JP5423430B2 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
JP5423430B2
JP5423430B2 JP2010014967A JP2010014967A JP5423430B2 JP 5423430 B2 JP5423430 B2 JP 5423430B2 JP 2010014967 A JP2010014967 A JP 2010014967A JP 2010014967 A JP2010014967 A JP 2010014967A JP 5423430 B2 JP5423430 B2 JP 5423430B2
Authority
JP
Japan
Prior art keywords
power storage
voltage
measurement period
control circuit
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010014967A
Other languages
English (en)
Other versions
JP2011155753A (ja
Inventor
孝夫 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010014967A priority Critical patent/JP5423430B2/ja
Publication of JP2011155753A publication Critical patent/JP2011155753A/ja
Application granted granted Critical
Publication of JP5423430B2 publication Critical patent/JP5423430B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、直列接続された複数の蓄電素子に電力を蓄える蓄電装置に関するものである。
近年、ハイブリッド自動車や電気自動車等の省燃費車両(以下、車両という)が開発されている。これらの車両は駆動の一部、または全部をモータにより行うため、排気ガスを低減でき地球環境保護にも貢献する。
このような車両は、前記モータにより車両駆動を行うために、キャパシタ等の蓄電素子を複数個直列に接続した蓄電装置を有している。この蓄電装置は、複数の蓄電素子の製造時における容量バラツキ等に起因して、使用過程において各蓄電素子の両端電圧バラツキが発生する。その結果、特定の蓄電素子に対して過充電や過放電がなされる可能性がある。
そこで、前記両端電圧バラツキを低減するために、各蓄電素子の両端にバイパスを行なう回路を備えた充電制御装置が、例えば特許文献1に提案されている。図7はこの充電制御装置の電気的回路構成図である。
蓄電素子である複数(図7では5個)の電気二重層コンデンサ101は直列に接続され、コンデンサブロック103を構成している。コンデンサブロック103はプラス側外部端子105とマイナス側外部端子107に接続されており、これらの端子を介して外部電源や負荷(いずれも図示せず)に対しコンデンサブロック103の電力を充放電する。
コンデンサブロック103への電力の充電は充電用スイッチング素子109により制御される。また、各電気二重層コンデンサ101の両端にはバイパス回路としての充電制限用スイッチング素子111が接続されている。さらに、充電用スイッチング素子109と各充電制限用スイッチング素子111はワンチップマイクロコンピュータ113と接続されている。
次に、このような充電制御装置の動作について説明する。
ワンチップマイクロコンピュータ113はコンデンサブロック103を充電する際に、コンデンサブロック103の単位時間当たりの電圧V0の上昇分がほぼ一定になるように充電用スイッチング素子109を制御している。ここで、充電用スイッチング素子109はパルスデューティー比PBdutyを変化させることにより充電用スイッチング素子109をオンオフ制御する。この際、ワンチップマイクロコンピュータ113は各電気二重層コンデンサ101のコンデンサ端子電圧Vi(i=1〜5)が低い段階から各充電制限用スイッチング素子111を制御して小放電を間欠的に行なっている。これにより、コンデンサ端子電圧Viが設定電圧に達するまでの充電過程で均一化される。この時の充電制限用スイッチング素子111に与えられる駆動用パルス列信号はパルスデューティー比PBdutyによりオンオフ制御がなされる。このパルスデューティー比PBdutyは、PBduty=100−Vi・(80/3000)で求められる。従って、コンデンサ端子電圧Viが高くなればパルスデューティー比PBdutyが小さくなるので充電制限用スイッチング素子111に流れる電流を小さくするように制御している。
特開2000−50496号公報
上記の充電制御装置によると、充電制限用スイッチング素子111の制御により確かにコンデンサ端子電圧Viの均一化が可能となり、電圧バラツキが低減されるのであるが、各電気二重層コンデンサ101の間欠的な小放電を行なうための充電制限用スイッチング素子111のパルスデューティー比PBdutyは、上式に示した通りコンデンサ端子電圧Viのみに応じた一次の相関によって決定される。従って、個々のコンデンサ端子電圧Viの変化や電気二重層コンデンサ101の前記容量バラツキを考慮したパルスデューティー比PBdutyになっていないので、特に車両用の蓄電装置のように充放電が頻繁に繰り返される場合はパルスデューティー比(以下、時比率という)の精度が不十分な可能性があるという課題があった。
本発明は、前記従来の課題を解決するもので、高精度に時比率を決定し電圧バラツキを低減することにより、長寿命の蓄電装置を提供することを目的とする。
前記従来の課題を解決するために、本発明の蓄電装置は、直列接続された複数の蓄電素子からなる蓄電部と、前記蓄電素子と電気的に接続され、前記蓄電素子のそれぞれの両端電圧(Vi、i=1〜n、nは前記蓄電素子の直列個数)を検出する電圧検出回路と、前記蓄電素子とそれぞれ電気的に並列接続された、抵抗器とスイッチの直列回路からなるバランス回路と、前記電圧検出回路および前記スイッチと電気的に接続された制御回路と、を備え、前記制御回路は、既定の測定期間(tm)の最初と最後にそれぞれ測定した前記各両端電圧(Vi1、Vi2)と、前記各蓄電素子の容量値(Ci)と、から前記測定期間(tm)における前記各蓄電素子の増減したエネルギ幅(Ei)を求め、前記蓄電部が充電時の場合は、前記各エネルギ幅(Ei)と、それらの最小エネルギ幅(Emin)との充電エネルギ差(ΔEci)、および、前記蓄電部が放電時の場合は前記各エネルギ幅(Ei)と、それらの最大エネルギ幅(Emax)との放電エネルギ差(ΔEdi)、の少なくとも一方から調整目標抵抗値(Rai)を求め、前記抵抗器の実抵抗値(Ri)と前記調整目標抵抗値(Rai)から時比率(Di)を求め、既定の調整期間(tb)の間、前記時比率(Di)で前記各スイッチをオンオフ制御するという、これらの動作を繰り返すようにしたものである。
本発明によれば、時比率(Di)を両端電圧(Vi)の変化や各蓄電素子の容量値(Ci)を基に求めているので、時比率(Di)の高精度化が可能となり電圧バラツキを低減でき、その結果、蓄電装置の長寿命化が図れるという効果を奏する。
本発明の実施の形態1における蓄電装置のブロック回路図 本発明の実施の形態1における蓄電装置の時比率Diの経時特性図 本発明の実施の形態1における蓄電装置の両端電圧Viの経時特性図 本発明の実施の形態1における蓄電装置のスイッチのオンオフ動作を行うフローチャート 本発明の実施の形態2における蓄電装置のブロック回路図 本発明の実施の形態2における蓄電装置のスイッチのオンオフ動作を行うフローチャート 従来の充電制御装置の電気的回路構成図
以下、本発明を実施するための形態について図面を参照しながら説明する。なお、ここでは蓄電装置を車両に用いた場合について述べる。
(実施の形態1)
図1は本発明の実施の形態1における蓄電装置のブロック回路図である。図2は本発明の実施の形態1における蓄電装置の時比率Diの経時特性図である。図3は本発明の実施の形態1における蓄電装置の両端電圧Viの経時特性図である。図4は本発明の実施の形態1における蓄電装置のスイッチのオンオフ動作を行うフローチャートである。なお、図1において太線は電力系配線を、細線は信号系配線を、それぞれ示す。また、図2において横軸は時刻を、縦軸は時比率を、それぞれ示す。また、図3において横軸は時刻を、縦軸は両端電圧を、それぞれ示す。
図1において、複数個の蓄電素子11が直列に接続されて蓄電部13が構成されている。ここで、蓄電素子11には電圧許容範囲が2Vから4Vまでの電気化学キャパシタを用いた。従って、蓄電素子11が過放電や過充電とならないように、すなわち、その両端電圧Vi(i=1〜n、nは蓄電素子11の直列個数)が2Vから4Vまでの範囲となるように充放電が行われる。なお、図1の構成では蓄電素子11がn個直列に接続されているが、これは直並列接続構成としてもよい。この場合は回路構成上、並列接続された蓄電素子11が1個の蓄電素子11と等価であるので、前記直並列接続構成であっても後述する動作は同じである。
蓄電部13の両端には、正極端子15と負極端子17が接続されている。これらの端子は図示しない充放電回路を介して前記車両の発電機、モータ、電装品等(いずれも図示せず)に電気的に接続される。これにより、例えば前記発電機が回生電力を発生した時には、前記充放電回路により前記回生電力を蓄電素子11に充電し、蓄えた前記回生電力を前記モータや電装品に放電する動作を繰り返すことで、前記車両の省燃費化が図れる。
蓄電素子11の両端には、それぞれ電圧検出回路19が電気的に並列接続されている。これにより、各蓄電素子11の両端電圧Viが検出される。なお、電圧検出回路19は、蓄電素子11の両端にそれぞれ設ける構成に限定されるものではなく、各蓄電素子11の両端に切替スイッチ(図示せず)を設け、前記切替スイッチを制御することにより1つの電圧検出回路19で両端電圧Viを順次検出するようにしてもよい。さらに、蓄電素子11に高電圧が印加される場合は前記切替スイッチと電圧検出回路19の間にフライングキャパシタ(図示せず)を設ける構成としてもよい。
また、各蓄電素子11には、それぞれバランス回路21が電気的に並列接続されている。バランス回路21は抵抗器23とスイッチ25の直列回路からなる。従って、バランス回路21は図7で説明したバイパスを行なう回路(充電制限用スイッチング素子111)と同等の機能を有する。すなわち、スイッチ25をオンにすると、そのスイッチ25を有するバランス回路21と並列接続された蓄電素子11から抵抗器23に電流が流れ、両端電圧Viを下げる方向に調整することができる。これにより、各蓄電素子11の両端電圧Viにおけるバラツキを低減することが可能となる。なお、図7の構成では本実施の形態1の抵抗器23が設けられていないが、これは図7の充電制限用スイッチング素子111における内部抵抗に相当する。従って、実質的にはバランス回路21と充電制限用スイッチング素子111は等価である。ここで、本実施の形態1ではスイッチ25として外部からオンオフ制御が可能な電界効果トランジスタ(FET)を用いている。また、抵抗器23としては、できるだけ早く電圧バラツキを低減するとともに、前記FETへの突入電流を低減するために、実抵抗値Riが3Ωの低抵抗品を用いた。なお、この実抵抗値Ri(=3Ω)は一例であり、電圧バラツキ幅やバランスを取るまでの期間、前記FETの耐電流特性等に応じて適宜決定すればよい。
電圧検出回路19およびスイッチ25は、それぞれ信号系配線で制御回路27と電気的に接続されている。これにより、制御回路27は電圧検出回路19から両端電圧Vi(V1〜Vn)を読み込むとともに、スイッチ25に対してオンオフ信号SWi(i=1〜n、nは蓄電素子11の直列個数)を出力することによりオンオフ制御を行う。これにより、バランス回路21の制御を行っている。さらに、制御回路27は前記車両の外部制御回路(図示せず)とも信号系配線で接続されており、データ信号dataを送受信することで様々な情報のやり取りを行う。なお、制御回路27はマイクロコンピュータとメモリ等の周辺回路で構成されている。
次に、このような蓄電装置の動作について、高精度にスイッチ25の時比率Diを求める原理的動作を説明する。
今、蓄電部13を充電する場合について考える。蓄電素子11は上記したように容量値Ciにバラツキが存在するため、従来と同様に蓄電部13の単位時間当たりの電圧上昇分が一定になるように、すなわち定電流Iで充電すると、各蓄電素子11の両端電圧Viの上昇にバラツキが発生する。具体的には、測定期間tmの最初の両端電圧Vi(以下、測定期間前両端電圧Vi1という)と測定期間tmの最後の両端電圧Vi(以下、測定期間後両端電圧Vi2という)からCi・(Vi2−Vi1)=I・tmの関係式が得られ、単位時間当たりの両端電圧Viの上昇を求めると(Vi2−Vi1)/tm=I/Ciとなることから、容量値Ciが大きいほど単位時間当たりの両端電圧Viの上昇が小さくなる。ゆえに、容量値Ciのバラツキが充電による両端電圧Viのバラツキの要因となることがわかる。従って、上記したようにバランス回路21は両端電圧Viを下げる方向に調整することができるので、本実施の形態1では両端電圧Viの変化や容量値Ciに応じて最適な時比率Di(0≦Di≦1)でスイッチ25をオンオフ制御することで両端電圧Viのバランスを取るように制御している。
ここで、スイッチ25を時比率Diでオンオフ制御すると、直列に接続された抵抗器23の実抵抗値Riを見かけ上、可変することができる。すなわち、時比率Diが大きくスイッチ25のオン期間が長くなるほど抵抗器23の見かけ上の抵抗値は実抵抗値Ri(=3Ω)に近くなる。逆に、時比率Diが小さくスイッチ25のオン期間が短くなるほど抵抗器23の見かけ上の抵抗値は実抵抗値Riより大きくなるので、両端電圧Viの変化速度を遅くすることができる。従って、両端電圧Viの変化や容量値Ciに応じた高精度な時比率Diを求めることで、最適な電圧バラツキの低減が可能となる。
そこで、本実施の形態1では測定期間tmに充電される各蓄電素子11のエネルギ変化幅(以下、エネルギ幅Eiと呼ぶ)に着目し、両端電圧Viの変化や容量値Ciに応じた時比率Diをエネルギ幅Eiに基いて求める。すなわち、既定の測定期間tm(本実施の形態1では0.1秒とした)の最初と最後にそれぞれ測定した各両端電圧(測定期間前両端電圧Vi1と測定期間後両端電圧Vi2)と、各蓄電素子11の容量値Ciと、から測定期間tmにおける各蓄電素子11の増加したエネルギ幅Eiを次式で求める。
Ei=Ci/2・|Vi22−Vi12| (1)
なお、ここでは蓄電部13の充電時であるのでエネルギ幅Eiは増加した値となるが、放電時であれば減少した値となる。ここでは、いずれの場合にも適用できるように、(1)式におけるVi22−Vi12の項を絶対値で表した。
また、測定期間前両端電圧Vi1と測定期間後両端電圧Vi2は測定期間tmの最初と最後にそれぞれ測定しているが、制御回路27による両端電圧Viの測定時間は0.1ミリ秒程度であり、測定期間tm(=0.1秒)に比べ極めて短い。従って、以後の説明では測定期間tmの最初と最後における両端電圧Viの測定時間は無視できるものとして説明する。
次に、各蓄電素子11のエネルギ幅Eiの中から最小エネルギ幅Eminを求める。そして、各エネルギ幅Eiと最小エネルギ幅Eminとの充電エネルギ差ΔEciを求める。
ΔEci=Ei−Emin (2)
なお、(2)式の結果、最小エネルギ幅Eminを有する蓄電素子11の充電エネルギ差ΔEciは0となる。ここで、電圧バランスを取るために本実施の形態1では充電エネルギ差ΔEci分を抵抗器23で消費するようにスイッチ25をオンオフ制御するので、充電エネルギ差ΔEciが0であればスイッチ25をオンオフ制御する必要はない。そのため、この蓄電素子11に対する時比率Diは0となり、スイッチ25はオフとなる。なお、任意の複数の蓄電素子11において電圧バランスが取れていると、充電エネルギ差ΔEciが実質的に0となるものが複数発生する。この場合は、それらの蓄電素子11の全てにおいて時比率Diを0とする。ここで、実質的に0であるとは、電圧検出回路19の測定誤差や制御回路27の演算誤差の範囲内で0であると定義する。
次に、充電エネルギ差ΔEciよりバランス回路21における調整目標抵抗値Raiを求める。ここで、充電エネルギ差ΔEciは測定期間tmの間に最小エネルギ幅Eminに対して余計に蓄電素子11に充電されたエネルギであるので、これをバランス回路21の抵抗器23にて消費すればよい。この際、調整目標抵抗値Raiが消費するエネルギはVi22・tb/Raiであるとする。ここで、既定の調整期間tbは本実施の形態1において測定期間tmと同じ0.1秒とした。なお、この消費するエネルギは正確には∫Vi(t)2dt/Rai(積分期間は調整期間tb)となるが、ここでは調整期間tbが0.1秒と短いため、Vi(t)=Vi2(一定)と近似して計算している。従って、調整目標抵抗値Raiが消費するエネルギVi22・tb/Raiが充電エネルギ差ΔEciと等しくなるように調整目標抵抗値Raiを求めればよいので、調整目標抵抗値Raiは次式のようになる。
Rai=Vi22・tb/ΔEci (3)
ここで、実抵抗値Riを時比率Diで除することにより調整目標抵抗値Raiとなるので、時比率Diは次式で表される。
Di=Ri/Rai (4)
なお、時比率Diは0≦Di≦1の範囲であるので、(4)式の計算の結果、時比率Diが1以上であれば、時比率Diは1とする。この場合はスイッチ25がオンのままに制御される。なお、(2)式より充電エネルギ差ΔEciは正であるので、時比率Diが負になることはない。
ここで、時比率Diの具体的な経時特性を図2に示す。ここでは、任意の時刻(時刻t=0秒とする)で両端電圧Viが約2%ずれた状態にある2個の蓄電素子11について述べる。(1)式よりエネルギ幅Eiは両端電圧Viの2乗の差に比例するため、両端電圧Viが低い方の蓄電素子11が最小エネルギ幅Eminを有する。ゆえに、両端電圧Viが高い方の蓄電素子11に対してバランス回路21の制御を行なうが、その際のスイッチ25の時比率Diを(4)式で求めた結果を図2に示す。なお、図2の特性は測定期間tm(=0.1秒)と調整期間tb(=0.1秒)を交互に繰り返すことにより求められた時比率Diである。
今、時刻t=0秒であるので、図2より時比率Diは約0.41となる。従って、調整期間tbの間、抵抗器23の見かけの抵抗値Raiが実抵抗値Riの約2.43倍(=1/0.41)となるようにスイッチ25が制御回路27によりオンオフ制御される。その結果、充電エネルギ差ΔEciが抵抗器23で消費されつつ蓄電素子11の充電がなされることになる。ゆえに、この蓄電素子11の両端電圧Viの経時変化は最小エネルギ幅Eminを有する蓄電素子11に比べ小さくなる。これにより、最小エネルギ幅Eminを有する蓄電素子11に両端電圧Viを合わせる方向に調整することができる。調整期間tbの経過後はスイッチ25をオフにして、再び測定期間tmの間に測定期間前両端電圧Vi1と測定期間後両端電圧Vi2を求めて時比率Diを決定し、その後、調整期間tbに亘ってスイッチ25を時比率Diでオンオフ制御する動作を繰り返す。
このような動作から、両者の両端電圧Viが近づくにつれ、図2に示すように時比率Diは経時的に小さくなる。そして、時刻tが約22.5秒に至った時に両者の両端電圧Viが等しくなり、時比率Diは0となる。これらの動作により、蓄電素子11の両端電圧Viを合わせることができる。
ここで、図2の時比率Diにおける経時特性は下に凸の非線形特性を示すことがわかる。これは、従来におけるパルスデューティー比PBdutyがコンデンサ端子電圧Viのみに応じた一次の相関特性と異なることがわかる。その理由は時比率Diを両端電圧Viだけでなくその変化や容量値Ciの関数として求めているためである。従って、従来よりもさらに高精度に時比率Diを求めることができるので、電圧バラツキも精度よく低減することが可能となる。その結果、任意の蓄電素子11に高電圧が印加され続ける可能性が低減されるので、蓄電素子11の長寿命化が図れ、ひいては蓄電装置全体の長寿命化が可能となる。
次に、図2の時比率Diにより、上記した2個の蓄電素子11の両端電圧Viが実際にどのように経時変化するのかを図3に示す。なお、図3において、下側の特性は最小エネルギ幅Eminを有する蓄電素子11の両端電圧Viの経時特性を、上側の特性はエネルギ幅Ei(>Emin)を有する蓄電素子11の両端電圧Viの経時特性を、それぞれ示す。従って、ここでは上側の特性を有する蓄電素子11のスイッチ25が図2に示した時比率Diの経時特性により制御される。
図3より、時刻t=0秒で約2%あった両端電圧Viの差が蓄電部13の充電とともに小さくなり、時刻t=22.5秒でほぼ一致する。従って、本実施の形態1の動作によって電圧バランスが取れることがわかる。なお、上記したように蓄電素子11の電圧許容範囲は2Vから4Vまでであるので、前記外部制御回路は両端電圧Viが上限である4Vに達した時点で蓄電部13の充電を停止し、その電圧を維持するようにしている。
次に、このような蓄電装置の電圧バランスを取るためのスイッチ25のオンオフ動作について、図4のフローチャートを用いて説明する。なお、図4のフローチャートは制御回路27に内蔵された前記マイクロコンピュータのメインルーチン(図示せず)から電圧バランスを取るために実行されるサブルーチンとして示す。また、エネルギ幅Eiを求めるために、図4のフローチャートを実行する時、全てのスイッチ25はオフになっている。
制御回路27の前記マイクロコンピュータは蓄電部13の充電中に電圧バランスを取るために図4のサブルーチンを実行する。これにより、制御回路27は各蓄電素子11の測定期間前両端電圧Vi1を各電圧検出回路19から読み込む(ステップ番号S10)。次に、測定期間tmが経過したか否かを判断する(S20)。ここで、測定期間tm(=0.1秒)はS10の動作が完了した時点から制御回路27に内蔵されたカウンタ(図示せず)により計測される。もし、測定期間tmが経過していなければ(S20のNo)、S20に戻り測定期間tmが経過するまで待機する。測定期間tmが経過すれば(S20のYes)、制御回路27は各蓄電素子11の測定期間後両端電圧Vi2を各電圧検出回路19から読み込む(S30)。これにより、測定期間tmの最初に測定期間前両端電圧Vi1が、測定期間tmの最後に測定期間後両端電圧Vi2が、それぞれ求められたことになる。ここで、正確にはS20のループで測定期間tmから測定期間前両端電圧Vi1と測定期間後両端電圧Vi2の測定時間(S10とS30の動作時間)を差し引いた残り期間をカウンタで計測すべきであるが、上記したように前記測定時間は測定期間tmに比べ極めて短く無視できるので、S20のループは測定期間tmそのものをカウンタで計測している。従って、前記測定時間が測定期間tmに対して無視できない場合は、S20のループで前記残り期間に対してカウンタで計測を行なえばよい。いずれの場合もS10からS30までの動作により、測定期間tmの最初と最後にそれぞれ測定期間前両端電圧Vi1と測定期間後両端電圧Vi2が求められることになる。
このようにして、測定期間前両端電圧Vi1と測定期間後両端電圧Vi2が求められたので、制御回路27は前記メモリにあらかじめ記憶された各蓄電素子11の容量値Ciとともに、(1)式を用いて各蓄電素子11のエネルギ幅Eiを求める(S33)。次に、得られたエネルギ幅Eiの中で最小エネルギ幅Eminを求める(S35)。その後、前記メモリに設けられた変数iに1を代入する(S37)。ここで、この動作をi=1と記載する。なお、判断を除く動作において、例えばi=1と記載した場合は、右辺の数値や演算結果を左辺の変数に代入するものとして定義する。
次に、制御回路27はi番目の蓄電素子11におけるエネルギ幅Eiの最小エネルギ幅Eminとの充電エネルギ差ΔEciを(2)式より求める(S39)。次に、充電エネルギ差ΔEciが実質的に0であるか否かを判断する(S41)。もし、充電エネルギ差ΔEciが実質的に0であれば(S41のYes)、上記したように電圧バランスを取る必要がないので、スイッチ25をオフのままとするために時比率Diに0を代入する(S43)。その後、後述するS53にジャンプする。
一方、充電エネルギ差ΔEciが実質的に0でなければ(S41のNo)、調整目標抵抗値Raiを(3)式より求める(S45)。その後、時比率Diを(4)式より求める(S47)。ここで、(4)式における実抵抗値Riは蓄電素子11毎に前記メモリにあらかじめ記憶されている。次に、求めた時比率Diが1より大きいか否かを判断する(S49)。もし、時比率Diが1以下であれば(S49のNo)、時比率Diはその値で決定されるため、後述するS53にジャンプする。一方、時比率Diが1より大きければ(S49のYes)、i番目の蓄電素子11に接続されたスイッチ25(以下、i番目のスイッチ25という)を常にオンにするために時比率Diに1を代入する(S51)。
次に、制御回路27はS43の後、S49のNo、およびS51の後のいずれの場合も決定された時比率Diでi番目のスイッチ25のオンオフ制御を行なう(S53)。具体的には時比率Diのオンオフ信号SWiをi番目のスイッチ25に出力する。これにより、i番目のスイッチ25は時比率Diでオンオフ動作を行ない、充電電流の一部を抵抗器23に流すことで充電エネルギ差ΔEciを小さくするように制御する。なお、オンオフ信号SWiは次に出力すべきオンオフ信号SWiが決定されるまで、現在の時比率Diで出力し続ける構成としている。
次に、制御回路27は変数iに1を加えて更新し(S55)、変数iがn+1(nは蓄電素子11の直列個数)と等しいか否かを判断する(S57)。もし、等しくなければ(S57のNo)、次の蓄電素子11に対するスイッチ25の時比率Diを求めるためにS39に戻る。
一方、変数iがn+1と等しければ(S57のYes)、全ての蓄電素子11に対するスイッチ25の時比率Diが決まり、オンオフ制御が行なわれている状態であるので、電圧バランスを取るための調整期間tb(=0.1秒)が経過したか否かを判断する(S59)。なお、調整期間tbの計測は測定期間tmの計測の場合と同様に、S57でYesと判断された時点から前記カウンタにより行なわれる。もし、調整期間tbが経過していなければ(S59のNo)、S59に戻り調整期間tbが経過するまで待機する。調整期間tbが経過すれば(S59のYes)、制御回路27は全スイッチ25をオフにするようにオンオフ信号SWiを出力する(S61)。これにより、電圧バランスの調整が一旦停止する。その後、図4のサブルーチンを終了し、前記メインルーチンに戻る。前記メインルーチンは再び図4のサブルーチンを実行する動作を繰り返す。このような動作により、電圧バランスを取ることができる。
なお、蓄電部13を放電する場合については、バランス回路21による両端電圧Viの調整が下げる方向のみとなるため、充電時とは異なり放電により減少したエネルギ幅Eiが最大の蓄電素子11に合わせる必要がある。従って、(1)式で各エネルギ幅Eiを求めた後に、制御回路27は最大エネルギ幅Emaxを求める。これにより、放電エネルギ差ΔEdiは(2)式に対して(5)式により求める。
ΔEdi=Emax−Ei (5)
上記以外の動作は充電時と同じであるが、(3)式のΔEciはΔEdiとなる。これらより、放電時の場合は各エネルギ幅Eiと、それらの最大エネルギ幅Emaxとの放電エネルギ差ΔEdiから調整目標抵抗値Raiを求め、時比率Diを決定することになる。
なお、本実施の形態1において蓄電部13が充電されるか放電されるかは前記外部制御回路からのデータ信号dataにより制御回路27が判断する構成としている。
以上の構成、動作により、両端電圧Viの変化と容量値Ciを考慮した時比率Diが求められるので、高精度に電圧バラツキが低減可能な長寿命の蓄電装置を実現できる。
なお、本実施の形態1では、測定期間tmと調整期間tbをいずれも0.1秒と等しく設定しているが、これは測定期間tmを調整期間tbよりも短く設定するようにしてもよい。この場合、調整期間tbが長くなるので、より早く電圧バランスを取ることができる。但し、車両用の蓄電装置として使用する場合のように充放電頻度が多い場合は調整期間tbを長くすると、最新の充放電特性に応じた調整目標抵抗値Raiが求められず、時比率Diの精度がかえって悪くなることがある。従って、例えば車両用では本実施の形態1のように測定期間tmと調整期間tbを等しくしてタイムリーに時比率Diを求める構成とし、非常用電源のように安定した充放電環境下の用途では測定期間tmを調整期間tbよりも短くする設定を適用すればよい。
また、本実施の形態1では、蓄電部13の充電時には充電エネルギ差ΔEciを、放電時には放電エネルギ差ΔEdiを、それぞれ求めて調整目標抵抗値Raiを計算し、時比率Diを決定しているが、これは充放電時の両方で時比率Diを決定する構成に限定されるものではなく、充電時のみ、または放電時のみに時比率Diを求めて電圧バランスを取る構成でもよい。この場合、充電時、または放電時のみに電圧バランスを取る機会が限定されるものの、例えば非常用の蓄電装置のように充放電頻度が少ない用途ではいずれかの機会でもよい。従って、充電エネルギ差ΔEci、および、放電エネルギ差ΔEdiの少なくとも一方から調整目標抵抗値Raiを計算して時比率Diを求めればよい。
(実施の形態2)
図5は本発明の実施の形態2における蓄電装置のブロック回路図である。図6は本発明の実施の形態2における蓄電装置のスイッチのオンオフ動作を行うフローチャートである。なお、図5において太線は電力系配線を、細線は信号系配線を、それぞれ示す。
図5における蓄電装置の構成において、図1と同じ構成要素には同じ符号を付して詳細な説明を省略する。すなわち、本実施の形態2における特徴となる構成は次の通りである。
1)蓄電部13に流れる電流Iを検出する電流検出回路31を備えた。なお、電流検出回路31は蓄電部13と電気的に直列接続されるとともに、制御回路27とも信号系配線により電気的に接続される。従って、電流検出回路31は電流Iを検出して制御回路27に出力する機能を有する。
2)蓄電部13の温度Tを検出する温度センサ33を備えた。なお、温度センサ33は蓄電部13の内部に設けられ、蓄電素子11の近傍に配されている。温度センサ33は制御回路27と信号系配線により電気的に接続される。従って、温度センサ33は温度Tを検出して制御回路27に出力する機能を有する。
ここで、温度センサ33としては温度Tに対する感度が高いサーミスタを用いた。なお、温度センサ33は前記サーミスタに限らず、熱電対や白金測温体、焦電センサなど温度Tを電気信号に変換できるものであればよい。
次に、このような蓄電装置の動作について図6のフローチャートを用いて説明する。なお、図6も図4と同様に前記メインルーチンから実行されるサブルーチンとして記載した。さらに、図6において、図4の動作と同じ部分には同一のステップ番号を付して詳細な説明を省略する。
制御回路27は前記メインルーチンから図6のサブルーチンを実行すると、まず電流検出回路31より測定期間tmの直前の電流(以下、測定期間前電流I1という)を読み込む(S71)。次に、測定期間前電流I1が実質的に0であるか否かを判断する(S73)。ここで、実質的に0であるとは、電流検出回路31の測定誤差範囲内で電流Iが0であると以下定義する。
もし、測定期間前電流I1が実質的に0であれば(S73のYes)、蓄電部13は充放電されていないことになる。従って、エネルギ幅Eiを求めることができないので電圧バラツキの低減もできないことになる。そこで、この場合は時比率Diを求める動作を行なわず、かつオンオフ制御されているスイッチ25を全てオフにするために、図4で説明したS61へジャンプする。これにより、非充放電時は全スイッチ25をオフにした後、図6のサブルーチンを終了し、前記メインルーチンに戻る。なお、前記メインルーチンは図6のサブルーチンを繰り返し実行するので、蓄電部13の充放電が開始されれば、電圧バランス動作を行なうことができる。このように、蓄電装置内に電流検出回路31を内蔵し直接電流Iを読み込む構成としたことにより、図6のサブルーチンを実行するだけで充放電状態がわかるので、前記メインルーチンが前記外部制御回路と充放電状態の交信を行なう必要がなくなり、動作負担が軽減される。
ここで、S73に戻り、測定期間前電流I1が実質的に0でなければ(S73のNo)、蓄電部13は充放電されているので、次に制御回路27は各蓄電素子11の測定期間前両端電圧Vi1を各電圧検出回路19から読み込み(S75)、測定期間tmが経過したか否かを判断する(S77)。ここで、測定期間tm(=0.1秒)はS75の動作が完了した時点から前記カウンタにより計測される。これは、実施の形態1で述べたように、両端電圧Viの前記測定時間が測定期間tmに対して極めて短く、前記測定時間を無視しているためである。従って、S77の動作のみで測定期間tmを計測している。なお、同様に電流Iの測定時間も両端電圧Viの前記測定時間と同様に極めて短いので、測定期間tmの最初に測定した測定期間前電流I1の測定時間(S71の動作時間)と、測定期間tmの最後に測定した測定期間後電流I2の測定時間(後述するS79の動作時間)についても無視している。
もし、測定期間tmが経過していなければ(S77のNo)、S77に戻り測定期間tmが経過するまで待機する。測定期間tmが経過すれば(S77のYes)、制御回路27は電流検出回路31より測定期間tmの直後の電流(以下、測定期間後電流I2という)を読み込む(S79)。次に、測定期間後電流I2が実質的に0であるか否かを判断する(S81)。もし、測定期間後電流I2が実質的に0であれば(S81のYes)、測定期間tmの経過中に蓄電部13の充放電が停止したことになる。この場合、エネルギ差Eiを求めると測定期間tmの間でいつ充放電が停止したかによって値が変動し、そのような誤差を含む値で時比率Diを求めるとかえって電圧バラツキが拡大する可能性がある。従って、本実施の形態2では測定期間tmの間に充放電が停止した場合は時比率Diを求める動作を行なわず、かつオンオフ制御されているスイッチ25を全てオフにするために、図4で説明したS61へジャンプする。これにより、非充放電時は全スイッチ25をオフにした後、図6のサブルーチンを終了し、前記メインルーチンに戻る。このような動作により、さらなる高精度な電圧バラツキの低減が可能となる。
ここで、S81に戻り、測定期間後電流I2が実質的に0でなければ(S81のNo)、次に制御回路27は測定期間前電流I1の正負の符号と測定期間後電流I2の正負の符号が等しいか否かを判断する(S83)。ここで、電流Iにおける正の符号とは蓄電部13が充電される方向に電流Iが流れている場合であると定義する。従って、放電時は電流Iの符号は負となる。もし、符号が等しくなければ(S83のNo)、電流Iは測定期間tmの間に充電と放電が切り替わったことになる。この場合も、S81の場合と同様に、測定期間tmの間でいつ充放電が切り替わったかによってエネルギ差Eiの値が変動し、時比率Diの誤差が大きくなる。従って、本実施の形態2では測定期間tmの間に充放電が切り替わった場合は時比率Diを求める動作を行なわず、かつオンオフ制御されているスイッチ25を全てオフにするために、図4で説明したS61へジャンプする。これにより、制御回路27は全スイッチ25をオフにした後、図6のサブルーチンを終了し、前記メインルーチンに戻る。このような動作によっても、さらなる高精度な電圧バラツキの低減が可能となる。
以上の測定期間前電流I1と測定期間後電流I2の検出による動作をまとめると、これらの電流I1、I2の少なくとも一方が実質的に0であるか、または相互に符号が異なる場合は、各スイッチ25をオフにするようにしている。これにより、誤差が大きくなる可能性がある時比率Diを求めないので、さらに高精度に電圧バラツキの低減を行なうことが可能となる。
なお、実施の形態1では上記したように充電または放電の状態をデータ信号dataにより前記外部制御回路から送信されているが、測定期間tmの間で充放電が停止したり切り替わったりした場合にも、前記外部制御回路からデータ信号dataが送信される。これを受けると、制御回路27は割り込み処理により図4のS61に相当する動作を行なうよう制御している。これに対し、本実施の形態2では上記したような複雑な制御を行なわなくても遅延なく高精度に電圧バラツキの低減ができるという特徴を有する。
ここで、S83に戻り、測定期間前電流I1と測定期間後電流I2の符号が互いに等しければ(S83のYes)、次に制御回路27は各蓄電素子11の測定期間後両端電圧Vi2を各電圧検出回路19から読み込む(S85)。次に、測定期間前電流I1と測定期間後電流I2から平均電流Imを求める(S87)。ここまでで求められた測定期間前両端電圧Vi1、測定期間後両端電圧Vi2および平均電流Imと、測定期間tmとから、各蓄電素子11の容量値Ciをそれぞれ求める(S89)。なお、容量値Ciは
Ci=Im・tm/|Vi2−Vi1| (6)
より求めることができる。このようにして容量値Ciを図6のサブルーチンが実行される都度、計算することにより、実施の形態1のように前記メモリに記憶した初期(新品時)の容量値Ciを用いる場合に比べ、劣化等によりゆっくりと変化した後の現在の容量値Ciを求めることができるので、時比率Diの高精度化が可能となる。従って、この目的のためにも電流検出回路31により電流Iを求める構成としている。
次に、制御回路27は温度センサ33から現在の蓄電部13の温度Tを読み込み各容量値Ciを温度補正する(S91)。これは、容量値Ciが温度Tによっても変化するためである。なお、容量値Ciの温度特性は蓄電素子11の新品時に各々測定され、基準温度(例えば25℃)に対する温度変化率として前記メモリに記憶してある。従って、S89で求めた容量値Ciと、現在の温度Tから得られる温度変化率とから、現在の温度Tにおける容量値Ciを求めることができる。
次に、制御回路27は(1)式を用いて各蓄電素子11のエネルギ幅Eiを求める(S93)。その後、平均電流Imが0より大きいか否かを判断する(S95)。もし、平均電流Imが0より大きければ(S95のYes)、蓄電部13は充電中であるので、図4と同様に各エネルギ幅Eiの内の最小エネルギ幅Eminを求め、変数である最大最小幅Ebsに代入する(S97)。その後、後述するS101にジャンプする。一方、平均電流Imが0より大きくなければ(S95のNo)、蓄電部13は放電中であるので、各エネルギ幅Eiの内の最大エネルギ幅Emaxを求め最大最小幅Ebsに代入する(S99)。
S97およびS99の後、制御回路27は変数iに1を代入し(S101)、i番目の蓄電素子11におけるエネルギ幅Eiの最大最小幅Ebsとのエネルギ差ΔEiを求める(S103)。ここで、本実施の形態2では電流検出回路31の出力から充電、または放電が判別できるので、本来は実施の形態1で述べたように充電エネルギ差ΔEciを求める際には(2)式を、放電エネルギ差ΔEdiを求める際には(5)式を、それぞれ用いるのであるが、ここでは制御を簡略化するために、(7)式によりエネルギ差ΔEiを求めている。
ΔEi=|Ei−Ebs| (7)
ここで、最大最小幅Ebsは、充電時には最小エネルギ幅Eminが、放電時には最大エネルギ幅Emaxが、それぞれ代入されるので、この最大最小幅Ebsとエネルギ幅Eiとの差の絶対値を求めれば、(2)式や(5)式と同じ計算をしていることになり、エネルギ差ΔEiが求められる。なお、実施の形態2では(7)式によりエネルギ差ΔEiが求められるので、充電エネルギ差ΔEciと放電エネルギ差ΔEdiを総称してエネルギ差ΔEiと呼ぶ。
こうしてエネルギ差ΔEiを求めた後の動作は図4のS41以降と全く同じであるため、詳細な説明を省略する。但し、図6のS41、S45では図4のS41、S45におけるΔEciをΔEiに変更している。
以上の構成、動作により、両端電圧Viの変化と容量値Ciを考慮し、さらに電流Iを求めて蓄電部13の充放電状態を考慮するとともに、電流Iを基に容量値Ciを求め温度Tで補正して時比率Diを求めているので、さらなる高精度な電圧バラツキ低減が可能な蓄電装置を実現できる。
なお、本実施の形態2では電流検出回路31と温度センサ33を同時に設けた構成について説明したが、これはいずれか一方のみを有するようにしてもよい。この場合、例えば比較的充放電頻度が多い車両用途であっても、蓄電装置が車室内など温度変化の少ない環境に設置されていれば、電流検出回路31のみを設ける構成としてもよい。また、例えば比較的充放電頻度が少ない非常時のバックアップ用途(非常用電源)であっても、蓄電装置が屋外に近い環境に設置され、1日の間、あるいは季節による温度変化が大きい場合は、温度センサ33のみを設ける構成としてもよい。このように、用途や使用環境に応じて適宜、電流検出回路31と温度センサ33の要、不要をそれぞれ選択すればよいが、本実施の形態2のように両方を同時に設ける構成が最も高精度に電圧バラツキを低減できる。
また、本実施の形態2においても、実施の形態1と同様に測定期間tmと調整期間tbをそれぞれ0.1秒と等しく設定しているが、これらは測定期間tmが調整期間tbよりも短く設定するようにしてもよい。これにより、実施の形態1で述べたように調整期間tbが長くなるので、より早く電圧バランスを取ることができ、特に前記非常用電源等の安定した充放電環境下の用途に好適である。
また、本実施の形態1、2では測定期間tmを0.1秒としているが、この値に限定されるものではなく、例えば充放電頻度が極めて速い場合には測定期間tmをより短くして時比率Diをさらにタイムリーに求めるようにしてもよいし、充放電頻度がそれほど多くない場合は測定期間tmを長くして時比率Diの精度をさらに高めるようにしてもよい。このように、前記蓄電装置の用途や仕様に応じて測定期間tmを適宜決定すればよい。同様に、調整期間tbも0.1秒に限定されるものではなく、測定期間tmや前記蓄電装置の用途、仕様に応じて適宜決定すればよい。
また、本実施の形態1、2では蓄電装置を車両用として用いたが、これは上記したとおり非常用電源として用いてもよい。
また、本実施の形態1、2では、蓄電素子11として電気化学キャパシタを用いたが、これは電気二重層キャパシタ等の他のキャパシタであってもよい。
本発明にかかる蓄電装置は高精度な電圧バラツキ低減により長寿命化が可能となるので、特に車両用や非常用の蓄電装置等として有用である。
11 蓄電素子
13 蓄電部
19 電圧検出回路
21 バランス回路
23 抵抗器
25 スイッチ
27 制御回路
31 電流検出回路
33 温度センサ

Claims (4)

  1. 直列接続された複数の蓄電素子からなる蓄電部と、
    前記蓄電素子と電気的に接続され、前記蓄電素子のそれぞれの両端電圧(Vi、i=1〜n、nは前記蓄電素子の直列個数)を検出する電圧検出回路と、
    前記蓄電素子とそれぞれ電気的に並列接続された、抵抗器とスイッチの直列回路からなるバランス回路と、
    前記電圧検出回路および前記スイッチと電気的に接続された制御回路と、を備え、
    前記制御回路は、既定の測定期間(tm)の最初と最後にそれぞれ測定した前記各両端電圧(Vi1、Vi2)と、前記各蓄電素子の容量値(Ci)と、から前記測定期間(tm)における前記各蓄電素子の増減したエネルギ幅(Ei)を求め、
    前記蓄電部が充電時の場合は、前記各エネルギ幅(Ei)と、それらの最小エネルギ幅(Emin)との充電エネルギ差(ΔEci)、および、前記蓄電部が放電時の場合は前記各エネルギ幅(Ei)と、それらの最大エネルギ幅(Emax)との放電エネルギ差(ΔEdi)、の少なくとも一方から調整目標抵抗値(Rai)を求め、
    前記抵抗器の実抵抗値(Ri)と前記調整目標抵抗値(Rai)から時比率(Di)を求め、
    既定の調整期間(tb)の間、前記時比率(Di)で前記各スイッチをオンオフ制御するという、
    これらの動作を繰り返すようにした蓄電装置。
  2. 前記蓄電部と電気的に直列接続されるとともに、前記制御回路と電気的に接続され、前記蓄電部に流れる電流(I)を検出する電流検出回路を備え、
    前記制御回路は前記測定期間(tm)の最初と最後にそれぞれ測定した電流(I1、I2)の少なくとも一方が実質的に0であるか、または相互に符号が異なる場合は、前記各スイッチをオフにするようにした請求項1に記載の蓄電装置。
  3. 前記制御回路と電気的に接続され、前記蓄電部の温度(T)を検出する温度センサを備え、
    前記制御回路は前記各エネルギ幅(Ei)を求める際に、前記各容量値(Ci)を前記温度(T)により補正するようにした請求項1または2に記載の蓄電装置。
  4. 前記測定期間(tm)は前記調整期間(tb)よりも短くした請求項1に記載の蓄電装置。
JP2010014967A 2010-01-27 2010-01-27 蓄電装置 Active JP5423430B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014967A JP5423430B2 (ja) 2010-01-27 2010-01-27 蓄電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014967A JP5423430B2 (ja) 2010-01-27 2010-01-27 蓄電装置

Publications (2)

Publication Number Publication Date
JP2011155753A JP2011155753A (ja) 2011-08-11
JP5423430B2 true JP5423430B2 (ja) 2014-02-19

Family

ID=44541291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014967A Active JP5423430B2 (ja) 2010-01-27 2010-01-27 蓄電装置

Country Status (1)

Country Link
JP (1) JP5423430B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050496A (ja) * 1998-07-30 2000-02-18 Kansai Coke & Chem Co Ltd 電気二重層コンデンサ用充電制御装置
JP3767300B2 (ja) * 2000-02-15 2006-04-19 新神戸電機株式会社 組電池制御装置、モジュール電池ユニット及びモジュール電池
KR100762086B1 (ko) * 2005-01-14 2007-10-01 주식회사 엘지화학 배터리 팩의 전압 방전 장치 및 방법
JP5114885B2 (ja) * 2006-07-14 2013-01-09 日産自動車株式会社 容量調整装置
JP5024054B2 (ja) * 2008-01-07 2012-09-12 パナソニック株式会社 蓄電装置
JP5092812B2 (ja) * 2008-03-07 2012-12-05 日産自動車株式会社 組電池の監視装置および故障診断方法

Also Published As

Publication number Publication date
JP2011155753A (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5533175B2 (ja) 組電池監視装置
JP6823162B2 (ja) バッテリーの充電状態をキャリブレーションするためのバッテリー管理装置及び方法
JP6195310B2 (ja) 電池制御システムおよび電池パック
JP5919560B2 (ja) 均等化回路、電源システム、及び車両
US8111035B2 (en) Charging system, charging device and battery pack
US20150061601A1 (en) Discharge device for electricity storage device
KR101073277B1 (ko) 하이브리드 전기 자동차용 배터리 팩의 셀 밸런싱 방법 및이를 위한 장치
WO2019026143A1 (ja) 充電時間演算方法及び充電制御装置
WO2019130774A1 (ja) 電池管理装置、電池システム、及び車両用電源システム
JP2007174894A (ja) 電池管理システム、電池管理方法、電池システム及び自動車
JP5423429B2 (ja) 蓄電装置
JP7111439B2 (ja) バッテリー管理装置
JP5324381B2 (ja) 充電制御装置、および該充電制御装置における充電制御方法
US11001150B2 (en) Battery pack
WO2018180333A1 (ja) 車載用電源システムの制御装置及び車載用電源装置
JP5298800B2 (ja) 蓄電装置
JP5423428B2 (ja) 蓄電装置
JP3921826B2 (ja) 組電池セル容量調整方法
JP5423430B2 (ja) 蓄電装置
JP2011151904A (ja) 蓄電装置
JP2017108484A (ja) 蓄電状態調整装置、電池パック、負荷システム及び蓄電状態調整方法
JP2020520624A (ja) バッテリーの内部抵抗を最適化するためのバッテリー管理システム及び方法
KR102375843B1 (ko) 배터리 관리 장치 및 방법
JP2013179751A (ja) 組電池の制御装置
JP2010246214A (ja) 電池電圧調整監視装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151