JP5404979B1 - 太陽電池、及び、太陽電池を用いて電力を発生させる方法 - Google Patents

太陽電池、及び、太陽電池を用いて電力を発生させる方法 Download PDF

Info

Publication number
JP5404979B1
JP5404979B1 JP2013537961A JP2013537961A JP5404979B1 JP 5404979 B1 JP5404979 B1 JP 5404979B1 JP 2013537961 A JP2013537961 A JP 2013537961A JP 2013537961 A JP2013537961 A JP 2013537961A JP 5404979 B1 JP5404979 B1 JP 5404979B1
Authority
JP
Japan
Prior art keywords
layer
peripheral portion
type
ingaas
ingap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013537961A
Other languages
English (en)
Other versions
JPWO2013153775A1 (ja
Inventor
明生 松下
彰宏 伊藤
徹 中川
秀俊 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2013537961A priority Critical patent/JP5404979B1/ja
Application granted granted Critical
Publication of JP5404979B1 publication Critical patent/JP5404979B1/ja
Publication of JPWO2013153775A1 publication Critical patent/JPWO2013153775A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池素子102と、集光レンズ101とからなる太陽電池において、太陽電池素子102のn型InGaAs層104、n型GaAs層106およびn型InGaP層108を、それぞれ断面視において三分割し、第1InGaAs周辺部104bの厚みをd2、幅をw2、第2InGaAs周辺部104cの厚みをd3、幅をw3、第1GaAs周辺部106bの厚みをd5、幅をw4、第2GaAs周辺部104cの厚みをd6、幅をw5、第1InGaP周辺部108bの厚みをd8、幅をw6、第2InGaP周辺部108cの厚みをd9、幅をw7したとき、d2およびd3を1nm以上かつ4nm以下、d5およびd6を1nm以上かつ4nm以下、d8およびd9を1nm以上かつ5nm以下、w2、w3、w4、w5、w6およびw7を100nm以上とし、第1InGaAs中央部104aの幅をw1、窓層109へ太陽光が照射される部分Sの幅をw8としたとき、w8≦w1とすることを特徴とする。

Description

本開示は、太陽電池、及び、太陽電池を用いて電力を発生させる方法に関する。
図7は、特許文献1に開示された太陽電池を示す。この太陽電池は、太陽電池素子11およびレンズLを具備する。太陽電池素子11は、p型GaAsバッファ層13a、p型InGaP−BSF層13b、p型GaAsベース層13c、n型GaAsエミッタ層13d、n型InGaP窓層13e、および反射防止層15を具備する。これらの層13a〜15は、半導体基板12上にこの順で積層されている。
太陽光は、レンズLおよび反射防止層15を通過し、n型InGaP窓層13eに照射される。この太陽光の照射が、電力を生じさせる。
図8は、特許文献2に開示された太陽電池素子を示す。この太陽電池素子は、InGaPからなるトップセルT、GaAsからなるミドルセルM、およびInGaAsからなるボトムセルBを具備する。これらの3つのセルT、M、およびBは、トンネル接合層5〜8を介して電気的に接合されている。トップセルT、ミドルセルM、およびボトムセルBは、それぞれ異なる波長の光を吸収し発電する。このため、この太陽電池素子は、高い光電変換効率を有する。
特開2008−124381号公報 特開2010−10704号公報
特許文献2に開示された太陽電池素子を、レンズと組み合わせることによって得られた太陽電池は、おおよそ30.5%の光電変換効率を有する。
本開示の目的は、より高い光電変換効率を有する太陽電池を提供することである。
本開示に係る太陽電池を用いて電力を発生させる方法は、集光レンズ101および太陽電池素子102を具備する太陽電池を用意する工程(a)であって、前記太陽電池素子102は、n型InGaAs層104、p型InGaAs層103、n型GaAs層106、p型GaAs層105、n型InGaP層108、p型InGaP層107、第1トンネル接合層110、第2トンネル接合層111、窓層109、n側電極120、およびp側電極121を具備し、
Z方向は、前記p型InGaAs層103の法線方向であり、
X方向は、前記Z方向に直交し、
前記n型InGaAs層104、前記p型InGaAs層103、前記第1トンネル接合層110、前記n型GaAs層106、前記p型GaAs層105、前記第2トンネル接合層111、前記n型InGaP層108、前記p型InGaP層107、および前記窓層109は、この順にZ方向に沿って積層されており、
前記n側電極120は、前記n型InGaAs層104に電気的に接続されており、
前記p側電極121は、前記p型InGaP層107に電気的に接続されており、
前記n型InGaAs層104は、InGaAs中央部104a、第1InGaAs周辺部104b、および第2InGaAs周辺部104cに分割されており、
前記InGaAs中央部104aは、前記X方向に沿って、前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cの間に挟まれており、
前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cは層の形状を有しており、
前記n型GaAs層106は、GaAs中央部106a、第1GaAs周辺部106b、および第2GaAs周辺部106cに分割されており、
前記GaAs中央部106aは、前記X方向に沿って、前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cの間に挟まれており、
前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cは層の形状を有しており、
前記n型InGaP層108は、InGaP中央部108a、第1InGaP周辺部108b、および第2InGaP周辺部108cに分割されており、
前記InGaP中央部108aは、前記X方向に沿って、前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cの間に挟まれており、
前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cは層の形状を有しており、
以下の不等式のセット(I)、
d2<d1、
d3<d1、
1ナノメートル≦d2≦4ナノメートル、
1ナノメートル≦d3≦4ナノメートル、
d5<d4、
d6<d4、
1ナノメートル≦d5≦4ナノメートル、
1ナノメートル≦d6≦4ナノメートル、
d8<d7、
d9<d7、
1ナノメートル≦d8≦5ナノメートル、
1ナノメートル≦d9≦5ナノメートル、
100ナノメートル≦w2、
100ナノメートル≦w3、
100ナノメートル≦w4、
100ナノメートル≦w5、
100ナノメートル≦w6、および
100ナノメートル≦w7
を充足し、
d1は、前記Z方向に沿った前記InGaAs中央部104aの厚みを表し、
d2は、前記Z方向に沿った前記第1InGaAs周辺部104bの厚みを表し、
d3は、前記Z方向に沿った前記第2InGaAs周辺部104cの厚みを表し、
d4は、前記Z方向に沿った前記GaAs中央部106aの厚みを表し、
d5は、前記Z方向に沿った前記第1GaAs周辺部106bの厚みを表し、
d6は、前記Z方向に沿った前記第2GaAs周辺部106cの厚みを表し、
d7は、前記Z方向に沿った前記InGaP中央部108aの厚みを表し、
d8は、前記Z方向に沿った前記第1InGaP周辺部108bの厚みを表し、
d9は、前記Z方向に沿った前記第2InGaP周辺部108cの厚みを表し、
w2は、前記X方向に沿った前記第1InGaAs周辺部104bの幅を表し、
w3は、前記X方向に沿った前記第2InGaAs周辺部104cの幅を表し、
w4は、前記X方向に沿った前記第1GaAs周辺部106bの幅を表し、
w5は、前記X方向に沿った前記第2GaAs周辺部106cの幅を表し、
w6は、前記X方向に沿った前記第1InGaP周辺部108bの幅を表し、
w7は、前記X方向に沿った前記第2InGaP周辺部108cの幅を表す、太陽電池を用意する工程(a)と、
以下の不等式(II)
w8≦w1・・・(II)
を充足するように、前記集光レンズ101を介して前記窓層109の表面に含まれる領域Sに光を照射して、前記n側電極120および前記p側電極121の間に電圧差を生じさせる工程(b)であって、前記w1は、前記X方向に沿った、前記InGaAs中央部104aの幅を表し、前記w8は、前記Z方向を含む断面視において、前記領域Sの前記X方向に沿った幅を表し、前記Z方向から見たときに、前記InGaAs中央部104aは前記領域Sに重なる、工程(b)と、
を含む。
本開示によれば、より高い光電変換効率を有する太陽電池を提供する。
図1Aは、実施形態による太陽電池の断面図を示す。 図1Bは、実施形態による太陽電池素子の断面図を示す。 図2は、実施形態による太陽電池素子の拡大断面図を示す。 図3Aは、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図3Bは、図3Aに続く、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図3Cは、図3Bに続く、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図3Dは、図3Cに続く、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図3Eは、図3Dに続く、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図4Aは、図3Eに続く、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図4Bは、図4Aに続く、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図4Cは、図4Bに続く、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図4Dは、図4Cに続く、実施形態による太陽電池素子を製造する方法に含まれる1工程を示す。 図5は、実施形態による太陽電池素子の断面図を示す。 図6は、比較例1による太陽電池素子の断面図を示す。 図7は、特許文献1に開示された太陽電池の断面図を示す。 図8は、特許文献2に開示された太陽電池の断面図を示す。
本開示の第1態様に係る太陽電池を用いて電力を発生させる方法は、集光レンズ101および太陽電池素子102を具備する太陽電池を用意する工程(a)であって、前記太陽電池素子102は、n型InGaAs層104、p型InGaAs層103、n型GaAs層106、p型GaAs層105、n型InGaP層108、p型InGaP層107、第1トンネル接合層110、第2トンネル接合層111、窓層109、n側電極120、およびp側電極121を具備し、
Z方向は、前記p型InGaAs層103の法線方向であり、
X方向は、前記Z方向に直交し、
前記n型InGaAs層104、前記p型InGaAs層103、前記第1トンネル接合層110、前記n型GaAs層106、前記p型GaAs層105、前記第2トンネル接合層111、前記n型InGaP層108、前記p型InGaP層107、および前記窓層109は、この順にZ方向に沿って積層されており、
前記n側電極120は、前記n型InGaAs層104に電気的に接続されており、
前記p側電極121は、前記p型InGaP層107に電気的に接続されており、
前記n型InGaAs層104は、InGaAs中央部104a、第1InGaAs周辺部104b、および第2InGaAs周辺部104cに分割されており、
前記InGaAs中央部104aは、前記X方向に沿って、前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cの間に挟まれており、
前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cは層の形状を有しており、
前記n型GaAs層106は、GaAs中央部106a、第1GaAs周辺部106b、および第2GaAs周辺部106cに分割されており、
前記GaAs中央部106aは、前記X方向に沿って、前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cの間に挟まれており、
前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cは、層の形状を有しており、
前記n型InGaP層108は、InGaP中央部108a、第1InGaP周辺部108b、および第2InGaP周辺部108cに分割されており、
前記InGaP中央部108aは、前記X方向に沿って、前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cの間に挟まれており、
前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cは、層の形状を有しており、
以下の不等式のセット(I)、
d2<d1、
d3<d1、
1ナノメートル≦d2≦4ナノメートル、
1ナノメートル≦d3≦4ナノメートル、
d5<d4、
d6<d4、
1ナノメートル≦d5≦4ナノメートル、
1ナノメートル≦d6≦4ナノメートル、
d8<d7、
d9<d7、
1ナノメートル≦d8≦5ナノメートル、
1ナノメートル≦d9≦5ナノメートル、
100ナノメートル≦w2、
100ナノメートル≦w3、
100ナノメートル≦w4、
100ナノメートル≦w5、
100ナノメートル≦w6、および
100ナノメートル≦w7
を充足し、
d1は、前記Z方向に沿った前記InGaAs中央部104aの厚みを表し、
d2は、前記Z方向に沿った前記第1InGaAs周辺部104bの厚みを表し、
d3は、前記Z方向に沿った前記第2InGaAs周辺部104cの厚みを表し、
d4は、前記Z方向に沿った前記GaAs中央部106aの厚みを表し、
d5は、前記Z方向に沿った前記第1GaAs周辺部106bの厚みを表し、
d6は、前記Z方向に沿った前記第2GaAs周辺部106cの厚みを表し、
d7は、前記Z方向に沿った前記InGaP中央部108aの厚みを表し、
d8は、前記Z方向に沿った前記第1InGaP周辺部108bの厚みを表し、
d9は、前記Z方向に沿った前記第2InGaP周辺部108cの厚みを表し、
w2は、前記X方向に沿った前記第1InGaAs周辺部104bの幅を表し、
w3は、前記X方向に沿った前記第2InGaAs周辺部104cの幅を表し、
w4は、前記X方向に沿った前記第1GaAs周辺部106bの幅を表し、
w5は、前記X方向に沿った前記第2GaAs周辺部106cの幅を表し、
w6は、前記X方向に沿った前記第1InGaP周辺部108bの幅を表し、
w7は、前記X方向に沿った前記第2InGaP周辺部108cの幅を表す、太陽電池を用意する工程(a)と、
以下の不等式(II)
w8≦w1・・・(II)
を充足するように、前記集光レンズ101を介して前記窓層109の表面に含まれる領域Sに光を照射して、前記n側電極120および前記p側電極121の間に電圧差を生じさせる工程(b)であって、前記w1は、前記X方向に沿った、前記InGaAs中央部104aの幅を表し、前記w8は、前記Z方向を含む断面視において、前記領域Sの前記X方向に沿った幅を表し、前記Z方向から見たときに、前記InGaAs中央部104aは前記領域Sに重なる、工程(b)と、
を含む。
第2態様に係る太陽電池を用いて電力を発生させる方法は、上記第1態様において、以下の等式、
w1+w2+w3+w4+w5+w6+w7=w8+w9+w10
であって、前記幅w9および前記幅w10は、いずれも、光123が照射されない窓層109の部分の幅を表す、等式を充足してもよい。
第3態様に係る太陽電池を用いて電力を発生させる方法は、上記第1態様において、前記n型InGaAs層104、前記p型InGaAs層103、前記第1トンネル接合層110、前記n型GaAs層106、前記p型GaAs層105、前記第2トンネル接合層111、前記n型InGaP層108、前記p型InGaP層107、および前記p型窓層109の側面は、絶縁層121によって被覆されていてもよい。
本開示の第4態様に係る太陽電池は、集光レンズ101および太陽電池素子102を具備する太陽電池であって、
前記太陽電池素子は、n型InGaAs層104、p型InGaAs層103、n型GaAs層106、p型GaAs層105、n型InGaP層108、p型InGaP層107、第1トンネル接合層110、第2トンネル接合層111、窓層109、n側電極120、およびp側電極121を具備し、
Z方向は、前記p型InGaAs層103の法線方向であり、
X方向は、前記Z方向に直交し、
前記n型InGaAs層104、前記p型InGaAs層103、前記第1トンネル接合層110、前記n型GaAs層106、前記p型GaAs層105、前記第2トンネル接合層111、前記n型InGaP層108、前記p型InGaP層107、および前記窓層109は、この順にZ方向に沿って積層されており、
前記n側電極120は、前記n型InGaAs層104に電気的に接続されており、
前記p側電極121は、前記p型InGaP層107に電気的に接続されており、
前記n型InGaAs層104は、InGaAs中央部104a、第1InGaAs周辺部104b、および第2InGaAs周辺部104cに分割されており、
前記InGaAs中央部104aは、前記X方向に沿って、前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cの間に挟まれており、
前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cは層の形状を有しており、
前記n型GaAs層106は、GaAs中央部106a、第1GaAs周辺部106b、および第2GaAs周辺部106cに分割されており、
前記GaAs中央部106aは、前記X方向に沿って、前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cの間に挟まれており、
前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cは層の形状を有しており、
前記n型InGaP層108は、InGaP中央部108a、第1InGaP周辺部108b、および第2InGaP周辺部108cに分割されており、
前記InGaP中央部108aは、前記X方向に沿って、前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cの間に挟まれており、
前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cは層の形状を有しており、
以下の不等式のセット(III)、
d2<d1、
d3<d1、
1ナノメートル≦d2≦4ナノメートル、
1ナノメートル≦d3≦4ナノメートル、
d5<d4、
d6<d4、
1ナノメートル≦d5≦4ナノメートル、
1ナノメートル≦d6≦4ナノメートル、
d8<d7、
d9<d7、
1ナノメートル≦d8≦5ナノメートル、
1ナノメートル≦d9≦5ナノメートル、
100ナノメートル≦w2、
100ナノメートル≦w3、
100ナノメートル≦w4、
100ナノメートル≦w5、
100ナノメートル≦w6、および
100ナノメートル≦w7
を充足し、
d1は、前記Z方向に沿った前記InGaAs中央部104aの厚みを表し、
d2は、前記Z方向に沿った前記第1InGaAs周辺部104bの厚みを表し、
d3は、前記Z方向に沿った前記第2InGaAs周辺部104cの厚みを表し、
d4は、前記Z方向に沿った前記GaAs中央部106aの厚みを表し、
d5は、前記Z方向に沿った前記第1GaAs周辺部106bの厚みを表し、
d6は、前記Z方向に沿った前記第2GaAs周辺部106cの厚みを表し、
d7は、前記Z方向に沿った前記InGaP中央部108aの厚みを表し、
d8は、前記Z方向に沿った前記第1InGaP周辺部108bの厚みを表し、
d9は、前記Z方向に沿った前記第2InGaP周辺部108cの厚みを表し、
w2は、前記X方向に沿った前記第1InGaAs周辺部104bの幅を表し、
w3は、前記X方向に沿った前記第2InGaAs周辺部104cの幅を表し、
w4は、前記X方向に沿った前記第1GaAs周辺部106bの幅を表し、
w5は、前記X方向に沿った前記第2GaAs周辺部106cの幅を表し、
w6は、前記X方向に沿った前記第1InGaP周辺部108bの幅を表し、
w7は、前記X方向に沿った前記第2InGaP周辺部108cの幅を表す。
本開示の実施形態を、図面を参照しながら、以下、説明する。
(実施形態)
(工程(a))
工程(a)では、太陽電池を用意する。
図1Aは、実施形態による太陽電池の断面図を示す。図1Aに示されるように、太陽電池は、集光レンズ101および太陽電池素子102を具備する。
図1Bは、実施形態による太陽電池素子102の断面図を示す。図1Bに示されるように、太陽電池素子102は、n型InGaAs層104、p型InGaAs層103、n型GaAs層106、p型GaAs層105、n型InGaP層108、p型InGaP層107、第1トンネル接合層110、第2トンネル接合層111、窓層109、n側電極120、およびp側電極121を具備する。
p型InGaAs層103は、n型InGaAs層104上に積層されている。p型GaAs層105は、n型GaAs層106上に積層されている。p型InGaP層107は、n型InGaP層108上に積層されている。Z方向は、積層方向である。言い換えれば、Z方向は、p型InGaAs層103の法線方向に平行である。
Z方向に沿って、第1トンネル接合層110は、p型InGaAs層103およびn型GaAs層106の間に挟まれている。Z方向に沿って、第2トンネル接合層111は、p型GaAs層105およびn型InGaP層108の間に挟まれている。
p側電極121は、p型InGaP層107に電気的に接続されている。n側電極120は、n型InGaAs層104に電気的に接続されている。
Z方向に沿って、第1n型バリア層112およびn型コンタクト層118が、n型InGaAs層104およびn側電極120の間に挟まれていてもよい。Z方向に沿って、第1n型バリア層112は、n型InGaAs層104およびn型コンタクト層118の間に挟まれている。Z方向に沿って、n型コンタクト層118は、第一のn型バリア層112およびn側電極120の間に挟まれている。
Z方向に沿って、第1p型バリア層113が、p型InGaAs層103および第1トンネル接合層110の間に挟まれていてもよい。Z方向に沿って、第2n型バリア層114が、n型GaAs層106および第1トンネル接合層110の間に挟まれていてもよい。
Z方向に沿って、第2p型バリア層115が、p型GaAs層105および第2トンネル接合層111の間に挟まれていてもよい。Z方向に沿って、第3n型バリア層116が、n型InGaP層108および第2トンネル接合層111の間に挟まれていてもよい。
Z方向に沿って、p型コンタクト層119が窓層109およびp側電極121の間に挟まれていてもよい。p側電極121、p型コンタクト層119、窓層109、p型InGaP層107、n型InGaP層108、第3n型バリア層116、第2トンネル接合層111、第2p型バリア層115、p型GaAs層105、n型GaAs層106、第2n型バリア層114、第1トンネル接合層110、第1p型バリア層113、p型InGaAs層103、n型InGaAs層104、第1n型バリア層112、n型コンタクト層118、およびn側電極120は、この順で電気的に直列に接続される。
図1Bに示されるように、n型InGaAs層104は、InGaAs中央部104a、第1InGaAs周辺部104b、および第2InGaAs周辺部104cに分割されている。InGaAs中央部104aは、X方向に沿って、第1InGaAs周辺部104bおよび第2InGaAs周辺部104cの間に挟まれている。X方向は、Z方向に直交する。
図1Bに示されるように、n型GaAs層106は、GaAs中央部106a、第1GaAs周辺部106b、および第2GaAs周辺部106cに分割されている。GaAs中央部106aは、X方向に沿って、第1GaAs周辺部106bおよび第2GaAs周辺部106cの間に挟まれている。
図1Bに示されるように、n型InGaP層108は、InGaP層中央部108a、第1InGaP周辺部108bおよび第2InGaP周辺部108cに分割されている。InGaP中央部108aは、X方向に沿って、第1InGaP周辺部108bおよび第2InGaP周辺部108cの間に挟まれている。
図2に示されるように、InGaAs中央部104aの厚みd1は、第1InGaAs周辺部104bの厚みd2および第2InGaAs周辺部104cの厚みd3よりも大きい。厚みd1が厚みd2および厚みd3と同じである場合、より高い光電変換効率が達成されない(後述する比較例1、2を参照)。
図2に示されるように、GaAs中央部106aの厚みd4は、第1GaAs周辺部106bの厚みd5および第2GaAs周辺部106cの厚みd6よりも大きい。厚みd4が厚みd5および厚みd6と同じである場合、より高い光電変換効率が達成されない(後述する比較例1、2を参照)。
図2に示されるように、InGaP中央部108aの厚みd7は、第1InGaP周辺部108bの厚みd8および第2InGaP周辺部108cの厚みd9よりも大きい。厚みd7が厚みd8および厚みd9と同じである場合、より高い光電変換効率が達成されない(後述する比較例1、2を参照。)。
厚みd2は、1ナノメートル以上4ナノメートル以下である。厚みd2が1ナノメートル未満である場合、より高い光電変換効率が達成されない(後述する比較例7を参照。)。厚みd2が4ナノメートルを超えると、より高い光電変換効率が達成されない(後述する比較例4〜6を参照。)。同様に、厚みd3も1ナノメートル以上4ナノメートル以下である。
厚みd5は、1ナノメートル以上4ナノメートル以下である。厚みd5が1ナノメートル未満である場合、より高い光電変換効率が達成されない(後述する比較例11を参照。)。厚みd5が4ナノメートルを超えると、より高い光電変換効率が達成されない(後述する比較例8〜10を参照。)。同様に、厚みd6も1ナノメートル以上4ナノメートル以下である。
厚みd8は、1ナノメートル以上5ナノメートル以下である。厚みd8が1ナノメートル未満である場合、より高い光電変換効率が達成されない(後述する比較例14を参照。)。厚みd8が5ナノメートルを超えると、より高い光電変換効率が達成されない(後述する比較例12〜13を参照。)。同様に、厚みd9も1ナノメートル以上5ナノメートル以下である。
図2に示されるように、InGaAs中央部104aは、幅w1を有する。第1InGaAs周辺部104bは、幅w2を有する。第2InGaAs周辺部104cは、幅w3を有する。w2の値は、0.1マイクロメートル以上である。w2の値が0.1マイクロメートルより小さい場合、光電変換効率が低下する(後述する比較例15を参照。)。同様な理由により、w3の値は、0.1マイクロメートル以上である。
図2に示されるように、GaAs中央部106aは、幅(w1+w2+w3)を有する。第1GaAs周辺部106bは、幅w4を有する。第2GaAs周辺部106cは、幅w5を有する。w4の値は、0.1マイクロメートル以上である。w4の値が0.1マイクロメートルより小さい場合、光電変換効率が低下する(後述する比較例16を参照。)。同様な理由により、w5の値は、0.1マイクロメートル以上である。
図2に示されるように、InGaP中央部108aは、幅(w1+w2+w3+w4+w5)を有する。第1InGaP周辺部108bは、幅w6を有する。第2InGaP周辺部108cは、幅w7を有する。w6の値は、0.1マイクロメートル以上である。w6の値が0.1マイクロメートルより小さい場合、光電変換効率が低下する(後述する比較例17を参照。)。同様な理由により、w7の値は、0.1マイクロメートル以上である。
従って、実施形態では、以下の不等式のセット(I)が充足されることが必要である。
d2<d1、
d3<d1、
1ナノメートル≦d2≦4ナノメートル、
1ナノメートル≦d3≦4ナノメートル、
d5<d4、
d6<d4、
1ナノメートル≦d5≦4ナノメートル、
1ナノメートル≦d6≦4ナノメートル、
d8<d7、
d9<d7、
1ナノメートル≦d8≦5ナノメートル、
1ナノメートル≦d9≦5ナノメートル、
100ナノメートル≦w2、
100ナノメートル≦w3、
100ナノメートル≦w4、
100ナノメートル≦w5、
100ナノメートル≦w6、および
100ナノメートル≦w7
上述の通り、値d1は、Z方向に沿ったInGaAs中央部104aの厚みを表す。
値d2は、Z方向に沿った第1InGaAs周辺部104bの厚みを表す。
値d3は、Z方向に沿った第2InGaAs周辺部104cの厚みを表す。
値d4は、Z方向に沿ったGaAs中央部106aの厚みを表す。
値d5は、Z方向に沿った第1GaAs周辺部106bの厚みを表す。
値d6は、Z方向に沿った第2GaAs周辺部106cの厚みを表す。
値d7は、Z方向に沿ったInGaP中央部108aの厚みを表す。
値d8は、Z方向に沿った第1InGaP周辺部108bの厚みを表す。
値d9は、Z方向に沿った第2InGaP周辺部108cの厚みを表す。
値w2は、X方向に沿った第1InGaAs周辺部104bの幅を表す。
値w3は、X方向に沿った第2InGaAs周辺部104cの幅を表す。
値w4は、X方向に沿った第1GaAs周辺部106bの幅を表す。
値w5は、X方向に沿った第2GaAs周辺部106cの幅を表す。
値w6は、X方向に沿った第1InGaP周辺部108bの幅を表す。
値w7は、X方向に沿った第2InGaP周辺部108cの幅を表す。
集光レンズ101の表側の面には、光が照射される。このことは、後に記述する工程(b)において詳細に説明する。光としては、太陽光であってもよい。
集光レンズ101の裏面は、太陽電池素子102に接してもよい。集光レンズ101により、窓層109に光が集束する。集光レンズ101は、およそ2ミリメートル〜10ミリメートルの直径、2ミリメートル〜10ミリメートルの厚み、およそ1.1〜2.0の屈折率を有してもよい。集光レンズ101の材料は限定されない。集光レンズ101の材料の例は、ガラスまたは樹脂である。
窓層109は、InGaPと近い格子定数を持ち、かつInGaPよりも大きいバンドギャップを有するp型化合物半導体からなる。窓層109の材料の例は、p型InAlGaPまたはp型InAlPである。
第1n型バリア層112は、InGaAsと近い格子定数を持ち、かつInGaAsよりも大きいバンドギャップを有するn型化合物半導体からなる。第1n型バリア層112の材料の例は、n型InGaPまたはn型InPである。
第2n型バリア層114は、GaAsと近い格子定数を持ち、かつGaAsよりも大きいバンドギャップを有するn型化合物半導体からなる。第2n型バリア層114の材料の例は、n型InGaPまたはn型AlGaAsである。
第3n型バリア層116は、InGaPと近い格子定数を持ち、かつInGaPよりも大きいバンドギャップを有するn型化合物半導体からなる。第3n型バリア層116の材料の例は、n型InAlGaPまたはn型InAlPである。
第1p型バリア層113は、InGaAsと近い格子定数を持ち、かつInGaAsよりも大きいバンドギャップを有するp型化合物半導体からなる。第1p型バリア層113の材料の例は、p型InGaPまたはp型InPである。
第2p型バリア層115は、GaAsと近い格子定数を持ち、かつGaAsよりも大きいバンドギャップを有するp型化合物半導体からなる。第2p型バリア層115の材料の例は、p型InGaPまたはp型AlGaAsである。
第1トンネル接合層110は、pn接合を形成する2層の薄い半導体層からなる。言い換えれば、第1トンネル接合層110は、p型半導体層(図示せず)およびn型半導体層(図示せず)からなる。このp型半導体層は、このn型半導体層に積層されている。これらの2層の半導体層は、高い濃度でドーピングされている。これら2層の半導体層は、GaAsと近い格子定数を有する。第1トンネル接合層110の材料の例は、GaAs、InGaP、またはAlGaAsである。
第1トンネル接合層110と同様に、第2トンネル接合層111もまた、pn接合を形成する2層の薄い半導体層からなる。言い換えれば、第2トンネル接合層111も、p型半導体層(図示せず)およびn型半導体層(図示せず)からなる。このp型半導体層は、このn型半導体層に積層されている。これらの2層の半導体層は、高い濃度でドーピングされている。これら2層の各半導体層は、GaAsまたはInGaPと近い格子定数を有する。第2トンネル接合層111に用いられる材料の例は、GaAs、InGaP、またはAlGaAsである。
バッファ層117は、p型InGaAs層103およびn型GaAs層106の間の格子不整合を解消する。バッファ層117の例は、In1−xGaP層である。ここで、xの値は、p型InGaAs層103からn型GaAs層106に向けて徐々に小さくなる。一例として、p型InGaAs層103に接する部分のバッファ層117は、In1−xGaP層(X=0.51)であるが、n型GaAs層106に接する部分のバッファ層117は、In1−xGaP層(X=0.22)である。
オーミック接合が、窓層109との界面およびp側電極121との界面において形成される限り、p型コンタクト層119の材料は限定されない。p型コンタクト層119の材料の例は、p型GaAsである。
オーミック接合が第1n型バリア層112との界面およびn側電極120との界面において形成される限り、n型コンタクト層118の材料は限定されない。n型コンタクト層118の材料の例は、n型GaAsである。
図1Bに示されるように、層103〜119の側面は絶縁膜122によって被覆されてもよい。絶縁膜122の材料の例は、ノンドープのInGaP、二酸化シリコン、または窒化シリコンである。
絶縁膜122が用いられる場合、図5に示されるように、絶縁膜122が金属膜131によって被覆され得る。金属膜131は、太陽電池素子102の放熱特性を向上させる。
金属膜131がp側電極121に電気的に接続され、かつ一面(図5では下面)に金属膜131およびn側電極120が露出してもよい。
(太陽電池素子102を製造する方法)
太陽電池素子102を製造する方法を、以下、図3A〜図3Eおよび図4A〜図4Dを参照しながら説明する。
まず、図3Aに示されるように、GaAs基板124の表面に、犠牲層125、p型コンタクト層119、窓層109、p型InGaP層107、n型InGaP層108、第3n型バリア層116、第2トンネル接合層111、第2p型バリア層115、p型GaAs層105、n型GaAs層106、第2n型バリア層114、第1トンネル接合層110、バッファ層117、第1p型バリア層113、p型InGaAs層103、n型InGaAs層104、第1n型バリア層112、およびn型コンタクト層118が、この順で、分子線エピタキシー法または有機金属化学気相成長法(以下、「MOCVD法」という)のような一般的な半導体成長方法により成長する。犠牲層125は、GaAsと近い格子定数を有する。犠牲層125は、GaAsに対して選択的にエッチングされるための層である。犠牲層125の材料の例は、AlAsまたはInGaPである。
次に、図3Bに示されるように、n型コンタクト層118上に第1マスク126が形成される。第1マスク126は、図2におけるw1と同じ幅を有する。第1マスク126を用いて、n型コンタクト層118および第1n型バリア層112の不要な部分がエッチングされる。さらに、n型InGaAs層104の周囲の上部がエッチングされる。n型InGaAs層104のエッチング深さは、図2に示される(d1−d3)の厚みと同じである。エッチングのために、BClおよびSFの混合ガスが用いてもよい。
図3Cに示されるように、第1マスク126が除去され、そして第2マスク127が形成される。第2マスク127の幅は、図2に示す(w1+w2+w3)の値と同一である。第2マスク127を用いて、n型InGaAs層104、p型InGaAs層103、第1p型バリア層113、第1トンネル接合層110、および第2n型バリア層114の不要な部分がエッチングされる。さらに、n型GaAs層106の周囲の上部がエッチングされる。n型GaAs層106のエッチング深さは、図2に示される(d4−d5)の厚みと同じである。
図3Dに示されるように、第2マスク127が除去され、そして第3マスク128が形成される。第3マスク128の幅は、図2に示す(w1+w2+w3+w4+w5)の値と同一である。第3マスク128を用いて、n型GaAs層106、p型GaAs層105、第2p型バリア層115、第2トンネル接合層111、および第3n型バリア層116の不要な部分がエッチングされる。さらに、n型InGaP層108の周囲の上部がエッチングされる。n型InGaP層108のエッチング深さは、図2に示される(d7−d8)の厚みと同じである。
図3Eに示されるように、第3マスク128が除去され、そして第4マスク129が形成される。第4マスク129の幅は、図2に示す(w1+w2+w3+w4+w5+w6+w7)の値と同一である。第4マスク129を用いて、n型InGaP層108、p型InGaP層107、窓層109、およびn型コンタクト層118の不要な部分がエッチングされる。
図4Aに示されるように、第4マスク129が除去される。n側電極120および絶縁膜122が形成される。n側電極120を形成する手法の例は、スパッタ法または電子ビーム蒸着法である。絶縁膜122を形成する手法の例は、スパッタ法または化学気相成長法である。
図4Bに示されるように、n側電極120に下地基板130が固定される。GaAs基板124および犠牲層125がエッチングにより除去される。下地基板130の例は、シリコン基板またはガラス基板である。ワックス膜または粘着シートが、必要に応じて、n側電極120および下地基板130の間に挟まれ得る。
図4Cに示されるように、p型コンタクト層119上にp側電極121が形成される。さらに、p型コンタクト層119のp側電極121に接していない部分がエッチングにより除去される。p側電極121を形成する手法の例は、スパッタ法または電子ビーム蒸着法である。
最後に、図4Dに示されるように、下地基板130が除去される。このようにして、太陽電池素子102が得られる。得られた太陽電池素子102は、図1Aに示されるように、集光レンズ101に取り付けられる。このようにして、太陽電池が得られる。
(工程(b))
工程(b)では、集光レンズ101を介して窓層109に光を照射して、n側電極120およびp側電極121の間に電位差を発生させる。図2に示されるように、窓層109の領域Sに光123が照射される。
本発明者らは、工程(b)では、以下の不等式(II)が充足されることが必要であることを見出している。
w8≦w1・・・(II)
上述したように、w1の値は、X方向に沿ったInGaAs中央部104aの幅を表す。
w8の値は、領域SのX方向に沿った幅を表す。
Z方向に沿って見たときに、InGaAs中央部104aは、領域Sに重なる。
不等式(II)が充足されない場合、より高い光電変換効率が達成されない(比較例18〜21を参照)。
図2に示すように、次の等式:(w1+w2+w3+w4+w5+w6+w7)=(w8+w9+w10)が充足される場合、幅w9は、幅(w2+w4+w6)と等しいか、それよりも大きく、かつ幅w10は、幅(w3+w5+w7)と等しいか、それよりも大きい。幅w9および幅w10は、いずれも、光123が照射されない窓層109の部分の幅を表す。
(実施例)
以下の実施例によって、本開示をより詳細に説明する。
(実施例1)
実施例1では、図2に示される太陽電池素子102を、図3A〜図3Eおよび図4A〜図4Dに示される方法によって作製した。
表1は、実施例1による太陽電池素子102に設けられた各層の組成および膜厚を示す。
Figure 0005404979
実施例1におけるd1〜d9およびw1〜w7の値は、以下に記述される。
d1:2.9マイクロメートル
d2:4ナノメートル
d3:4ナノメートル
d4:2.5マイクロメートル
d5:4ナノメートル
d6:4ナノメートル
d7:0.9マイクロメートル
d8:4ナノメートル
d9:4ナノメートル
w1:70マイクロメートル
w2:5マイクロメートル
w3:5マイクロメートル
w4:5マイクロメートル
w5:5マイクロメートル
w6:5マイクロメートル
w7:5マイクロメートル
実施例1における集光レンズ101は、3ミリメートルの厚みを有していた。集光レンズ101の底面は、3ミリメートル四方であった。集光レンズ101は、70マイクロメートル四方の焦点スポットを有していた。
実施例1による太陽電池は、以下のように作製された。
まず、図3Aに示されるように、表1に示す層104〜125が、ノンドープのGaAs基板124上にMOCVD法により成長された。
次に、図3Bに示されるように、70マイクロメートル四方のレジスト膜が、n型コンタクト層118上に、フォトリソグラフィ法により形成された。このレジスト膜を第1マスク126として用いて、n型コンタクト層118および第1n型バリア層112の不要な部分が、BClおよびSFの混合ガスを用いるICPプラズマエッチング法により除去された。さらに、同じ混合ガスを用いて、n型InGaAs層104の周囲部分がわずかに残るように、ほとんど全てのn型InGaAs層104の周囲部分がエッチングされた。
エッチング後、n型InGaAs層104の残っている周辺部分の厚みが、透過型電子顕微鏡により測定された。その結果、厚みは4ナノメートルであった。
剥離液を用いて第1マスク126が除去された。その後、第2マスク127として、80マイクロメートル四方のレジスト膜が形成された。レジスト膜の中心は、第1マスク126の中心と一致した。
第2マスク127を用いて、n型InGaAs層104、p型InGaAs層103、第1p型バリア層113、第1トンネル接合層110、および第2n型バリア層114の不要な部分がエッチングされた。さらに、図3Cに示されるように、わずかにn型GaAs層106の周囲部分が残るように、ほとんど全てのn型GaAs層106の周囲部分がエッチングされた。
エッチング後、n型GaAs層106の残っている周辺部分の厚みが、透過型電子顕微鏡により測定された。厚みは4ナノメートルであった。
剥離液を用いて第2マスク127が除去された。除去後、第3マスク128として、90マイクロメートル四方のレジスト膜が形成された。レジスト膜の中心は、第1マスク126および第2マスク127の中心と一致した。
第3マスク128を用いて、n型GaAs層106、p型GaAs層105、第2p型バリア層115、第2トンネル接合層111および第3n型バリア層116の不要な部分がエッチングされた。さらに、図3Dに示されるように、わずかにn型InGaP層108の周囲部分が残るように、ほとんど全てのn型InGaP層108の周囲部分がエッチングされた。
エッチング後、n型InGaP層108の残っている周辺部分の厚みが、透過型電子顕微鏡により測定された。厚みは4ナノメートルであった。
剥離液を用いて第3マスク128が除去された。除去後、第4マスク129として100マイクロメートルの四方のレジスト膜が形成された。レジスト膜の中心は、第1マスク126、第2マスク127および第3マスク128の中心と一致した。
第4マスク129を用いて、図3Eに示されるように、n型InGaP層108、p型InGaP層107、窓層109、およびn型コンタクト層118の不要な部分がエッチングされ、犠牲層125を露出させた。
剥離液を用いて第4マスク129が除去された。除去後、図4Aに示されるように、電子ビーム蒸着装置を用いて、50ナノメートルの厚みを有するチタン膜および250ナノメートルの厚みを有する金膜がn型コンタクト層118上に積層され、n側電極120を形成した。
次に、図4Aに示されるように、400ナノメートルの厚みを有するSiN膜からなる絶縁膜122が、プラズマCVD装置を用いて形成された。
n側電極120が形成された面に、スピンコーターを用いてワックスが塗布された。ワックスが乾燥された後、n側電極120がガラス製の下地基板130に固定された。
固定後、クエン酸および過酸化水素の混合液を用いて、GaAs基板124が除去された。続いて、バッファードフッ酸を用いて犠牲層125が除去されて、p型コンタクト層119を露出させた。このようにして、図4Bに示される構造を得た。
図4Cに示されるように、電子ビーム蒸着装置を用いて、50ナノメートルの厚みを有するチタン膜、150ナノメートルの厚みを有する白金膜、および250ナノメートルの厚みを有する金膜が、p型コンタクト層119上にこの順で形成され、p側電極121を形成した。さらにp型コンタクト層119のp側電極121に接していない部分が、エッチングにより除去された。
エッチング後、イソプロパノールを用いてワックスが溶かされ、下地基板130を除去した。このようにして、図4Dに示される太陽電池素子102が得られた。
集光レンズ101の焦点位置の中心が、太陽電池素子102の中心と一致するように、得られた太陽電池素子102が集光レンズ101に貼り付けられた。このようにして、実施例1による太陽電池が得られた。
実施例1による太陽電池に、w8=70マイクロメートルおよびw9=w10=15マイクロメートルの条件下で太陽光が照射された。実施例1による太陽電池の電圧−電流特性が測定され、光電変換効率を算出した。表2は、後述する実施例2〜17および比較例1〜21の結果と共に、実施例1の結果を示す。
変換効率は、以下の等式(I)に従って算出した。
変換効率=太陽電池からの最大出力値/太陽光のエネルギー・・・(I)
上記等式において記述された最大出力値は、下記文献の図1.8に「パワー密度」として示されるように、以下の等式(II)で定義される出力値の最大値である。
出力値=太陽電池から得られる電流密度・太陽電池から得られるバイアス電力・・・(II)
詳しくは、文献 Jenny Nelson著、The Physics of Solar Cells、World Scientific Pub Co Inc.第11頁〜第13頁を参照。
表2は、実施例1−17、比較例1−21のd1−d9及びw1−w10の値、並びに、変換効率を示す表である。なお、表1中において、d1−d9およびw1−w10の単位は、マイクロメートルである。
Figure 0005404979
(実施例2)
d2=d3=2ナノメートルであること以外は、実施例1と同様の実験を行った。
(実施例3)
d2=d3=1ナノメートルであること以外は、実施例1と同様の実験を行った。
(実施例4)
d5=d6=2ナノメートルであること以外は、実施例1と同様の実験を行った。
(実施例5)
d5=d6=1ナノメートルであること以外は、実施例1と同様の実験を行った。
(実施例6)
d8=d9=5ナノメートルであること以外は、実施例1と同様の実験を行った。
(実施例7)
d8=d9=2ナノメートルであること以外は、実施例1と同様の実験を行った。
(実施例8)
d8=d9=1ナノメートルであること以外は、実施例1と同様の実験を行った。
(実施例9)
w1=79.8マイクロメートルおよびw2=w3=0.1マイクロメートルであること以外は、実施例1と同様の実験を行った。
(実施例10)
w1=79マイクロメートルおよびw2=w3=0.5マイクロメートルであること以外は、実施例1と同様の実験を行った。
(実施例11)
w1=79.8マイクロメートルおよびw4=w5=0.1マイクロメートルであること以外は、実施例1と同様の実験を行った。
(実施例12)
w1=79マイクロメートルおよびw4=w5=0.5マイクロメートルであること以外は、実施例1と同様の実験を行った。
(実施例13)
w1=79.8マイクロメートルおよびw6=w7=0.1マイクロメートルであること以外は、実施例1と同様の実験を行った。
(実施例14)
w1=79マイクロメートルおよびw6=w7=0.5マイクロメートルであること以外は、実施例1と同様の実験を行った。
(実施例15)
w8=66マイクロメートルおよびw9=w10=17マイクロメートルであること以外は、実施例1と同様の実験を行った。
(実施例16)
w1=40マイクロメートル、w2=w3=w4=w5=w6=w7=10マイクロメートル、w8=40マイクロメートル、およびw9=w10=30マイクロメートルであること以外は、実施例1と同様の実験を行った。
(実施例17)
w1=40マイクロメートル、w2=w3=w4=w5=w6=w7=10マイクロメートル、w8=36マイクロメートル、およびw9=w10=32マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例1)
d2=d3=2.9マイクロメートル、d5=d6=2.5マイクロメートル、d8=d9=0.9マイクロメートル、およびw8=100マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例2)
d2=d3=2.9マイクロメートル、d5=d6=2.5マイクロメートルおよびd8=d9=0.9マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例3)
w8=100マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例4)
d2=d3=0.1マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例5)
d2=d3=0.01マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例6)
d2=d3=0.005マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例7)
d2=d3=0マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例8)
d5=d6=0.1マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例9)
d5=d6=0.01マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例10)
d5=d6=0.005マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例11)
d5=d6=0マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例12)
d8=d9=0.1マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例13)
d8=d9=0.01マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例14)
d8=d9=0マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例15)
w1=79.9マイクロメートルおよびw2=w3=0.05マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例16)
w1=79.9マイクロメートルおよびw4=w5=0.05マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例17)
w1=79.9マイクロメートルおよびw6=w7=0.05マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例18)
w8=78マイクロメートルおよびw9=w10=11マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例19)
w6=74マイクロメートルおよびw9=w10=13マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例20)
w1=40マイクロメートル、w2=w3=w4=w5=w6=w7=10マイクロメートル、w8=48マイクロメートルおよびw9=w10=26マイクロメートルであること以外は、実施例1と同様の実験を行った。
(比較例21)
w1=40マイクロメートル、w2=w3=w4=w5=w6=w7=10マイクロメートル、w8=44マイクロメートルおよびw9=w10=28マイクロメートルであること以外は、実施例1と同様の実験を行った。
表2から明らかなように、以下の不等式のセット(III)が充足されるときに、太陽電池は、34%以上の高い光電変換効率を有する。
d2<d1、
d3<d1、
1ナノメートル≦d2≦4ナノメートル、
1ナノメートル≦d3≦4ナノメートル、
d5<d4、
d6<d4、
1ナノメートル≦d5≦5ナノメートル、
1ナノメートル≦d6≦5ナノメートル、
d8<d7、
d9<d7、
1ナノメートル≦d8≦5ナノメートル、
1ナノメートル≦d9≦5ナノメートル、
100ナノメートル≦w2、
100ナノメートル≦w3、
100ナノメートル≦w4、
100ナノメートル≦w5、
100ナノメートル≦w6、
100ナノメートル≦w7、および
w8≦w1
実施例1〜17および比較例1〜2は、以下の不等式のセットが充足されることが必要であることを示す。
d2<d1、
d3<d1、
d5<d4、
d6<d4、
d8<d7、および
d9<d7
実施例1〜3および比較例4〜7は、以下の不等式のセットが充足されることが必要であることを示す。
1ナノメートル≦d2≦4ナノメートル、および
1ナノメートル≦d3≦4ナノメートル
実施例1、4〜5および比較例8〜11は、以下の不等式のセットが充足されることが必要であることを示す。
1ナノメートル≦d5≦4ナノメートル、および
1ナノメートル≦d6≦4ナノメートル
実施例1、6〜8および比較例12〜14は、以下の不等式のセットが充足されることが必要であることを示す。
1ナノメートル≦d8≦5ナノメートル、および
1ナノメートル≦d9≦5ナノメートル
実施例9〜10および比較例15は、以下の不等式のセットが充足されることが必要であることを示す。
100ナノメートル≦w2、および
100ナノメートル≦w3
実施例11〜12および比較例16は、以下の不等式のセットが充足されることが必要であることを示す。
100ナノメートル≦w4、および
100ナノメートル≦w5
実施例13〜14および比較例17は、以下の不等式のセットが充足されることが必要であることを示す。
100ナノメートル≦w6、および
100ナノメートル≦w7
実施例1、15〜17および比較例18〜21は、以下の不等式が充足されることが必要であることを示す。
w8≦w1
本開示によれば、より高い光電変換効率を有する太陽電池を提供する。
1 GaAs基板
4 AlAs層
5 AlGaAs層
6 GaAs層
7 InGaP層
8 GaAs層
T1 GaAs層
T2 AlInP層
T3 InGaP層
T4 InGaP層
T5 AlInP層
M1 AlInP層
M2 GaAs層
M3 GaAs層
M4 InGaP層
B6 InP層
B7 InGaAs層
B8 InGaAs層
B9 InP層
B10 GaAs層
T トップセル
M ミドルセル
B ボトムセル
11 太陽電池素子
12 半導体基板
13a p型GaAsバッファ層
13b p型InGaP−BSF層
13c p型GaAsベース層
13d n型GaAsエミッタ層
13e n型InGaP窓層
15 反射防止層
101 集光レンズ
102 太陽電池素子
103 p型InGaAs層
104 n型InGaAs層
104a InGaAs中央部
104b 第1InGaAs周辺部
104c 第2InGaAs周辺部
105 p型GaAs層
106 n型GaAs層
106a GaAs中央部
106b 第1GaAs周辺部
106c 第2GaAs周辺部
107 p型InGaP層
108 n型InGaP層
108a InGaP中央部
108b 第1InGaP周辺部
108c 第2InGaP周辺部
109 窓層
110 第1トンネル接合層
111 第2トンネル接合層
112 第1n型バリア層
113 第1p型バリア層
114 第2n型バリア層
115 第2p型バリア層
116 第3n型バリア層
117 バッファ層
118 n型コンタクト層
119 p型コンタクト層
120 n側電極
121 p側電極
122 絶縁膜
123 光
124 GaAs基板
125 犠牲層
126 第1マスク
127 第2マスク
128 第3マスク
129 第4マスク
130 下地基板
131 金属膜

Claims (4)

  1. 集光レンズ101および太陽電池素子102を具備する太陽電池を用意する工程(a)であって、前記太陽電池素子102は、n型InGaAs層104、p型InGaAs層103、n型GaAs層106、p型GaAs層105、n型InGaP層108、p型InGaP層107、第1トンネル接合層110、第2トンネル接合層111、窓層109、n側電極120、およびp側電極121を具備し、
    Z方向は、前記p型InGaAs層103の法線方向であり、
    X方向は、前記Z方向に直交し、
    前記n型InGaAs層104、前記p型InGaAs層103、前記第1トンネル接合層110、前記n型GaAs層106、前記p型GaAs層105、前記第2トンネル接合層111、前記n型InGaP層108、前記p型InGaP層107、および前記窓層109は、この順にZ方向に沿って積層されており、
    前記n側電極120は、前記n型InGaAs層104に電気的に接続されており、
    前記p側電極121は、前記p型InGaP層107に電気的に接続されており、
    前記n型InGaAs層104は、InGaAs中央部104a、第1InGaAs周辺部104b、および第2InGaAs周辺部104cに分割されており、
    前記InGaAs中央部104aは、前記X方向に沿って、前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cの間に挟まれており、
    前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cは層の形状を有しており、
    前記n型GaAs層106は、GaAs中央部106a、第1GaAs周辺部106b、および第2GaAs周辺部106cに分割されており、
    前記GaAs中央部106aは、前記X方向に沿って、前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cの間に挟まれており、
    前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cは層の形状を有しており、
    前記n型InGaP層108は、InGaP中央部108a、第1InGaP周辺部108b、および第2InGaP周辺部108cに分割されており、
    前記InGaP中央部108aは、前記X方向に沿って、前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cの間に挟まれており、
    前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cは層の形状を有しており、
    以下の不等式のセット(I)、
    d2<d1、
    d3<d1、
    1ナノメートル≦d2≦4ナノメートル、
    1ナノメートル≦d3≦4ナノメートル、
    d5<d4、
    d6<d4、
    1ナノメートル≦d5≦4ナノメートル、
    1ナノメートル≦d6≦4ナノメートル、
    d8<d7、
    d9<d7、
    1ナノメートル≦d8≦5ナノメートル、
    1ナノメートル≦d9≦5ナノメートル、
    100ナノメートル≦w2、
    100ナノメートル≦w3、
    100ナノメートル≦w4、
    100ナノメートル≦w5、
    100ナノメートル≦w6、および
    100ナノメートル≦w7
    を充足し、
    d1は、前記Z方向に沿った前記InGaAs中央部104aの厚みを表し、
    d2は、前記Z方向に沿った前記第1InGaAs周辺部104bの厚みを表し、
    d3は、前記Z方向に沿った前記第2InGaAs周辺部104cの厚みを表し、
    d4は、前記Z方向に沿った前記GaAs中央部106aの厚みを表し、
    d5は、前記Z方向に沿った前記第1GaAs周辺部106bの厚みを表し、
    d6は、前記Z方向に沿った前記第2GaAs周辺部106cの厚みを表し、
    d7は、前記Z方向に沿った前記InGaP中央部108aの厚みを表し、
    d8は、前記Z方向に沿った前記第1InGaP周辺部108bの厚みを表し、
    d9は、前記Z方向に沿った前記第2InGaP周辺部108cの厚みを表し、
    w2は、前記X方向に沿った前記第1InGaAs周辺部104bの幅を表し、
    w3は、前記X方向に沿った前記第2InGaAs周辺部104cの幅を表し、
    w4は、前記X方向に沿った前記第1GaAs周辺部106bの幅を表し、
    w5は、前記X方向に沿った前記第2GaAs周辺部106cの幅を表し、
    w6は、前記X方向に沿った前記第1InGaP周辺部108bの幅を表し、
    w7は、前記X方向に沿った前記第2InGaP周辺部108cの幅を表す、太陽電池を用意する工程(a)と、
    以下の不等式(II)
    w8≦w1・・・(II)
    を充足するように、前記集光レンズ101を介して前記窓層109の表面に含まれる領域Sに光を照射して、前記n側電極120および前記p側電極121の間に電圧差を生じさせる工程(b)であって、前記w1は、前記X方向に沿った、前記InGaAs中央部104aの幅を表し、前記w8は、前記Z方向を含む断面視において、前記領域Sの前記X方向に沿った幅を表し、前記Z方向から見たときに、前記InGaAs中央部104aは前記領域Sに重なる、工程(b)と、
    を含む、太陽電池を用いて電力を発生させる方法。
  2. 以下の等式
    w1+w2+w3+w4+w5+w6+w7=w8+w9+w10
    であって、前記幅w9および前記幅w10は、いずれも、光123が照射されない窓層109の部分の幅を表す、等式を充足する、請求項1に記載の太陽電池を用いて電力を発生させる方法。
  3. 前記n型InGaAs層104、前記p型InGaAs層103、前記第1トンネル接合層110、前記n型GaAs層106、前記p型GaAs層105、前記第2トンネル接合層111、前記n型InGaP層108、前記p型InGaP層107、および前記p型窓層109の側面は、絶縁層121によって被覆されている、請求項1に記載の太陽電池を用いて電力を発生させる方法。
  4. 集光レンズ101および太陽電池素子102を具備する太陽電池であって、
    前記太陽電池素子は、n型InGaAs層104、p型InGaAs層103、n型GaAs層106、p型GaAs層105、n型InGaP層108、p型InGaP層107、第1トンネル接合層110、第2トンネル接合層111、窓層109、n側電極120、およびp側電極121を具備し、
    Z方向は、前記p型InGaAs層103の法線方向であり、
    X方向は、前記Z方向に直交し、
    前記n型InGaAs層104、前記p型InGaAs層103、前記第1トンネル接合層110、前記n型GaAs層106、前記p型GaAs層105、前記第2トンネル接合層111、前記n型InGaP層108、前記p型InGaP層107、および前記窓層109は、この順にZ方向に沿って積層されており、
    前記n側電極120は、前記n型InGaAs層104に電気的に接続されており、
    前記p側電極121は、前記p型InGaP層107に電気的に接続されており、
    前記n型InGaAs層104は、InGaAs中央部104a、第1InGaAs周辺部104b、および第2InGaAs周辺部104cに分割されており、
    前記InGaAs中央部104aは、前記X方向に沿って、前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cの間に挟まれており、
    前記第1InGaAs周辺部104bおよび前記第2InGaAs周辺部104cは層の形状を有しており、
    前記n型GaAs層106は、GaAs中央部106a、第1GaAs周辺部106b、および第2GaAs周辺部106cに分割されており、
    前記GaAs中央部106aは、前記X方向に沿って、前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cの間に挟まれており、
    前記第1GaAs周辺部106bおよび前記第2GaAs周辺部106cは層の形状を有しており、
    前記n型InGaP層108は、InGaP中央部108a、第1InGaP周辺部108b、および第2InGaP周辺部108cに分割されており、
    前記InGaP中央部108aは、前記X方向に沿って、前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cの間に挟まれており、
    前記第1InGaP周辺部108bおよび前記第2InGaP周辺部108cは層の形状を有しており、
    以下の不等式のセット(III)、
    d2<d1、
    d3<d1、
    1ナノメートル≦d2≦4ナノメートル、
    1ナノメートル≦d3≦4ナノメートル、
    d5<d4、
    d6<d4、
    1ナノメートル≦d5≦4ナノメートル、
    1ナノメートル≦d6≦4ナノメートル、
    d8<d7、
    d9<d7、
    1ナノメートル≦d8≦5ナノメートル、
    1ナノメートル≦d9≦5ナノメートル、
    100ナノメートル≦w2、
    100ナノメートル≦w3、
    100ナノメートル≦w4、
    100ナノメートル≦w5、
    100ナノメートル≦w6、および
    100ナノメートル≦w7
    を充足し、
    d1は、前記Z方向に沿った前記InGaAs中央部104aの厚みを表し、
    d2は、前記Z方向に沿った前記第1InGaAs周辺部104bの厚みを表し、
    d3は、前記Z方向に沿った前記第2InGaAs周辺部104cの厚みを表し、
    d4は、前記Z方向に沿った前記GaAs中央部106aの厚みを表し、
    d5は、前記Z方向に沿った前記第1GaAs周辺部106bの厚みを表し、
    d6は、前記Z方向に沿った前記第2GaAs周辺部106cの厚みを表し、
    d7は、前記Z方向に沿った前記InGaP中央部108aの厚みを表し、
    d8は、前記Z方向に沿った前記第1InGaP周辺部108bの厚みを表し、
    d9は、前記Z方向に沿った前記第2InGaP周辺部108cの厚みを表し、
    w2は、前記X方向に沿った前記第1InGaAs周辺部104bの幅を表し、
    w3は、前記X方向に沿った前記第2InGaAs周辺部104cの幅を表し、
    w4は、前記X方向に沿った前記第1GaAs周辺部106bの幅を表し、
    w5は、前記X方向に沿った前記第2GaAs周辺部106cの幅を表し、
    w6は、前記X方向に沿った前記第1InGaP周辺部108bの幅を表し、
    w7は、前記X方向に沿った前記第2InGaP周辺部108cの幅を表す、
    太陽電池。
JP2013537961A 2012-04-12 2013-04-02 太陽電池、及び、太陽電池を用いて電力を発生させる方法 Expired - Fee Related JP5404979B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013537961A JP5404979B1 (ja) 2012-04-12 2013-04-02 太陽電池、及び、太陽電池を用いて電力を発生させる方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012090758 2012-04-12
JP2012090758 2012-04-12
PCT/JP2013/002284 WO2013153775A1 (ja) 2012-04-12 2013-04-02 太陽電池、及び、太陽電池を用いて電力を発生させる方法
JP2013537961A JP5404979B1 (ja) 2012-04-12 2013-04-02 太陽電池、及び、太陽電池を用いて電力を発生させる方法

Publications (2)

Publication Number Publication Date
JP5404979B1 true JP5404979B1 (ja) 2014-02-05
JPWO2013153775A1 JPWO2013153775A1 (ja) 2015-12-17

Family

ID=49327360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013537961A Expired - Fee Related JP5404979B1 (ja) 2012-04-12 2013-04-02 太陽電池、及び、太陽電池を用いて電力を発生させる方法

Country Status (3)

Country Link
US (1) US9941437B2 (ja)
JP (1) JP5404979B1 (ja)
WO (1) WO2013153775A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016097460A1 (en) * 2014-12-16 2016-06-23 Wärtsilä Finland Oy Lng tank and system for connecting at least one pipe between an lng tank and a tank connection space thereof
US9306115B1 (en) 2015-02-10 2016-04-05 Epistar Corporation Light-emitting device
JP6776509B2 (ja) * 2015-05-29 2020-10-28 日産自動車株式会社 光電変換装置
KR101957801B1 (ko) * 2017-11-28 2019-07-04 한국표준과학연구원 플렉서블 이중접합 태양전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066765A (ja) * 2004-08-30 2006-03-09 Sharp Corp 多接合型化合物太陽電池およびその製造方法
JP2007073898A (ja) * 2005-09-09 2007-03-22 Sharp Corp バイパス機能付き太陽電池およびその製造方法
JP2008124381A (ja) * 2006-11-15 2008-05-29 Sharp Corp 太陽電池
JP5136730B2 (ja) * 2011-04-27 2013-02-06 パナソニック株式会社 太陽電池を用いて電力を発生させる方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278473A (en) * 1979-08-24 1981-07-14 Varian Associates, Inc. Monolithic series-connected solar cell
US7095050B2 (en) * 2002-02-28 2006-08-22 Midwest Research Institute Voltage-matched, monolithic, multi-band-gap devices
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
JP4804571B2 (ja) 2009-10-06 2011-11-02 シャープ株式会社 化合物太陽電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066765A (ja) * 2004-08-30 2006-03-09 Sharp Corp 多接合型化合物太陽電池およびその製造方法
JP2007073898A (ja) * 2005-09-09 2007-03-22 Sharp Corp バイパス機能付き太陽電池およびその製造方法
JP2008124381A (ja) * 2006-11-15 2008-05-29 Sharp Corp 太陽電池
JP5136730B2 (ja) * 2011-04-27 2013-02-06 パナソニック株式会社 太陽電池を用いて電力を発生させる方法

Also Published As

Publication number Publication date
JPWO2013153775A1 (ja) 2015-12-17
WO2013153775A1 (ja) 2013-10-17
US9941437B2 (en) 2018-04-10
US20140096818A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5136730B2 (ja) 太陽電池を用いて電力を発生させる方法
JP5158291B2 (ja) 太陽電池を用いて電力を発生させる方法
US20100126570A1 (en) Thin absorber layer of a photovoltaic device
US20100006136A1 (en) Multijunction high efficiency photovoltaic device and methods of making the same
TW201029197A (en) Surrogate substrates for inverted metamorphic multijunction solar cells
TW201027777A (en) Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
JPH06511357A (ja) セル積重ねによる多スペクトル構成とその製造法
JP6582591B2 (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
JP5404979B1 (ja) 太陽電池、及び、太陽電池を用いて電力を発生させる方法
JP6950101B2 (ja) フレキシブル二重接合太陽電池
CN106025798A (zh) 一种异质结半导体激光器及其制备方法
JP2015521365A (ja) エピタキシャル成長に基づく半導体メソッドデバイスの製造方法
JP6888859B2 (ja) マルチスタック積層レーザ太陽電池及びその製造方法
CN208272357U (zh) 一种半导体激光器芯片
CN108512035A (zh) 一种半导体激光器芯片及其制作方法
JP5333703B1 (ja) 太陽電池素子
JP2002289884A (ja) 太陽電池、太陽電池装置
JP2016028413A (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
TW201349545A (zh) 多接面光伏電池及其製造方法
JP5978464B2 (ja) 太陽電池素子を製造する方法
JP2012256711A (ja) 集光型太陽電池およびその製造方法
JP2013004886A (ja) 太陽電池
JP2017143174A (ja) 光電変換装置
JP5866492B2 (ja) 太陽電池およびその製造方法
TW201123501A (en) Multijunction solar cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees