、応答性能があれば十分であり、市販のフォトセンサから選定できる。さらに、フォトセンサ12をミラー5に形成しても何ら問題無く、センサの配置制約が軽減される効果がある。
変位器2はφ1mmのビーム光の光軸がミラー5の中心に一致するよう予め調整する。図7を用いて、以上の位置関係を詳述する。ビーム光とミラー5は光軸に対し垂直方向から傾斜角ω=20度にある時(状態1)、ビーム光は反射角2ω=40度で反射し、揺動角θ=15度、すなわち同傾斜角ω+θ=35度にある時(状態2)、ビーム光は反射角2ω+2θ=70度で反射する関係に有る。また、φ1mmのビーム光の一部は、ミラー5の傾斜角に応じて後方への漏れ光を増減するよう構成される。さらに、この漏れ光の増減を受光するようフォトセンサ12を12aと12bで示すように2カ所に配置する。この場合、ビーム光に対しミラー5は揺動側に変化量Δsで伸縮し、以下の関係にある。
Δs=L(cosω-cos(ω+θ)) (式1)
本実施例では、Δs=0.1205mmである。説明の為、図4、6で示す状態Δd=0すなわちビーム光軸とミラー5の中心が一致し、ミラー5やビーム形状が真円とし、ミラー5がH揺動角θの時、フォトセンサ12a,12bが受光する光量や受光面積が一致するように配置することで、フォトセンサ12a,12b出力がタイミング、振幅とも同値とする理想的な配置関係にあるものとする。実際には、それぞれの誤差が積み重なり、本関係を成す事は難しく、必ずしも理想的な配置関係を求める物では無い。相対的な出力関係を計測する事が目的である。例えば、上記それぞれの誤差の積み重なり情報や、周囲環境情報から制御部CPU9にて定めるタイミング判定補正情報modeを用いて、12a,12b間の重み付けを変える構成としても良い。
図6に示すように、フォトセンサ12a,12bの出力期間wa,wbの中心時間位置で、H揺動角θとなる事から、タイミング判定部10にて、この出力期間の計数や、振幅最大点の検出により中心時間位置を特定して開始信号s_sp_hを生成する。また図6では、フォトセンサ12a,12bの出力を2値波形で示しているが、図1で示すようにAMP13で振幅増幅後(x_p,x_s)、ADC14で信号変換し(X_p,X_s)、タイミング判定器10において、振幅の変化情報を用いてアナログ処理により中心時間位置を特定しても良い。なおタイミング判定部10は、ADC14の出力X_p,X_s間の差分情報diffを生成する。Δd=0の場合、差分情報diff=0である。
本構成の場合、図3の光源3がミラー5の揺動軸と直交する方向(図面上で上方向)にΔd=sf_p移動した場合、及び図5のように逆方向にΔd=sf_m移動した場合には、フォトセンサ12a,12bでの受光の関係が変わる。状態Δd=sf_pの場合、フォトセンサ12aへの入射光、すなわち検出期間waが増加し、フォトセンサ12bへの入射光、すなわち検出期間wbが減少する。同様に図5の状態Δd=sf_mの場合、フォトセンサ12aへの入射光、すなわち検出期間waが減少し、フォトセンサ12bへの入射光、すなわち検出期間wbが増加する。一方、H揺動角θと開始信号s_sp_hとの位置関係は、状態Δdに係わらず検出期間wa,wbの中心時間位置にある。タイミング判定部10より検出期間wa,wbの差分情報diffを得て、CPU9により差分情報diffを減少させる変位方向DIR定め、変位器2にて変位方向DIRだけ光源3を移動させる。上記した一連の処理をH揺動毎或いは間欠で繰り返す事で差分情報diffを小さくする、すなわちビーム光軸とミラー5の中心が一致する様、動作する。尚、図6でミラー5の駆動波形H_driveと、H揺動角の関係は、周期は一致するが、位相は固定しない状態である事を示す物である。
図7における光源3の変位Δdの移動と、ミラー5の傾斜と、投射位置ズレerの関係は、次式で求まる。
er=Δd/cos(ω+θ) (式2)
ω=20度でθ=0度時は、er=Δd*1.064、θ=15度時は、er=Δd*1.221である。前記したように、投射位置Y=1000mmでのビーム光のH走査幅U=535.898mmとなる。仮に光源3の変位Δdが前記Δs=0.1205mmの場合、er=0.128〜0.147mmで、H走査幅の約0.02%分、ビーム光位置が移動する。
ここで、上述した動作とは異なるが、説明のため図15Aで示す様に、H有効表示領域として光源3を1走査辺り1000回変調の内、中心640回分で光の強弱を変調し、残り360回分の少なくとも一部をフォトセンサ12a,12b用に発光するよう動作させる。もちろんこの限りでない。この場合、H有効表示幅U_Hは、
U_H=U * cos((360回/1000回)*(180度/2))=452.474mm
となる。説明の為、H有効表示幅U_H=452.474mmを640で均等分割すると、1変調(ドット)あたり、0.707mmである。投射位置ズレer=0.128〜0.147mmは、1変調(ドット)当たり18.1〜20.8%となる。
図3や5で示す光源3の変位Δd=sf_p,sf_mより大である場合には、フォトセンサ12a,12bの何れかの出力が得られない、最悪条件となるものである。しかしながら、上述した本実施例のように変位器2で光源3の位置を変位させる動作を繰り返す事で、図4の変位Δd=0に限りなく近づけることができ、図3〜5のフォトセンサ12a,12bの出力が得られる状態にあれば、1変調(ドット)当たり18.1〜20.8%以下の投射位置ズレerに収まる。
以上、説明の為、ビーム光の形状が真円である場合で示したが、光源3とレンズ4の位置関係にあっては、図10に示す様に目標の真円に対し、縦方向や横方向に楕円状になる場合もある。例えばフォトセンサ12a,12bの配置方向に縦楕円となる場合、受光期間waとwbは同期間検出されるが、真円から楕円に変化した分、受光量が減り、センサ信号振幅が小さくなることを利用して、変位器2を制御し真円に成るよう補正する。さらに、状態Δd=sf_pやsf_mより変位器2の変位Δdを大きくし、受光期間waとwbの有無を検出することで、楕円のサイズを特定して、これを真円に成るよう補正するようにしても良い。横楕円の場合も同様であるが、フォトセンサ12a,12bとも受光期間waとwbが無くなる場合には、状態Δd=sf_pやsf_mより変位器2の変位Δdを大きくし、受光期間waとwbの有無を検出することで、楕円のサイズを特定して、これを真円に成るよう補正する。
もちろん、光源3の代わりにコリメートレンズ4に変位器2を設けても同様である。また、2つの最大揺動角位置間で、光の強弱と受光期間を等しくすることに限定するものでは無く、外部から定める所望の比率の関係に成るよう変位器2を制御するようにしても、なんら問題ない。
さらに、ミラー3の同一のH揺動角におけるミラー3を反射したビーム光の投射位置に着目した場合、ミラー3の入射角度に依存して、投射位置が定まる。入射角度は、変位器2の変位Δdより特定できるため、予め変位器2の変位Δdと投射位置の関係を実測したテーブル値をCPU9で保持しておき、所望の投射位置が得られるよう、変位器2を制御する。
以上述べたように実施例1においては、ビーム光の形状変化やビーム光軸の移動など状態の変化が発生し、これを動的に補正する際に、ミラーの背後に設けたフォトセンサの出力を用いて補正を行うようにすることで、従来の技術とは異なり、レーザ光源からミラーを介して投射する途中の光路内に、プリズムやハーフミラー等の光学構造を配する必要はなくなる。またレーザ光源からの光束の一部を切り出し、特別な位置検出素子に当てる必要も無い。さらにビーム光軸ズレを直接測定する必要も無い。このため動的な軸調整機構や変化量の検出を、簡易な構造と検出及び制御で実現する表示装置を提供でき、装置の小型化、構造の簡素化や光の利用効率の向上が容易であるという効果がある。
また、周囲環境や、光源の発光状態等、様々な要因での構造変位により、光路の変動が発生しても、ミラーの入射状態を入射光から直接検知できることから、個々の発光状態の変化や構造変位に捕らわれることなく、ミラーに光束が入射するよう変位手段を調整するだけで良い。このため、レーザ光源それぞれを調整する際、調整量の目標値を高く掲げる必要は無く、短時間で完結でき、装置やコストの増大化を抑えることができる。
以上示した処理は、周囲環境の変化、光源3の発光状態に伴う発熱により光源3やレンズ4、ミラー5の相対位置関係が変わる事から、変位器2の調整周期を揺動周期毎等に短くする必要も無く、秒単位、或いは、周囲環境や、光源の発光履歴をモニタして、変化した時点で行うようにしても良い。
上記に、揺動するミラーの後方に2つのフォトセンサをさらに配し、揺動によるフォトセンサ出力12c,12dの変動が少ないものの、ビームズレが生じた場合、2点間のセンサ出力は不均衡となることから、上記と同様に処理することで、ミラー3からのビームズレ検出精度を上げても良い。これにより、ビームの位置ズレに加え、フォトセンサ出力12a,12b,12c,12dの大小により、ビーム形状(大小や楕円等)の検出も適うものである。コリメートレンズ4に変位器2を設けても同様である。
また、1軸で揺動するミラーを追加して2枚のミラーにより2次元ラスタスキャンする構成としても、上記同様である。
最大揺動角位置では、揺動速度も落ち、スキャンの移動が少ない事から、非発光期間とすることが望ましい場合には、非発光期間直前直後の発光状態を検出することで対応しても良い。さらに、検出する回数を限定して、間欠発光させても良い。
尚、変位手段の構成は、特に本発明に係わらず、一般的なボイスコイルモータ(VCM:Voice Coil Motor)、超音波モータ、ピエゾ型アクチュエータ等、ミクロン単位〜サブミクロン単位で変位を与える構成であれば良い。また、変位方向は、少なくとも1軸あれば良く、2軸以上であればさらに良い。さらに、機械構造とは別に、膨張性のある膨張部材を制御する構成であっても良い。例えば、油圧・水圧で制御する構成、或いは熱膨張部材と、加熱・冷却可能な温度調整器を組合せ、熱膨張部材を温度制御する事で、所望の膨張量とする構成であっても良い。また、光源はビーム光を得やすいレーザ光源が望ましいが、特に限定せず、LED光源、超高圧水銀ランプ等をビーム状に集光・平行光化して使用しても良い。また、ミラーの形状として上記検出の為に、切り欠きや、穴を有する特別な形状としても、光学性能や揺動性能が所望の仕様を満足していれば特に限定しない。
ビームと入射角の関係は特に限定しないが、光源3やレンズ4の配置方法で、フォトセンサ12の検出タイミングが変わる。これに対しても同様の処理で対応出来ることは言うまでもない。また、2つの最大揺動角位置間で、光の強弱と受光期間を等しくすることに限定するものでは無く、外部から定める所望の比率の関係に成るよう変位器2を制御するようにしても、なんら問題ない。
図2は、本発明の第2の実施例による表示装置を示すブロック図である。図8は上記実施例1のミラー5のH揺動に加え、直交する軸にV揺動する様にした構成を示す。実施例1と同一部分の説明を省略する。フォトセンサ12a,12bに加え、追加したV揺動方向に少なくとも2個フォトセンサ12c,12dを実施例1と同様な関係で追加した構成である。
ミラー5は、H揺動の直交方向に揺動角βで揺動(V揺動)する。本実施例では、図15BのV走査で示す様に、揺動周波数60Hz、揺動角β=10度、ミラー5のV駆動信号v_driveは、60Hz周期の線形のノコギリ波形でH揺動回数250:166の関係と成るデューティー比を約6:4で駆動し、光源3をH揺動回数250中の240回選択してV有効表示期間且つ、実施例1のH有効表示期間を変調駆動する場合について示す。本動作は所謂、解像度640画素*480ライン、フレーム周期60Hzのラスタスキャン表示を実現する構成である。駆動波形はこの限りではなく、ミラー5が所望の動作を実現するものであれば良い。
本構成において、フォトセンサ出力12a,12b,12c,12dの出力は増幅部AMP13と信号変換器ADC14によりそれぞれ波形補正され(図中のX_p,X_s,Y_p,Y_s)、タイミング判定部10にてH揺動と同様に60Hz毎のV揺動角β=10度時前後での波形状態を計測し、差分情報diffに加える。CPU9にてそれぞれの軸に対する移動方向を選定し(図中のDIR)、変位器2により光源3を所望の方向に移動させる。タイミング生成8では、タイミング判定部10のH揺動位置(図中のsp)を計数してH揺動回数250:166の関係と成るデューティー比と成るよう、Vミラー駆動信号w_sp_vを生成する。これにより、変位Δdや、図10のビーム形状の縦楕円と横楕円を同時に検出し、これを補正する。
以上述べたように実施例2においては、実施例1で示した1軸方向のみならず、2軸方向のビーム光の形状変化や、ビーム光軸の移動が発生しても動的に補正することが可能である。この場合においても動的な軸調整機構や変化量の検出を、簡易な構造と検出及び制御で実現する表示装置を提供でき、装置の小型化、構造の簡素化や光の利用効率の向上が容易であるという効果がある。
図9は、本発明の第3の実施例による表示装置を示すブロック図である。
図9は本発明の実施例1,2の表示装置を応用したものであり、さらに、少なくともR/G/Bの3原色分で構成する光源3r,3g,3bを有し、光源駆動部6は、R/G/Bそれぞれの光源3r,3g,3bを、入力信号1として、R/G/B毎の映像信号Videoを得て、上記と同様な駆動方法で、独立或いは同時に駆動する。得られたR/G/Bビーム光は、ミラー5で反射され投射される一方、除外光をフォトセンサ12a,12b,12c,12dで受光し、光の強弱に加え、R/G/B光成分を分別して検出する様に構成する。もちろん、光の強弱のみでも良い。実施例1,2と同様の処理により、R/G/Bそれぞれのビーム光軸ズレを検出し、ビーム光軸とミラー5中心を一致させるよう動作する。ここで、光源3r,3g,3b毎の調整は、揺動毎に補正対象の色成分を定める色順次で行っても良いし、フォトセンサ12a,12b,12c,12dに色分別機能を持つカラーセンサを用いて揺動毎に同時に行っても良い。
光源3r,3g,3bの変位精度として、上記精度に加え、ミラー5で反射された3つビーム光の重なり状態を定める。図11,図12、図16に状態図の一例を示す。
CPU9で、R/G/B毎に実施例1,2で示した変位器2の変位量とビーム光の投射位置の関係を保持するテーブルをR/G/B毎に参照してR/G/B間のビームズレ量を推定して得る。図11は、3つの光束が同一投射位置に成るよう、各光源の変位量を定める場合であり、図12は、3つの光束が同一スキャン軌跡を成すよう定める場合であり、図16の3つの光束が前後する同一スキャン軌跡を成すよう定める場合であって、これらの何れであっても良い。この場合、CPU9にて3つの光束の相対的な位置関係を算出し(図9のPhase)、入力映像信号の画素毎にR/G/B信号を求め、位置関係Phaseを画素時間に換算して、同一画素の映像信号であっても、換算した画素時間分、時間を異ならしめて3つの光源をそれぞれ駆動する。例えば、図11のR/G/B間でビームが一致する場合、位置関係Phase=0とし、スキャンアドレス(Scan Add.)を基準として同一時間に入力映像信号の同一画素アドレスのR/G/B信号(D0,D1・・・・)を投射表示する。一方、図12の関係にあれば、位置関係Phaseとして、R信号はG信号の1画素左、B信号はG信号の1画素右の情報を示すので、図12の図面左から右にスキャンする場合には図13のタイミング図、同図面右から左にスキャンする場合には図14のタイミング図で示すように、スキャンアドレス(Scan Add.)を基準に上記Phase分移動したR/G/B信号(D0,D1・・・・)で光源をそれぞれ駆動する。これにより、3つの光束が同じスキャン軌跡を形成し且つ、同一スキャン位置では、入力映像信号の同一画素のR/G/B信号で表示できる。なお、図16の関係にあれば、位置関係Phaseとして、R信号はG信号の1走査線分上、B信号はG信号の1走査線分下の情報を示すので、スキャンアドレス(Scan Add.)を基準に1走査線分移動したR/G/B信号で光源をそれぞれ駆動する。
ここで、ミラーで反射された後の投射領域内にフォトセンサやカラーセンサを配して、3つの光束のスキャンタイミングを計測することで、上記CPU9で推定した位置関係Phaseを微調するようにしても良い。
以上述べたように実施例3においては、3つのビーム光の形状変化や、ビーム光軸の移動が発生しても動的に補正できる為、瞬時における3つのビーム光の重なりが投射位置において、所定の範囲内に収めることが可能となり、画像を形成した際の画素形状を保ち、色のズレや滲みを容易に低減できる。この場合においても動的な軸調整機構や変化量の検出を、簡易な構造と検出及び制御で実現する表示装置を提供でき、装置の小型化、構造の簡素化や光の利用効率の向上が容易であるという効果がある。
さらに、ビーム形状の最適化と3つの各ビーム光の重なりを同時に所定の範囲内に収めることが出来ない状態にあっても、ビーム形状の最適化を優先し、かつ、投射位置での3つのビーム光の相対的なズレ量を容易に把握できることから、ズレ量に応じた表示タイミングや表示内容を設定することで、画像を形成した際の色の滲みを容易に低減できるという効果もある。
以上、本発明について詳細に説明したが、本発明は、ここに記載された表示装置の実施例に限定されるものではなく、他の表示装置にも広く適用できることは言うまでもない。
1…入力信号、2…変位器、3…光源、4…コリメートレンズ、5…ミラー、6…光源駆動、7…信号変調器、8…タイミング生成器、9…演算器(CPU)、10…タイミング判定器、11…ミラー駆動器、12…フォトセンサ、13…信号増幅器(AMP)、14…アナログデジタル信号変換器(ADC)。

Claims (7)

  1. 入力された映像信号の有する映像情報を表示する表示装置であって、
    前記映像情報を表示する表示部と、
    該表示部に前記映像情報を表示するための照射光を発生する光源と、
    該光源の照射光を略2mm径以下のスポット径に略ビーム光(平行光)とするレンズと、
    前記光源の照射光の強度を前記入力信号に基づき変調する光源駆動部と、
    前記レンズでビーム光とされた前記照射光を反射して前記表示部に投射するミラーと、
    前記ミラーを少なくとも1軸で揺動するよう駆動するミラー駆動部と、
    前記ミラーの反射面の後方にあって、前記ミラーが駆動されることによる前記ミラーの傾斜角の変化に応じた前記ビーム光の前記反射面の後方への漏れ光の増減を検出する、互いに異なる位置に配置された少なくとも2つの光検出部と、
    前記光源又は前記レンズを少なくとも1軸方向に変位させる変位部と、
    前記少なくとも2つの光検出部で検出した光の検出期間と検出強度を計測するタイミング判定部と、
    前記タイミング判定部の計測結果に基づき前記変位部が与える前記光源又はレンズの変位量を制御する制御部とを有し、
    該制御部は、前記少なくとも2つの光検出部で検出した光の検出期間と検出強度が所定の設定値となるよう前記変位部を制御して、前記光源又はレンズの位置を定めることを特徴とする表示装置。
  2. 請求項1記載の表示装置において、
    前記ミラー駆動部は、前記1軸と直交する方向を含めて前記ミラーを駆動し、
    前記変位部は、前記1軸と直交する方向を含めて前記光源又はレンズを変位させ、
    前記ミラーの反射面の後方であって互いに異なる位置に配した少なくとも2つの光検出部をさらに有し、
    前記制御部は前記タイミング判定部の計測結果に基づき、前記複数の光検出部で検出した光の検出期間と検出強度が所定の設定値となるよう前記変位部を制御して、前記光源又はレンズの位置を前記1軸と直交する方向を含めて定めることを特徴とする表示装置。
  3. 請求項1または2に記載の表示装置において、
    前記光源と前記レンズはRGB三原色信号に応じてそれぞれ設けられており、前記変位部は該RGB三原色信号の光源又はレンズを個別に変位させ、
    前記制御部は前記タイミング判定部の計測結果に基づき、前記複数の光検出部で検出した光の検出期間と検出強度が所定の設定値となるよう前記三原色信号の光源又はレンズを個別に変位させるよう前記変位部を制御することを特徴とする表示装置。
  4. 請求項1乃至3に記載の表示装置において、前記光源の駆動タイミングを生成するタイミング生成部を有し、
    前記タイミング判定部は、前記光検出部で検出した光の検出期間と検出強度を計測する際に、検出期間の中心時間位置或いは検出強度が最大値となる時間位置を知らせるタイミング信号を出力し、
    前記タイミング生成部は、前記タイミング信号に基づき前記光源駆動部を起動することを特徴とする表示装置。
  5. 請求項1乃至3に記載の表示装置において、前記制御部は、
    前記光検出部で検出した光の検出期間と検出強度に関する、前記変位量との関係を予め測定してテーブル(LUT)化し、前記光源又はレンズの位置ズレ量を推定して前記変位量を定めることを特徴とする表示装置。
  6. 請求項3に記載の表示装置において、前記制御部は、さらに、投射位置での前記RGB三原色光のビームが同一軌跡を成すように、前記変位部における前記光源又はレンズの変位方向と変位量を定めることを特徴とする表示装置。
  7. 請求項1乃至3に記載の表示装置において、前記光源は、LED光源又はレーザ光源であることを特徴とする表示装置。
JP2009149784A 2009-06-24 2009-06-24 表示装置 Active JP5426939B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149784A JP5426939B2 (ja) 2009-06-24 2009-06-24 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149784A JP5426939B2 (ja) 2009-06-24 2009-06-24 表示装置

Publications (2)

Publication Number Publication Date
JP2011007936A JP2011007936A (ja) 2011-01-13
JP5426939B2 true JP5426939B2 (ja) 2014-02-26

Family

ID=43564696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149784A Active JP5426939B2 (ja) 2009-06-24 2009-06-24 表示装置

Country Status (1)

Country Link
JP (1) JP5426939B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145154A1 (ja) * 2012-03-28 2013-10-03 パイオニア株式会社 画像描画装置
WO2013145153A1 (ja) * 2012-03-28 2013-10-03 パイオニア株式会社 画像描画装置
FR3020141B1 (fr) * 2014-04-17 2018-01-05 Horiba Jobin Yvon Sas Appareil et procede de microscopie a balayage de faisceau optique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265476A (ja) * 1987-04-23 1988-11-01 Mitsubishi Electric Corp レ−ザビ−ム位置検出装置
JP2552615B2 (ja) * 1992-08-22 1996-11-13 川崎重工業株式会社 レーザ共振器アライメント保持装置
JP2555239Y2 (ja) * 1993-12-27 1997-11-19 リズム時計工業株式会社 太陽光採光装置
JP2009122455A (ja) * 2007-11-15 2009-06-04 Funai Electric Co Ltd 画像表示装置

Also Published As

Publication number Publication date
JP2011007936A (ja) 2011-01-13

Similar Documents

Publication Publication Date Title
JP4929738B2 (ja) 光走査装置、光走査装置の制御方法及び画像表示装置
US8002414B2 (en) Image displaying apparatus, and a method for adjusting vibrating condition of a reflection mirror in the image displaying apparatus
JP5687880B2 (ja) 画像表示装置
US20150077823A1 (en) Optical deflection device, apparatus including the same, and method of controlling optical deflecting device
JP6694772B2 (ja) レーザ投射表示装置
JP6118913B2 (ja) 表示装置
WO2016203993A1 (ja) 投影装置および投影方法、投影モジュール、電子機器、並びにプログラム
US20040263932A1 (en) Optical scan device, image position calibration method, and image display device
JP5326352B2 (ja) 画像表示装置
JP2005354032A (ja) 分布ブラッグ反射型半導体レーザの制御方法および画像投影装置
JP5163321B2 (ja) 画像表示装置
US8416481B2 (en) Laser projector
WO2016203992A1 (ja) 投影装置および投影方法、投影モジュール、電子機器、並びにプログラム
JP5083452B2 (ja) 光走査装置、光走査装置の制御方法及び画像表示装置
JP2017173715A (ja) レーザ投射表示装置
JP2014186068A (ja) 画像表示装置
JP5234514B2 (ja) 画像形成装置
JP5426939B2 (ja) 表示装置
JP2009222973A (ja) 画像投射装置
JP5934481B2 (ja) 光走査装置
JP2013041289A (ja) 画像表示装置、及び画像表示装置における反射鏡の振動状態調整方法
WO2011108395A1 (ja) 光走査装置及びそれを備えた画像表示装置
JP2011221060A (ja) 投射型表示装置
JP2005242035A (ja) 画像投射装置、および画像投射装置の制御方法
JP2006011332A (ja) 画像投影装置及び画像投影装置におけるdfbレーザの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Ref document number: 5426939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250