JP5389483B2 - 観察装置 - Google Patents

観察装置 Download PDF

Info

Publication number
JP5389483B2
JP5389483B2 JP2009058095A JP2009058095A JP5389483B2 JP 5389483 B2 JP5389483 B2 JP 5389483B2 JP 2009058095 A JP2009058095 A JP 2009058095A JP 2009058095 A JP2009058095 A JP 2009058095A JP 5389483 B2 JP5389483 B2 JP 5389483B2
Authority
JP
Japan
Prior art keywords
distance
observation
photometry
measuring
observation image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009058095A
Other languages
English (en)
Other versions
JP2010207460A (ja
Inventor
正和 溝口
朝規 石川
なつき 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Medical Systems Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Priority to JP2009058095A priority Critical patent/JP5389483B2/ja
Publication of JP2010207460A publication Critical patent/JP2010207460A/ja
Application granted granted Critical
Publication of JP5389483B2 publication Critical patent/JP5389483B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、撮像範囲内で凹凸差を有する対象物までの焦点距離及び対象物の明るさに基づき、所望する観察個所における画像の調光を行う観察装置に関する。
一般に、撮像装置で被写体像を撮像する場合、撮像範囲内の主要被写体に対して、測距及び測光を行い、ピントと明るさが最適な撮影条件を設定して撮像を行っている。
例えば、特許文献1には、被写体までの距離とレンズの焦点距離とに基づいて、撮像範囲と視野範囲とが重複する範囲を定めて、その映像信号の輝度成分を抽出して測光値を算 出する技術が提案されている。
また、特許文献2には、撮像画面を複数の検波域に等分割する測光枠を作り、画像データを基に演算して撮影条件(焦点距離)を設定する技術が提案されている。
特開平6−105217号公報 特開2003−153071号公報
前述した撮影条件の設定においては、撮像を行う被写体の前後に凹凸差(被写界深度差)、即ち被写体の部位間で焦点距離が異なっていた場合や、撮像範囲(観察視野範囲)内に輝度が高くなる部位例えば、暗色を基調とした部位の中に白色の部位等が含まれていた場合に、自動調光を利用すると、白色の部位が基準となる事態が発生し、撮影者が観察したい部位が最適な明るさに調整されるとは限らない。
電子画像顕微鏡等に用いられた観察装置においては、観察対象となる部位が、体腔内の手術により処置する患部であった場合には、略平面に所在する患部や深い穴状の底に所在する患部などがある。例えば、深い穴状の底に所在する患部が観察対象であれば、その穴の入口近傍や途中に、脳や骨などの比較的白を基調とした部位が存在した場合、自動調光した際に、その白が基準に調光されると、観察者(術者)が観察したい穴の底の患部が暗くなってしまう。従って、再度、撮像部を侵入し直して再設定する又は、マニュアルによる補正動作が必要となっている。
そこで本発明は、撮像対象となる観察物の表面形状や色に影響されずに、所望する観察物の部位に対して適正な調光が行われる撮像装置を提供することを目的とする。
上記目的を達成するために、本発明に従う実施形態の観察装置は、焦点距離が可変可能な対物光学系を介して、観察を所望する対象物を含む観察画像を取得する撮像手段と、前記観察画像内における前記撮像手段と前記対象物との距離を測定可能であって、前記対象物を含む前記観察画像内の複数の個所に対して前記撮像手段を用いて距離を測定する測距手段と、前記焦点距離と前記測距手段により測定された複数の距離とを各々比較する演算手段と、前記対象物の明るさを測定する複数の測光モードを有し、前記演算手段による演算結果に基づいて前記測光モードを変更する測光手段と、前記測光モードに基づいて前記観察画像の明るさを制御する調光手段と、明るさが調光された前記観察画像を表示する表示手段と、を備える。
本発明によれば、撮像対象となる観察物の表面形状や色に影響されずに、所望する観察物の部位に対して適正な調光が行われる撮像装置を提供することができる。
図1は、第2の実施形態に係る手術に用いられる観察システムの全体的な構成を示す図である。 図2は、観察装置における鏡体部の光学的な構成を詳細に示す図である。 図3は、観察装置における鏡体部及び鏡体部を移動可能に支持する支持部の構成を示す図である。 図4は、観察システムにおける撮像及び画像処理に関するブロック構成図である。 図5(a),(b),(c),(d)は、観察システムによる撮像(調光)について説明するための図である。 図6は、第1の実施形態の観察システムによる調光について説明するためのフローチャートである。 図7(a)は、視野範囲内に配置される複数の測距スポットによる第1の配置例を示す図であり、図7(b)は、視野範囲内を中心から同心円状に分割する測光エリアの配置例を示す図であり、図7(c)は、視野範囲内に配置される複数の測距スポットによる第2の配置例を示す図である。 図8は、第2の実施形態の観察システムに係る観察装置のブロック構成図である。 図9は、第2の実施形態の観察システムによる調光について説明するためのフローチャートである。 図10は、第3の実施形態に係る観察対象物の撮像及び調光処理を行うブロック構成図である。 図11(a)は、観察範囲内に配置される複数の測距スポットによる第2の配置例を示す図であり、図11(b)は、視野範囲内を5分割する測光エリアの配置例を示す図である。 図12は、第3の実施形態の観察システムによる調光について説明するためのフローチャートである。 図13は、第4の実施形態に係る観察対象物の撮像及び調光処理を行うブロック構成図である。 図14(a)は、観察対象物に対する焦点深度について説明するための図であり、図14(b)は、視野範囲と焦点深度との関係を示す図である。 図15は、第4の実施形態の観察システムによる調光について説明するためのフローチャートである。
以下、図面を参照して本発明の実施形態について詳細に説明する。
図1乃至図6を参照して、第1の実施形態に係る観察システムについて説明する。本実施形態の観察システムは、内視鏡やビデオ式手術顕微鏡(電子画像顕微鏡)に搭載した撮像装置であり、以下の例では、手術に顕微鏡として用いられる観察装置を搭載した観察システムについて説明する。尚、観察装置は、静止画を撮像する撮像装置又は、動画を撮像する撮像装置の何れを採用してもよい。
図1は、第2の実施形態に係る手術に用いられる観察システムの全体的な構成を示す図である。図2は、観察装置における鏡体部の光学的な構成を詳細に示す図である。図3は、観察装置における鏡体部及び鏡体部を移動可能に支持する支持部の構成を示す図である。図4は、観察システムにおける撮像及び画像処理に関するブロック構成図である。図5(a),(b),(c)は、観察システムによる撮像(調光)について説明するための図である。図6は、第1の実施形態の観察システムによる調光について説明するためのフローチャートである。
この観察システム1は、図1に示すように、大別して、鏡体部2及び支持部3からなる観察装置と、撮像された被写体を表示する3Dモニタ4と、3Dモニタ4を移動可能に支持するモニタアーム5と、フォーカス動作及びズーム動作を指示するフットスイッチ17とで構成される。
鏡体部2は、撮像部本体であり、図2に示すように、筐体内に立体画像(3D)を撮像するために2系統の撮像系が設けられている。具体的には、対物レンズ12、ズーム光学系13L,13Rと、結像レンズ14L,14Rと、撮像素子(例えば、CCD)15L,15Rと、測距センサ18が収容される。対物レンズ12の近傍には、対物レンズ位置センサ19が配置されている。また、ズームレンズ13の近傍には、ズームレンズ位置センサ19’が設けられている。この構成において、観察対象物(患部)6の像は、対物レンズ12、ズームレンズ13L及び、結像レンズ14Lを経て、所望する倍率で撮像素子15L上に結像して、光電変換により左側の画像信号として生成される。同様に、対物レンズ12、ズームレンズ13R及び、結像レンズ14Rを経て、所望する倍率で撮像素子15R上に結像して、光電変換により右側の画像信号として生成される。生成された左側画像と右側画像を後述するカメラコントロールユニット(CCU)16内の画像処理部により立体画像として処理されて、3Dモニタ4に表示される。
また測距センサ18は、図示しない赤外光照射部及び被写体で反射した赤外光を受光する赤外センサを備えている。
図3に示すように、鏡体部2の外装には、観察者が移動しやすいに様にグリップ10が取り付けられている。このグリップ10には、押しボタン式のグリップスイッチ11が設けられている。このグリップ10を把持した際に、指先にグリップスイッチ11が来るように配置されている。
鏡体部2を移動させる場合には、グリップ10を把持して、グリップスイッチ11を押下して、後述するアーム部3をフリー状態にして移動させる。その後、グリップスイッチ11を離すと、アーム部3がその時点の形態で固定されて、観察者7が所望する位置及び向きで鏡体部2を固定されることができる。
また、図3に示すように、アーム部3は、所定位置に固定される架台8と、複数のアームロッド3(3a,3b,3c,3d)と、これらのアームロッドを屈曲自在に連結する関節9(9a,9b,9c,9d)とで構成される。これらの関節9は、図示しない電磁ブレーキを備えており、グリップスイッチ11のオンオフにより、電磁ブレーキの動作又は解除により、固定(ロック)状態又は開放(フリー)状態が設定される。グリップスイッチ11で電磁ブレーキを解除することにより、各関節が回動可能となり、グリップ10を把持して鏡体2を任意の位置に移動可能となる。
また、架台8には後述するCCU16が設けられて、鏡体部2と3Dモニタ4と制御部24(図4参照)とを、それぞれにケーブルにより接続している。
また、フットスイッチ17には、撮像する際に、鏡体部2に指示を行うためのフォーカススイッチ17aとズームスイッチ17bが設けられている。フォーカススイッチ17aはフォーカスのUP/DOWNが可能に設けられており、操作によって図示しない駆動系によって対物レンズ12が光軸方向に移動し、焦準調整を行う。また、ズームスイッチ17bは、ズームUP/DOWNが可能に設けられており、その指示に従って図示しない駆動系を駆動し、ズーム光学系13L,13R内のズームレンズを光軸方向に移動させて、倍率調整を行う。
図4には、観察対象物6の撮像及び調光処理を行うブロック構成を示している。この構成において、撮像素子15L,15Rと、CCU16と、3Dモニタ4と、制御部24とを備えている。撮像素子15L,15Rとしては、CCD(Charge Coupled Device)イメージセンサ又は、CMOSイメージセンサ等の公知なイメージセンサが用いられる。
CCU16は、少なくとも画像処理(3D画像処理)と、複数の測光モード及びそのモード切換と、調光制御の機能(回路)を備えている。
制御部24は、観察対象物までの距離を算出する測距センサ制御部20と、対物レンズと観察対象物までの距離WDを算出する光学系制御部21と、後述する観察距離WDによる比較演算を行う比較演算部22とで構成される。測距センサ制御部20は、測距センサ18が検出した距離情報の処理を行い、観察対象部までの距離を算出する。光学系制御部21は、対物レンズ位置センサ19が検出した位置情報の処理と、フォーカススイッチ17a及びズームスイッチ17bからの指示信号による合焦及びズーム制御とを行う。比較演算部22は、測距センサ制御部20による測距結果及び光学系制御部21からの後述する観察距離WDによる比較演算を行う。
図5(a)には、鏡体部2における視野範囲と同じ領域を持つ測光エリアを複数に分割した分割測光エリアの第1の例を示している。この第1の例では、中心から内外2つの同心円状に分割された分割測光エリアであり、中央側の分割測光エリアAと、その外環側の分割測光エリアBとが設けられている。また、視野範囲中央の極小エリアには、測距スポットが設けられている。尚、本実施形態では、1点の測距スポットを採用したため、円形の視野範囲の中央に配置したが、対物レンズの形状(又は視野範囲の形状)や使用方法によっては、中央の配置に限定されなくともよい。
ここで、図5(b)は、測距する位置までの距離(距離情報)fbと、観察する対象物の位置Pbまでの距離WDbが同じ場合の観察例を示す。図5(c)は、測距する位置までの距離fcと、観察する対象物の位置Pcまでの距離WDcにおいて、距離WDcよりも距離fcの方が長い(遠い)場合の観察例を示す。図5(d)は、測距する位置までの距離fdと、観察する対象物の位置Pdまでの距離WDbにおいて、距離fdよりも距離WDdの方が長い(遠い)場合の観察例を示す。
これらの照明において、図5(b)に示すように、観察する対象物の位置Pbまでの距離WDbが同じ場合には、照明光が測距の位置を基準とすれば、適切な照明光が照射される対象物6を撮像するため、適正な明るさの対象物の画像が3Dモニタ4に表示される。
また、図5(c)に示すように、対象物までの距離WDcよりも測距の距離fcの方が長い(遠い)場合には、照明光が測距の位置を基準とすれば、明る過ぎる照明光が照射される対象物6を撮像するため、明る過ぎて見づらい対象物の画像が3Dモニタ4に表示される。一方、図5(d)に示すように、測距の距離fdよりも距離WDbの方が長い(遠い)場合には、照明光が測距の位置を基準とすれば、観察する対象物6の位置には所望する照明光が照射されずに撮像されるため、暗い画像の対象物が3Dモニタ4に表示される。
次に、図6に示すフローチャートを参照して、第1の実施形態の観察装置における撮像時の調光について説明する。
まず、観察者(術者)は、観察システムを起動し、グリップ10を把持して電磁ブレーキを解除して、鏡体2を任意の位置に移動し、鏡体2により撮像された観察対象物(患部)6の画像がCCU16によって映像処理されて、3Dモニタ4に表示される。この時、対物レンズ12の位置が位置センサ19によって検出され、光学系制御部21で対物レンズ12からの観察距離WDとして算出される(ステップS1)。この現在の観察距離WDは、比較演算部22に通知される。
次に、測距センサ18により観察対象物までの距離を測定し、その検出信号が測距センサ制御部20により、対物レンズ12から観察対象物6までの測定距離(距離情報)fが算出される(ステップS2)。また算出された測定距離fは、比較演算部22に通知される。
比較演算部22では、観察距離WDと測定距離fを比較する(ステップS3)。この比較において、観察距離WDが測定距離fよりも大きければ(YES)、測光エリアBを重点的に測光するモードを切換える(ステップS4)。一方、観察距離WDが測定距離fよりも大きくなければ(NO)、観察距離WDが測定距離fと略等しいか否かを判定する(ステップS5)。この判定で観察距離WDが測定距離fと略等しければ(YES)、測光エリアAを重点的に測光するモードを切換える(ステップS6)。一方、この判定において、観察距離WDが測定距離fと略等しくない、即ち、観察距離WDが測定距離fよりも小さければ(YES)、周辺部重点測光モードに切り換えられる(ステップS7)。
次に、ステップS4,S6及びS7により設定された測光モードによる測光を行い、それらの測光結果に応じて、CCU16は、調光(撮像素子15L,15Rに取り入れる光の量の調整)を行う(ステップS8)。尚、光源を有するシステムであれば、光源調光を行ってもよい。調光の後にステップS1に戻り、繰り返し、調光を行う。
従って、例えば、観察者は深い穴状の底に所在する患部を見たい場面では、観察者が鏡体2を移動させて、表示される画面中央に観察対象物(患部)6を表示させると、測距が行われる。観察距離WDが測定距離fと略等しいければ、観察者が見たい部位であると判断することにより、その測定距離fに見合う調光を行うことで観察対象物が観察しやすい最適な明るさに調光される。つまり、照明光の照度を上げることにより、深い穴状の底が見やすい明るさとなる。この時、穴の周辺部は、過度に明るくなっている。
また、観察距離WDが測定距離fと略等しくなければ、観察したい部位が現在の測定距離でなく、もっと測定距離が短い、穴の周辺部分であると判定することで、その測定距離に見合った調光、つまり、照明光の照度を下げて周辺部分を照明する。これにより、観察者は、穴の底は見えにくくなるが、所望する周辺部分は見やすい明るさとなる。
特に、観察対象ではない白色の部位が観察視野に含まれていたとしても、観察距離WDがその白色部分までの距離ではないため、調光の基準とならないため、従来のような高輝度の部位に照準があってしまうことは防止することができる。
以上説明したように、第1の実施形態によれば、簡素な構成で、オートフォーカス技術にソフト的な処理を追加することで、撮像対象となる観察対象物の表面形状や色に影響されずに、所望する観察対象物の部位に対して適正に調光が行われる。従って、新たな回路や構成部位を追加せずに実現できるため、製造コストの増加や装置の大型化等を最小限に抑えることができる。
次に、図7乃至図9を参照して、第2の実施形態に係る観察システムについて説明する。本実施形態の観察装置の構成部位において、前述した第1の実施形態の観察装置の構成部位と同等のものには、同じ参照符号を付して、その説明を省略する。ここで、図7(a)は、視野範囲内に配置される複数の測距スポットによる第1の配置例を示す図、図7(b)は、視野範囲内を中心から同心円状(環状)に分割する分割測光エリアの配置例を示す図、図7(c)は、視野範囲内に配置される複数の測距スポットによる第2の配置例を示す図である。図8は、第2の実施形態の観察システムに係る観察装置のブロック構成図である。図9は、第2の実施形態の観察システムによる調光について説明するためのフローチャートである。
図7(a)に示すように、本実施形態は、1つの測距センサ18に代わって、複数の測距スポットを用いたマルチ測距方式を用いている。複数の測距スポットは、視野範囲の中心で直交する2つのライン状に並べられている。ここでは、測距スポットCを中心として、測距スポットL2,L1,C,R1,R2のライン状と、これと直交する、測距スポットT2,T1,C,B1,B2のライン状に、それぞれが等間隔に配置されている。この配置により、測距スポットは、視野範囲を中心から四半円に4分割するように90度毎に配置されている。
また、図7(b)に示す様に、測光エリアは、図7(a)のマルチ測距スポットに対応するように、中央に配置された分割測距エリアA0、その外周側の測距スポットL1,T1,L1,B1に対応する同心円状に分割された中間の分割測距エリアA1、最外周側の測距スポットL2,T2,L2,B2に対応する同心円状に分割された外側の分割測距エリアA2、として環状に3分割されている。尚、図7(b)に示すように、本実施形態では、分割測距エリアA0の直径と、分割測距エリアA1及び分割測距エリアA2の半径の長さが略等しくなるように記載しているが、特に限定されるものではなく、設計等の仕様により適宜、それぞれの長さを変更することは勿論である。
図8に示すように、観察装置は、前述した撮像素子15L,15Rを含む撮像光学系と、CCU16と、3Dモニタ4と、光学系制御部21と、対物レンズ位置センサ19と、フットスイッチ17a,17bと、比較演算部22とを備えている。さらに、ズームレンズ13L,13Rの位置を検出するズームレンズ位置検出部35と、複数の測距スポットを有するマルチ測距ユニット23と、それぞれの測距スポットの距離演算を行う測距センサ制御部20とが設けられている。
図9に示すフローチャートを参照して、第2の実施形態の観察装置における撮像時の調光について説明する。尚、前述した図6に示すステップ動作と同じ動作である場合には、簡略化して説明する。
まず、観察者(術者)は、観察システムを起動して、所望する観察対象物(患部)6又はその近傍が3Dモニタ4に表示されるように、鏡体2を移動させる。この時、対物レンズ12及びズームレンズ13L又は13Rのそれぞれの位置を、位置センサ19及びズームレンズ位置検出部35によって検出される。光学系制御部21は、検出された対物レンズ12の位置情報から観察距離WDを算出する(ステップS11)。この現在の観察距離WDは、比較演算部22に通知される。
次に、マルチ測距ユニット23により各測距スポット(C,R1,R2,L1,L2,T1,T2,B1及び,B2)における観察対象物6までの距離を測定し、その検出信号が測距センサ制御部20により、対物レンズ12から観察対象物6までの測定距離f(fc,fR1、fR2、fL1、fL2、fT1、fT2、fB1、fB2 )を算出する(ステップS12)。また算出された各測定距離fは、比較演算部22に通知される。
比較演算部22では、観察距離WDと各測定距離fとが略同一か否かを比較する(ステップS13)。この比較において、観察距離WDと測定距離fとが略同一であれば(YES)、各測光エリアA,A,Aの全体で測光を行う(ステップS14)。一方、観察距離WDと測定距離fとが略同一でなければ(NO)、視野範囲の外周側に配置された分割測距エリア(R2,L2,T2及びB2)が選択される。次に、これらの分割測距エリアにより測定された距離fR2、fL2、fT2、fB2の和と観察距離WDとか同一でないか否かを判定する(ステップS15)。
この判定で、距離fの和と観察距離WDとが同一でなければ(YES)、視野範囲の中央及び中間の測光エリアA,Aにおける測光を行う(ステップS16)一方、距離fの和と観察距離WDとが同一であったならば(NO)、視野範囲の中央の測光エリアAのみで測光する(ステップS17)。
次に、観察距離WDと、ステップS14,S16,S17のいずれかで測定した測光結果に応じて、CCU16は、調光(撮像素子15L,15Rに取り入れる光の量の調整)を行う(ステップS18)。尚、光源を有するシステムであれば、光源調光を行ってもよい。調光の後にステップS11に戻り、繰り返し、調光を行う。
また、本実施形態では、測距スポットを視野範囲の中央を抜けて直交する十字形に配置したが、図7(c)に示す変形例のように、低コスト化を図るために、視野範囲の中央から3分割するようにY字形に配置してもよい。他にも、複数の測距スポットを全視野範囲に均等に配置してもよいし、単位面積当たりに異なる密度で配置してもよい。例えば、視野範囲の中央側には測距スポットを多く、周辺側には少なく配置する。
以上説明したように、第2の実施形態によれば、マルチ測距を採用することにより、観察したい対象部位が視野範囲の中央(測距スポット位置:図5(a))から外れていたとしても、その対象部位に最も近い測距スポットを選択して、測距することができる。これにより、視野範囲内に表示される観察対象物であれば、鏡体2を移動させなくとも、適正な調光を実施することができる。
本実施形態の観察装置は、深い穴を開口して執り行う手術、例えば、脳外手術に用いられる手術用顕微鏡に好適する。また、測距スポットの選択は、例えば、3Dモニタ上にタッチパネルを配設して、指示してもよいし、モニタ画面にポインタを表示させてクリックによる選択を行ってもよい。さらに、眼鏡型の入力装置を用いて、視線検出により選択することも可能である。
次に、図10乃至図12を参照して、第3の実施形態に係る観察システムについて説明する。
本実施形態の観察システムに係る観察装置の構成部位において、前述した第2の実施形態の観察装置の構成部位と同等のものには、同じ参照符号を付して、その説明を省略する。ここで、図10は、第3の実施形態に係る観察対象物の撮像及び調光処理を行うブロック構成図である。図11(a)は、観察範囲内に配置される複数の測距スポットによる第2の配置例を示す図、図11(b)は、視野範囲内を5分割する測光エリアの配置例を示す図、図12は、第3の実施形態の観察システムによる調光について説明するためのフローチャートである。
本実施形態は、図7(a)に示すように、第1,2の実施形態における測距センサ18(23)及び測距センサ制御部20による測距に代わって、画像計測部36を設けて、2
系統の撮像光学系により撮像された左右2つの画像を用いて、観察対象物との距離を演算して、観察距離WDとして用いている。
図10に示すように、本実施形態の観察装置は、前述した撮像素子15L,15Rを含む撮像光学系と、CCU16と、3Dモニタ4と、光学系制御部21と、対物レンズ位置センサ19と、フットスイッチ17a,17bと、ズームレンズ位置検出部35と、比較演算部22と、画像計測部36とを備えている。
また、図11(a)に示すように、観察範囲内には、第2の配置例として、5点の測定個所(測距スポットと同等)が配置される。この配置は、観察範囲即ち、3Dモニタ4の表示画面に表示される画像において、中央に測定個所cを配置して、対角線近傍にそれぞれ測定個所A,B,D,Eを配置する。画像計測部36は、これらの測定個所から、それぞれ測定距離f、f、f、f、fを算出する。これらの測定距離は、比較演算部22に出力される。この時、光学系制御部21は、対物レンズ位置センサ19によって検出された対物レンズ12の位置情報と、ズームレンズ位置検出部35によって検出されたズームレンズ13L,13Rの位置情報とから焦点距離及びズーム倍率を算出して、焦点深度を演算する。この焦点深度は、比較演算部22に通知され、△Dとして後述する判定に用いる。
また、図11(b)には、観察範囲を5分割する測光エリアA,B,C,D,Eの配置例を示している。本実施形態では、観察範囲の中央には、円形のエリア形状を有する測光エリアCが配置され、この測光エリアCを除く周囲で、観察範囲を縦横に4等分した矩形のエリア形状を有する測光エリアA,B,D,Eが配置される。それぞれの測光エリアには、少なくとも1つの測距個所が配置されている。
図12に示すフローチャートを参照して、第3の実施形態の観察装置における撮像時の調光について説明する。尚、前述した図6及び図9に示したステップ動作と同じ動作である場合には、簡略化して説明する。
まず、観察者(術者)は、観察システムを起動した後、鏡体2を移動して、所望する観察対象物(患部)6又はその近傍を3Dモニタ4に表示させる。この時、対物レンズ位置センサ19により対物レンズ12の位置情報を検出して、現在の観察距離WDを算出する(ステップS21)。この現在の観察距離WDは、比較演算部22に通知される。
次に、画像計測部36は、測定個所における測定距離(距離情報)f、f、f、f、fを算出する(ステップS22)。また算出された各測定距離fは、比較演算部22に通知される。
比較演算部22では、各測定距離fに対して観察距離WDと略同一か否かを比較する。まず、観察距離WDと測定距離fとが略同一か否かを判定する(ステップS23)。この判定において、観察距離WDと測定距離fとが略同一であれば(YES)、測光エリアCを測光対象のエリアに設定する(ステップS24)。一方、観察距離WDと測定距離fとが略同一でなければ(NO)、次に、観察距離WDと測定距離fとが略同一か否かを判定する(ステップS25)。
この判定において、観察距離WDと測定距離fとが略同一であれば(YES)、測光エリアAを測光対象のエリアに設定する(ステップS26)。一方、観察距離WDと測定距離fとが略同一でなければ(NO)、次に、観察距離WDと測定距離fとが略同一か否かを判定する(ステップS27)。
以下同様に、観察距離WDと測定距離fとが略同一であれば(ステップS27:YES)、測光エリアBを測光対象のエリアに設定し(ステップS28)、観察距離WDと測定距離fとが略同一であれば(ステップS29:YES)、測光エリアDを測光対象のエリアに設定し(ステップS30)、観察距離WDと測定距離fとが略同一であれば(ステップS31:YES)、測光エリアEを測光対象のエリアに設定する(ステップS32)。
これらが設定されたならば、設定された測光エリアの測光を行い、その測光値に基づき調光を行う(ステップS33)。尚、光源を有するシステムであれば、光源調光を行ってもよい。調光の後にステップS21に戻り、繰り返し、調光を行う。
他の手法としては、調光に先立って、光学系制御部21は、焦点距離とズーム倍率に応じた焦点深度を求めて記録しておく。また、光学系制御部21は、焦点距離とズーム倍率から焦点深度を演算する。この焦点深度をΔDとして上記判定を行う。
即ち、前述したステップS23において、WD≒fの判定において、WD±ΔD≒fとして、前述したΔDを任意の一定の値(範囲)として用いてもよい。さらに、図示しないキーボード等の入力手段により観察者が設定入力してもよい。
さらに、図10に示す画像計測部36は、2系統の撮像光学系により、それぞれに撮像された左画像と右画像により、観察対象物との距離を演算し、その計測結果に基づいてもよい。
以上説明した第3の実施形態による観察装置にすれば、前述した第1,第2の実施形態による効果に加えて、測距スポットを最小限としているため、比較的広範囲を観察する用途に好適し、製造コストも安価になる。
次に、図13乃至図15を参照して、第4の実施形態の観察システムについて説明する。本実施形態の観察システムに係る観察装置の構成部位において、前述した第1の実施形態の観察装置の構成部位と同等のものには、同じ参照符号を付して、その説明を省略する。ここで、図13は、第4の実施形態に係る観察対象物の撮像及び調光処理を行うブロック構成図である。図14(a)は、観察対象物に対する焦点深度について説明するための図であり、図14(b)は、視野範囲と焦点深度との関係を示す図である。図15は、第4の実施形態の観察システムによる調光について説明するためのフローチャートである。
本実施形態の観察装置は、図12に示すように、鏡体部2aと、光学系制御部21と、フットスイッチに設けられたフォーカススイッチ17aと、赤外光により測距を行う距離センサ制御部34と、比較演算部22と、CCU16と、2Dモニタ37とで構成される。
鏡体部2aは、同じ光軸上に撮像光学系と測距光学系を備えている。
撮像光学系は、対物レンズ25と、結像レンズ28と、撮像素子(CCD)29とで構成される。対物レンズ25の近傍には、対物レンズ位置センサ19が設けられ、対物レンズ25の位置を検出している。
測距光学系は、赤外飛行時間計測方式を採用した構成であり、赤外光を発光する赤外光源30と、赤外光をビーム状に収束させる集光レンズ31と、光軸上に配置され、側方からの赤外光(出射赤外光)を屈曲させて光軸上に導くハーフミラー26と、光軸上の赤外光(反射赤外光)を屈曲させて側方に導くビームスプリッター27と、側方に導かれた反射赤外光を結像レンズ32と、結像された反射赤外光を受光する面距離センサ33とで構成される。この例では、対物レンズ25と結像レンズ28の間の光軸上に、ハーフミラー26及びビームスプリッター27が配設されている。
測距センサ制御部34は、赤外光源30を駆動制御して、赤外光を発光させて、観察対象物に出射し、その反射光である反射赤外光を受光した面距離センサ33から検出されたピクセル毎の距離情報f[x、y](x、yはピクセル位置を示す変数)に変換する。この距離情報は、比較演算部22に通知される。
また、観察対象物の撮像は、対物レンズ25と結像レンズ28により集光された光像が撮像素子29の受光面上に結像される。撮像素子29は光電変換により、像信号を生成して、CCU16に出力する。CCU16は、前述した画像処理を行い、2Dモニタ37に表示させる。
次に、図15に示すフローチャートを参照して、第4の実施形態の観察システムに係る観察装置による調光について説明する。
まず、観察者(術者)は、観察システムを起動した後、鏡体2を移動して、所望する観察対象物(患部)6又はその近傍を2Dモニタ37に表示させる。この時、対物レンズ位置センサ19により対物レンズ25の位置情報を検出して、現在の観察距離WDを算出する(ステップS41)。この現在の観察距離WDは、比較演算部22に通知される。
次に、測距センサ制御部34は、前述した反射赤外光を受光した面距離センサ33からピクセル毎の距離情報fを検出する(ステップS42)。算出された距離情報fは、比較演算部22に通知される。
次に、比較演算部22は、図14(a)に示すように、測距センサ制御部33からの距離情報f[x、y]をそれぞれWD±Δd内にあるか否かを比較し、面距離センサ33による測光対象エリアをマッピングする(ステップS43)。次に、その測光対象エリアマップを撮像素子29におけるピクセルマップに変換して、CCU16に通知する(ステップS44)。
CCU16は、通知された測光対象エリアマップに基づく測光対象に対して測光する(ステップS45)。尚、測光対象となるエリアは、WD±Δd内にあるエリアである。CCU16は、この測光により得られた測光値に基づいて、調光を行う(ステップS46)。尚、光源を有するシステムであれば、光源調光を行ってもよい。調光の後にステップS41に戻り、繰り返し、調光を行う。
尚、本実施形態の構成において、図13において、破線で示す3Dモニタ4a及び3Dプロセッサ38追加構成することにより、DepthMapによる3D画像が生成でき、対応する3Dモニタ4aにより3D画像を表示させることができる。このように、第4の実施形態によれば、DepthMapを基に、3D画像を生成するシステムが構築され、より容易に構成可能であり、且つ最もきめ細やかな調光を実現することができる。
以上説明したように、本実施形態に従う観察システムは、観察対象物に凹凸(高低差又は被写界深度差)があった場合や、白色の部位等が含まれて輝度が高くなる部位が存在していたとしても、観察者が見たい部位部分が最適な明るさに調整されて、撮像及びモニタ表示させることができる。従って、観察対象物となる部位が深い穴状の底に所在する患部であっても、見やすい好適な明るさに調光される。
また、補正のための他の操作を必要とせず、内視鏡やビデオ式手術顕微鏡(電子画像顕微鏡)に搭載したならば、術者が観察しながら手術に専念することができる。
以上発明した各実施形態によれば、以下の発明を含んでいる。
(1)焦点距離が可変可能な対物光学系を介して、観察を所望する対象物を含む観察画像を取得する撮像手段と、
前記観察画像内における前記撮像手段と前記対象物との距離を測定可能な測距手段と、
前記焦点距離と、前記測距手段により測定された距離とを比較する演算手段と、
前記対象物の明るさを測定する複数の測光モードを有し、前記演算手段による演算結果に基づいて前記測光モードを変更する測光手段と、
前記測光モードに基づいて前記観察画像の明るさを制御する調光手段と、
明るさが調光された前記観察画像を表示する表示手段と、
を備えることを特徴とする観察装置。
(2)前記測光手段による複数の測光モードは、少なくとも2つ以上に分割された分割測光領域のうちの何れか又はその組み合わせを選択するものであることを特徴とする前記(1)項に記載の観察装置。
(3)前記測距手段による測距箇所は、前記測光手段による少なくとも一つの前記分割測光領域と関連付けられていることを特徴とする前記(2)項に記載の観察装置。
(4)前記測光手段は、観察視野内の全領域の距離を計測する面距離センサであることを特徴とする前記(2)項に記載の観察装置。
(5)前期面距離センサは赤外飛行時間計測方式によって実現されるものであることを特徴とする前記(4)項に記載の観察装置。
(6)前記対物光学系は立体観察可能な立体光学系であるとともに、前記撮像手段は立体映像を撮像することを特徴とする前記(1)〜(5)項記載の観察装置。
(7)前記測距手段は、前記立体光学系を介して撮像された2つの画像による視差に基づいて距離を算出することを特徴とする前記(1)項に記載の観察装置。
(8)前記撮像手段は内視鏡・ビデオ式手術用顕微鏡あることを特徴とする前記(1)〜(5)項記載の観察装置。
1…観察システム、2…鏡体部、3…支持部、3a,3b,3c,3d…アームロッド、4…3Dモニタ、5…モニタアーム、6…観察対象物、7…観察者(術者)、8…架台、9,9a,9b,9c,9d…関節、10…グリップ、11…グリップスイッチ、12,25…対物レンズ、13L,13R…ズーム光学系、14L,14R,28…結像レンズ、15L,15R,29…撮像素子(CCD)、16…カメラコントロールユニット(CCU)、17…フットスイッチ、17a…フォーカススイッチ、17b…ズームスイッチ、18…測距センサ、19…対物レンズ位置センサ、20,34…測距センサ制御部、21…光学系制御部、22…比較演算部、24…制御部、30…赤外光源、33…面距離センサ、35…ズームレンズ位置検出部、36…画像計測部、37…2Dモニタ。

Claims (7)

  1. 焦点距離が可変可能な対物光学系を介して、観察を所望する対象物を含む観察画像を取得する撮像手段と、
    前記観察画像内における前記撮像手段と前記対象物との距離を測定可能であって、前記対象物を含む前記観察画像内の複数の個所に対して前記撮像手段を用いて距離を測定する測距手段と、
    前記焦点距離と前記測距手段により測定された複数の距離とを各々比較する演算手段と、
    前記対象物の明るさを測定する複数の測光モードを有し、前記演算手段による演算結果に基づいて前記測光モードを変更する測光手段と、
    前記測光モードに基づいて前記観察画像の明るさを制御する調光手段と、
    明るさが調光された前記観察画像を表示する表示手段と、
    を備えることを特徴とする観察装置。
  2. 前記測光手段は、前記観察画像内を複数に分割した選択可能な分割測光領域を有するとともに、
    前記分割測光領域は、前記測距手段により測定された複数の測定結果に基づいて、近似する距離又は大小の距離差に応じて選択されることを特徴とする請求項記載の観察装置。
  3. 前記測光手段は、観察視野内の全領域の距離を計測する面距離センサであることを特徴とする請求項記載の観察装置。
  4. 前記測光手段は、円形の前記観察画像内における中心から同心円状に分割された複数の分割測光領域を設けることを特徴とする請求項記載の観察装置。
  5. 前記測光手段は、前記観察画像の中央を中心とする円状の第1の分割測光領域を設け、該第1の分割測光領域の周囲の前記観察画像内の領域を複数に分割した第2の分割測光領域を設けることを特徴とする請求項記載の観察装置。
  6. 前記演算手段は、前記測距手段により測定された距離と前記対物光学系の焦点深度とに基づいて行うことを特徴とする請求項1又は2に記載の観察装置。
  7. 焦点距離が可変可能な対物光学系を介して、観察を所望する対象物を含む観察画像を取得する撮像手段と、
    前記観察画像内における前記撮像手段と前記対象物との距離を測定可能な測距手段と、
    前記焦点距離と、前記測距手段により測定された距離とを比較する演算手段と、
    前記対象物の明るさを測定する複数の測光モードを有し、前記演算手段による演算結果に基づいて前記測光モードを変更する測光手段と、
    前記測光モードに基づいて前記観察画像の明るさを制御する調光手段と、
    明るさが調光された前記観察画像を表示する表示手段と、
    を備え、前記演算結果は、前記測距手段により測定された距離に対する前記焦点距離の偏差であることを特徴とする観察装置。
JP2009058095A 2009-03-11 2009-03-11 観察装置 Active JP5389483B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058095A JP5389483B2 (ja) 2009-03-11 2009-03-11 観察装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058095A JP5389483B2 (ja) 2009-03-11 2009-03-11 観察装置

Publications (2)

Publication Number Publication Date
JP2010207460A JP2010207460A (ja) 2010-09-24
JP5389483B2 true JP5389483B2 (ja) 2014-01-15

Family

ID=42968301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058095A Active JP5389483B2 (ja) 2009-03-11 2009-03-11 観察装置

Country Status (1)

Country Link
JP (1) JP5389483B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093478A (ja) * 2015-11-18 2017-06-01 三鷹光器株式会社 手術用立体観察装置
JP6619996B2 (ja) * 2015-11-24 2019-12-11 三鷹光器株式会社 手術用立体観察装置
CN109804290B (zh) * 2016-12-01 2022-01-04 索尼公司 医疗观察装置和控制方法
JP7114568B2 (ja) * 2017-03-28 2022-08-08 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察システム、制御方法およびプログラム
WO2020121457A1 (ja) * 2018-12-12 2020-06-18 株式会社ニコン 顕微鏡、顕微鏡用調節装置、顕微鏡システム、及びプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686080B2 (ja) * 1987-07-28 1997-12-08 オリンパス光学工業株式会社 内視鏡装置
JPH07101251B2 (ja) * 1993-02-02 1995-11-01 日本電気株式会社 顕微鏡自動焦点装置
DE59508722D1 (de) * 1994-04-11 2000-10-19 Leica Microsystems Verfahren zur ermittlung der distanz zwischen einem objektdetail und einem operationsmikroskop und vorrichtung dazu
JP2000075213A (ja) * 1998-08-27 2000-03-14 Olympus Optical Co Ltd 手術用顕微鏡
US6758814B2 (en) * 1999-12-25 2004-07-06 Leica Microsystems (Schweiz) Ag Combination magnifying device, particularly a microscope comprising a measuring device
FR2917598B1 (fr) * 2007-06-19 2010-04-02 Medtech Plateforme robotisee multi-applicative pour la neurochirurgie et procede de recalage

Also Published As

Publication number Publication date
JP2010207460A (ja) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5415973B2 (ja) 撮像装置、内視鏡システム及び撮像装置の作動方法
JP5856733B2 (ja) 撮像装置
JP5371638B2 (ja) 眼科撮影装置及びその方法
JP2022179728A (ja) 情報処理装置、制御方法、プログラム、内視鏡システム
WO2015012096A1 (ja) 医療用観察装置
JP5389483B2 (ja) 観察装置
JP2011133821A (ja) オートフォーカスシステム
JP2012125293A (ja) 制御装置、内視鏡装置及びフォーカス制御方法
KR20200037244A (ko) 촬상 소자 및 촬상 장치
CN105579880A (zh) 摄像系统、摄像系统的工作方法
JP7156352B2 (ja) 撮像装置、撮像方法、及びプログラム
US11571109B2 (en) Medical observation device
JP5384172B2 (ja) オートフォーカスシステム
JP2015014672A (ja) カメラ制御装置、カメラシステム、カメラ制御方法、及びプログラム
JP4668581B2 (ja) 手術用顕微鏡
JPH0141964B2 (ja)
JPH0980323A (ja) 内視鏡装置
JP6834988B2 (ja) 制御装置
US20220155557A1 (en) Medical observation system
JP2021137130A (ja) 医療用画像処理装置および医療用観察システム
KR20190129050A (ko) 촬상 장치와 포커스 제어 방법 및 포커스 판정 방법
US20240114228A1 (en) Line-of-sight detecting apparatus, image pickup apparatus, line-of-sight detecting method, and storage medium
JP2015114370A (ja) 被写体位置検出装置および被写体位置検出方法
US11648080B2 (en) Medical observation control device and medical observation system that correct brightness differences between images acquired at different timings
US11418772B2 (en) Imaging device balancing depth of field and resolution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R151 Written notification of patent or utility model registration

Ref document number: 5389483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250