JP5413736B2 - 多種燃料エンジン - Google Patents

多種燃料エンジン Download PDF

Info

Publication number
JP5413736B2
JP5413736B2 JP2010024447A JP2010024447A JP5413736B2 JP 5413736 B2 JP5413736 B2 JP 5413736B2 JP 2010024447 A JP2010024447 A JP 2010024447A JP 2010024447 A JP2010024447 A JP 2010024447A JP 5413736 B2 JP5413736 B2 JP 5413736B2
Authority
JP
Japan
Prior art keywords
fuel
per unit
mixed
unit output
mixed fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010024447A
Other languages
English (en)
Other versions
JP2011163157A (ja
Inventor
裕介 中山
幸弘 園田
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010024447A priority Critical patent/JP5413736B2/ja
Publication of JP2011163157A publication Critical patent/JP2011163157A/ja
Application granted granted Critical
Publication of JP5413736B2 publication Critical patent/JP5413736B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は複数種類の燃料のうちの少なくとも何れかを燃焼室内で燃焼させて動力を発生する多種燃料エンジンに関する。
複数種類の燃料、例えばガソリンや軽油などの液体燃料と、圧縮天然ガス(CNG)などの気体燃料とを切り替えて使用する多種燃料エンジンが提案されている。特許文献1には、液体燃料として液化ガス(Gas To Liquid)燃料を用い、気体燃料としてCNGを用いるエンジンが開示されている。
特開2007−239600号公報
ところで、近年では地球温暖化ガスの発生量抑制の観点から、燃料のCO2排出量を評価する必要が生じている。多種燃料エンジンにおいても、CO2排出量を考慮した燃料の選択を行うことが望ましい。CO2排出量は通常、単位熱量(単位出力)あたり又は単位走行距離あたりの排出CO2重量として定義され(例えばg/MJ又はg/km)、その値は燃料の種類に応じて既知と考えることができる。しかしながら、複数種類の燃料中に混合燃料が含まれる場合、その成分比(例えば、ガソリン・アルコール混合燃料におけるアルコール含有量)は充てん所によって異なる場合があるため、単位出力あたり又は単位走行距離あたりのCO2排出量を正しく算出することが困難である。
そこで本発明は、互いに異なる複数種類の燃料を使用する多種燃料エンジンにおいて、CO2排出量を考慮して燃料を選択するにあたり、混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量を正しく算出することにある。
上記目的を達成するため本発明の一形態は、互いに種類の異なる燃料を供給可能な複数の燃料供給手段と、前記互いに種類の異なる燃料のうち単位出力あたり又は単位走行距離あたりのCO2排出量が比較的少ない燃料を選択して前記複数の燃料供給手段のうち該当する燃料供給手段に供給させるコントローラと、を備え、前記互いに種類の異なる燃料のうち少なくともいずれかの燃料は、第1及び第2の成分を含む混合燃料であり、前記コントローラは、前記混合燃料中の各成分の濃度を取得し、取得した濃度に基づいて当該燃料の単位出力あたり又は単位走行距離あたりのCO2排出量を算出することを特徴とする多種燃料エンジンである。
この態様では、混合燃料中の各成分の濃度をコントローラが取得し、取得した濃度に基づいて当該燃料の単位出力あたり又は単位走行距離あたりのCO2排出量を算出するので、混合燃料についての単位出力あたり又は単位走行距離あたりのCO2排出量を正しく算出することができる。
好ましくは、前記コントローラは、前記混合燃料の追加の充てんがあった場合に、追加前の当該混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量と、追加前の当該混合燃料の残量と、追加された当該混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量と、追加された当該混合燃料の量とに基づいて、追加後の当該混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量を算出する。
この態様では、混合燃料の追加の充てんがあった場合に、追加後の混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量を適切に算出することができる。
好ましくは、前記多種燃料エンジンは車両に搭載され、前記コントローラは、前記混合燃料中の各成分のうち少なくとも一部の成分の濃度を前記車両の外部から取得する。
好ましくは、前記混合燃料は液体燃料である。さらに、好ましくは前記混合燃料はガソリン・アルコール混合燃料である。
好ましくは、前記単位出力あたり又は単位走行距離あたりのCO2排出量は、資源採掘、燃料製造、配送および使用までの合計である。
本発明によれば、複数種類の燃料を使用する多種燃料エンジンにおいて、CO2排出量を考慮して燃料を選択するにあたり、混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量を正しく算出することができる。
本発明に係る多種燃料エンジンの第1実施形態を示す概略構成図である。 WTWにおける単位出力あたりのCO2排出量を、CNG、ガソリン・アルコール混合燃料及びガソリンで比較した例を示す図である。 第1実施形態における燃料選択処理ルーチンを示すフローチャートである。 第1実施形態における液体燃料のWTWにおける単位出力あたりのCO2排出量Wfの算出ルーチンを示すフローチャートである。 第1実施形態における液体燃料のアルコール出力割合の算出ルーチンを示すフローチャートである。 本発明に係る多種燃料エンジンの第2実施形態を示す概略構成図である。 第2実施形態における液体燃料のWTWにおける単位出力あたりのCO2排出量Wfの算出ルーチンを示すフローチャートである。
以下に、本発明の実施形態につき添付図面を参照しつつ説明する。
まず、図1を参照して、本発明の第1実施形態に係る車両に搭載されたバイフュエルエンジン100の概要を説明する。101はエンジン本体、102はシリンダブロック、103はシリンダヘッド、104はピストン、105は燃焼室、106は吸気ポート、107は排気ポート、109は燃焼室105内の頂部に配置された点火栓をそれぞれ示している。吸気ポート106は吸気マニフォルド110を介してサージタンク111に接続され、サージタンク111は吸気ダクト112を介してエアクリーナ113に接続されている。吸気ダクト112内にはステップモータ114により駆動されるスロットル弁115が配置されている。
図1のエンジン100は、気体燃料供給系と液体燃料供給系とを具備しており、気体燃料としてCNGを用い、液体燃料としてガソリンを用いている。エンジン100はガソリンとアルコールとの混合燃料による運転が可能に設計されている。
気体燃料供給系は、筒内の燃焼室105に噴射可能に配置されたCNG筒内噴射弁120を具備し、このCNG筒内噴射弁120は、CNG供給ライン122を介してCNGボンベ124に接続されている。なお、CNG供給ライン122内には、図示しない燃料遮断弁および高圧レギュレータ126が配置されている。
CNGボンベ124内に、充てん圧力PF(例えば、20MPa)で充てんされているCNGは、高圧レギュレータ126により一定の高調節圧PH(例えば、0.5MPa)まで減圧され、通常のエンジン制御状態では、この高調節圧PHでもってCNG筒内噴射弁120から筒内に圧縮行程で噴射される。この高調節圧PHは、運転状態にかかわらず常に圧縮行程で筒内噴射が可能な圧力である。
液体燃料供給系は、吸気マニフォルド110内の吸気通路に噴射可能に配置されたガソリン噴射弁130を具備し、このガソリン噴射弁130は、ガソリン供給ライン132を介し車載された液体燃料容器としてのガソリンタンク134に接続されている。さらに、ガソリン供給ライン132内には、燃料ポンプ133が配置されている。これらのCNG筒内噴射弁120およびガソリン噴射弁130は、それぞれ、電子制御ユニット(以下、ECUと称す)300からの出力信号に基づいて制御される。
排気ポート107は、排気マニフォルド146を介して触媒装置147に接続され、触媒装置147の排気側は不図示の消音器を介して外部に開放している。
触媒装置147は、リーン空燃比での運転中にNOxを吸蔵し、リッチ空燃比の際にNOxを還元するNOx吸蔵還元型三元触媒(リーンNOx触媒)である。この触媒装置147は、例えばアルミナ担体上に、アルカリ金属・アルカリ土類・希土類から選ばれた少なくとも一つと、貴金属とが担持されたものである。触媒装置147は、流入する排気ガスの平均空燃比がリーンのときにはNOxを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると、蓄えているNOxを還元して減少させる蓄積還元作用を行う。
ECU300はデジタルコンピュータからなり、周知の如く、双方向性バスを介して相互に接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、常時電源に接続されているB−RAM(バックアップRAM)、入力ポート、および出力ポート等を具備している。
吸気マニフォルド110に接続されたサージタンク111には、サージタンク111内の絶対圧に比例した出力電圧を発生する圧力センサ140が取り付けられている。CNGボンベ124の出口のCNG供給ライン122内には、CNGボンベ124内の残存CNG量、すなわち、残圧に比例した出力電圧を発生するCNG残圧センサ141および燃料温度(高圧)センサ151が配置され、ガソリンタンク134には、ガソリンタンク134内の残存ガソリン量に比例した出力電圧を発生するガソリン残量センサ142が配置されている。また、CNG供給ライン122の高圧レギュレータ126の下流には、燃料圧力(低圧)センサ152、燃料温度(低圧)センサ153が配置され、これらによって正確な燃料量が算出される。
液体燃料タンク134の内部には、液体燃料のアルコール濃度(例えばエタノール濃度)に対応した信号を出力するアルコール濃度センサ150が設けられている。アルコール濃度センサ150は、例えばガソリンとアルコールとで誘電率が異なることを利用してアルコール濃度を検出する周知のセンサが使用される。アルコール濃度センサ150の形式は任意であり、例えば誘電率の代わりに導電率を利用してアルコール濃度を検出するものでもよいし、アルコール濃度に応じて燃料の比重が変化することを利用してアルコール濃度を検出するものでもよい。
また車室内には、使用する燃料の種類を運転者の操作により選択するためのマニュアルスイッチ160が設置されており、このマニュアルスイッチ160からはその「CNG」または「ガソリン」の操作位置に応じた信号が出力される。なお、このマニュアルスイッチ160はCO2排出量を考慮した燃料の選択をキャンセルして運転者の意志に基づいて燃料を選択する際に用いられる。
センサ140、141、142、150、151、152、153およびスイッチ160の出力電圧は、それぞれ、対応するAD変換器を介してECU300の入力ポートに入力される。
さらに、入力ポートには、エンジン回転数Nを表す出力パルスを発生する回転数センサ143、スロットル弁115の回動角度を検出するスロットル開度センサ144、アクセルペダルの踏み込み量(要求負荷Lに対応する)を検出するアクセル開度センサ145を含むセンサ類が、それぞれ対応するAD変換器を介して接続されている。一方、ECU300の出力ポートは、それぞれ、対応するDA変換器および駆動回路を介して、点火栓109、ステップモータ114、CNG筒内噴射弁120、ガソリン噴射弁130および燃料ポンプ133を含む各アクチュエータに接続されている。
本実施形態ではCNGとガソリンのそれぞれについて、通常制御として、エンジン回転数N、要求負荷Lなどから、燃料噴射量、噴射タイミングによる運転制御が行われる。また始動後触媒暖機中の燃料の選択については、エミッションを考慮した燃料の選択処理が行われる。そして後述するとおり、ECU300は、気体燃料および液体燃料のうち単位出力あたりCO2排出量が比較的少ない燃料を選択する処理を実行する。この目的から、ECU300のROMには、気体燃料及び液体燃料の単位重量あたりの出力値、及び単位出力あたりのCO2排出量の値を予め格納したCO2排出量マップが記憶されている。
自動車用燃料に関するCO2排出量の評価方法として、WTWなるものが知られている。WTWとはWell to Wheelの略称で、石油の井戸から自動車の車輪までの意である。つまり資源採掘、燃料製造、燃料の配送、使用の各過程で排出されるCO2の総排出量を比較して燃料を評価するものである(例えば、持続可能な発展のための世界経済人会議(WBCSD)「持続可能なモビリティ・プロジェクト」(SMP)最終報告書、2004年)。WTWは、資源採掘から車の燃料タンクまでのWTT(Well To Tank)と、燃料タンクから車が最終的に消費するまでのTTW(Tank to Wheel)との二段階に大別される。
図2はWTWにおける単位出力あたりのCO2排出量を、CNG、ガソリン・アルコール混合燃料及びガソリンで比較した例を示す。横軸はガソリンを1とした場合の比率を示し、ここでアルコールはサトウキビ由来のエタノールである。図2に示されるように、CNGのWTWにおける単位出力あたりのCO2排出量はガソリン(E0)に比して少ないが、ガソリン・アルコール混合燃料と比較すると、アルコール濃度25%(E25)とほぼ同等である。さらに、アルコール濃度50%(E50)および同100(E100)では、サトウキビ由来のエタノールのような所謂バイオエタノール燃料では、WTTにおける単位出力あたりのCO2排出量が小さいかあるいはマイナスであるため、WTWにおける単位出力あたりのCO2排出量も、CNGより小さい値となっている。
以上のとおり構成された本実施形態の動作の一例について説明する。図3は、本実施形態のECU300において実行される燃料選択処理ルーチンを示す。この処理ルーチンは、イグニッションスイッチがONされ、且つスタータの作動によりクランキングが開始されたことを条件に、予め定められたエンジン回転数ごとの割込みによって繰り返し実行される。
まずECU300は、触媒の暖機が完了しているかを判断し(S101)、完了していない場合には処理をリターンする。触媒暖機中は上述のとおりエミッションを考慮した燃料の選択処理が別途に行われるため、本実施形態に係る燃料選択処理は触媒暖機中には行わないこととしている。触媒暖機が完了しているかの判断は、例えば始動後からの積算空気量及び積算燃料噴射量に基づいて行い、これらの値が所定の基準値を下回っている間はステップS101で否定される。
触媒の暖機が完了すると、ECU300はCO2排出量マップの参照により、CNGのWTWにおける単位出力あたりのCO2排出量Wc(S102)を取得し、また液体燃料のWTWにおける単位出力あたりのCO2排出量Wf(S103)を算出する。ここでステップS103における液体燃料の単位出力あたりのWTWにおけるCO2排出量Wfの算出は、図4のルーチンに従って行われる。
図4において、ECU300はCO2排出量マップの参照により、ガソリンの単位出力あたりのWTWにおけるCO2排出量Wg(S201)、及びアルコールの単位出力あたりのWTWにおけるCO2排出量Wa(S202)をそれぞれ取得する。次にECU300は、アルコール濃度センサ150の検出値に基づいて、液体燃料のアルコール濃度Ca[%]を算出する(S203)。
次にECU300は、液体燃料のアルコール出力割合Da(%)を算出する。この演算は、図5のルーチンに従って行われる。図5において、先ずECU300は、ガソリンの単位重量あたり出力値Sgを、上述のCO2排出量マップの参照により算出する(S301)。次にECU300は、アルコールの単位重量あたり出力値Saを、上述のCO2排出量マップの参照により算出する(S302)。そしてECU300は、液体燃料におけるアルコール成分が寄与する出力の割合値(液体燃料のアルコール出力割合)Da(%)を、次の数式(1)により算出する(S303)。
Figure 0005413736
このようにして液体燃料のアルコール出力割合Da(%)が算出されると、処理は図4のルーチンに戻り、次にECU300は、液体燃料の単位出力あたりのWTWにおけるCO2排出量Wfを、次の数式(2)によって算出する(S205)。
Figure 0005413736
再び図3において、次にECU300は、先にステップS102で算出されたCNGのWTWにおける単位出力あたりのCO2排出量Wcと、図4のルーチンによって算出された液体燃料のWTWにおける単位出力あたりのCO2排出量Wfとが等しいかを判断する(S104)。WcとWfの値が等しい場合には、WTWにおけるCO2排出量抑制のための燃料の切換は必要ないため、処理がリターンされる。
ステップS104で否定の場合には、次にECU300は、CNGのWTWにおける単位出力あたりのCO2排出量Wcが、液体燃料のWTWにおける単位出力あたりのCO2排出量Wfよりも大であるかを判断する(S105)。そしてCNGの単位出力あたりのCO2排出量Wcが大である場合には液体燃料が選択され(S106)、液体燃料の単位出力あたりのCO2排出量Wfが大である場合にはCNGが選択されて(S107)、以後の運転が行われる。
以上の処理の結果、本実施形態では、CNGとガソリン・アルコール混合燃料とのWTWにおける単位出力あたりのCO2排出量が比較され、その比較に応じて、単位出力あたりのCO2排出量の少ない燃料が選択される。また、液体燃料のWTWにおける単位出力あたりのCO2排出量が、液体燃料中のアルコール濃度に基づいて算出される。
以上のとおり、本実施形態では、混合燃料である液体燃料中のアルコール濃度をECU300が取得し、取得したアルコール濃度に基づいて液体燃料の単位出力あたりCO2排出量を算出するので、混合燃料である液体燃料の単位出力あたりCO2排出量を正しく算出することができる。
次に、本発明の第2実施形態について説明する。第2実施形態のバイフュエルエンジン200は、混合燃料の追加の充てんがあった場合に、追加前の混合燃料と追加された混合燃料のそれぞれのアルコール濃度に基づいて、追加後の混合燃料のWTWにおける単位出力あたりのCO2排出量を算出し、これに基づいて燃料の選択を行うものである。
図6に示されるように、第2実施形態のバイフュエルエンジン200は、追加される混合燃料のアルコール濃度を取得するために、受信器170を備えている。受信器170は、ラジオ波によるアルコール濃度信号を受信可能であり、このアルコール濃度信号は、充てん所、燃料製造会社又は車両通信センターなど車外の所定位置に設置された送信器から、連続的又は間欠的に送信される。受信器170が受信したアルコール濃度信号は、不図示のインターフェイスを介してECU300に入力される。アルコール濃度信号は、当該充てん所において提供されるガソリン・アルコール混合燃料におけるアルコール濃度の情報を含む。送信器の送信可能範囲が複数の充てん所を含むほど広い場合には、アルコール濃度情報に充てん所IDを関連付けて送信してもよい。第2実施形態の残余の機械的構成は上記第1実施形態と同様であるため、同一符号を付してその詳細の説明は省略する。
第2実施形態における燃料選択処理は、第1実施形態の図3における処理と基本的に同様であるが、液体燃料のWTWにおける単位出力あたりのCO2排出量Wfの算出(S103)は、本実施形態では図7の処理ルーチンに従って行われる。図7において、まずECU300は、ガソリン残量センサ142からの残量信号に基づいて、液体燃料の残量が、本ルーチンの前回の実行時に比べて増加したかを判断する(S401)。増加していない場合にはWTWにおける単位出力あたりのCO2排出量に変化がないと考えられるため、処理がリターンされる。
液体燃料の残量が増加した場合には、ECU300は、充てん前の液体燃料のWTWにおける単位出力あたりのCO2排出量Woを算出する(S402)。この充てん前の単位出力あたりのCO2排出量Woの値としては、本ルーチンの前回実行時の液体燃料のWTWにおけるCO2排出量が、ECU300のRAMから読み出されることによって取得される。なお、実行が初回である場合には充てん前の単位出力あたりのCO2排出量Woの値として固定のデフォルト値が用いられるが、この場合には充填前の液体燃料の残量Lo(S404)がゼロと考えられるので計算への影響はない。
次にECU300は、充てんされた液体燃料の単位出力あたりのWTWにおけるCO2排出量Wnを算出する(S403)。ECU300はこの単位出力あたりのCO2排出量Wnを、車外の送信器から送信され受信器170によって受信されたアルコール濃度信号、及び上述のCO2排出量マップに格納されたガソリン及びアルコールの単位重量あたりの出力値Sg,Sa、及び単位出力あたりのCO2排出量の値Wg,Waに基づいて、算出する。この演算は、まず上述の数式(1)によって液体燃料におけるアルコール成分が寄与する出力の割合値(液体燃料のアルコール出力割合)Da(%)を求め、次にこのDaの値を用いて次の数式(3)の演算を行うことによって実行される。
Figure 0005413736
なお、アルコール濃度情報に充てん所IDが関連付けられている場合には、ECU300は当該充てん所のアルコール濃度情報を選択するための当該充てん所の充てん所IDを、車載地図情報端末(不図示)に格納された充てん所IDを含む地図情報及び車載GPS受信器(不図示)からの現在位置情報に基づいて特定することができる。
次にECU300は、充てん前の液体燃料の残量Loを算出する(S404)。この残量Loの値としては、本ルーチンの前回実行時の液体燃料の残量値がECU300のRAMから読み出される。
次にECU300は、充てん後の液体燃料の残量Lnを算出する(S405)。この充てん後の残量Lnの値は、ガソリン残量センサ142からの残量信号に基づいて算出する。
そしてECU300は、充てん後の液体燃料の単位出力あたりのWTWにおけるCO2発生量Wfを、次の数式(4)によって算出する(S406)。
Figure 0005413736
このようにして算出された充てん後の液体燃料の単位出力あたりのWTWにおけるCO2発生量Wfは、図3と同様の燃料選択処理、とくにステップS104及びS105において用いられ、これによって、CNGと液体燃料との単位出力あたりのWTWにおけるCO2排出量が比較され、その比較に応じて、単位出力あたりのCO2排出量の少ない燃料が選択される。
以上のとおり、第2実施形態では、混合燃料の追加の充てんがあった場合に、追加前の単位出力あたりCO2排出量と、追加前の混合燃料の残量と、追加された混合燃料の単位出力あたりCO2排出量と、追加された混合燃料の量とに基づいて、追加後の混合燃料の単位出力あたりCO2排出量を算出する。したがって、混合燃料の追加の充てんがあった場合に、追加後の混合燃料の単位出力あたりCO2排出量を適切に算出することができる。
また本実施形態では、追加された混合燃料の各成分のうち一部の成分の濃度を車両の外部から取得するので、充てん所における混合燃料の濃度の違いや変更を演算に反映させることができる。
なお、上記各実施形態では気体燃料であるCNGと、液体の混合燃料であるガソリン・アルコール混合燃料を用いた例につき説明した。しかしながら、本発明は互いに種類の異なる複数種類の燃料であって、うち少なくとも1種類が複数の成分を含む混合燃料である場合に広く適用でき、例えば気体燃料が混合燃料であってもよく、また気体燃料及び液体燃料の両者が混合燃料であってもよい。また複数種類の燃料は3種類以上であってもよく、また混合燃料は3種類以上の成分を含んでいてもよい。本発明における燃料としては、ガソリンや軽油のほかイソオクタン、ヘキサン、ヘプタン、軽油、灯油のような炭化水素、或いは液体の状態で保存しうるブタン、プロパンのような炭化水素、或いはメタノールなどの液体燃料、さらには一次燃料である天然ガスおよび石油ガス、或いは二次燃料である石炭転換ガスおよび石油転換ガス、水素、DME(ジメチルエーテル)等の気体燃料のうちの複数種類からなる組合せを用いることができる。
また、上記実施形態では、単位出力あたりのCO2排出量を用いて燃料の選択を行ったが、燃料の選択の基準としては、単位走行距離あたりのCO2排出量を用いてもよい。この場合には、10・15モード燃費のように車両の使用状況を配慮して決定する燃費測定方法に基づいて予想される走行距離、及びこれに対応する気体燃料及び液体燃料の単位走行距離あたりの既知のCO2排出量を、比較及び選択の基準として用いることができる。
また、上記各実施形態ではCNG燃料につき筒内直噴式とする一方でガソリンにつき所謂ポート噴射式としたが、本発明では各燃料の供給方式はいずれも任意であって、液体・気体の双方を筒内直噴式あるいはポート噴射式としたり、さらには少なくともいずれか一方をキャブレター式やミキサ式とすることも可能である。また、エンジンは圧縮着火式内燃機関であってもよい。
また、第2実施形態では混合燃料中の各成分のうち一部の成分の濃度を車両の外部から取得することとしたが、混合燃料中の全成分の濃度を車両の外部から取得してもよい。混合燃料の各成分のうち少なくとも一部の成分の濃度を車両の外部から取得するための手段としては、上述したもののほか、例えば給油口の近傍に発光素子及び受光素子からなるバーコードリーダーを設けると共に充てん所の充てんノズルに混合燃料中の少なくとも一部の成分の濃度を表示したバーコードを設けて読み取ることとしてもよく、また、車室内の端末から運転者が混合燃料中の少なくとも一部の成分の濃度を入力することとしてもよい。また、車載地図情報端末において充てん所の所在地と関連付けて混合燃料中の少なくとも一部の成分の濃度の情報を保持し、この濃度情報を車載GPS受信器からの現在位置情報に基づいて、燃料残量の増加あるいは給油口の開操作をトリガとして読み出すこととしてもよい。
本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
100,200 バイフュエルエンジン
124 CNGボンベ
134 液体燃料タンク
141 CNG残圧センサ
142 ガソリン残量センサ
150 アルコール濃度センサ
170 受信器

Claims (6)

  1. 互いに種類の異なる燃料を供給可能な複数の燃料供給手段と、前記互いに種類の異なる燃料のうち単位出力あたり又は単位走行距離あたりのCO2排出量が比較的少ない燃料を選択して前記複数の燃料供給手段のうち該当する燃料供給手段に供給させるコントローラと、を備え、
    前記互いに種類の異なる燃料のうち少なくともいずれかの燃料は、第1及び第2の成分を含む混合燃料であり、
    前記コントローラは、前記混合燃料中の各成分の濃度を取得し、取得した濃度に基づいて当該燃料の単位出力あたり又は単位走行距離あたりのCO2排出量を算出することを特徴とする多種燃料エンジン。
  2. 請求項1に記載の多種燃料エンジンであって、
    前記コントローラは、前記混合燃料の追加の充てんがあった場合に、追加前の当該混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量と、追加前の当該混合燃料の残量と、追加された当該混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量と、追加された当該混合燃料の量とに基づいて、追加後の当該混合燃料の単位出力あたり又は単位走行距離あたりのCO2排出量を算出することを特徴とする多種燃料エンジン。
  3. 請求項1または2に記載の多種燃料エンジンであって、
    前記多種燃料エンジンは車両に搭載され、
    前記コントローラは、前記混合燃料の各成分のうち少なくとも一部の成分の濃度を前記車両の外部から取得することを特徴とする多種燃料エンジン。
  4. 請求項1ないし3のいずれかに記載の多種燃料エンジンであって、
    前記混合燃料は液体燃料であることを特徴とする多種燃料エンジン。
  5. 請求項1ないし4のいずれかに記載の多種燃料エンジンであって、
    前記混合燃料はガソリン・アルコール混合燃料であることを特徴とする多種燃料エンジン。
  6. 請求項1ないし5のいずれかに記載の多種燃料エンジンであって、
    前記単位出力あたり又は単位走行距離あたりのCO2排出量は、資源採掘、燃料製造、配送および使用までの合計であることを特徴とする多種燃料エンジン。
JP2010024447A 2010-02-05 2010-02-05 多種燃料エンジン Expired - Fee Related JP5413736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024447A JP5413736B2 (ja) 2010-02-05 2010-02-05 多種燃料エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024447A JP5413736B2 (ja) 2010-02-05 2010-02-05 多種燃料エンジン

Publications (2)

Publication Number Publication Date
JP2011163157A JP2011163157A (ja) 2011-08-25
JP5413736B2 true JP5413736B2 (ja) 2014-02-12

Family

ID=44594154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024447A Expired - Fee Related JP5413736B2 (ja) 2010-02-05 2010-02-05 多種燃料エンジン

Country Status (1)

Country Link
JP (1) JP5413736B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116133B2 (ja) * 2020-10-12 2022-08-09 本田技研工業株式会社 燃料選択評価装置
JP2023016126A (ja) * 2021-07-21 2023-02-02 トヨタ自動車株式会社 情報処理装置、及び、情報処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853969B2 (ja) * 2006-11-28 2012-01-11 範幸 杉本 評価装置を備えた自動車の二酸化炭素表示装置
JP4835421B2 (ja) * 2006-12-19 2011-12-14 トヨタ自動車株式会社 多種燃料内燃機関
JP4765941B2 (ja) * 2007-01-09 2011-09-07 トヨタ自動車株式会社 内燃機関の制御装置及び方法
JP4807329B2 (ja) * 2007-06-14 2011-11-02 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両運用システム
JP2009150239A (ja) * 2007-12-19 2009-07-09 Hitachi Ltd エンジンの制御装置
JP2009241926A (ja) * 2009-07-29 2009-10-22 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の告知方法

Also Published As

Publication number Publication date
JP2011163157A (ja) 2011-08-25

Similar Documents

Publication Publication Date Title
KR101346564B1 (ko) 상이한 연료로 동작하도록 구성된 엔진에서 연료 주입을 제어하는 시스템 및 방법
CN101963113B (zh) 发动机及其控制方法
US8539914B2 (en) Method for operating an engine with a fuel reformer
EP1281850A2 (en) A control system and method for a bi-fuel engine
KR20130098863A (ko) 액체 연료를 이용하는 내연기관에 나중에 설치 가능한 개조식 기체 연료 공급 키트
CN101265843A (zh) 火花点火式内燃机
MX2015000297A (es) Sistemas y metodos para determinar la cantidad de combustible liquido y gaseoso.
JP5413736B2 (ja) 多種燃料エンジン
KR20070064807A (ko) 가솔린 및 엘피지 겸용 자동차의 엔진 구동 장치 및 방법
JP2008260541A (ja) 車両の燃料補給安全装置
WO2016000834A1 (en) Combustion system and method
KR102094964B1 (ko) Lng-디젤 혼소 연료 공급시스템의 연료 제어 장치
CN103415687A (zh) 多燃料内燃机的控制装置
JP4305826B2 (ja) バイフューエルエンジンおよびその制御方法
JP2004270604A (ja) バイフューエルエンジン搭載車両
JP4389710B2 (ja) バイフューエルエンジンおよび混合燃料の混合比率推定方法
JP2005233135A (ja) 多種燃料機関
JP4863119B2 (ja) 内燃機関の運転制御方法および装置
JPH11294212A (ja) バイフューエル内燃機関の供給燃料制御装置
AU2006201761B2 (en) Method for Controlling Fuel Injection of LPI Engine
KR101014519B1 (ko) 노킹 방지 엔진 제어 방법
KR102213241B1 (ko) 이중연료 엔진의 연료량 보정 방법
JP2004239114A (ja) バイフューエルエンジンの燃料供給制御装置および方法
JP4356075B2 (ja) 多種燃料機関
CN110637154A (zh) 用于在燃料品质变化时提高内燃机的全局压缩比的方法和设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R151 Written notification of patent or utility model registration

Ref document number: 5413736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees