JP5375506B2 - 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体 - Google Patents

品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
JP5375506B2
JP5375506B2 JP2009235977A JP2009235977A JP5375506B2 JP 5375506 B2 JP5375506 B2 JP 5375506B2 JP 2009235977 A JP2009235977 A JP 2009235977A JP 2009235977 A JP2009235977 A JP 2009235977A JP 5375506 B2 JP5375506 B2 JP 5375506B2
Authority
JP
Japan
Prior art keywords
relational expression
quality
local
division pattern
operation data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009235977A
Other languages
English (en)
Other versions
JP2011085969A (ja
Inventor
潔 和嶋
彰 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009235977A priority Critical patent/JP5375506B2/ja
Publication of JP2011085969A publication Critical patent/JP2011085969A/ja
Application granted granted Critical
Publication of JP5375506B2 publication Critical patent/JP5375506B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Control Of Metal Rolling (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、製造プロセスにおける品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体に関し、より詳細には、複数の操業因子の結果として品質が決定される製造プロセスにおける品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体に関する。
従来、操業条件に基づいて品質が決まる製造プロセスにおいて、製品の製造過程で品質を予測する手法としては、品質不良発生のメカニズムに関する知識を元に作成した物理モデルや、或いは操業データと品質データに重回帰分析を適用して得られる線形式のモデル(以下、重回帰モデル)を用いて品質を予測する手法が良く知られている。このようなモデルを用いる方法では、製品の操業データをモデルに入力して品質の予測値を算出し、その予測値を評価することによって品質を予測する。
例えば、特許文献1に開示された手法では、時間の経過に伴う設備の状態変化等に起因する製造プロセスの特性の変化に適応した品質予測を行うため、線形式で表現した圧延機のエッジドロップ量の予測モデルを対象に、この線形式モデルのパラメータを逐次最小二乗法にて更新する。これにより、特性の変化に適応した品質予測を行う方法を実現している。
また、特許文献2に開示された手法では、熱間圧延の仕上げ圧延における被圧延材の幅変化量予測を対象に、予測対象の被圧延材に類似した過去の圧延事例をデータベースから選択し、過去事例の操業データと仕上幅変化量データとから、重回帰モデルをオンラインで作成して、被圧延材の幅変動予測値を算出する。これにより、操業変数と品質変数との間に非線形性がある製造プロセスにおいても、精度良く予測を行う方法を実現している。この手法では、被圧延材の圧延実績に基づいて、データベースの内容を新しい事例に更新する処理を行うことで、圧延条件や設備の経時変化等に起因した操業条件および仕上幅変化量の特性の変化を反映して予測を行う方法も実現している。
さらに、特許文献3及び特許文献4に開示された手法では、操業データ及び品質データを基に、操業変数を基底ベクトルとする操業因子空間を幾つかの局所領域に分割して、各局所領域における操業因子と品質との関連性を人間が直感的に理解し易い線形式でモデル化している。そして、各局所線形式が全体の品質に対して、どの程度影響しているかを示す寄与率を操業変数空間の座標の関数として表す活性度関数を操業データから求めて、全体の操業変数と品質変数との関連を表す関係式を導出する。これにより、複雑な非線形特性を有する多変量の操業変数と品質変数との関係式を人間に理解し易い数式で表現して、品質予測に用いる装置を実現している。
特開2004−90074号公報 特開2007−50413号公報 特許第3875875号公報 特開2007−140694号公報
坂本慶行ら著「情報量統計学」共立出版株式会社(1983年) 芳谷直治著「ベクトル型忘却係数を用いたパラメータ逐次推定とその実プラントへの適用」計測・制御自動学会論文集vol25、No5、579/585(1989年)
しかしながら、上記の物理モデルに基づく方法では、品質不良発生のメカニズムが十分に解明されていない製造プロセスでは、物理モデルを作成することができないという問題があった。また、重回帰モデルを用いる方法では、操業変数と品質変数とは線形の関係にあり、また全ての操業範囲において、両者を単一の線形式で表現できるとの前提条件に基づいてモデルを作成する。このため、操業変数と品質変数との間に非線形な関連がある製造プロセスや、各々異なる特性を有する複数の品質不良要因が存在する製造プロセスに対しては、必要な精度を有する品質予測モデルが作成できないという問題があった。
特許文献1に開示された手法では、操業変数と品質変数とを線形式で表現して十分な精度を実現できる製造プロセスに対しては、特性の変化があっても、それに適応して十分な予測精度を維持することが可能である。しかし、操業変数と品質変数との間に非線形性がある場合には、必要な精度を有する予測モデルを作成することができず、適用できないという問題があった。
また、特許文献2に開示された手法は、操業変数と品質変数との間に非線形性があり、かつ製造プロセスの設備の経時変化等に起因して、操業変数と品質変数との関係が変化した場合にも高い精度で予測を行うことを可能とするものである。しかしながら、かかる手法は、予測したい製品に類似した過去事例データをオンラインで選択し、都度、重回帰で線形モデルを作成するものであるため、線形式の係数などモデルに関する情報を抽出し難い。また、例えばある操業範囲で操業変数を変更した場合に、品質にどのような影響があるかをモデルから読み取るといった分析を行うことが難しいという問題があった。
さらに、特許文献3及び特許文献4に開示された手法では、操業変数を基底ベクトルとする操業変数空間を幾つかの局所領域に分割して、各局所領域における操業変数と品質変数との関連性を人間が直感的に理解し易い線形式でモデル化し、該線形式と局所領域との活性度関数の積の和で全体の関係式を算出することで、非線形特性を有する多変量の操業と品質との関係式を人間に理解し易く表現している。このため、各局所領域の線形モデルが適用される操業範囲や、各操業範囲での線形モデルの係数の値から、モデルの妥当性を従来の経験と照らし合わせて評価することが可能である。しかしながら、製造プロセスにおいては、製品の種類や、また製造に使用する原料や添加物、更には設備の種類などが文字コード情報で表わされており、この文字コードの違いによって、操業と品質との線形モデルが異なる場合がある。特許文献3及び特許文献4に開示された手法は、数値の操業変数による局所領域への分割のみに対応していることから、文字コード情報での分割には対応できないという問題があった。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、製品記号や原料記号などの文字コード情報に応じて操業データと品質データとの特性が変化する場合においても、操業データと品質データとの関係式を作成し、品質を予測することが可能な、新規かつ改良された品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体を提供することにある。
上記課題を解決するために、本発明のある観点によれば、複数の製品に関する製造プロセスにおける操業データおよび品質データを記憶するデータベースから、所定の選択条件に該当する操業データおよび品質データを抽出するデータ抽出部と、抽出された操業データについて、操業データに含まれる数値情報である操業変数が値としてとる領域と、当該操業データに含まれる文字コード情報であるコード変数が値としてとる領域とを全体領域として、当該全体領域を複数の局所領域に分割する分割パターン候補を複数個作成する分割パターン候補作成部と、分割パターン候補作成部により作成された各分割パターン候補について、全体領域における操業データと品質データとの関係を表す関係式をそれぞれ算出する関係式算出部と、関係式算出部にて算出された関係式および操業データから算出される品質予測値と品質データとに基づいて各分割パターン候補について算出された関係式の予測誤差をそれぞれ算出し、当該予測誤差が最小となる関係式の分割パターン候補を分割パターンとして選択する最小誤差関係式選択部と、最小誤差関係式選択部により選択された分割パターンの予測誤差と、予め設定された評価基準値との比較結果に基づいて、予測誤差の収束が十分であるか否かを判定する学習誤差評価部と、学習誤差評価部にて収束が十分であると判定された分割パターンの関係式を製品の品質を予測するための関係式として、製品の予測される品質を表す品質予測値を出力する品質予測値出力部と、を備える品質予測装置が提供される。学習誤差評価部にて収束が不十分であると判定された場合、分割パターン候補作成部は、最小誤差関係式選択部にて選択された分割パターン候補の分割数を増やして複数の新たな分割パターン候補を生成することを特徴とする。
本発明によれば、操業データと品質データとを用いて品質予測を行う際、操業データの情報である操業変数のみならず、文字コード情報であるコード変数も考慮して処理を行う。これにより、より正確に品質予測を行うことができる。また、操業変数のみを用いて品質予測モデルを構成する場合と比較して、少ない分割数で精度の高い品質予測モデルを構築することができる。
ここで、品質予測装置は、各分割パターン候補について、各局所領域における操業データと品質データとの関係を表す局所関係式を算出する局所関係式算出部と、分割パターン候補作成部により作成された各分割パターン候補について、操業変数がとる領域の分割パターンを表す分割座標情報およびコード変数がとる領域の分割パターンを表すコード分割情報に基づき、各分割パターン候補の各局所領域における各局所関係式の関係式への寄与率を表す活性度関数を算出する活性度関数算出部と、を備えることもできる。このとき、関係式算出部は、活性度関数と局所関係式とに基づいて、全体領域における操業データと品質データとの関係を表す関係式を算出する。
また、分割パターン候補作成部は、分割パターンの各局所領域のうち、最も誤差の大きい局所領域を更に分割するようにしてもよい。
さらに、分割パターン候補作成部は、操業変数からなる操業変数空間を分割する数値分割作成部と、コード変数からなるグループを分割するコード分割作成部と、を備え、数値分割作成部により作成された分割パターン候補およびコード分割作成部により作成された分割パターン候補を、全体領域の分割パターン候補としてもよい。
ここで、活性度関数は、局所領域の重心に中心を持つ正規分布関数と、コード分割情報から算出される二値関数とを組み合わせて構成される関数としてもよい。
また、コード分割作成部は、探索法を用いてコード変数からなるグループを分割してもよい。
あるいは、分割パターン候補作成部は、最適化手法を用いて、操業変数とコード変数とからなる分割パターン候補を一括して生成することもできる。
さらに、品質予測装置は、製造プロセスの操業状態に応じて、分割パターンの局所関係式を更新する更新処理部を備えることもできる。更新処理部は、製造プロセスから対象製品の操業データを取得する操業データ入力部と、製造プロセスから対象製品の品質データを取得する品質データ入力部と、活性度関数算出部により予め算出された活性度関数を記憶する活性度関数記憶部と、操業データ入力部から入力された操業データと、活性度関数記憶部に記憶された活性度関数とに基づいて、品質予測値に対する各局所領域の寄与率を算出する寄与率算出部と、操業データ入力部から入力された操業データに基づいて、予め設定された局所関係式により各局所領域について前記局所関係式の演算を行う局所関係式演算部と、局所関係式演算部による各局所関係式の演算結果と、寄与率算出部により算出された寄与率とに基づいて、品質予測値を算出する品質予測値算出部と、品質データ入力部から入力された品質データと、品質予測値算出部により算出された品質予測値とに基づいて、各局所関係式の係数を更新する局所関係式更新部と、を備える。
また、局所関係式は、複数の操業変数を独立変数とする線形多項式としてもよい。
局所関係式更新部は、局所領域iにおける更新前の線形多項式の係数をW(T−1)、操業データからなるベクトルをu(T)として、下記(式1)を用いて係数を算出してもよい。
Figure 0005375506
・・・(式1)
但し、Tは更新後の係数、若しくは更新に使用する製品であることを示す添字、T−1は現在の係数であることを示す添字、W(T)は更新後の線形多項式の係数、y(T)は品質データ、K(T)は局所領域iにおける更新率行列であり下記(式2)で表わされる。(式2)において、Φ(T)は局所領域iにおける更新に使用する操業データの寄与率、P(T−1)は局所領域iの適応ゲイン行列である。
Figure 0005375506
・・・(式2)
また、製造プロセスは、鉄鋼プロセスであり、このとき、品質データは、製品の表面疵、機械強度特性値、形状の平坦度、製品サイズ、内部応力、又はこれら品質に影響を及ぼすプロセス値とすることができる。
さらに、製造プロセスは、鉄鋼製品である薄鋼板の熱間圧延プロセスであり、品質予測装置による予測対象となる品質を、粗圧延出側の板幅と捲き取り入側における被圧延材の板幅の変化量としたとき、製造プロセスの操業変数は、被圧延材の目標板幅、目標板厚、等価炭素量、仕上げ圧延出側目標温度、捲き取り目標温度、及び材質コードから少なくとも一つ以上選択するようにしてもよい。
あるいは、製造プロセスは、鉄鋼製品である薄鋼板の熱間圧延プロセスであり、品質予測装置による予測対象となる品質を、熱延ランアウトテーブル出側での捲き取り温度としたとき、製造プロセスの操業変数は、被圧延材が精錬工程を終了した時点での溶鋼内のC量、Si量、Mn量、P量、S量、Cu量、Ni量、Cr量、Mo量、Nb量、V量、Ti量、B量、Al量、N量、O量、Ca量、被圧延材の目標板幅、目標板厚、等価炭素量、仕上げ圧延出側目標温度、捲き取り目標温度、圧延速度、冷却水水量密度、冷却水温、及び材質コードから少なくとも一つ以上選択するようにしてもよい。
また、上記課題を解決するために、本発明の別の観点によれば、複数の製品に関する製造プロセスにおける操業データおよび品質データを記憶するデータベースから、所定の選択条件に該当する操業データおよび品質データを抽出するステップと、抽出された操業データについて、操業データに含まれる数値情報である操業変数が値としてとる領域と、当該操業データに含まれる文字コード情報であるコード変数が値としてとる領域とを全体領域として、当該全体領域を複数の局所領域に分割する分割パターン候補を複数個作成するステップと、作成された各分割パターン候補について、全体領域における操業データと品質データとの関係を表す関係式をそれぞれ算出するステップと、操業データと品質データとの関係を表す関係式および操業データから算出される品質予測値と品質データとに基づいて各分割パターン候補について算出された関係式の予測誤差をそれぞれ算出し、当該予測誤差が最小となる関係式の分割パターン候補を分割パターンとして選択するステップと、選択された分割パターンの予測誤差と、予め設定された評価基準値との比較結果に基づいて、予測誤差の収束が十分であるか否かを判定するステップと、収束が十分であると判定された分割パターンの関係式を製品の品質を予測するための関係式として、製品の予測される品質を示す品質予測値を出力するステップと、を含む品質予測方法が提供される。ここで、予測誤差の収束が十分であるか否かを判定するステップにて収束が不十分であると判定された場合、予測誤差が最小である分割パターン候補の分割数を増やして複数の新たな分割パターン候補を生成することを特徴とする。
ここで、本発明に係る品質予測方法は、各分割パターン候補について、各局所領域における、操業データと品質データとの関係を表す局所関係式を算出するステップと、各分割パターン候補について、操業変数がとる領域の分割パターンを表す分割座標情報およびコード変数がとる領域の分割パターンを表すコード分割情報に基づき、各分割パターン候補の各局所領域における各局所関係式の関係式への寄与率を表す活性度関数を算出するステップと、活性度関数と局所関係式とに基づいて、全体領域における操業データと品質データとの関係を表す関係式を算出するステップと、を含むこともできる。
さらに、上記課題を解決するために、本発明の別の観点によれば、コンピュータに上記の品質予測装置として機能させるためのプログラムが提供される。かかるプログラムは、コンピュータが備える記憶装置に格納され、コンピュータが備えるCPUに読み込まれて実行されることにより、そのコンピュータを上記の品質予測装置として機能させる。また、当該プログラムが記録された、コンピュータで読み取り可能な記録媒体も提供される。記録媒体は、例えば磁気ディスクや光ディスクなどである。
以上説明したように本発明によれば、製品記号や原料記号などの文字コード情報に応じて操業データと品質データとの特性が変化する場合においても、操業データと品質データとの関係式を作成し、品質を予測することが可能な品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体を提供することができる。
本発明の第1の実施形態にかかる品質予測装置の構成を示すブロック図である。 同実施形態にかかる品質予測装置による品質予測処理を示すフローチャートである。 分割パターン候補作成部による分割パターン候補の作成処理を示す説明図である。 二次元の操業変数空間において、分割パターン候補を作成する手順を模式的に示す説明図である。 3分割された二次元の操業変数空間において、分割パターン候補を作成する手順を模式的に示す説明図である。 コード変数の分割パターン候補の作成処理を示すフローチャートである。 コード変数の分割パターン候補の作成処理におけるコード入れ替え処理を示す説明図である。 本発明の第2の実施形態にかかる品質予測装置の構成を示すブロック図である。 同実施形態にかかる品質予測装置による局所関係式の更新処理を示すフローチャートである。 本発明の実施形態にかかる品質予測装置のハードウェア構成の一構成例を示すブロック図である。 薄鋼板の熱間圧延プロセスの概略を示す説明図である。 従来方式による板幅の変動量予測における予測誤差(=予測値−実績値)の度数分布である。 本発明の実施形態による板幅の変動量予測における予測誤差(=予測値−実績値)の度数分布である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<1.第1の実施形態>
[品質予測装置の構成]
まず、図1に基づいて、本発明の第1の実施形態にかかる製造プロセスにおける品質予測装置の構成について説明する。なお、図1は、本実施形態にかかる品質予測装置100の構成を示すブロック図である。
本実施形態にかかる製造プロセスにおける品質予測装置100は、品質予測を行う対象の品質を予測する装置である。品質予測装置100により予測する品質としては、例えば鉄鋼プロセスの場合では、薄板や厚板などの各種製品の、表面疵や内部欠陥の発生個数、抗張力や降伏応力、伸び率などの機械強度特性値、波高さなどの形状平坦度、板厚・板幅・板長さなどの製品サイズ、内部応力など、直接顧客から要求される最終製品の各種品質指標がある。また、これら最終品質に影響を及ぼすプロセス値も予測する品質となる。
このような品質予測装置100は、図1に示すように、データ抽出部110と、分割パターン候補作成部120と、活性度関数算出部130と、局所関係式算出部140と、関係式算出部150と、最小誤差関係式選択部160と、学習誤差評価部170と、品質予測値出力部180と、データベース190とを備える。
データ抽出部110は、製品の種類を示すコード情報など外部より入力された品質予測を行う対象に関する選択条件に基づいて、データベース190より、所定の選択条件に該当する複数の操業データ及び品質データを抽出する。ここで、操業データは、取り得る値が数値である操業変数と、取り得る値が文字コード情報であるコード変数とからなる。操業変数は、例えば鉄鋼プロセスでは、精錬工程で測定された溶鋼の各種元素の成分量や、連続鋳造工程における湯面変動量や鋳造速度、更には熱延工程での圧延荷重や捲き取り温度等である。コード変数は、製品記号や原料記号などの文字コード情報である。データ抽出部110は、データベース190から抽出したデータを分割パターン候補作成部120へ出力する。
分割パターン候補作成部120は、取り得る値が数値である操業変数、及び取り得る値が文字コード情報であるコード変数の両者からなる全体領域を、複数M個の局所領域に分割した分割パターン候補を複数個作成する処理を行う。すなわち、分割パターン候補作成部120は、データ抽出部110から入力された操業データに含まれる操業変数とコード変数とが混在する全体領域を分割して、複数の分割パターン候補を作成する。
本実施形態にかかる分割パターン候補作成部120は、全体領域のうち操業変数のみを分割対象として分割する数値分割作成部122と、全体領域のうちコード変数のみを分割対象として分割を行うコード分割作成部124から構成される。分割パターン候補作成部120は、数値分割作成部122により全体領域を構成する操業変数を分割して生成された複数の分割パターン候補と、コード分割作成部124により全体領域を構成するコード変数を分割して生成された複数の分割パターン候補と合わせて、全体領域の分割パターン候補とする。そして、分割パターン候補作成部120は、作成された複数の分割パターン候補を活性度関数算出部130へ出力する。
活性度関数算出部130は、分割パターン候補作成部120から入力されたすべての分割パターン候補に対して、操業変数の分割座標情報とコード変数のグループ分け結果とに基づきそれぞれ活性度関数を算出する。活性度関数は、後述する局所関係式算出部140により算出される局所関係式の、全体領域における操業データと品質データとの関係を表す関係式への寄与率を表すものである。局所関係式の活性度関数算出部130は、算出した活性度関数を局所関係式算出部140および関係式算出部150へ出力する。
局所関係式算出部140は、局所領域における局所関係式として仮定された関数形に基づいて、局所関係式の係数を求め、局所関係式を決定する。局所関係式は、各局所領域における操業データと品質データとの関係を表すものである。局所関係式算出部140は、決定した局所関係式を関係式算出部150へ出力する。
関係式算出部150は、活性度関数算出部130で算出された活性度関数と、局所関係式算出部140で求められた局所関係式を用いて、全体領域における操業データと品質データとの関係式を作成する。関係式算出部150は、作成した操業データと品質データとの関係式を最小誤差関係式選択部160へ出力する。
最小誤差関係式選択部160は、すべての分割パターン候補それぞれに対して作成された操業データと品質データとの関係式から算出された誤差と、関係式算出部150にて算出された関係式から算出された誤差とを比較して、これらの誤差が最小となる関係式を選択する。最小誤差関係式選択部160は、選択した関係式を学習誤差評価部170へ出力する。
学習誤差評価部170は、最小誤差関係式選択部160で選択された関係式(以下、「誤差最小の関係式」という。)の誤差と予め設定された評価基準値とを比較して、十分な精度を有する関係式が構築されたか否かを判定する。学習誤差評価部170は、収束したと判定した場合には、当該関係式を表現するための情報である活性度関数および局所関係式の係数を、品質予測値出力部180へ出力する。一方、収束が不十分であると判定した場合、学習誤差評価部170は、分割パターン候補作成部120に対して、最小誤差関係式選択部160において選択された分割パターンをさらに分割して新たな分割パターン候補を作成する指示を行う。
品質予測値出力部180は、学習誤差評価部170から入力された関係式を表現するための情報と別途入力される操業データとに基づいて品質予測値を算出し、算出した品質予測値を外部へ出力する。品質予測値出力部180から出力された品質予測値は、例えば、オペレータへのガイダンスやプロセス制御系への入力信号として用いることができる。
データベース190は、製造プロセスにおける過去の操業データ及び品質データと、製品の種類を示すコード情報や、各製造工程での製造時刻、向け先などの注文情報、製品を特定するための製品番号などとを関連付けて記憶する記憶部である。これらの情報は、外部から所定のタイミングでデータベース190に入力され、記録される。データベース190に記憶された情報は、上記段落0035に記載したように、データベース抽出部110により抽出され、品質予測に用いられる。
[品質予測装置による品質予測処理]
次に、図2〜図7に基づいて、本実施形態にかかる品質予測装置100による品質予測処理について詳細に説明する。なお、図2は、本実施形態にかかる品質予測装置による品質予測処理を示すフローチャートである。図3は、分割パターン候補作成部120による分割パターン候補の作成処理を示す説明図である。図4は、二次元の操業変数空間において、分割パターン候補を作成する手順を模式的に示す説明図である。図5は、3分割された二次元の操業変数空間において、分割パターン候補を作成する手順を模式的に示す説明図である。図6は、コード変数の分割パターン候補の作成処理を示すフローチャートである。図7は、コード変数の分割パターン候補の作成処理におけるコード入れ替え処理を示す説明図である。
複数(p個)の操業データu1、u2、・・・、upに基づいて品質を予測する場合、品質データはu1〜upを基底とするp次元の操業変数空間における関数と見なすことができる。従って、操業データと品質データとの関係を表す関係式yは、一般に、写像関数f(・)を介した下記数式(1)で表すことができる。
Figure 0005375506
・・・数式(1)
ここで、
Figure 0005375506
は、p個の操業変数からなる列ベクトル、tは行列の転置を表す。
写像関数f(・)は、通常の製造プロセスの場合、非線形・多変量の複雑な関数であり、操業変数空間全体に渡る適正な関数式を見出すのは難しい。そこで、本実施形態においては、操業変数とコード変数とからなる全体領域をそれぞれ複数の局所領域に分割する複数の分割パターン候補を作成し、各局所領域iにおける操業データと品質データとの関係を表す局所関係式
Figure 0005375506
と、局所関係式の全体領域内の各点における予測値への寄与率を表す活性度関数Φiとの積の和である数式(2)によって、全体の関係式yを表すものとする。ここでΣは項の和、Mは局所領域の個数を表している。
Figure 0005375506
・・・数式(2)
なお、活性度関数は、全体空間の任意の位置で各関数値の総和が1となる数式(3)の正規条件を満たすように予め設定しておく。
Figure 0005375506
・・・数式(3)
本実施形態にかかる品質予測装置100による品質予測処理では、まず、データ抽出部110によりデータベース190から品質予測を行う対象に関する操業データおよび品質データを抽出する(ステップS100)。データ抽出部110は、製品の種類を示すコード情報など外部より入力された品質予測を行う対象に関する選択条件に基づいて、データベース190より、所定の選択条件に該当する複数の操業データ及び品質データを抽出する。データ抽出部110は、抽出した操業データおよび品質データを分割パターン候補作成部120へ出力する。
次いで、分割パターン候補作成部120は、操業データのうち操業変数およびコード変数からなる全体領域から複数の分割パターン候補を作成する(ステップS102)。本実施形態では、操業変数とコード変数とが混在する全体領域から分割パターン候補を作成するため、操業変数空間のみに基づいて分割する数値分割作成部122と、コード変数のみに基づいて分割するコード分割作成部124とを用いて、操業変数とコード変数とについて別々に分割パターン候補を作成する。そして、両者で作成された分割パターン候補を合わせて、全体領域の分割パターン候補とする。
すなわち、図3に示すように、まず、数値分割作成部122は、分割されていない二次元の操業変数空間について当該空間を2つの局所領域(M=2)に分割する処理を行う。ここで、操業変数空間の分割は、各操業変数に平行な軸で、分割点が設定される。つまり、図4に示すように、二次元の操業変数空間は2つの操業変数u1、u2からなる。したがって、領域1−1に対して、操業変数u1軸に平行な分割と、操業変数u2軸に平行な分割とが行われる。このように、領域1−1が2つの局所領域2−1、2−2に分割される。数値分割作成部122は、分割点の設定を変えて、図3に示すように複数の分割パターン候補を作成する。
また、数値分割作成部122は、操業変数空間が既に幾つかの局所領域に分割されている場合は、後述の活性度関数による重み付き誤差評価関数である数式(12)で各局所関係式の誤差を算出し、この中で最も誤差の大きな局所領域を2つに分割する。一例として、図5に、既に3分割された操業変数空間を4分割(M=4)する手順を示す。図5に示すように、最も誤差の大きい領域が領域3−2であるとすると、操業変数u1またはu2軸に平行な軸で領域3−2を2分するように分割点が設定される。このとき、残りの領域3−1および3−3は分割されない。
図3において、操業変数空間を2分割したとき、最も誤差の大きい領域が領域2−1であったとすると、操業変数u1またはu2軸に平行な軸で領域2−1を2分するように分割点が設定される。このように、操業変数については、現在の分割パターンから新たな複数の分割パターン候補が生成される。
操業変数の分割パターン候補を作成するに際して必要となる分割候補点の値は、例えば一つの操業変数のデータを抽出して、このデータを複数のグループに分割し、各グループの境界となる操業変数の値を求めて、これを全ての操業変数について算出し、分割候補点に使用する方法がある。具体的には、例えばクラスタリング法を用いて操業変数データを複数のグループに分割し、各グループに含まれる操業変数の値の最小値及び最大値を算出する。そして、隣接するグループのうち、操業変数の値が小さい方のグループの最大値と、操業変数の値が大きい方のグループの最小値との平均値を分割点の値とする。或いは、操業変数のデータ値に対して、操業オペレータや担当者が、同一の操業水準とみなすことができるグループの範囲を設定できる場合は、人手で設定した分割候補点を用いても良い。
一方、コード分割作成部124は、コード変数を2つのグループに分割することによりコード変数の分割パターン候補を作成する。ここで、コード変数の取り得る値は一般的に数百にも及ぶことから、これらを2つのグループに分割する組合せを全て評価するのは、計算時間の観点から現実的ではない。したがって、本実施形態では、例えば数理最適化の分野で提案された探索法を応用し、膨大な組合せの中から、分割の初期組合せを仮定し、次いで精度の高い関係式となるよう組合せを修正しながら探索することで、最適なグループへの分割を算出する方法を用いる。具体的には、探索法の一種であるローカルサーチ法を用いてコード分割を算出することができる。
ここで、図6および図7に基づいて、ローカルサーチ法によるコード変数の分割方法について説明する。まず、コード分割作成部124は、乱数を発生させてコード変数を初期分割し、操業データと品質データとの関係を表す関係式(以下、「品質予測モデル」ともいう。)を作成する(ステップS1021)。例えば、コード変数vがとり得る値の全ての種類Dに対して、1〜Dの番号を付与する。そして、0から1の間の乱数を発生する乱数発生器をi=1〜D回実行し、i回目の乱数の値が閾値(例えば0.5)を超えるか否かでi番のコード値のデータがグループV、若しくはVに属するコード変数の値以外のコード変数の値からなるグループV~のいずれに属するかを算出する。例えば、図7に示すように、コード変数vの取り得る値が8つあったとき、これらのデータは、2つのグループV、V~のいずれかに属するように分割される。
次いで、コード分割作成部124は、2つのグループに分けられたデータに対して、後述する活性度関数算出部130、局所関係式算出部140および関係式算出部150における処理と同一の手順にて品質予測モデルを作成し、予測誤差を計算する(ステップS1022)。ステップ1021、S1022は、コード変数の分割処理における初期処理として行われる。
上記初期分割後の品質予測モデルについて予測誤差を算出すると、コード分割作成部124は、1〜Dの値を発生し得る乱数発生器を一回実行し、得られた乱数値DRに対応したコード値のデータを現在とは異なるグループに入れ替える(ステップS1023)。例えば、図7に示す例において、乱数発生器により得られた乱数値DRに対応するコード値のデータが「2」であったとする。当該データは現在グループV~に属するが、ステップS1023の処理により、現在属するグループとは異なるグループVへ移動される。このように、コード分割作成部124は、データを入れ替えて、品質予測モデルを再作成する。
その後、コード分割作成部124は、入れ替えたデータにより品質予測モデルを作成し、予測誤差を計算する(ステップS1024)。ステップS1024の処理は、上記ステップS1022の処理と同様に行うことができる。
次いで、コード分割作成部124は、入れ替える前の予測誤差と入れ替えた後の予測誤差を比較して、精度評価を行う(ステップS1025)。そして、コード分割作成部124は、入れ替え後の予測誤差が入れ替え前の予測誤差よりも小さければステップS1023で行った入れ替えを確定し、ステップS1027の処理へ進む。一方、入れ替え後の予測誤差が入れ替え前の予測誤差以上である場合は、2つのグループを入れ替え前の状態に戻す(ステップS1026)。その後、ステップS1023に戻って処理を反復する。
ステップS1025において、ステップS1023でのグループの入れ替えを確定すると、コード分割作成部124は、反復停止条件を満たしているか否かを判定する(ステップS1027)。反復停止条件としては、例えば、反復回数の上限値に達した場合や、予測誤差の改善が見られない入れ替えの実施回数の上限値に達した場合等の条件を設定することができる。コード分割作成部124は、反復停止条件に合致した場合は、反復処理を停止し、コード変数の分割処理を終了する。すなわち、この時点で確定されている2つのグループがコード変数の分割パターン候補となる。一方、反復停止条件に合致しないと判定された場合は、ステップS1023に戻って処理を反復する。
以上、コード変数の分割処理について説明した。なお、コード変数が複数個(q個)ある場合には、それぞれのコード変数j=1〜qに対して上記処理を行い、q種類のコード変数に対する分割パターン候補をそれぞれ作成すればよい。
なお、分割パターン候補作成部120による分割パターン候補の作成方法としては、上記の方法に限定されるものではなく、操業変数とコード変数からなる分割パターン候補を、例えば遺伝的アルゴリズムなどの最適化手法を用いて一括で生成する方法も、本発明の範疇である。具体的には、分割パターン候補において分割点となる操業変数およびコード変数の値を配列に格納したものを複数個作成し、配列同士の一部を入れ替える交叉処理や、配列の一部の値を変更する突然変異処理を行い、後述する活性度関数算出部130、局所関係式算出部140および関係式算出部150における処理と同一の手順にて品質予測モデルを作成し、予測誤差を計算する。そして、上記の方法と同様に、予測誤差の大きさを評価して、分割パターン候補を決定することができる。
図2に戻り、分割パターン候補が作成されると、すべての分割パターン候補に対してそれぞれ活性度関数、局所関係式および全体の関係式が算出される(ステップS104〜S108)。
まず、活性度関数算出部130により、すべての分割パターン候補に対し、操業変数の分割座標情報とコード変数のグループ分け結果に基づいて、活性度関数がそれぞれ算出される(ステップS104)。具体的な活性度関数としては、例えば、数式(4)に示すp次元の正規分布関数と、コード分割情報より算出した数式(5)で表される二値関数とを、数式(6)に代入して得られるメンバシップ関数を活性度関数とする方法がある。
Figure 0005375506
・・・数式(4)
Figure 0005375506
・・・数式(5)
Figure 0005375506
・・・数式(6)
(i=1,・・・,M)、(k=1,・・・,M)
ここで、c は局所領域の重心点、σ は正規分布関数の標準偏差、vはコード変数、Vはコード分割作成手段で得られたグループVに属するコード変数の値の集合である。数式(6)に示すように、本実施形態にかかる活性度関数は、操業変数u及びコード変数vの関数であることがわかる。このメンバシップ関数は、任意の操業データに対して、該操業データのコード変数値が集合Vに属していない場合は0値となり、属している場合は操業変数の値に応じた0〜1の範囲の値を有するものである。
次いで、局所関係式算出部140により、すべての分割パターン候補に対し、局所領域で仮定された関数形に基づいて、局所関係式の係数がそれぞれ算出される(ステップS106)。本実施形態では、局所関係式を下記数式(7)に示す線形多項式に設定する。
Figure 0005375506
・・・数式(7)
Figure 0005375506
ここで、データ抽出部110より、N個のデータが抽出された場合、操業データはp行N列の行列データ、品質データはN次元のベクトルデータとなり、各局所関係式は、数式(8)の行列表現で表される。
Figure 0005375506
・・・数式(8)
Figure 0005375506
ここで、
Figure 0005375506
・・・数式(9)
Figure 0005375506
・・・数式(10)
Figure 0005375506
・・・数式(11)
活性度関数を考慮して係数wijを求めるには、活性度関数による重み付き誤差評価関数、すなわち数式(12)が最小となるように係数を決定すれば良い。
Figure 0005375506
・・・数式(12)
(l=1,・・・,N)
そして、数式(12)を最小とする係数は、数式(13)を満たす係数に等しく、具体的には、数式(14)の行列演算にて算出する。
Figure 0005375506
・・・数式(13)
Figure 0005375506
・・・数式(14)
ここで、添字−1は逆行列を表す。また、
Figure 0005375506
・・・数式(15)
は、活性度関数の値を対角成分に有するN行N列の行列である。以上の行列演算を行うことで、線形多項式による局所関係式の係数wijを算出することができる。
ステップS104およびS106にて活性度関数および局所関係式が算出されると、関係式算出部150は、活性度関数および局所関係式を数式(2)に代入して、操業データと品質データとの関係式を作成する(ステップS108)。
その後、最小誤差関係式選択部160は、分割パターン候補作成部120で作成された複数の分割パターン候補の中から、最も誤差が小さくなる関係式を選択する(ステップS110)。ステップS104〜S108の処理によって、ステップS102で作成された複数の分割パターン候補すべてに対して数式(2)で示す操業データと品質データの関係式が作成されている。最小誤差関係式選択部160は、これを用いて、下記数式(16)で定義される誤差評価式で誤差を評価する。そして、最小誤差関係式選択部160は、数式(16)により算出された誤差が最も小さい分割パターンの関係式を選択する。
Figure 0005375506
・・・数式(16)
(l=1,・・・,N)
ステップS110で1つの関係式が選択されると、学習誤差評価部170は、最小誤差関係式選択部160で選択した誤差最小の関係式の誤差と、予め設定された評価基準値とを比較して、学習が十分であるか、すなわち誤差が収束したか否かを判定する(ステップS112)。収束判定の方法としては、例えば、関係式の誤差を収束判定因子(評価基準値)と比較する方法、局所領域分割の増分に対する関係式誤差の変化量を収束判定因子(評価基準値)と比較する方法、分割数と誤差を考慮した指標、例えば非特許文献1に記載された赤池の情報量指標など学習誤差のみならず局所領域の個数も評価に加えた指標を用い、分割の増加に対して該指標が増加した時点で分割を打ち切る方法などが用いられる。
学習誤差評価部170は、このような収束判定の方法を用いて誤差を評価し、該誤差が評価基準値より大きい場合には、十分な精度でデータを説明できる関係式はまだ構築されておらず、誤差の収束は不十分であると判定する。この場合、学習誤差評価部170は、分割パターン候補作成部120に対して、分割パターンの分割数Mを1つ増やして、ステップS102の処理を行うように指示する(ステップS114)。そして、ステップS112にて十分な精度でデータを説明できる関係式が構築されたと判定されるまで、ステップS102〜S114の処理を繰り返す。
一方、ステップS112にて、誤差が評価基準値以下であれば、学習誤差評価部170は、十分な精度でデータを説明できる関係式が構築されたと判定し、当該関係式に決定する(ステップS116)。そして、学習誤差評価部170は、得られた関係式を表現する為の情報である活性度関数、局所関係式の係数を抽出して、品質予測値出力部180へ出力する。品質予測値出力部180は、入力された関係式の情報と、別途入力される操業データとを用いて、数式(2)より品質予測値を算出し、外部へ出力する(ステップS118)。品質予測値出力部180により算出された品質予測値は、例えば、品質予測オペレータへのガイダンスや、プロセス制御系への入力信号として用いることができる。
以上、本発明の第1の実施形態にかかる品質予測装置100とこれによる品質予測方法について説明した。本実施形態にかかる品質予測装置100によれば、操業データと品質データとを用いて品質予測を行う際、操業データの情報である操業変数のみならず、文字コード情報であるコード変数も考慮して処理を行う。これにより、より正確に品質予測を行うことができる。また、操業変数のみを用いて品質予測モデルを構成する場合と比較して、少ない分割数で精度の高い品質予測モデルを構築することができる。
<2.第2の実施形態>
次に、本発明の第2の実施形態にかかる品質予測装置200について説明する。本実施形態にかかる品質予測装置200は、製造プロセス300に接続されており、製造プロセス300の状態に応じて局所関係式を更新することができる。これにより、操業データと品質データとの関係が変化した場合にも迅速に対応することができ、予測精度が改善されるまでに要する時間を大幅に短縮することが可能となる。
以下、図8および図9に基づいて、本実施形態にかかる品質予測装置200の構成とこれによる局所関係式の更新処理について詳細に説明する。なお、図8は、本実施形態にかかる品質予測装置200の構成を示すブロック図である。図9は、本実施形態にかかる品質予測装置による局所関係式の更新処理を示すフローチャートである。なお、図8では、局所関係式の更新処理に必要な処理部(すなわち、更新処理部を構成する処理部)のみを記載している。したがって、本実施形態にかかる品質予測装置200は、第1の実施形態に記載するような他の処理部を備えることもできる。
[品質予測装置の構成]
本実施形態にかかる品質予測装置200は、図8に示すように、操業データ入力部210と、活性度関数記憶部220と、寄与率演算部230と、局所関係式演算部240と、品質予測値算出部250と、品質予測値出力部260と、品質データ入力部270と、局所関係式更新部280とからなる。
操業データ入力部210は、品質予測装置200に接続された製造プロセス300から収集された製品の操業データが入力される。具体的には、操業データ入力部210として、例えばキーボード、データシートを読み込むOCR、工場内に設置されたセンサによる測定信号を逐次収集して保存し、予め設定されたタイミングでLAN等を介してデータを取り込むコンピュータ等を用いることができる。操業データ入力部210により入力される操業データは、操業変数およびコード変数からなる。操業データは、以下に述べる各処理部による演算処理を実行することで、数式(2)に等価な演算が実行され、品質予測値が算出される。操業データ入力部210から入力された操業データは、寄与率演算部230および局所関係式演算部240へ出力される。
活性度関数記憶部220は、数式(2)における活性度関数Φiを算出するために必要な、局所領域の重心点、正規分布関数の標準偏差、上記コード分割作成部124で得られたグループVに属するコード変数の値の集合を記憶する。すなわち、活性度関数記憶部220には、第1の実施形態において選択された分割パターンに関する情報が記憶されている。
寄与率演算部230は、局所領域が品質予測値に寄与する程度を表す寄与率を算出する。寄与率演算部230は、操業データ入力部210から入力された操業データと、活性度関数記憶部220に記憶された数式(2)で表わされる活性度関数とを用いて、寄与率を算出する。そして、寄与率演算部230は、算出した寄与率を品質予測値算出部250へ出力する。
局所関係式演算部240は、操業データ入力部210から入力された操業データに基づいて、局所関係式を算出する。局所関係式演算部240は、予め設定された数式(7)で表わされる局所関係式を記憶しており、操業データを数式(7)のu〜uに当てはめて、局所関係式の演算処理を行う。この局所関係式の係数値は、後に述べる局所関係式更新部280によって更新される。なお、局所関係式に、線形多項式以外の数式を用いた場合には、該数式の操業変数に対応する変数に、操業データの数値を設定して局所関係式の演算を行えば良い。局所関係式演算部240は、局所領域iごとに算出された局所関係式の演算結果を品質予測値算出部250へ出力する。
品質予測値算出部250は、寄与率演算部230から入力された寄与率と、局所関係式演算部240から入力された局所領域iごとの局所関係式の演算結果とに基づいて、操業データと品質データの関係式に基づく品質予測値を算出する。品質予測値算出部250は、寄与率と局所関係式の演算結果との積を算出し、さらに、すべての局所領域について算出されたこれらの積の和をとることにより、数式(2)の操業データと品質データの関係式に基づく品質予測値を算出する。そして、品質予測値算出部250は、算出した品質予測値を品質予測値出力部260および局所関係式更新部280へ出力する。
品質予測値出力部260は、品質予測値算出部250にて算出された品質予測値を外部へ出力するインタフェース部として機能する。品質予測値出力部260は、品質予測値を、例えばガイダンス情報として表示したり、或いは品質制御に利用するために製造プロセスの制御系へ出力したりする。品質予測値を表示させることにより、操業オペレータは、望ましい品質を得るための操業条件を決定することが可能となり、また検査員は、品質不良の懸念がある製品の重点検査を行うことで、顧客への不良品出荷を防止することができる。また、品質制御に利用する場合は、品質予測値に基づいて、品質が望ましい範囲となるよう操作端となる操業変数の目標値を算出する処理を制御系で行い、製造プロセスの操業に反映することで、品質不良の発生を抑制することが出来る。
品質データ入力部270は、製造プロセスから抽出された、製品の品質が測定された時点における品質データを入力する。品質データは、例えば鉄鋼プロセスの場合は、自動疵検査装置による表面疵や内部欠陥の個数、サンプル試験工程での機械強度測定値、形状計による波高さ測定値、板厚・板幅測定計による寸法情報、内部応力、更には最終品質に影響を及ぼす中間工程段階での元素成分量や温度、サイズといった情報である。品質データ入力部270には、これらの品質データを入力する、例えばキーボード、データシートを読み込むOCR、センサによる測定信号を逐次収集してLAN等を介して伝送する計算機を用いることができる。品質データ入力部210は、入力された品質データを局所関係式更新部280へ出力する。
局所関係式更新部280は、局所関係式演算部240が記憶する局所関係式の係数を更新する。局所関係式更新部280は、各局所領域について品質データと品質予測値の差である予測誤差を算出し、この予測誤差及び該操業データに対する各局所領域の寄与率に基づいて、局所関係式の係数の値を更新する。なお、かかる局所関係式の更新処理の詳細については後述する。局所関係式更新部280は、局所関係式の係数を更新すると、更新後の局所関係式を局所関係式演算部240へ出力する。
[品質予測装置による局所関係式更新処理]
次に、図9に基づいて、本実施形態にかかる局所関係式の更新処理について説明する。まず、品質予測装置200の操業データ入力部210に製造プロセス300から収集された製品の操業データが入力される(ステップS200)。例えば、操業データ入力部210に第1番目の製品に関する第1の操業データが入力されるとする。操業データ入力部210は、入力された第1の操業データを寄与率演算部230および局所関係式演算部240へ出力する。
操業データ入力部210から第1の操業データが入力された局所関係式演算部240は、入力された第1の操業データと予め記憶する局所関係式とに基づいて、局所関係式の演算処理を行う(ステップS202)。局所関係式演算部240に記憶されている局所関係式の係数は、局所関係式更新部280により更新されるものであるが、当該品質予測装置200により製造プロセス300の品質予測値を最初に算出する場合には、所定の精度が得られた、初期設定時の局所関係式が用いられる。局所関係式の係数の初期値は、局所関係式が所定の精度を有するものであるように、例えば第1の実施形態の手法により算出しても良く、或いは経験に基づいて適切な初期値を設定しても良い。局所関係式演算部240により算出された局所関係式の演算結果は、品質予測値算出部250へ出力される。
一方、操業データ入力部210から第1の操業データが入力された寄与率演算部230は、第1の操業データと活性度関数とを用いて、寄与率の演算を行う(ステップS204)。寄与率演算部230は、活性度関数に数式(6)で定義される関数式を用いた場合、操業データ入力部210より入力された第1の操業データのうち、操業変数に対応する数値、およびコード変数の値を設定して、数式(4)〜式(6)の演算を行うことで寄与率を算出する。寄与率演算部230により算出された寄与率は、品質予測値算出部250へ出力される。
その後、品質予測値算出部250は、ステップS202で算出された局所領域iごとの局所関係式の演算結果と、ステップS204で算出された寄与率とに基づいて、第1番目の製品に関する品質予測値を算出する(ステップS206)。品質予測値算出部250は、寄与率と局所関係式の演算結果との積を算出し、さらに、すべての局所領域について算出されたこれらの積の和をとることにより、数式(2)の操業データと品質データの関係式に基づく品質予測値を算出する。そして、品質予測値算出部250は、算出した品質予測値を品質予測値出力部260および局所関係式更新部280へ出力する。
品質予測値出力部260は、品質予測値算出部250にて算出された品質予測値を、外部の製造プロセス300や運転員へ通知する出力装置等に出力する(ステップS208)。一方、第1番目の製品に関する第1の品質データが品質データ入力部270へ入力されると(ステップS210)、局所関係式更新部280は、当該第1の品質データとステップS206にて算出された第1番目の製品の品質予測値とを用いて、新たな局所関係式の係数を算出し、局所関係式を更新する(ステップS212)。局所関係式更新部280は、各局所領域について第1の品質データと第1の品質予測値の差である予測誤差を算出し、この予測誤差及び該第1の操業データに対する各局所領域の寄与率に基づいて、新たな局所関係式の係数の値を算出する。局所関係式に数式(7)の線形多項式を用いる場合、係数の更新は、例えば以下のようにして行われる。
今、更新に使用する製品の操業変数からなるデータのベクトルをu(T)、局所領域iにおける線形多項式の更新前の係数からなるベクトルをW(T−1)と表すものとする。また、品質データ入力部270より入力された更新に使用する製品の品質データをy(T)とする。このとき、局所領域iにおける局所関係式の係数W(T)は、次の数式(17)で更新される。ここでK(T)は、局所領域iにおける更新率行列であり式(18)により算出される。
Figure 0005375506
・・・数式(17)
Figure 0005375506
・・・数式(18)
ここで、Φ(T)は局所領域iにおける更新に用いる操業データの寄与率であり、P(T−1)は局所領域iの適応ゲイン行列である。
上記数式(17)及び数式(18)は、例えば非特許文献2に記載された逐次最小二乗法の更新と同様の効果を、本実施形態における線形多項式の局所関係式でも実現すべく、今回新たに考案した更新式である。数式(17)は、右辺第2項の括弧内で算出される局所関係式の誤差に更新行列K(T)を乗じて得られるベクトルを修正量として、更新前の係数W(T−1)に加算することで更新後の係数を算出するものである。ここで数式(18)によれば、操業データに対して、活性度関数の寄与率がΦ(T)≒0であるような局所領域iの場合、K(T)≒0となることが分かる。従って、局所領域の寄与率がΦ(T)≒0である場合には局所関係式の誤差が大きい場合でも、修正量は殆ど零となり、係数W(T)は殆ど更新されない。すなわち操業データに対して、殆ど寄与率を有しない局所関係式は、更新されないことを意味している。
なお、式(18)における局所領域iの適応ゲイン行列P(T−1)は、次回のW(T+1)の更新に備えて、次の数式(19)で更新される。
Figure 0005375506
・・・数式(19)
ここで、Iは単位行列であり、Λは局所関係式yのp+1個の係数それぞれに対応した忘却係数λ(k=0,1,…,p)の逆数を対角成分とする数式(20)の行列である。忘却係数は、係数を更新する際の修正量を算出するに際して、最新の操業及び品質データによる修正を、どの程度まで修正量に反映させるかを設定するための係数で、本実施形態においては数式(21)により算出する。
Figure 0005375506
・・・数式(20)
Figure 0005375506
・・・数式(21)
忘却係数λは0〜1の範囲を取り、λが小さいほど忘却効果が大きく、式(17)の更新行列Ki(T)が大きく評価される。逆にλ=1の場合、忘却効果は零であって、予測誤差の大きさに係わらず係数の更新は行われない。式(21)によれば、右辺の根号内の第2項を見ると、局所線形式の誤差が大きい場合にλ→0となり忘却効果が大きくなるが、操業データに対して活性度関数Φi(T)≒0となるような局所領域の場合には、第2項は殆ど0となり、忘却効果は作用しないことが分かる。すなわち操業データに対して、殆ど寄与率を有しない局所領域の関係式yiに対しては、忘却効果が作用しないことを意味している。なお、式(21)における係数gは、操業変数毎に忘却効果を個別に設定するための調整係数であり、各操業変数に対する物理的な知識から経験的に設定しても良く、或いは実操業を行いながら、品質予測精度が改善するように調整しても良い。
なお、局所関係式に数式(7)の線形多項式以外の関数を用いた場合は、採用した局所関係式の関数に対応した更新式を用いて、上記と同様の手順で演算を行い、係数の更新を行えば良い。このような局所関係式の更新式によって、操業データと品質データの関係が変化した場合、該局所関係式の係数が迅速に更新される。したがって、予測精度が改善されるまでに要する時間を大幅に短縮することが可能となる。このようにして局所関係式の係数を更新することができる。以上、ステップS200〜S212の処理による、第1番目の製品の品質予測値の出力と、局所関係式の係数の更新処理について説明した。
続いて、第2番目の製品に関する第2の操業データおよび第2の品質データが入力された場合にも、品質予測装置200は同様に処理を行う。第2の操業データが製造プロセス300から操業データ入力部210へ入力されると(ステップS200)、操業データ入力部210は、第2の操業データを寄与率演算部230および局所関係式演算部240へ出力する。局所関係式演算部240は、入力された第2の操業データと、第1番目の製品の第1の操業データおよび第1の品質データによって係数が更新された局所関係式とを用いて、局所関係式の演算処理を行う(ステップS202)。局所関係式演算部240により算出された局所関係式の演算結果は、品質予測値算出部250へ出力される。一方、寄与率演算部230は、第2の操業データと活性度関数とを用いて、寄与率の演算を行い、品質予測値算出部250へ出力する(ステップS204)。
品質予測値算出部250は、ステップS202で算出された局所領域iごとの局所関係式の演算結果と、ステップS204で算出された寄与率とに基づいて、第2番目の製品に関する品質予測値を算出する(ステップS206)。品質予測値算出部250は、算出した品質予測値を品質予測値出力部260および局所関係式更新部280へ出力する。
品質予測値出力部260は、品質予測値算出部250にて算出された品質予測値を、外部の製造プロセス300や運転員へ通知する出力装置等に出力する(ステップS208)。一方、第2番目の製品に関する第2の品質データが品質データ入力部270へ入力されると(ステップS210)、局所関係式更新部280は、当該第2の品質データとステップS206にて算出された第2の品質予測値とを用いて、新たな局所関係式の係数を算出し、局所関係式を更新する(ステップS212)。局所関係式更新部280は、各局所領域について第2の品質データと第2番目の製品の品質予測値の差である予測誤差を算出し、この予測誤差及び該第2の操業データに対する各局所領域の寄与率に基づいて、新たな局所関係式の係数の値を算出する。このように、局所関係式の係数が、第2の操業データ、第2の品質データおよび第1番目の製品に関する情報に基づき更新された局所関係式から算出された第2番目の製品の品質予測値を用いて更新される。
その後、第3番目の製品に関する第3の品質データおよび品質データが品質予測装置200に入力された場合にも、同様に品質予測値が算出され、局所関係式の係数が更新される。このように、図9の処理を繰り返すことにより、製造プロセス300における品質予測値を的確に評価することができる。ここで、第1番目の製品に関する第1の品質データが入力されるのは、必ずしも第2番目の製品の品質データの予測を行う前とは限らない。例えば、ずっと後の、第数百番目の製品の品質データの予測を行う時点、という場合あるので、局所関係式の更新は、品質予測値を計算する時点で得られている最も新しい品質データ、品質予測値、及び操業データに基づいて更新するのがよい。
<3.ハードウェア構成図>
本発明の実施形態にかかる製造プロセスにおける品質予測装置100、200は、コンピュータにより実現可能である。図10に、本発明の実施形態にかかる品質予測装置として機能し得るコンピュータシステム400の構成例を示す。コンピュータシステム400は、CPU401と、ROM402と、RAM403と、キーボードコントローラ(KBC)405と、CRTコントローラ(CRTC)406と、ディスクコントローラ(DKC)407と、ネットワークインターフェースコントローラ(NIC)408とが、システムバス404を介して互いに通信可能に接続されている。
CPU401は、ROM402或いはHD411に記憶されたソフトウェア、或いはFD412より供給されるソフトウェアを実行し、システムバス404に接続された各構成部を総括的に制御する。すなわち、CPU401は、所定の処理シーケンスに従った処理プログラムを、ROM402、或いはHD411、或いはFD412から読み出して実行し、本実施形態での品質予測装置100、200の機能を実現するための制御を行う。
RAM403は、CPU401の主メモリ或いはワークエリア等として機能する。KBC405は、KB409や図示しないポインティングデバイス等からの指示入力を制御する。CRTC406は、表示部であるCRT410の表示を制御する。DKC407は、ブートプログラム、種々のアプリケーション、編集ファイル、ユーザファイル、ネットワーク管理プログラム、及び本実施形態における所定の処理プログラム等を記憶するHD411及びFD412とのアクセスを制御する。NIC408は、LAN420上の装置或いはシステムと双方向にデータをやりとりするものである。
なお、コンピュータに対し、本発明の実施形態である品質予測装置の手段、及び品質予測装置の各工程の機能を実現するための処理を記載したソフトウェアのプログラムを供給して、コンピュータに格納された該プログラムに従って各種デバイスを動作させることによって実施するものも本発明の範疇に含まれる。
また、この場合、ソフトウェアのプログラム自体が本実施形態の品質予測装置100、200の処理機能を実現することになり、そのプログラム自体が、本発明の範疇に含まれる。なお、該プログラムコードの伝送媒体として、プログラムを電気信号として伝播させて供給するコンピュータネットワークシステムなどの通信媒体を用いることもできる。
さらにプログラムをコンピュータに供給するための手段、例えばかかるプログラムを格納した記憶媒体も本発明の範疇に含まれる。かかるプログラムコードを記憶する記憶媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
(第1の実施例)
以下に、鉄鋼製品である薄鋼板の熱間圧延プロセスを対象として、粗圧延出側における被圧延材の板幅と捲取機入側における被圧延材の板幅の変化量を品質とし、操業変数には、被圧延材の目標板幅、目標板厚、等価炭素量、仕上げ圧延出側目標温度、捲き取り目標温度を用いて品質予測を行った実施例について説明する。
図11は、薄鋼板の熱間圧延プロセスの概略を示す説明図である。スラブと呼ばれる被圧延材10の母材は、加熱炉から抽出された後に、粗圧延機510にて厚み40〜50mmのバー状に圧延される。粗圧延機510の出側には、粗出側板幅計540が設置されており、粗出側板幅計540によりこの時点での被圧延材10の板幅が測定される。次いで被圧延材10は、バックアップロール522によりサポートされた複数のワークロール521を直列に配置して構成された仕上げ圧延機520にて連続的に圧延され、その後捲取機530にてコイル状に巻き取られる。
捲取機530の直前には、捲取板幅計550が設置されており、捲取板幅計550によって被圧延材10の厚みが所定の範囲内に入っているか否かが判定される。被圧延材10の厚み(捲取板幅)が所定の範囲内にない場合、当該コイルは他の向け先に降格振替されるか、若しくは全量が屑化処理されるため大きな損失が発生する。このため、熱間圧延プロセスにおいては、粗圧延出側と捲取入側間の板幅の変動量を品質予測モデルで推定し、この予測結果を粗圧延の目標幅設定値に反映する制御系を用いることで、板幅不良の発生率を低減させている。
従来は、この板幅の変動量を予測するために、目標板幅、目標板厚、鋼材の等価炭素量を操業変数とした線形重回帰モデルによる板幅変動量予測モデルを作成し、逐次最小二乗法による係数の更新で精度維持を図りつつ予測を行っていた。この従来法に代わり、本発明の実施形態にかかる品質予測装置100による板幅変動量予測モデルを適用した。操業変数である、圧延材の目標板幅、目標板厚、等価炭素量、仕上げ圧延出側目標温度、捲き取り目標温度に、コード変数である、コイルの用途や特性を表す材質コードを追加した下記表1のデータを用いてモデルを作成した。
Figure 0005375506

図12および図13に、従来方式である線形重回帰モデルによる板幅の変動量予測の精度と本発明による板幅の変動量予測の精度とを比較するために、予測誤差(=予測値−実績値)を求めて度数分布としたものを示す。なお、予測誤差の値は、従来方式による誤差の標準偏差で除することで正規化している。その結果、予測誤差のバラツキを示す標準偏差は、図12に示すように従来方式による誤差の標準偏差が1.00であるとき、本発明の品質予測方法を用いた場合の誤差の標準偏差は、図13に示すように0.61に低減した。また、板幅変動量予測モデルを作成する際に、コード変数である材質コードを用いることなく、操業変数である圧延材の目標板幅、目標板厚、等価炭素量、仕上げ圧延出側目標温度、捲き取り目標温度のみを用いた場合、誤差の標準偏差は0.82であった。このように、コード変数を用いた品質予測装置によって、予測誤差のバラツキが抑えられ、本発明による予測精度の改善を確認することができた。
上記結果を踏まえて、本発明による幅変動予測モデルを継続して運用した結果、板幅不合の発生率が低減し、更に歩留まり向上、製品手入れの省力化、納期遅れの回避などの効果を得ることができた。
(第2の実施例)
次に鉄鋼製品である薄鋼板の熱間圧延プロセスを対象として、捲取における鋼板温度を品質とし、操業変数には、被圧延材が精錬工程を終了した時点での溶鋼内のC量、Si量、Mn量、P量、S量、Cu量、Ni量、Cr量、Mo量、Nb量、V量、Ti量、B量、Al量、N量、O量、Ca量、被圧延材の目標板幅、目標板厚、等価炭素量、仕上げ圧延出側目標温度、捲き取り目標温度、圧延速度、冷却水水量密度、冷却水温、及びコード変数として材質コードを用いて品質予測を行った実施例を述べる。
図11における捲取機530の位置には、放射温度計による非接触式の捲取温度計560が設置されており、捲取温度計560によって薄鋼板の機械特性値などの材質特性に影響を及ぼす重要な管理指標である捲取時の鋼板温度が測温されている。鋼板温度を所定の範囲に制御するため、仕上げ圧延機520の出側から捲取機530に至るまでのランナウトテーブル上には、鋼板に水を散布して鋼板を冷却する冷却設備が具備されている。熱間圧延プロセスにおいては、鋼板の成分やサイズ、仕上げ圧延機520の出側や捲き取りなど各段階での目標温度、冷却水量密度を入力として、鋼板捲き取り温度を推定する予測モデルを作成し、この予測モデルを用いて捲取温度が所定の範囲となる冷却水量密度を算出し、水量密度の設定値を変更する操業が行われる。
従来は、ランナウトテーブル上で鋼板に水を散布した場合の冷却現象を、伝熱方程式に基づく物理モデルで推定を行っていた。この物理モデルに代わり、本発明を適用し、捲き取り温度推定モデルを作成して、実ラインで実施した。その結果、捲き取り温度の予測誤差の標準偏差が15%改善する効果が得られ、このモデルを継続して運用した結果、捲き取り温度不合の発生率が低減し、更に機械特性値のバラツキ低減による品質改善、歩留まり向上などの効果を得ることができた。
以上、本発明の実施形態にかかる品質予測装置100、200とこれによる品質予測方法、およびこれらを適用した実施例について説明した。本実施形態にかかる品質予測装置100、200によれば、操業データと品質データの間に非線形な特性がある製造プロセスの品質予測を行う予測モデルを、数値変数に加えて製品記号・原料記号などのコード変数でも領域を分割して、全体の関係式を作成することができる。これにより、数値である操業変数のみで分割を行うよりも、少ない分割数で精度の高い品質予測モデルが構成できる。また、設備の経時変化等などに起因して、操業データと品質データの関係が変化した場合においても、モデルを自動的に更新して高い予測精度を維持することができる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
例えば、上記実施形態では、いずれもコンピュータ上のプログラムとして品質予測装置を実現したが、本発明はかかる例に限定されない。例えば、演算装置、メモリ等を組み合わせたハードウェアによって構成されるものであっても良い。また、本発明の操業と品質の関連解析装置は、複数の機器から構成されるものであっても、一つの機器から構成されるものであっても良い。
また、上記実施形態では、分割パターン候補生成部による局所領域の分割は2分割するものであったが、本発明はかかる例に限定されず、例えば局所領域を3分割するものであってもよい。
100、200 品質予測装置
110 データ抽出部
120 分割パターン候補作成部
122 数値分割作成部
124 コード分割作成部
130 活性度関数算出部
140 局所関係式算出部
150 関係式算出部
160 最小誤差関係式選択部
170 学習誤差評価部
180、260 品質予測値出力部
190 データベース
210 操業データ入力部
220 活性度関数記憶部
230 寄与率演算部
240 局所関係式演算部
250 品質予測値算出部
270 品質データ入力部
280 局所関係式更新部
300 製造プロセス

Claims (19)

  1. 複数の製品に関する製造プロセスにおける操業データおよび品質データを記憶するデータベースから、所定の選択条件に該当する操業データおよび品質データを抽出するデータ抽出部と、
    抽出された前記操業データについて、前記操業データに含まれる数値情報である操業変数が値としてとる領域と、当該操業データに含まれる文字コード情報であるコード変数が値としてとる領域とを全体領域として、当該全体領域を複数の局所領域に分割する分割パターン候補を複数個作成する分割パターン候補作成部と、
    前記分割パターン候補作成部により作成された前記各分割パターン候補について、前記全体領域における操業データと品質データとの関係を表す関係式をそれぞれ算出する関係式算出部と、
    前記関係式算出部にて算出された関係式および前記操業データから算出される品質予測値と前記品質データとに基づいて前記各分割パターン候補について算出された関係式の予測誤差をそれぞれ算出し、当該予測誤差が最小となる関係式の分割パターン候補を分割パターンとして選択する最小誤差関係式選択部と、
    前記最小誤差関係式選択部により選択された前記分割パターンの予測誤差と、予め設定された評価基準値との比較結果に基づいて、前記予測誤差の収束が十分であるか否かを判定する学習誤差評価部と、
    前記学習誤差評価部にて収束が十分であると判定された前記分割パターンの関係式を製品の品質を予測するための関係式として、製品の予測される品質を表す品質予測値を出力する品質予測値出力部と、
    を備え、
    前記学習誤差評価部にて収束が不十分であると判定された場合、前記分割パターン候補作成部は、前記最小誤差関係式選択部にて選択された分割パターン候補の分割数を増やして複数の新たな分割パターン候補を生成することを特徴とする、品質予測装置。
  2. 前記各分割パターン候補について、前記各局所領域における、前記操業データと前記品質データとの関係を表す局所関係式を算出する局所関係式算出部と、
    前記分割パターン候補作成部により作成された前記各分割パターン候補について、前記操業変数がとる領域の分割パターンを表す分割座標情報および前記コード変数がとる領域の分割パターンを表すコード分割情報に基づき、前記各分割パターン候補の前記各局所領域における前記各局所関係式の前記関係式への寄与率を表す活性度関数を算出する活性度関数算出部と、
    を備え、
    前記関係式算出部は、前記活性度関数と前記局所関係式とに基づいて、前記全体領域における操業データと品質データとの関係を表す関係式を算出することを特徴とする、請求項1に記載の品質予測装置。
  3. 前記分割パターン候補作成部は、前記分割パターンの各局所領域のうち、最も誤差の大きい局所領域を更に分割することを特徴とする、請求項に記載の品質予測装置。
  4. 前記分割パターン候補作成部は、
    操業変数からなる操業変数空間を分割する数値分割作成部と、
    コード変数からなるグループを分割するコード分割作成部と、
    を備え、
    前記数値分割作成部により作成された分割パターン候補および前記コード分割作成部により作成された分割パターン候補を、全体領域の分割パターン候補とすることを特徴とする、請求項2または3に記載の品質予測装置。
  5. 前記コード分割作成部は、探索法を用いて前記コード変数からなるグループを分割することを特徴とする、請求項4に記載の品質予測装置。
  6. 前記活性度関数は、前記局所領域の重心に中心を持つ正規分布関数と、前記コード分割情報から算出される二値関数とを組み合わせて構成される関数であることを特徴とする、請求項2〜5のいずれか1項に記載の品質予測装置。
  7. 前記分割パターン候補作成部は、最適化手法を用いて、前記操業変数と前記コード変数とからなる分割パターン候補を一括して生成することを特徴とする、請求項2または3に記載の品質予測装置。
  8. 前記局所関係式は、複数の前記操業変数を独立変数とする線形多項式であることを特徴とする、請求項2〜のいずれか1項に記載の品質予測装置。
  9. 製造プロセスの操業状態に応じて、前記局所関係式を更新する更新処理部をさらに備え、
    前記更新処理部は、
    前記製造プロセスから対象製品の操業データを取得する操業データ入力部と、
    前記製造プロセスから対象製品の品質データを取得する品質データ入力部と、
    前記活性度関数算出部により予め算出された前記活性度関数を記憶する活性度関数記憶部と、
    前記操業データ入力部から入力された操業データと、前記活性度関数記憶部に記憶された前記活性度関数とに基づいて、前記品質予測値に対する前記各局所領域の寄与率を算出する寄与率算出部と、
    前記操業データ入力部から入力された操業データに基づいて、予め設定された前記局所関係式により各局所領域について前記局所関係式の演算を行う局所関係式演算部と、
    前記局所関係式演算部による各局所関係式の演算結果と、前記寄与率算出部により算出された寄与率とに基づいて、品質予測値を算出する品質予測値算出部と、
    前記品質データ入力部から入力された品質データと、前記品質予測値算出部により算出された品質予測値とに基づいて、各局所関係式の係数を更新する局所関係式更新部と、
    を備えることを特徴とする、請求項2〜のいずれか1項に記載の品質予測装置。
  10. 前記局所関係式更新部は、前記局所領域iにおける更新前の線形多項式の係数をWi(T−1)、前記操業データからなるベクトルをu(T)として、下記(式1)を用いて係数を算出することを特徴とする、請求項9に記載の品質予測装置。
    Figure 0005375506
    但し、Tは更新後の係数、若しくは更新に使用する製品であることを示す添字、T−1は現在の係数であることを示す添字、Wi(T)は更新後の線形多項式の係数、y(T)は前記品質データ、Ki(T)は局所領域iにおける更新率行列であり下記(式2)で表わされる。(式2)において、Φi(T)は局所領域iにおける更新に使用する操業データの寄与率、Pi(T−1)は局所領域iの適応ゲイン行列である。
    Figure 0005375506
  11. 前記製造プロセスは、鉄鋼プロセスであり、
    前記品質データは、製品の表面疵、機械強度特性値、形状の平坦度、製品サイズ、内部応力、又はこれら品質に影響を及ぼすプロセス値であることを特徴とする、請求項1〜10のいずれか1項に記載の品質予測装置。
  12. 前記製造プロセスは、鉄鋼製品である薄鋼板の熱間圧延プロセスであり、
    前記品質予測装置による予測対象となる品質を、粗圧延出側の板幅と捲き取り入側における被圧延材の板幅の変化量としたとき、
    前記製造プロセスの操業変数は、被圧延材の目標板幅、目標板厚、等価炭素量、仕上げ圧延出側目標温度、捲き取り目標温度、及び材質コードから少なくとも一つ以上選択することを特徴とする、請求項11に記載の品質予測装置。
  13. 前記製造プロセスは、鉄鋼製品である薄鋼板の熱間圧延プロセスであり、
    前記品質予測装置による予測対象となる品質を、熱延ランアウトテーブル出側での捲き取り温度としたとき、
    前記製造プロセスの操業変数は、被圧延材が精錬工程を終了した時点での溶鋼内のC量、Si量、Mn量、P量、S量、Cu量、Ni量、Cr量、Mo量、Nb量、V量、Ti量、B量、Al量、N量、O量、Ca量、被圧延材の目標板幅、目標板厚、等価炭素量、仕上げ圧延出側目標温度、捲き取り目標温度、圧延速度、冷却水水量密度、冷却水温、及び材質コードから少なくとも一つ以上選択することを特徴とする、請求項11に記載の品質予測装置。
  14. 複数の製品に関する製造プロセスにおける操業データおよび品質データを記憶するデータベースから、所定の選択条件に該当する操業データおよび品質データを抽出するステップと、
    抽出された前記操業データについて、前記操業データに含まれる数値情報である操業変数が値としてとる領域と、当該操業データに含まれる文字コード情報であるコード変数が値としてとる領域とを全体領域として、当該全体領域を複数の局所領域に分割する分割パターン候補を複数個作成するステップと、
    作成された前記各分割パターン候補について、前記全体領域における操業データと品質データとの関係を表す関係式をそれぞれ算出するステップと、
    前記操業データと品質データとの関係を表す関係式および前記操業データから算出される品質予測値と前記品質データとに基づいて前記各分割パターン候補について算出された関係式の予測誤差をそれぞれ算出し、当該予測誤差が最小となる関係式の分割パターン候補を分割パターンとして選択するステップと、
    選択された前記分割パターンの予測誤差と、予め設定された評価基準値との比較結果に基づいて、前記予測誤差の収束が十分であるか否かを判定するステップと、
    収束が十分であると判定された前記分割パターンの関係式を製品の品質を予測するための関係式として、製品の予測される品質を示す品質予測値を出力するステップと、
    を含み、
    前記予測誤差の収束が十分であるか否かを判定するステップにて収束が不十分であると判定された場合、予測誤差が最小である分割パターン候補の分割数を増やして複数の新たな分割パターン候補を生成することを特徴とする、品質予測方法。
  15. 前記各分割パターン候補について、前記各局所領域における、前記操業データと前記品質データとの関係を表す局所関係式を算出するステップと、
    前記各分割パターン候補について、前記操業変数がとる領域の分割パターンを表す分割座標情報および前記コード変数がとる領域の分割パターンを表すコード分割情報に基づき、前記各分割パターン候補の前記各局所領域における前記各局所関係式の前記関係式への寄与率を表す活性度関数を算出するステップと、
    前記活性度関数と前記局所関係式とに基づいて、前記全体領域における操業データと品質データとの関係を表す関係式を算出するステップと、
    を含むことを特徴とする、請求項14に記載の品質予測方法。
  16. コンピュータを、
    複数の製品に関する製造プロセスにおける操業データおよび品質データを記憶するデータベースから、所定の選択条件に該当する操業データおよび品質データを抽出するデータ抽出手段と、
    抽出された前記操業データについて、前記操業データに含まれる数値情報である操業変数が値としてとる領域と、当該操業データに含まれる文字コード情報であるコード変数が値としてとる領域とを全体領域として、当該全体領域を複数の局所領域に分割する分割パターン候補を複数個作成する分割パターン候補作成手段と、
    前記分割パターン候補作成手段により作成された前記各分割パターン候補について、前記全体領域における操業データと品質データとの関係を表す関係式をそれぞれ算出する関係式算出手段と、
    前記関係式算出手段にて算出された関係式および前記操業データから算出される品質予測値と前記品質データとに基づいて前記各分割パターン候補について算出された関係式の予測誤差をそれぞれ算出し、当該予測誤差が最小となる関係式の分割パターン候補を分割パターンとして選択する最小誤差関係式選択手段と、
    前記最小誤差関係式選択手段により選択された前記分割パターンの予測誤差と、予め設定された評価基準値との比較結果に基づいて、前記予測誤差の収束が十分であるか否かを判定する学習誤差評価手段と、
    前記学習誤差評価手段にて収束が十分であると判定された前記分割パターンの関係式を製品の品質を予測するための関係式として、製品の予測される品質を表す品質予測値を出力する品質予測値出力手段と、
    を備え、
    前記学習誤差評価手段にて収束が不十分であると判定された場合、前記分割パターン候補作成手段は、前記最小誤差関係式選択手段にて選択された分割パターン候補の分割数を増やして複数の新たな分割パターン候補を生成することを特徴とする、品質予測装置として機能させるためのプログラム。
  17. 前記各分割パターン候補について、前記各局所領域における、前記操業データと前記品質データとの関係を表す局所関係式を算出する局所関係式算出手段と、
    前記分割パターン候補作成手段により作成された前記各分割パターン候補について、前記操業変数がとる領域の分割パターンを表す分割座標情報および前記コード変数がとる領域の分割パターンを表すコード分割情報に基づき、前記各分割パターン候補の前記各局所領域における前記各局所関係式の前記関係式への寄与率を表す活性度関数を算出する活性度関数算出手段と、
    を備え、
    前記関係式算出手段は、前記活性度関数と前記局所関係式とに基づいて、前記全体領域における操業データと品質データとの関係を表す関係式を算出することを特徴とする、品質予測装置として機能させるための請求項16に記載のプログラム。
  18. コンピュータに、
    複数の製品に関する製造プロセスにおける操業データおよび品質データを記憶するデータベースから、所定の選択条件に該当する操業データおよび品質データを抽出するデータ抽出手段と、
    抽出された前記操業データについて、前記操業データに含まれる数値情報である操業変数が値としてとる領域と、当該操業データに含まれる文字コード情報であるコード変数が値としてとる領域とを全体領域として、当該全体領域を複数の局所領域に分割する分割パターン候補を複数個作成する分割パターン候補作成手段と、
    前記分割パターン候補作成手段により作成された前記各分割パターン候補について、前記全体領域における操業データと品質データとの関係を表す関係式をそれぞれ算出する関係式算出手段と、
    前記関係式算出手段にて算出された関係式および前記操業データから算出される品質予測値と前記品質データとに基づいて前記各分割パターン候補について算出された関係式の予測誤差をそれぞれ算出し、当該予測誤差が最小となる関係式の分割パターン候補を分割パターンとして選択する最小誤差関係式選択手段と、
    前記最小誤差関係式選択手段により選択された前記分割パターンの予測誤差と、予め設定された評価基準値との比較結果に基づいて、前記予測誤差の収束が十分であるか否かを判定する学習誤差評価手段と、
    前記学習誤差評価手段にて収束が十分であると判定された前記分割パターンの関係式を製品の品質を予測するための関係式として、製品の予測される品質を表す品質予測値を出力する品質予測値出力手段と、
    を備え、
    前記学習誤差評価手段にて収束が不十分であると判定された場合、前記分割パターン候補作成手段は、前記最小誤差関係式選択手段にて選択された分割パターン候補の分割数を増やして複数の新たな分割パターン候補を生成することを特徴とする、品質予測装置として機能させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
  19. 前記各分割パターン候補について、前記各局所領域における、前記操業データと前記品質データとの関係を表す局所関係式を算出する局所関係式算出手段と、
    前記分割パターン候補作成手段により作成された前記各分割パターン候補について、前記操業変数がとる領域の分割パターンを表す分割座標情報および前記コード変数がとる領域の分割パターンを表すコード分割情報に基づき、前記各分割パターン候補の前記各局所領域における前記各局所関係式の前記関係式への寄与率を表す活性度関数を算出する活性度関数算出手段と、
    を備え、
    前記関係式算出手段は、前記活性度関数と前記局所関係式とに基づいて、前記全体領域における操業データと品質データとの関係を表す関係式を算出することを特徴とする、品質予測装置として機能させるためのプログラムを記録した請求項18に記載のコンピュータ読み取り可能な記録媒体。
JP2009235977A 2009-10-13 2009-10-13 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体 Expired - Fee Related JP5375506B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235977A JP5375506B2 (ja) 2009-10-13 2009-10-13 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235977A JP5375506B2 (ja) 2009-10-13 2009-10-13 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体

Publications (2)

Publication Number Publication Date
JP2011085969A JP2011085969A (ja) 2011-04-28
JP5375506B2 true JP5375506B2 (ja) 2013-12-25

Family

ID=44078889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235977A Expired - Fee Related JP5375506B2 (ja) 2009-10-13 2009-10-13 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体

Country Status (1)

Country Link
JP (1) JP5375506B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817450B2 (ja) * 2011-11-10 2015-11-18 Jfeスチール株式会社 厚板の板幅制御方法
CN106156067B (zh) * 2015-03-30 2019-11-01 日本电气株式会社 用于为关系数据创建数据模型的方法和系统
CN115193921B (zh) * 2022-06-17 2023-05-12 北京科技大学 一种基于多目标决策的板形质量综合评价方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875875B2 (ja) * 2001-11-02 2007-01-31 新日本製鐵株式会社 製造プロセスにおける操業分析装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP5068637B2 (ja) * 2007-12-18 2012-11-07 新日本製鐵株式会社 製造プロセスにおける操業と品質の関連解析装置、解析方法、プログラム、及びコンピュータ読み取り可能な記録媒体

Also Published As

Publication number Publication date
JP2011085969A (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5604945B2 (ja) 品質予測装置、品質予測方法、コンピュータプログラム、およびコンピュータ読み取り可能な記録媒体
JP5516390B2 (ja) 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体
JP5434837B2 (ja) 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体
CN107377634B (zh) 一种热轧带钢出口凸度预报方法
JP5068637B2 (ja) 製造プロセスにおける操業と品質の関連解析装置、解析方法、プログラム、及びコンピュータ読み取り可能な記録媒体
JP4681426B2 (ja) 製造プロセスにおける操業と品質の関連解析装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
JP5375507B2 (ja) 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体
CN103942375B (zh) 基于区间的高速压力机滑块尺寸稳健设计方法
JP5704040B2 (ja) 製品品質の管理方法、及び製品品質の管理装置
CN108664682A (zh) 一种变压器顶层油温的预测方法及其系统
JP5867349B2 (ja) 品質予測装置、操業条件決定方法、品質予測方法、コンピュータプログラムおよびコンピュータ読み取り可能な記憶媒体
KR101832653B1 (ko) 압연 프로세스의 학습 제어 장치
JP5195331B2 (ja) 製造プロセスにおける品質予測装置、予測方法、プログラム及びコンピュータ読み取り可能な記録媒体
JP6439780B2 (ja) 電磁鋼板の磁気特性予測装置及び磁気特性制御装置
KR20080071607A (ko) 예측식 작성장치 및 예측식 작성방법
JP2008112288A (ja) 予測式作成装置、結果予測装置、品質設計装置、予測式作成方法及び製品の製造方法
Sagaert et al. Incorporating macroeconomic leading indicators in tactical capacity planning
JP5375506B2 (ja) 品質予測装置、品質予測方法、プログラムおよびコンピュータ読み取り可能な記録媒体
JP5488140B2 (ja) 品質予測装置、品質予測方法、コンピュータプログラム、およびコンピュータ読み取り可能な記録媒体
JP5003362B2 (ja) 製品品質の制御方法及び制御装置
JP6508185B2 (ja) 結果予測装置及び結果予測方法
JP4365600B2 (ja) 鋼材の製品品質設計装置及び鋼材製品の製造方法
JP7449776B2 (ja) 熱間圧延ライン制御システムおよび熱間圧延ライン制御方法
JP5682131B2 (ja) 鋼材の材質予測装置
JP2020071493A (ja) 結果予測装置、結果予測方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R151 Written notification of patent or utility model registration

Ref document number: 5375506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees