JP5416143B2 - シート材の基準面に対する共形化可能度を予測する方法 - Google Patents

シート材の基準面に対する共形化可能度を予測する方法 Download PDF

Info

Publication number
JP5416143B2
JP5416143B2 JP2010548704A JP2010548704A JP5416143B2 JP 5416143 B2 JP5416143 B2 JP 5416143B2 JP 2010548704 A JP2010548704 A JP 2010548704A JP 2010548704 A JP2010548704 A JP 2010548704A JP 5416143 B2 JP5416143 B2 JP 5416143B2
Authority
JP
Japan
Prior art keywords
gaussian curvature
sheet
glass sheet
glass
curvature value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010548704A
Other languages
English (en)
Other versions
JP2011513727A (ja
Inventor
エル ストーテ,クリスチャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2011513727A publication Critical patent/JP2011513727A/ja
Application granted granted Critical
Publication of JP5416143B2 publication Critical patent/JP5416143B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Description

本発明は任意の形状のシート材の基準面に対する共形化可能度を予測する方法に関する。さらに詳しくは、本発明は、フラットパネルディスプレイに用いるに適するガラスシートのような、ガラスシートの、シートの処理に用いることができる支持面と同形になり得る能力を予測する方法に関する。
環境に敏感な多くの電子デバイスまたはフォトニックデバイスは気密封止することができるガラスパッケージの使用により恩恵を受け得る。そのようなデバイスには、小数の例を挙げれば、光起電力デバイス、有機発光ダイオード(OLED)ディスプレイ、OLED照明パネル、プラズマディスプレイ、表面伝導型電子放出ディスプレイ(SED)及び電界放出型ディスプレイ(FED)がある。例えば、液晶ディスプレイ(LCD)は、照明を外部光源に依存する、受動型フラットパネルディスプレイである。LCDは一般にセグメント型ディスプレイとしてまたは2つの基本構成の内の1つで製造される。基板は(透明であること及びディスプレイプロセス中にさらされる化学的条件に耐え得ること以外に)2つの異なるマトリックスタイプに対応しなければならない。第1のタイプは、液晶材料の閾特性に依存してアドレスされる真正マトリックスである。第2は、ダイオード、金属-絶縁物-金属(MIM)素子または薄膜トランジスタ(TFT)のアレイがそれぞれのピクセルへの電子スイッチを与えることでアドレスされる、外因性マトリックスまたはアクティブマトリックス(AM)である。いずれの場合も、2枚のガラスシートがディスプレイ構造を形成する。2枚のシートの間隔は、5〜10μmのオーダーの、クリティカルな間隙寸法である。個々のガラス基板シートの厚さは一般に約0.7mm未満である。
ディスプレイまたは照明パネルのような大寸電子デバイスのためのガラスシートの処理には、シートを平坦形に合わせることが必要である。これは一般にシートを平坦面に真空チャックで固定することによって行われる。厳密な製造プロセス及び規格にもかかわらず、10平方mないしさらに大きくなり得る、そのようなガラスシートは完全には平坦ではない。したがって、支持面に合わせるために力を加えたときに、シートが平面内に完全に載らない結果となり得る、チャッキングエラーが起こり得る。これは、シートの形状が純粋に展開可能ではない場合におこり、特に支持体表面自体が平坦ではない場合におこる。
広範な態様において、ガラスシートのある表面への共形化可能度を決定する、シートの形状を決定する工程、この形状をシート上の複数の点についてガウス曲率値を計算するために用いる工程、シート上の複数の点のそれぞれの点についてガウス曲率値差を決定するためにシートについての複数のガウス曲率値を支持体表面についての対応するガウス曲率値から減算する工程、複数のガウス曲率値差からシートについての最大ガウス曲率値差を選択する工程、最大ガウス曲率値差をあらかじめ定められた最大閾値と比較する工程及び、シートを、最大ガウス曲率値差が閾値以下であれば合格とし、最大ガウス曲率値差が最大閾値より大きければ不合格として、類別する工程を含む方法が説明される。
いくつかの実施形態において、シートの形状は、シートを中性密度液体内に置くかまたは、可調節ピンのような、可調節支持体床上にシートを支持するような、無重力手法によって特性決定することができる。
限定の意味は全く含まずに、添付される図面を参照して与えられる、以下の説明のための記述を通じて、本発明はより容易に理解されるであろうし、本発明のその他の目的、特質、詳細及び利点がより一層明白になるであろう。そのようなさらなるシステム、方法、特徴及び利点の全ては、本説明内に含められ、本発明の範囲内にあり、添付される特許請求の範囲によって保護されるとされる。
図1は薄いガラスシートを形成するための融合ダウンドロー装置の、部分断面における、斜視図である。 図2は、レーザで封止されるフリットシールを含む、ガラスアセンブリの側断面図である。 図3は中性密度「無重力」環境内でシート材(例えばガラスシート)の形状を測定するための装置の側断面図である。 図4は「触針台」を用いてシート材(例えばガラスシート)の無重力形状を測定するための装置の側断面図である。 図5は平坦基準面上に配置された縦方向ハンプを有するシート材の斜視図であり、ハンプをもつシート材は展開可能面を表す。 図6は平坦基準面上に配置された中央ピークまたはバブルを有するシート材の斜視図であり、ピークをもつシート材は展開不能面を表す。 図7Aは、図7Bの斜視図に示されるような平坦(プレーナ)面に広げることができる、展開可能な円筒面の斜視図である。 図7Bは図7Aの円筒面が展開された平坦(プレーナ)面の斜視図である。 図8Aは展開不能な球の斜視図である。 図8Bは、図8Aの球の一半(半球)を平坦化するために行わなければならない、半球形を展開不能にする、引裂きの斜視図である。 図9はシート材(例えばガラスシート)を平坦化するための力を展開可能なシート材と展開不能なシート材で比較する定性的グラフである。 図10、広範な歪を有し得るが歪の値は小さいシート材(例えばガラスシート)のガウス曲率を特性決定するために用いられる移動「ウインドウ」の斜視図である。 図11は、z軸ピークを有する、他では平坦なシート材の3次元グラフである。 図12は図9の表面のガウス曲率の3次元グラフである。 図13は、ガラスシートの対称バブルの高さと水平方向寸法(直径)の間の関係を示すグラフであり、バブルは1×10−8mm−2の最大ガウス曲率値を有する。
以下の詳細な説明においては、限定ではなく説明の目的のため、本発明の完全な理解を提供するために特定の詳細を開示する実施形態例が述べられる。しかし、本開示の恩恵を有する当業者には、本発明が本明細書に開示される特定の詳細に関わらない別の実施形態で実施され得ることが明らかであろう。さらに、周知のデバイス、方法及び材料の説明は本発明の説明を曖昧にしないために省略されることがあり得る。最後に、適用できる場合には必ず、同様の参照数字は同様の要素を指す。
平ガラスシートを製造する一方法はいわゆる融合ダウンドロー法である。図1に示されるような、ガラスリボンを形成するための融合オーバーフローダウンドロープロセスにおいては、成形ウエッジ20のオーバーフロートラフ部材が、上部において対向した長さ方向に延びるオーバーフローリップまたは堰26で終端する、壁体部24によって長さ方向側面境界が定められた上部開放チャネル22を有する。堰26はウエッジ部材20の対向する外部リボン形成面につながる。図示されるように、ウエッジ部材20には、堰26につながる一対の実質的に垂直な形成面領域28及び、真直のガラスドローラインを形成する実質的に水平な下部頂点またはルート32で終端する、一対の下方に傾けられた収斂面領域30が設けられる。表面領域28,30がウエッジ20のそれぞれの長さ方向側面上に設けられることは理解されるであろう。
チャネル22に通じる給送路36を用いて溶融ガラス34がチャネル22に供給される。チャネル22への供給は片側供給とすることができ、または、望ましければ、両側供給とすることができる。溢流堰26をこえる溶融ガラス34の自由表面40のオーバーフローを別々の流れとして導き、鎖線で示される、別々の流れが収斂して無接触表面をもつガラス42のリボンを形成するルート32に向けて対向する形成面領域28,30を流下させるために、一対の制止ダム38がチャネル22の両端に隣接して溢流堰26の上に設けられる。引張ローラー44がウエッジ部材20のルート32の下流に配置され、形成されたガラスリボンが収斂形成面から離れる速度を調節し、よってリボンの公称厚を決定するために用いられる。
引張ローラーはガラスリボンの外縁端で、詳しくは、リボンの最縁端に存在する増厚ビードのすぐ内側の領域において、ガラスリボンに接触するように構成されることが好ましい。引張ローラーが接触するガラス縁端部分は後にシートから廃棄される。リボンの両縁端に一対の互いに逆方向に回転する引張ローラーが対向して備えられる。
ガラスリボン42が装置のドロー領域を降下するにつれて、リボンは、物理的寸法だけでなく分子レベルにおいても、固有の構造変化を受ける。例えば形成ウエッジのルートにおける、厚い液体形態からほぼ0.5mm厚の硬いリボンへの変化は、液相、すなわち粘性状態から固相、すなわち弾性状態への転移を完了させるために機械的及び化学的要件のバランスを精緻にとる、慎重に選ばれた温度場すなわち温度プロファイルによって達成される。弾性温度領域内の一点において、リボンは切断線48で切り離されてガラスシートまたは板ガラス50にされる。
上記プロセスによるような、ガラスシートを形成するためにガラス製造業者によって用いられる厳密な製造制御にもかかわらず、そのようなシートの形状は完璧な平面から偏る。例えば、上述した融合プロセスにおいて、ガラスリボンはリボンの縁端領域にしか接触しないローラーによって形成ウエッジからドローされ、リボンの中心領域に反りが生じる機会を与える。この反りはリボンの移動によるか、またはリボン内に現れ得る様々な熱応力の相互作用によって、生じ得る。例えば、下流の切離しプロセスによってリボンに誘起される振動がリボンの上方の粘弾性領域内に伝搬し、シート内に凍結されて、弾性リボンの平坦度における偏差として現れることがあり得る。リボンの幅及び/または長さにかけての温度変動も平坦度に偏差を生じさせ得る。実際上、リボン内に凍結された応力は個々のガラスシートがリボンから切り離されるときにある程度解放され、この結果、非平坦面が生じ得る。要約すれば、リボンから得られるガラスシートの形状は粘弾性領域を通ってリボンが転移している間のリボンの熱履歴に依存し、その熱履歴は変わり得る。応力及び/または形状のそのような変化は、液晶ディスプレイの製造において見られるような、基板上への回路の形成のような、寸法安定性に依存するプロセスにとって致命的であり得る。例えば、液晶ディスプレイの製造において、ドローされたリボンから切り離された大寸ガラスシート自体が複数の小寸ガラス板に切り分けられることがあり得る。したがって、それぞれの分割の結果、応力の解放または再分布が生じ、続いて形状変化が生じ得る。したがって、得られるシートは一般に平坦であると見なされ得るが、実際には、シートはシートの表面にかけて、以降の処理中のシートの平坦化を妨害し得る、谷及びピークを示し得る。したがって、リボンから切り離されたガラスシートの形状を正確に決定できる方法が案出されることが望ましい。そのようにして得られた情報はドロー中のガラスリボンの熱履歴を修正するために用いることができる。
ディスプレイ製造業者はガラス製造業者から薄ガラスシートを受取り、シートをさらに処理してディスプレイデバイスまたはガラスシートを含む何か他のデバイスを形成する。例えば、図2に示される有機発光ダイオードディスプレイ52の製造においては、第1のガラスシート56(例えば基板56)上に1つないしさらに多くの有機材料層54が被着される。この第1のガラスシートはバックプレーンと称されることが多い。バックプレーン56には、有機層に電流を供給して有機層を発光させるための薄膜トランジスタ(TFT)及び電極(図示せず)も設けることができる。しかし、有機材料54は、水分及び酸素のような、様々な環境要因に敏感であるから、有機材料層は周囲環境から気密に隔てられなければならない。したがって、有機材料層は、バックプレーン56,時にカバーシートまたはカバープレートと称される第2のガラスシート58及びバックプレーンとカバーシートの間に配されたシール材60によって形成されるガラス容器内に封入される。
バックプレーンをカバープレートに結合させるため、接着剤の使用を含む、いくつかのシール形成方法を用いることができる。接着剤には、塗布及び使用は容易であるが、市場に受け入れられる程度の、故障するまでの寿命をデバイスが有することを保証できる気密性が必要であるという問題がある。すなわち、水分及び/または酸素は最終的には接着剤シールに侵入し、有機材料層、ひいてはディスプレイデバイスの劣化を引きおこし得る。
より有効な手法はバックプレーンとカバーシートの間にフリットシールを形成することである。この手法にしたがえば、ループまたはフレームの形態のガラスフリットシール材のラインがカバープレート上に与えられ、その後、フリットをカバープレートに密着させるためにフリット付きカバープレートが加熱される。カバープレート58は次いでバックプレーン56上に、フリット60(及び有機材料層54)をカバープレート58とバックプレーン56の間にして、配置される。次いでフリット60が、フリットを軟化させ、バックプレーン56とカバープレート58の間に気密シールを形成するために、レーザビーム64を放射するレーザ62によるように、加熱される。
簡潔な上記説明から想像され得るように、有機材料層及びTFTのための様々な被着プロセス中だけでなくガラスシート(基板)の結合及びシール形成のためにも、バックプレーン及び/またはカバープレートの精確な位置合せが必要である。一般に、そのような形成プロセス中には基板が平坦であることが必要である。例えば、バックプレーン基板は処理のために平坦支持面上に真空で引き付けられることが多い。
概ね平坦なガラスシートの平坦度を特性決定するために現在用いられている計量の1つは、ガラスの最大「反り」の尺度である。すなわち、シートの表面上の複数の点の基準面に対する距離(または偏差)の尺度が決定され、距離の偏差は真の平面からのシート形状の偏差−シートの反り−を表す。最大反りは次いで、不正確ではあるが、シートの形状(例えばシートの平坦度)の尺度として用いることができる。
図3は、本発明の実施形態にしたがう、ガラスシートのような、ガラス品の形状を決定する方法の一実施形態を示す。全体として参照数字66で指定される、図3の実施形態にしたがえば、液体72が入っている容器70内にガラスシート68が配置される。ガラスシート68は液体表面上に配置されるかまたは、以下でさらに詳細に説明されるように、液体内に浸漬される。ガラスシートはあらかじめ決定された平均密度及びあらかじめ決定された平均屈折率を有する。液体もあらかじめ決定された平均密度及びあらかじめ決定された平均屈折率を有する。液体の平均密度はガラスシートの平均密度の少なくとも約85%であることが好ましく、少なくとも約90%であることがさらに好ましく、少なくとも約95%であることがさらに一層好ましい。液体72は、液体の平均密度がガラスシートの平均密度の少なくとも約85%であるときに、ガラスシート68に対して中性密度をもつといわれ、ガラスシートは、与えられた測定を完了するに十分な時間機械的支持なしに液体72内の与えられた位置にガラスシートがとどまるべきであるという点で、中立浮揚性であるといわれる。適する液体は、例えば、屈折率整合液、浸漬液、光結合液、屈折計液及びその他の特殊液を製造している、カーギル社(Cargille Inc.)から入手できる。そのような液体は、一般に無毒であり、例えば蒸発によって濃度を高めるかまたは低めることによるように、液体の密度が容易に調整されるという点で有利である。液体密度の調整は、所望のあらかじめ定められた混合液密度が得られるように、密度が相異なる2つないしさらに多くの液体を混合することによっても達成することができる。例えば、コーニング社(Corning Incorporated)によって製造されるEagle2000(商標)ガラスの平均密度は約2.37g/cmである。平均密度が約2.35g/cmの第1の液体及び平均密度が約2.45g/cmの第2の液体のような、いくつかの液体を平均密度が実質的に2.37g/cmに等しい第3の液体を得るに有効な量で混合することができる。当業者であれば、所要の密度特性を有する1つまたは複数のいかなる液体も用い得ることを認めるであろう。
図3の参照を続ければ、センサ74がセンサからガラスシートの表面までの距離を測定するために用いられる。ガラスシート68はセンサ74に面している第1の側(センサ側)76及び、第2の、センサに面していない側78を有する。本実施形態において、センサ側76は上面76と称することができ、非センサ側78は下面78と称することができる。ガラスの表面がセンサ74によって検出され得ることを保証するため、液体72の平均屈折率がガラスシート68の平均屈折率と検出可能な程度は異なることが望ましい。液体の平均屈折率とガラスの平均屈折率の間の許容差はセンサ74の感度のような要因によって決定される。あるいは、与えられたセンサがガラスシートの平均屈折率と液体の平均屈折率の間の差を弁別できない場合には、ガラスシート68に表面に薄膜またはコーティング(図示せず)を施すことができ、センサとガラス−コーティング界面の間の距離の測定値を得ることができるように、コーティングはシートの下面78に施されることが好ましい。コーティングが上面(センサ側)76に被着されている場合のような、コーティング自体の測定値には、ガラスの表面ではなく膜表面を測定することになるから、誤差のある測定値が含まれ得る。コーティングは、必須ではないが、不透明であることが好ましく、例えば、塗料、インクまたは染料を含むことができる。白色不透明コーティングで優れた結果が得られることがわかっている。しかし、液体の屈折率と検出可能な程度に異なる屈折率を有するいかなるコーティングも許容できる。例えば、コーティングには、高分子材の平均屈折率が液体の平均屈折率と検出可能な程度に異なる、高分子材膜を含めることができる。コーティングによってガラスシート68に印加されるいかなる応力もガラスシートをさらに変形させるには不十分であることが望ましい。この理由のため、一連のドット、ラインまたはその他の形状のような、不連続態様でコーティングを施すことができる。必要に応じて、ガラスシートの厚さをガラスシート上の位置の関数として測定し、膜−ガラス界面距離データと組み合わせて、ガラスシートのセンサ側についての表面等高線図を作成することもできる。
本実施形態にしたがえば、液体72内にガラスシート68が配置されてしまえば、センサからガラスシートの表面までの距離を測定するためにセンサ74を用いることができる。センサ74を用いてセンサとガラスシートの上面76の間の距離dを測定することができ、あるいはセンサ74を用いてセンサとガラスシートの下面78の間の距離dを測定することができる。センサ74を用いてd及びdのいずれも測定することができ、d及びdから、いかなる特定の点におけるガラスシートの厚さtもt=d−dとして決定することができる。センサ74には、例えば、レーザ変位センサを含めることができる。しかし、センサ74には、音響センサのような、距離を測定するための技術上既知のその他のデバイスを含めることができる。レーザデバイスには、単純なレーザ測距デバイス、あるいは、例えばマイケルソン干渉計のような、一層精巧なデバイスを含めることができる。センサは、液体内で既知の速度を有する、音波のような、エネルギーがタイミングをとって検知される、タイムベースセンサとすることができる。適するセンサは、例えば、米国のキーエンス社(Keyence Corporation)で製造されたLT8110共焦点レーザ変位センサである。センサ74は液面上方に配置することができるが、センサは液体に接触し、よって液面80における空気−液体界面を有利な態様で排除することが好ましい。センサ74は液体内に完全に浸漬させることができる。
無重力形状を決定するための別の方法はいわゆる触針台(BoN)測定システムを用い、図4に示される。BoN測定システムにおいては、シートが一群のピンによって下側から支持される。ピンは垂直方向に可動であり、シートからの支持力を測定することができる。それぞれのピンの移動量も測定することができる。
それぞれのピンが指定された目標重量を支持するまでピンの高さが調節される。例えば、均等に分布されたピン上に載る一様で平坦な基板に対する目標重量は基板の全重量の等分割になるであろう。しかし、それぞれピンの目標重量は隣のピンの目標重量とはおそらく異なるであろうし、目標重量は有限要素解析に基づく応力解析を用いて決定することができる。全てのピンがそれぞれの指定された重量にあるときに、それぞれのピンは特定の基板をその無重力形状において支持している。無重力位置にあるピンのアレイにより、基板表面をスキャンし、ピンにおいて及びピン間において、全表面にかけて高さを測定する、光学手段によって無重力形状を測定することができる。
BoNゲージにともなう問題は、1つのピンの高さの変更が他の全てのピンにかかる重量を変える可能性があることである。例えば、1つのピンが組み合わされたピンの頂部より上に基板を持ち上げるに十分に高く上げられるという極端な例においては、組み合わされたピンが基板に接触していないから、それらのピンにはもはや全く重量がかからないであろう。したがって、目標重量がとりあえず支持されるように1つのピンの高さが調節されている場合、他の1つのピンの高さが変えられると、支持される重量が変わってしまうであろう。システムが手作業で調節される場合には、ピンの調節にはおそろしく時間がかかるであろう。システムが自動化される場合には、ピンを調節するためのアルゴリズムが必要になる。
手作業で調節される前者のシステムにおいて、それぞれのピンは独立に調節される。目標重量が達成されるまでそれぞれのピン高が調節される。この単独調節作業は、最初のピンから最後のピンまで、一時に1本のピンの態様でなされる。しかし、1本のピンの調節は他の全てのピンの荷重を変えるから、この手順は何度も反復されなければならず、それぞれのサイクルでは前のサイクルで導入された小さな偏差が補正される。
1つないしさらに多くの実施形態にしたがえば、全てのピンについて目標重量を同時に支持するようにピン高を調節する方法が含まれる。特に、ピンアレイについての適切なピン高調節の系統的計算及び実行が提供される。全てのピンがそれぞれの指定された重量にあるとき、それぞれのピンの高さは特定の基板に対する無重力高にある。無重力高にあるピンのアレイは無重力形状及び、もしあれば、生じ得る形状歪の測定値を与える。ピンの高さ調節器はピンの高さの追跡/記録も行い、光スキャナのような、追加の高さ測定手段の必要をなくす。
しかし、全てのピンを同時に調節することができる。全てのピンが調節されるまで、ピン力の評価は必要ではない。ピン力は、ピンが動いていない場合にピンによって支持される下向きの力に等しい、ピンの上向きの力である。ピンをグループとして調節することにより、プロセスは1つのピンの調節が他の全てのピンに影響するという事実を考慮する。この結果、ほとんど全ての場合において、全てのピンに目標ピン力を達成するという利点が実現される。
図4を参照すれば、本発明の1つないしさらに多くの実施形態にしたがう例示的な触針台形状測定ゲージ100をブロック図が示している。BoNゲージ100は、少なくとも3本のピンを有する、複数のピン110,ゲージ台120及びプロセッサ130を備えることができる。可撓性プレート様物体が、本図ではガラス基板140として示される、測定対象140をつとめる。基板140は複数のピン110の頂部に載り、測定対象140が重力の下で撓むと、それぞれのピン110に特定の重量がかかる。それぞれのピン110は、ピン110によって支持される特定の重量を測定するためのロードセル112を有する。ロードセル112は、ピン110の高さを既知の態様で調節する、モーター駆動であることが好ましい、デバイスである高さ調節器114の頂部に取り付けることができる。ロードセル112を下側に有し、高さ調節器114の重量も考慮するような、別の構成も考えられる。
それぞれのロードセル112は測定されたピン力に関する測定値信号132を回路116を介してプロセッサ130に送ることができ、次いでプロセッサはアルゴリズムを実行してそれぞれのピン110に必要な高さ調節値を計算することができる。プロセッサ130は計算された高さ調節値を実行するために回路116を介してそれぞれの高さ調節器114に調節信号134を送ることができる。多くの場合にそうであるように、アルゴリズムが優れているほど速やかに、ロードセル112は目標荷重を受け取るであろう。
本発明は1つのピン110のピン高の変更は一般に全てのピン110の荷重を変えるという事実を利用する。例えばN本のピン110がゲージ100に用いられているとする。目的はそれぞれのピン110にかかる力が特定の値にあるようなピン高を見ることである。例えば、比較的一様な厚さ及び密度をもつ実質的に平坦な基板140に対しては、N本のピン110が均等に分布していれば、特定の重量値が基板重量の1/Nに等しくなり得るように、ほぼ均等な重量分布が想定され得る。
一実施形態にしたがえば、ピン110の内の3本は調節されず、したがってそれぞれの調節サイクルの間その3本のピンは静止しているであろう。3本の静止ピン110は基準平面を定め、この理由からこれらの3本のピン110は直線上にあってはならない。それぞれのサイクルに対し、3本のピンは固定されたままであろう。これらのピンは以降のサイクルで調節することができる。その後、残るN−3本のピン110を同じく特定の重量を支持するため以下で計算されるように調節することができる。
残りのN−3本のピン110に対するピン高調節値の計算では、ピン荷重を変えるためのピン高の変更に関するN−3個の方程式及びN−3個の未知数を含む、一組の連立方程式を考えることができる。3本のピンは固定されて方程式が関係するピンに対する基準平面を定める。物理的観点から、力の総和、1つの軸に関するモーメントの総和及び別の軸に関するモーメントの総和は、満たされなければならない3つの方程式を表す。これらの3本のピンを固定することにより、これらのピンは他のピンの調節によって満たされたそれぞれの目標重量を系統的に有し、他のピンも同様に満たされたそれぞれの目標重量を有するであろう。幾何学的観点から、3点を固定しない、剛体運動は可能であろうが望ましくはない。剛体運動は基板を平行移動させ、2つの軸を中心にして回転させることができ、一組のピン高調節方程式に1つより多くの解をもたらすであろう。したがって、一組のピン高調節方程式の解が1つだけであるように、3点が固定される。
先に説明した反り測定値は、平坦な台にシートを真空で引き付けることによるような、シートを強制的に平坦にすることができる能力の、基本的にまた自発的な、シートのトポロジーの単純な表現に過ぎず、粗末なインジケータである。例えば、薄ガラスシートのような、シート材200が、シートの一縁端に平行であるような、シートの「長さ」沿って延びる長さ方向リッジ202を有するとすれば、図5に示されるように、リッジの偏差はL+δの平坦基準平面204からの最大偏差を有する。リッジは円柱の一部からなるような形状をとっているとする。第2のシート206はシートの表面に凸所208(例えば、小丘またはバブル)を有し、同じ基準平面204からの凸所の最大偏差もL+δであるとする。いずれのシートも同じ最大反り(δ)を有するであろう。しかし、円柱リッジ(図5)を有するシート200は展開可能であるから、凸所を有するシート206より容易に平坦化されるであろう。
展開可能な面は、面を引き伸ばすか、押し縮めるかまたは引き裂くことなしに、平坦にすることができる面である。例えば、図7Aに示され上で論じられたような円筒は、円筒面は面を引き伸ばすかまたは引き裂くことなしに広げて平らに置く(図7B)ことができるから、展開可能な面を有する。他方で、球面(図8A)は展開不能である。球面の一部、例えば半球面を平らに置こうとすれば、平面にしたがわせるため半球を引き伸ばすかまたは複数の境界に沿って引き裂かなければならない。したがって、先の例において、円柱リッジを有するシートはシートを変形させずに平坦な台に合わせて平坦化することができるであろうが、第2の例のシートを台と共形にするにはシートの変形または引き裂きが必要であろう。
展開可能な面は角度及び距離を保存する変換によって平面に変換され得る面である。展開可能な面が平面に変換されるときには、表面に歪は誘起されない。あるいは、展開可能面は面を引き裂くか、押し縮めるかまたは引き裂くことなしに平面から形成することができる面である。明らかに、ガラスシートをその最大反りによって特性決定することはシートが平坦ではないことを示すには十分であり得るが、どのようにすればシートを強制的にうまく平坦形状にできるかの尺度としては全く不十分である。
面のガウス曲率Kは面の固有幾何形状特性であり、面上の与えられた点における面の主曲率k及びkの積として定められる。すなわち、K=kである。物理的に、ガウス曲率は面が平面からどのように偏っているかを表す。ガウス曲率の数学的導出は周知であり、本明細書で必要以上に論じることはない。ガウス曲線の実用的関係を考察することはより啓発的である。第1に、ガウス曲率は距離及び角度画面上でどのように測定されるかにしか依存しない。例えば、面のガウス曲率が正であれば、面はその点にバンプまたはピークを有する。ガウス曲率が負であれば、表面は鞍点を有する。しかし、ガウス曲率が0であれば、面はその点において平坦面と等価である(平坦面として振る舞う)。この差を示すには簡単な実験が役立つ。(ガウス曲率が正の)球面上に描かれた三角形の内角の和は180°より大きいが、(ガウス曲率=0の)円柱に描かれた三角形の内角の和は180°でなければならない。展開可能面はゼロのガウス曲率を有し、引き伸ばすか、押し縮めるかまたは引き裂くことなしに、平坦面に変換することができる。歪を誘起せずに面を平坦化できれば、ガウス曲率は一定のままである。したがって、面のガウス曲率の値を知ることは1つの面が他の面と共形になり得る程度を理解する上で有益であり得る。
本発明の一実施形態にしたがえば、基準面、例えばそれによって基板が支持される面に対するガラスシートの共形化可能度を特性決定するためにガウス曲率を用いることができる。シートは支持面に実質的に共形になり得ることが好ましく、これはシートのそれぞれの点におけるシートのガウス曲率の値が支持面のそれぞれの点における支持面のガウス曲率と一致するかまたはほぼ一致することを意味する。基準面が平坦であれば、基準面(例えば支持面)に正確に共形になるためには、シートもシートの面上のそれぞれの点においてゼロのガウス曲率を有するべきである。それぞれのガウス曲率値の間の差が大きくなるほど、シートが示す共形化への抵抗も大きくなる。言い換えれば、シート上のそれぞれの点及び支持面上の対応する点におけるガウス曲率の値の間の差は、あらかじめ定められた最大差以下であるべきである(ΔK=||Kシート|−|K支持面||≦G,ここでGはあらかじめ定められた最大値である)。Gはシートの用途に依存することが多く、実験的に決定するかまたはモデル計算することができる。対応する点がとは、シートが支持面に押し付けられたときに支持面上の点に重なるシート上の点を意味する。ΔKがGより大きければ、シートは支持面と十分には共形になることができない。シートを平坦化するに際し、シート内に発生される歪エネルギーは、例えば、ガラスに座屈または応力誘起複屈折を生じさせ得る。
上述から、図6に示され、平坦面のような、支持面上に載るガラスシートによって示されるような、単独のピークまたは谷のガウス曲率値が、シートが重力及び台の反作用力しか受けないとすれば、大きくは変わらないであろうと予想することができる。このことはガウス曲率の値が大きくなるほど一層成り立つ。ガウス曲率の値が大きくなるにつれて、シートの平坦化への抵抗が大きくなり、シートを平坦化するには一層大きな力を用いなければならない。上述したように、この結果、特定の製造プロセスに強く影響し得る致命的な効果(座屈、応力、等)が高まり得る。逆に、ガウス曲率の値が大きくなるほど、シートを平坦化するに必要な力が大きくなる。シートの曲りは初め展開可能な形状を有する領域に、そのような領域に必要なエネルギーは展開不能な領域より少ないために、おこる。このことが、シート平坦度と対応する平坦度を達成するために印加されなければならない力の間の関係を定性的に示す、図9によって示される。縦破線の左側になる面は展開可能な形状で表されるであろうが、破線の右側の面になる展開不能な形状で表されるとして特性が示されであろう。グラフが示すように、プロットされた曲線の領域210において展開可能面は僅かな力で容易に平坦化され、平坦化への抵抗は面の剛性によるだけである。他方で、展開不能面ではかなりの力が必要である。プロットされた曲線の領域212においては面の座屈がおこるようであり、領域214においては。平坦化力を大きくするにつれて大きな膜応力及びモーメントが発生する。大きなガウス曲率の特異点に対し、比較的弱い力が(例えば重力だけが)印加された場合には、特異点のガウス曲率値は影響を受けないであろうと考えることができる。
ガウス曲率を利用するため、シートの無重力形状を理解することが最善である。すなわち、シートの形状は重力が存在しない状態で捕捉されるであろう。地上環境において真の無重力状態は達成されないが、無重力状態はほぼ正確に近似され得る。例えば、中性密度システムを用いることができるであろう。
シートの形状が、例えば複数の点における基準平面からの偏差を決定するための無重力シート形状測定の使用によって、決定されてしまえば、それぞれの点におけるシートのガウス曲率を決定することができる。例えば、シート上の局所領域におけるガウス曲率は接触放物面法を用いて決定することができる。放物面:
Figure 0005416143
の頂点におけるガウス曲率Kは:
Figure 0005416143
であり、平均曲率Hは:
Figure 0005416143
である。放物面の頂点Pにおける法平面との交差は、Pにおける曲率が:
Figure 0005416143
で与えられる放物線である。ここで、k及びkは方程式:
Figure 0005416143
の根であり、θは与えられた平面とkが最大値(または最小値)をとる平面の間の角度である。k,k及びkの極値は先に述べた主曲率である。ガウス曲率を決定するための接触放物面の使用は周知であり、本明細書でさらに説明することはない。
あるいは、シートの一部またはシート全体を:
Figure 0005416143
のような連続関数fでフィッティングすることができる。そうすれば、シート上のいかなる点のガウス曲率も、式1:
Figure 0005416143
で表される。ここで:
Figure 0005416143
Figure 0005416143
Figure 0005416143
Figure 0005416143
及び
Figure 0005416143
である。
シートが特異点(非常に小さな領域であって、シートのその領域と支持面の対応する領域の間のガウス曲率の差がいずれにせよ大きくなり得る領域)を含む場合に加えて、シートは比較的大きな領域であって、それにともなう小さくとも有限のΔKを有する領域を含むことができる。この場合、値が小さくとも大きな領域の平坦化は大きな領域の総和であり、やはり同じ致命的な効果を生じることになろう。値が小さいΔKをともなう大きな領域を考慮するため、面上の移動ウインドウにわたってΔKの絶対値を積分し、その結果を積分領域に対して規格化することができる。得られたKの積分値(K積分)は次いでシートの形状の尺度として用いることができる。すなわち、式2:
Figure 0005416143
である。そのような状況が、積分領域Sがシート面上を移動する、図10に示される。
支持面が平坦(Kが至る所でゼロ)であることが知られていれば、シートのそれぞれの点におけるΔKは、単に、シートのガウス曲率が決定されるそれぞれの点におけるシートのガウス曲率の値である。したがって、シートと支持面の間の点対点対応にわずらわされずに、ΔKを容易に決定することができる。これは、例えば、ディスプレイ用パネルにおけるTFTの被着中におこり得る。そのような被着プロセスのための支持面は、数トンの重量をかけて、極めて高い許容差まで平坦に機械加工することができる。
支持面が平坦でなければ、ガウス曲率が決定されたシート上の点に対応する点における支持面のガウス曲率を決定するために、支持面の同様の解析が行われなければならない。
図11に、式3:
Figure 0005416143
で定められる、バブル(ピーク)を有する、他は平坦なシートの3次元モデルグラフが示される。
ここで、cはバブルの高さであり、x及びyはそれぞれx軸及びy軸に沿うバブルの半値幅である。本例の目的のため、aは150mmに選ばれ、bは50mmに選ばれ、cは30mmに選ばれる。図12は図11のバブルのガウス曲率を示す。最大ガウス曲率値は式4:
Figure 0005416143
で表される。
上式4は、細長いバブル、例えばb≫aのバブルは同じ高さの対称な(a=bの)バブルより、バブルのガウス曲率が最大ガウス曲率が小さくなるから、かなり容易に平坦化され得ることを示す。図13はガウス曲率が1×10−8mm−2の対称バブルに対する直径対高さの関係のグラフを示す。曲線の右側に位置する高さ−直径関係を有するバブルは良好なチャッキング挙動を示す(真空チャッキングにより平坦支持面上で平坦になり得る)傾向をもつが、曲線の左側に位置する高さ−直径関係を有するバブルは粗末なチャッキング性能(例えば、真空リーク、不完全平坦化、等)を示す傾向をもつ。図13は、与えられた直径に対して、バブルが有効に平坦化されるためにはバブルはある高さより低くなっているべきであることを示す。実験作業により、薄い(約1mmより小さい厚さを有する)ディスプレイガラスシートに対する最大ガウス曲率値については、1×10−8mm−2の最大ガウス曲率値が実用上限閾値であることを示した。
シート材、特に、薄ガラスシートのような弾性シート材の共形化可能特性決定へのガウス曲率の使用は:
・薄ガラスシートの与えられたいずれかの形状に変形できる能力を定量的に表すために用いることができる。本方法は平坦及び水平な支持面形状に限定されない;
・薄ガラスシートは平坦な台上にあるときにはほとんど展開可能な領域上に載っているであろうから、ガラスシートのガウス曲率の知識を、シートのチャッキング挙動の理解に役立たせるため、及びチャッキング方法/手順の最適化に役立たせるために用いることができる;
・ガラスシートチャッキング挙動に単一の最大反り値よりも良く関連付けられたシート形状仕様の開発に役立たせるために用いることができる;
・チャッキング時の歪及び総合ピッチ変化の評価に役立たせるために用いることができる。
本発明の上述した実施形態は、特にいずれの「好ましい」実施形態も、可能な実施例に過ぎず、本発明の原理の明解な理解のために述べられているに過ぎないことは強調されるべきである。本発明の精神及び原理を実質的に逸脱することなく本発明の上述した実施形態に多くの変形及び改変がなされ得る。例えば、本明細書に示される実施形態例は縦型構成で示されるが、本発明は横型構成でも等しく有効であり得る。そのような改変及び変形は全て本開示及び本発明の範囲内に含まれ、添付される特許請求の範囲によって保護されるとされる。
20 成形ウエッジ
22 上部開放チャネル
24 壁体部
26 溢流堰
28,30 形成面領域
32 ルート
34 溶融ガラス
36 給送路
38 制止ダム
42 ガラス
44 引張ローラー
48 切断線
50 板ガラス
52 有機発光ディスプレイ
54 有機材料層
56 バックプレーン
58 カバープレート
60 フリット
62 レーザ
64 レーザビーム
68 ガラスシート
70 容器
72 液体
74 センサ
76 ガラスシート上面
78 ガラスシート下面
80 液面
100 触針台形状測定ゲージ(BoNゲージ)
110 ピン
112 ロードセル
114 高さ調節器
116 回路
120 ゲージ台
130 プロセッサ
132 測定値信号
134 調節信号
140 ガラス基板
200,206 シート材
202 リッジ
204 基準平面
208 凸所

Claims (8)

  1. ガラスシートを、支持面への共形化可能度によって類別する方法において、
    前記ガラスシートの形状を測定する工程、
    前記測定された形状を用いて前記ガラスシート上の複数の点についてのガウス曲率値を計算する工程、
    前記ガラスシートについての前記複数のガウス曲率値を前記支持面についての対応するガウス曲率値から減算して、前記ガラスシート上の前記複数の点のそれぞれの点についてガウス曲率値差を決定する工程、
    前記複数のガウス曲率値差から前記ガラスシートについての最大ガウス曲率値差をる工程、及び、
    前記最大ガウス曲率値差を所定の最大閾値と比較して、それにより、前記ガラスシートを、前記最大ガウス曲率値差が前記所定の最大閾値以下であれば合格とし、前記最大ガウス曲率値差が前記所定の最大閾値より大きければ不合格として、類別する工程、
    を含むことを特徴とする方法。
  2. 形状を測定する前記工程が、重の影響による撓みのない状態で形状を測定する工程を含むことを特徴とする請求項1に記載の方法。
  3. 状を測定する前記工程が前記ガラスシートを中立浮揚性の液体に浸漬する工程を含むことを特徴とする請求項2に記載の方法。
  4. 状を測定する前記工程が、前記ガラスシートにあらかじめ定められた力をかけるように適合された、複数の可調節ピン上で前記ガラスシートを支持する工程を含むことを特徴とする請求項2に記載の方法。
  5. 前記ガラスシート上に薄膜素子を形成する工程をさらに含むことを特徴とする請求項1に記載の方法。
  6. 前記支持面の前記ガウス曲率値が至るところで実質的にゼロであることを特徴とする請求項1に記載の方法。
  7. 前記最大閾値が約1×10−8mm−2以下であることを特徴とする請求項1に記載の方法。
  8. ガラスシートを、支持面への共形化可能度によって類別する方法において、
    前記ガラスシートの形状を測定する工程、
    前記測定された形状を用いて前記ガラスシート上の複数の点についてのガウス曲率値を計算する工程、
    前記ガラスシートについての前記複数のガウス曲率値を前記支持面についての対応するガウス曲率値から減算して、前記ガラスシート上の前記複数の点のそれぞれの点についてガウス曲率値差を決定する工程、
    前記ガウス曲率値差を前記ガラスシート全体に亘って積分することにより、積分されたガウス曲率値差を得る工程、及び、
    前記積分されたガウス曲率値差を所定の最大閾値と比較して、それにより、前記ガラスシートを、前記積分されたガウス曲率値差が前記所定の最大閾値以下であれば合格とし、前記積分されたガウス曲率値差が前記所定の最大閾値より大きければ不合格として、類別する工程、
    を含むことを特徴とする方法
JP2010548704A 2008-02-28 2009-02-25 シート材の基準面に対する共形化可能度を予測する方法 Expired - Fee Related JP5416143B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6741008P 2008-02-28 2008-02-28
US61/067,410 2008-02-28
PCT/US2009/001166 WO2009108302A1 (en) 2008-02-28 2009-02-25 Method for predicting conformability of a sheet of material to a reference surface

Publications (2)

Publication Number Publication Date
JP2011513727A JP2011513727A (ja) 2011-04-28
JP5416143B2 true JP5416143B2 (ja) 2014-02-12

Family

ID=40547570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010548704A Expired - Fee Related JP5416143B2 (ja) 2008-02-28 2009-02-25 シート材の基準面に対する共形化可能度を予測する方法

Country Status (5)

Country Link
JP (1) JP5416143B2 (ja)
KR (1) KR101543053B1 (ja)
CN (1) CN102007370B (ja)
TW (1) TWI392846B (ja)
WO (1) WO2009108302A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031813B2 (en) * 2010-08-27 2015-05-12 Corning Incorporated Methods and apparatus for estimating gravity-free shapes
US8973402B2 (en) * 2010-10-29 2015-03-10 Corning Incorporated Overflow down-draw with improved glass melt velocity and thickness distribution
KR102035859B1 (ko) * 2014-05-28 2019-10-25 주식회사 펨토바이오메드 점도 측정 방법
KR102499831B1 (ko) * 2016-05-23 2023-02-14 코닝 인코포레이티드 글라스 시트의 무중력 형상 예측 방법 및 무중력 형상 기반 글라스 시트 품질 관리 방법
CN113468782B (zh) * 2021-06-21 2023-04-07 上汽大众汽车有限公司 一种用于车辆碰撞评估的夹层玻璃有限元建模方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1791703C (ru) * 1987-10-30 1993-01-30 Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов Способ контрол состо ни длинномерного объекта
US5573446A (en) * 1995-02-16 1996-11-12 Eastman Kodak Company Abrasive air spray shaping of optical surfaces
JPH10269260A (ja) * 1997-03-24 1998-10-09 Honda Motor Co Ltd 形状データ検証方法
WO1998049524A1 (fr) * 1997-04-25 1998-11-05 Riken Procede permettant d'etablir une distinction entre des erreurs de forme d'une surface courbe a forme libre
JP3418819B2 (ja) * 1998-01-13 2003-06-23 東芝セラミックス株式会社 プレート平坦度測定装置
JP3344649B2 (ja) * 1998-08-19 2002-11-11 理化学研究所 自由曲面の形状誤差評価方法
US6727864B1 (en) 2000-07-13 2004-04-27 Honeywell International Inc. Method and apparatus for an optical function generator for seamless tiled displays
JP2004145674A (ja) * 2002-10-25 2004-05-20 Nippon Sheet Glass Co Ltd プレス曲げ成形型の型面の設計方法
JP4773713B2 (ja) 2004-11-17 2011-09-14 三菱重工業株式会社 成形型モデルの形状決定方法
US7225665B2 (en) * 2005-07-27 2007-06-05 Corning Incorporated Process and apparatus for measuring the shape of an article

Also Published As

Publication number Publication date
CN102007370B (zh) 2013-03-13
JP2011513727A (ja) 2011-04-28
TW201003036A (en) 2010-01-16
KR20100138971A (ko) 2010-12-31
TWI392846B (zh) 2013-04-11
KR101543053B1 (ko) 2015-08-07
WO2009108302A1 (en) 2009-09-03
CN102007370A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
JP6910299B2 (ja) ガラス基板およびそれを備えたディスプレイ装置
JP5416143B2 (ja) シート材の基準面に対する共形化可能度を予測する方法
US7225665B2 (en) Process and apparatus for measuring the shape of an article
KR101989840B1 (ko) 판상체의 휨 검사 장치 및 그 휨 검사 방법
US9618674B2 (en) Light guide panel, back light assembly and display apparatus each having the light guide panel and method of manufacturing the light guide panel
US9500541B2 (en) Method and device for determining the pressure distribution for bonding
EP2777862A2 (en) Substrate peeling device, method for peeling substrate, and method for fabricating flexible display device
KR20140131429A (ko) 마스크 프레임 조립체용 용접기
TWI589885B (zh) 用於偵測壓縮品質之電阻量測設備及使用其之量測方法
TWI630666B (zh) 基板分離檢測方法及基板分離設備
JP2013130417A (ja) ガラス板の反り測定方法およびガラス板の製造方法
TW201023977A (en) Method for controlling seal dispenser apparatus
CN103913875A (zh) 液晶显示装置的自动粘合系统以及自动粘合方法
JP2015077758A (ja) インプリント用基板の検査方法、インプリント用基板の製造方法、インプリント方法及びインプリントシステム
JP5347235B2 (ja) 基板接合装置および基板接合方法
JP2008151714A (ja) 板状部材検査装置
KR20070118939A (ko) 압흔 검사기
JP2005305971A (ja) 凹凸形成装置および微細凹凸形状加工方法、およびそれを用いた液晶表示素子
JPH085340A (ja) 厚み測定装置
CN111564557A (zh) 柔性基板及其制备方法、显示面板和显示装置
TWM623301U (zh) 檢測膜材表面黏附性之裝置
JP2001102619A (ja) 太陽電池パネルの製造装置及び製造方法
TWI273330B (en) Method of measuring a taper of a metal layer of TFT-LCD
JP2005246783A (ja) 凹凸形成装置
CN101995416A (zh) 软化点测定装置及热传导测定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees