JP5374855B2 - 蛍光体含有組成物の製造方法 - Google Patents

蛍光体含有組成物の製造方法 Download PDF

Info

Publication number
JP5374855B2
JP5374855B2 JP2007272191A JP2007272191A JP5374855B2 JP 5374855 B2 JP5374855 B2 JP 5374855B2 JP 2007272191 A JP2007272191 A JP 2007272191A JP 2007272191 A JP2007272191 A JP 2007272191A JP 5374855 B2 JP5374855 B2 JP 5374855B2
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007272191A
Other languages
English (en)
Other versions
JP2009096947A5 (ja
JP2009096947A (ja
Inventor
波奈子 加藤
敬一 関
寛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007272191A priority Critical patent/JP5374855B2/ja
Publication of JP2009096947A publication Critical patent/JP2009096947A/ja
Publication of JP2009096947A5 publication Critical patent/JP2009096947A5/ja
Application granted granted Critical
Publication of JP5374855B2 publication Critical patent/JP5374855B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、蛍光体含有組成物の製造方法に関する。より詳しくは、蛍光体が凝集することが少ない蛍光体含有組成物を製造する方法に関する。
半導体発光装置は、通常、半導体発光素子(以下、適宜「LED」ともいう。)上に蛍光体及び液状媒体を含有する蛍光体含有組成物を塗布し、これを硬化することによりLEDを封止して製造される。また、LED上に蛍光体を含有しない液状媒体を塗布・硬化し、さらに蛍光体及び液状媒体を含有する蛍光体含有組成物を塗布・硬化した多層構造によりLEDを封止する場合もある。いずれの場合にも、蛍光体を蛍光体含有組成物中に均一に分散させる目的、または蛍光体含有組成物の硬化物における散乱効果を付与する目的等により、蛍光体とともにフィラーを蛍光体含有組成物に含有させることがある。このような蛍光体含有組成物については、蛍光体や液状媒体の物性、性質などを考慮した種々の組成が開示されている(特許文献1〜4参照)。
特開2006−77234号公報 特開2006−294821号公報 特開2002−338833号公報(特許3910080号) 国際公開2006/090804号パンフレット
しかしながら、上記蛍光体含有組成物を用いて封止剤等を作成した場合、蛍光体含有組成物に含有されるシリカ微粒子の分散が不十分である場合、凝集したシリカ微粒子により過剰な光散乱が起きて光出力が低下したり、チキソ性の発現が不安定となり蛍光体粒子が沈降や分散ムラを起こしたり、ポッティング時の吐出量にムラが生じたりして、得られる半導体発光装置内の色むらや発光装置ごとの色度ずれにつながり、製造時の歩留まりや品質に影響を与えることがあった。中でも半導体発光素子の発光波長が近紫外から紫外であり、励起光のほぼ全てを蛍光体により赤・緑・青の可視光に変換して白色光を得る場合には、青色発光素子と青励起の黄色又は赤・緑蛍光体の組み合わせによる白色LEDと比較して蛍光体含有組成物やその硬化物における蛍光体の濃度が高くなり、蛍光体の濃度が高い部分に蛍光体の熱が蓄積され、蛍光体層内の局所的な蛍光体熱劣化が起きやすくなる。従ってこのような白色LEDでは蛍光体分散のムラは製造時の色ムラにつながるのみならず、長期点灯時の色ずれや輝度低下につながる傾向があるので蛍光体を均一に分散させることが特に重要であった。
そこで蛍光体を均一に分散することが可能な、蛍光体含有組成物の製造方法の提供が望まれていた。
本発明者らが、上記の目的を満足し得る蛍光体含有組成物の製造方法について鋭意研究したところ、蛍光体、フィラー、及び媒体の混合順序を調整することにより、フィラー及び蛍光体の分散が改善され、色むらや色度ずれが抑制され、さらに蛍光体に混合分散による結晶構造の損傷を与えることなく、蛍光体含有組成物中に蛍光体を均一に分散可能である点を見出し、本発明に至った。
本発明の要旨は、(A)シリカ微粒子、(B)蛍光体、及び(C)付加重合硬化タイプのシリコーン系材料を含有する蛍光体含有組成物の製造方法であって、前記(C)付加重合硬化タイプのシリコーン系材料が(C1)アルケニル基を含有するオルガノポリシロキサン及び(C3)付加重合触媒を含む第1の液状媒体、及び(C2)ヒドロシリル基を含有するオルガノポリシロキサンを含む第2の液状媒体を混合して得られるものであり、前記(A)シリカ微粒子、前記第1の液状媒体及び前記第2の液状媒体の一方に、100μmを超えるシリカ微粒子の集塊粒子が存在しないように分散させる第一工程と、前記第1の液状媒体及び前記第2の液状媒体の他方を前記第一工程で得た分散液に合する第二工程と、前記第一工程で得た分散液又は前記第二工程で得た混合液に、前記(B)蛍光体を分させる蛍光体分散工程とを有することを特徴とする、蛍光体含有組成物の製造方法に存する(請求項)。
記蛍光体含有組成物の製造方法では、
前記第1の液状媒体体及び前記第2の液状媒体のうち前記第一工程で用いられる液状媒体の粘度が、30mPa・s以上、15000mPa・s以下であることが好ましい(請求項)。
また、前記蛍光体分散工程を前記第二工程より前に有することが好ましい(請求項3)。
本発明によれば、シリカ微粒子、蛍光体、及び液状媒体を、上記順序により混合及び分散させることから、色むらや色度ずれが抑制され、さらに蛍光体に混合分散による結晶構造の損傷を与えることなく、蛍光体含有組成物中に蛍光体を均一に分散可能である。
以下、本発明をそれぞれ詳細に説明するが、本発明は以下の説明に限定されるものではなく、その要旨の範囲内において種々に変更して実施することができる。
本発明は、(A)シリカ微粒子、(B)蛍光体、及び(C)液状媒体を含有する蛍光体含有組成物の製造方法に関するものであり、原料の混合及び分散順序の違いによって、二つの実施態様がある。
以下の記載では、まず、本発明の蛍光体含有組成物の製造方法に使用される原料について順に説明し、その上で各実施態様における原料の混合及び分散方法について説明するものとする。
1.原料
1−1.(A)シリカ微粒子
まず、本発明に用いる(A)シリカ微粒子について説明する。本発明でいう(A)シリカ微粒子とは、十分に細かい粒子状のシリカのことをいうこととし、中央粒径(D50)が、一次粒子としては100nm以下、凝集粒子としては通常、後述する蛍光体の粒径の1/10以下とされる。
具体的には一次粒子の中央粒径(D50)が通常1nm以上であり、好ましくは5nm以上であり、より好ましくは7nm以上である。また、通常100nm以下であり、好ましくは80nm以下であり、より好ましくは50nm以下である。一次粒子の中央粒径がこれより小さいと製造が困難になったり、凝集力が強く非常に大きな凝集粒子を形成し、分散に大きなエネルギーが必要になったりする傾向がある。また、一次粒子の中央粒径がこれより大きいとチキソ性の発現が十分でなく蛍光体が沈降したり、光散乱が強くなり液が白濁したりする傾向がある。一次粒子の中央粒径(D50)及び粒度分布(QD)は透過型電子顕微鏡(TEM)を用いて測定することができる。また、粒度分布(QD)は蛍光体含有組成物中のシリカ微粒子の分散状態を揃えるために小さい方が好ましいが、小さすぎると製造が困難となったり分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。また、シリカ微粒子の一次粒子形状は特に限定されず、任意の形状とすることが出来る。
なお、本発明に用いられるシリカ微粒子は液状媒体中に単独粒子で存在することはほとんど無く、多くの場合凝集粒子として存在する。このシリカ微粒子の一次粒子は液状媒体中では通常「スノーボール」状の二次粒子を形成し、その二次粒子が鎖状につながった3次元状のゆるいネットワークを形成し、チキソ性を発現する。分散不十分である液状媒体には2次粒子がさらに大きな集塊状に凝集した100nm〜100μmほどの3次粒子が存在し、系の透明性に影響を与える。
本発明においてはこの2次粒子の中央粒径、粒度分布、及び集塊粒子の有無が重要である。なお、2次粒子の中央粒径(D50)及び粒度分布(QD)は後述する重量基準粒度分布曲線から得ることが出来る。2次粒子の構造が不安定で、前記の方法にて再現性良く測定できない場合は、相補的に微小シリカ粒子を含有する本発明の蛍光体含有組成物の硬化物の断面を走査型電子顕微鏡(SEM)で観察することにより2次粒子の粒径を測定することが出来る。
前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒にシリカ微粒子を分散させる。上記分散液をレーザ回折式粒度分布測定装置(堀場製作所 LA−300)により、粒径範囲0.1μm〜600μmにて測定し、重量基準粒度分布曲線を作成する。得られる重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25及びD75と表記し、QD=(D75−D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
本発明に用いられるシリカ微粒子は、例えばフュームドシリカを挙げることができる。フュームドシリカは、H2とO2との混合ガスを燃焼させた1100〜1400℃の炎でSiCl4ガスを酸化、加水分解させることにより作製される。フュームドシリカの一次粒子は、平均粒径が通常5nm以上、50nm以下の非晶質の二酸化ケイ素(SiO2)を主成分とする球状の超微粒子であり、この一次粒子がそれぞれ凝集し、粒径が数百nmである二次粒子を形成する。このシリカ微粒子表面は親水性であるが必要に応じメチル基などの導入により疎水性とすることも出来る。
このようなシリカ微粒子として具体的には、例えば日本アエロジル株式会社製の親水性又は疎水性「アエロジル」(登録商標)が挙げられる。
ここで、本発明により製造される蛍光体含有組成物を半導体発光デバイス用部材に使用する場合等において、上記シリカ微粒子は、光学的特性や作業性を向上させるため、また、以下の〔1〕〜〔4〕の何れかの効果を得ること等を目的として、含有させることができる。
〔1〕半導体発光デバイス用部材に光散乱物質としてシリカ微粒子を混入し、半導体発光デバイスの光を散乱させることにより、蛍光体に当たる半導体発光素子の光量を増加させ、波長変換効率を向上させると共に、半導体発光デバイスから外部に放出される光の指向角を広げる。
〔2〕半導体発光デバイス用部材に結合剤としてシリカ微粒子を配合することにより、クラックの発生を防止する。
〔3〕半導体発光デバイス用部材形成液(蛍光体含有組成物)に、粘度調整剤としてシリカ微粒子を配合することにより、上記形成液の粘度を高くする。
〔4〕半導体発光デバイス用部材にシリカ微粒子を配合することにより、その収縮を低減する。
中でも〔3〕の効果が主たる目的である。具体的には、シリカ微粒子として、中央粒径が約10nm以上、100nm以下の超微粒子状シリカ(日本アエロジル株式会社製、商品名:AEROSIL#200、商品名:AEROSIL RX200等)を用いる場合、蛍光体含有組成物のチクソトロピック性が増大するため、上記〔3〕の効果が大きい。
本発明の蛍光体含有組成物の製造方法に用いるシリカ微粒子の種類は目的に応じて選択すれば良い。また、その種類は単一でも良く、複数種を任意の比率及び組み合わせで用いてもよい。また、上記シリカ微粒子は、分散性を改善するためにシランカップリング剤などの表面処理剤で表面処理されているものであっても良い。
ここで、本発明の蛍光体含有組成物の製造方法におけるシリカ微粒子の使用量は、本発明の効果を著しく損なわない限り任意であり、製造される蛍光体含有組成物の用途や、シリカ微粒子に求める機能等に応じて適宜選択される。
例えば、シリカ微粒子を光散乱剤として用いる場合、製造する蛍光体含有組成物の固形分中におけるシリカ微粒子の含有率の下限は通常0.01重量%以上であり、好ましくは0.05重量%以上、より好ましくは1.0重量%以上である。また上限は、通常10重量%以下、好ましくは7重量%以下、より好ましくは5重量%以下である。
また例えば、シリカ微粒子を骨材として用いる場合、製造する蛍光体含有組成物の固形分中におけるシリカ微粒子の含有率の下限は1重量%以上であり、好ましくは5重量%以上、より好ましくは10重量%以上である。また上限としては、通常50重量%以下であり、好ましくは40重量%以下、より好ましくは30重量%以下である。また例えば、シリカ微粒子を増粘剤(チキソ剤)として用いる場合は、製造する蛍光体含有組成物の固形分中におけるシリカ微粒子の含有率の下限は通常0.1重量%以上であり、好ましくは3重量%以上、より好ましくは5重量%以上である。また上限としては通常30重量%以下、好ましくは25重量%以下、より好ましくは20重量%以下である。
上記いずれの場合においても、シリカ微粒子の量が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると蛍光体含有組成物の硬化物の密着性、透明性、硬度等の諸特性に影響を及ぼす可能性がある。
1−2.(B)蛍光体
次に、本発明に用いる蛍光体の種類及び物性について、それぞれ説明する。
1−2−1.蛍光体の種類
本発明に用いる蛍光体は特に限定されるものではなく、例えば一般的に公知の無機蛍光体や有機蛍光体を用いることができ、これらを1種または2種以上を任意の比率及び組み合わせで用いることができる。以下、蛍光体の具体例を例示するが、例示の一般式においては、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「Y2SiO5:Ce3+」、「Y2SiO5:Tb3+」及び「Y2SiO5:Ce3+,Tb3+」を「Y2SiO5:Ce3+,Tb3+」と、「La22S:Eu」、「Y22S:Eu」及び「(La,Y)22S:Eu」を「(La,Y)22S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
本発明に用いることが好ましい蛍光体としては、例えば母体結晶としてM3SiO5、MS、MGa24、MAlSiN3、M2Si58、MSi222からなる群(ただし、Mは、Ca,Sr,Baからなる群から選ばれる1種、または2種以上を表す)の少なくとも一つを含有し、かつ付活剤としてCr、Mn、Fe、Bi、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ybの少なくとも一つを含有する蛍光体が挙げられる。
上記蛍光体の具体例としては、たとえば、Ba3SiO5:Eu、(Sr1-aBaa3SiO5:Eu、Sr3SiO5:Eu、CaS:Eu、SrS:Eu、BaS:Eu、CaS:Ce、SrS:Ce、BaS:Ce、CaGa24:Eu、SrGa24:Eu、BaGa24:Eu、CaGa24:Ce、SrGa24:Ce、BaGa24:Ce、CaAlSiN3:Eu、SrAlSiN3:Eu、(Ca1-aSra)AlSiN3:Eu、CaAlSiN3:Ce、SrAlSiN3:Ce、(Ca1-aSra)AlSiN3:Ce、Ca2Si58:Eu、Sr2Si58:Eu、Ba2Si58:Eu、(Ca1-aSra2Si58:Eu、Ca2Si58:Ce、Sr2Si58:Ce、Ba2Si58:Ce、(Ca1-aSra2Si58:Ce、CaSi222:Eu、SrSi222:Eu、BaSi222:Eu、CaSi222:Ce、SrSi222:Ce、BaSi222:Ce、(Ba,Sr,Ca)2SiO4:Eu、Ba3Si694:Eu、(以上に関し、aは0≦a≦1を満たす。)等が挙げられる。
中でも、CaS、CaGa24:Eu、SrGa24:Eu、(Sr0.8Ca0.2)AlSiN3:Eu、(Ba,Sr,Ca)2SiO4:Eu、Ba3Si694:Eu、(Sr,Ca)AlSiN3:Eu、を好ましいものとして挙げることが出来る。
また、上記蛍光体以外にも、耐久性向上、分散性向上等、目的に応じてその他の蛍光体を用いることもできる。このような蛍光体の組成には特に制限はないが、結晶母体であるY23、Zn2SiO4等に代表される金属酸化物、Sr2Si58等に代表される金属窒化物、Ca5(PO43Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活元素又は共付活元素として組み合わせたものが好ましい。
結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa24、SrS、ZnS等の硫化物、Y22S等の酸硫化物、(Y,Gd)3Al512、YAlO3、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,Ca)(Mg,Zn,Mn)Al1017、BaAl1219、CeMgAl1119、(Ba,Sr,Mg)O・Al23、BaAl2Si28、SrAl24、Sr4Al1425、Y3Al512等のアルミン酸塩、Y2SiO5、Zn2SiO4等の珪酸塩、SnO2、Y23等の酸化物、GdMgB510、(Y,Gd)BO3等の硼酸塩、Ca10(PO46(F,Cl)2、(Sr,Ca,Ba,Mg)10(PO46Cl2等のハロリン酸塩、Sr227、(La,Ce)PO4等のリン酸塩等を挙げることができる。
ただし、上記の結晶母体及び付活元素又は共付活元素は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。
(橙色ないし赤色蛍光体)
橙色ないし赤色の蛍光を発する蛍光体(以下適宜、「橙色ないし赤色蛍光体」という。)としては、以下のものが挙げられる。橙色ないし赤色蛍光体の発光ピーク波長は、通常580nm以上、好ましくは585nm以上、また通常780nm以下、好ましくは700nm以下の波長範囲にあることが好適である。このような橙色ないし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)2Si58:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)22S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。更に、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本発明に用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
また、その他、赤色蛍光体としては、(La,Y)22S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O4:Eu、Y23:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn、(Ba,Mg)2SiO4:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、LiW28:Eu、LiW28:Eu,Sm、Eu229、Eu229:Nb、Eu229:Sm等のEu付活タングステン酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu等のEu付活アルミン酸塩蛍光体、LiY9(SiO462:Eu、Ca28(SiO462:Eu、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)3Al512:Ce、(Tb,Gd)3Al512:Ce等のCe付活アルミン酸塩蛍光体、(Mg,Ca,Sr,Ba)2Si58:Eu、(Mg,Ca,Sr,Ba)SiN2:Eu、(Mg,Ca,Sr,Ba)AlSiN3:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN3:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、Ba3MgSi28:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si28:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)23:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)22S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY24:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa24:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP27:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)227:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyNz:Eu,Ce(但し、x、y、zは、1以上の整数を表わす。)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO46(F,Cl,Br,OH)2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1-x-yScxCey2(Ca,Mg)1-r(Mg,Zn)2+rSiz-qGeq12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪酸塩蛍光体、(Sr,Mg)3(PO42:Sn2+等のSn付活リン酸塩蛍光体等が挙げられる。
以上例示した赤色蛍光体は、何れか一種を単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
以上の例示の中でも、赤色蛍光体としては、(Ca,Sr,Ba)AlSiN3:Eu、(Ca,Sr,Ba)AlSiN3:Ce、(La,Y)22S:Euが好ましく、(Sr,Ca)AlSiN3:Eu、(La,Y)22S:Euが特に好ましい。
また、以上例示の中でも、橙色蛍光体としては(Sr,Ba)3SiO5:Euが好ましい。
(緑色蛍光体)
緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」という。)としては、以下のものが挙げられる。緑色蛍光体の発光ピーク波長は、通常490nm以上、好ましくは510nm以上、より好ましくは515nm以上、また、通常560nm以下、好ましくは540nm以下、より好ましくは535nm以下の波長範囲にあることが好適である。
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si222:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)2SiO4:Euで表わされるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
また、その他、緑色蛍光体としては、Sr4Al1425:Eu、(Ba,Sr,Ca)Al24:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si28:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si27:Eu、(Ba,Ca,Sr,Mg)9(Sc,Y,Lu,Gd)2(Si,Ge)624:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr227−Sr225:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si38−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、Y3Al512:Tb等のTb付活アルミン酸塩蛍光体、Ca28(SiO462:Tb、La3Ga5SiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga24:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)512:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)3(Al,Ga)512:Ce等のCe付活アルミン酸塩蛍光体、Ca3Sc2Si312:Ce、Ca3(Sc,Mg,Na,Li)2Si312:Ce等のCe付活珪酸塩蛍光体、CaSc24:Ce等のCe付活酸化物蛍光体、SrSi222:Eu、(Mg,Sr,Ba,Ca)Si222:Eu、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl24:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)22S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO3:Ce,Tb、Na2Gd227:Ce,Tb、(Ba,Sr)2(Ca,Mg,Zn)B26:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO44Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In)24:Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO44Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、MSi222:Eu、M3Si694:Eu、M2Si7104:Eu(但し、Mはアルカリ土類金属元素を表わす。)等のEu付活酸窒化物蛍光体等を用いることも可能である。
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。
(青色蛍光体)
青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」という。)としては以下のものが挙げられる。青色蛍光体の発光ピーク波長は、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上、また、通常490nm以下、好ましくは470nm以下、より好ましくは460nm以下の波長範囲にあることが好適である。
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)5(PO43Cl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)259Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al24:Eu又は(Sr,Ca,Ba)4Al1425:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
また、その他、青色蛍光体としては、Sr227:Sn等のSn付活リン酸塩蛍光体、(Sr,Ca,Ba)Al24:Eu又は(Sr,Ca,Ba)4Al1425:Eu、BaMgAl1017:Eu、BaAl813:Eu等のEu付活アルミン酸塩蛍光体、SrGa24:Ce、CaGa24:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu、(Ba,Sr,Ca)5(PO43(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAl2Si28:Eu、(Sr,Ba)3MgSi28:Eu等のEu付活珪酸塩蛍光体、Sr227:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2SiO5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO46・nB23:Eu、2SrO・0.84P25・0.16B23:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si38・2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。以上の例示の中でも、青色蛍光体としては、BaMgAl1017:Eu、(Ba,Ca,Mg)2SiO4:Eu、(Sr,Ca,Ba,Mg)10(PO46Cl2:Euが好ましく、BaMgAl1017:Euが特に好ましい。
(黄色蛍光体)
黄色の蛍光を発する蛍光体(以下適宜、「黄色蛍光体」という。)としては、以下のものが挙げられる。黄色蛍光体の発光ピーク波長は、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。
このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。
特に、RE3512:Ce(ここで、REは、Y、Tb、Gd、Lu、及びSmからなる群から選ばれる少なくとも1種類の元素を表わし、Mは、Al、Ga、及びScからなる群から選ばれる少なくとも1種類の元素を表わす。)やMa 3b 2c 312:Ce(ここで、Maは2価の金属元素、Mbは3価の金属元素、Mcは4価の金属元素を表わす。)等で表わされるガーネット構造を有するガーネット系蛍光体、AE2d4:Eu(ここで、AEは、Ba、Sr、Ca、Mg、及びZnからなる群から選ばれる少なくとも1種類の元素を表わし、Mdは、Si、及び/又はGeを表わす。)等で表わされるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN3:Ce(ここで、AEは、Ba、Sr、Ca、Mg及びZnからなる群から選ばれる少なくとも1種類の元素を表わす。)等のCaAlSiN3構造を有する窒化物系蛍光体等のCeで付活した蛍光体が挙げられる。
また、その他、黄色蛍光体としては、CaGa24:Eu、(Ca,Sr)Ga24:Eu、(Ca,Sr)(Ga,Al)24:Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体を用いることも可能である。また、黄色蛍光体としては、例えば、brilliant sulfoflavine FF (Colour Index Number 56205)、basic yellow HG (Colour Index Number 46040)、eosine (Colour Index Number 45380)、rhodamine 6G(Colour Index Number 45160)等の蛍光染料等を用いることも可能である。
1−2−2.蛍光体の物性
本発明に用いる蛍光体の粒径には特に制限はないが、中央粒径(D50)が通常0.1μm以上、好ましくは2μm以上、さらに好ましくは10μm以上である。また、通常100μm以下、好ましくは50μm以下、さらに好ましくは25μm以下である。中央粒径(D50)が小さすぎると、蛍光体含有組成物の硬化物の輝度が低下したり、蛍光体含有組成物中で蛍光体が凝集してしまう場合がある。一方、中央粒径(D50)が大きすぎると、塗布ムラやディスペンサー等の閉塞が生じる場合がある。
また蛍光体の粒度分布(QD)は、蛍光体含有組成物中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。また、蛍光体の形状は、特に限定されず、任意の形状のものを用いることが可能である。なお、上記中央粒径(D50)、及び粒度分布(QD)は、上述したシリカ微粒子の2次粒子と同様の測定方法により測定することができる。
また本発明における蛍光体の使用量として、本発明の効果を著しく損なわない限り任意であるが、その適用形態により自由に選定できる。白色LEDや白色照明等の用途に用いる白色発光の半導体発光デバイスに用いる蛍光体含有組成物の例を挙げる。例えば蛍光体を均一に分散して半導体発光素子を含むパッケージの凹部全体を埋めてポッティングする場合には、蛍光体含有組成物の固形分中における蛍光体の含有量は、通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上である。また通常35重量%以下、好ましくは30重量%以下、より好ましくは28重量%以下である。
また、例えば同用途で蛍光体を高濃度に分散したものを、半導体発光デバイスの半導体発光素子の発光面より遠方(例えば、半導体発光素子を含む凹部を透明封止剤で埋めたパッケージ開口面や、LED気密封止用ガラス蓋体・レンズ・導光板等の外部光学部材の出光面など)に薄膜状に塗布する場合には、蛍光体含有組成物の固形分中における蛍光体の含有量は、通常5重量%以上、好ましくは7重量%以上、より好ましくは10重量%以上である。また、通常90重量%以下、好ましくは80重量%以下、より好ましくは70重量%以下である。
また、一般に、半導体発光素子の発光色と蛍光体の発光色とを混色して白色を得る場合、半導体発光素子の発光色を一部透過させることになるため、蛍光体含有率は低濃度となり、上記範囲の下限近くの領域となる。一方、半導体発光素子の発光を全て蛍光体発光色に変換して白色を得る場合には、高濃度の蛍光体が好ましいため、蛍光体含有率は上記範囲の上限近くの領域となる。蛍光体含有率がこの範囲より多いと塗布性能が低下したり、光学的な干渉作用により蛍光体の利用効率が低くなり、半導体発光デバイスの輝度が低くなったりする可能性がある。また、蛍光体含有率がこの範囲より少ないと、蛍光体による波長変換が不十分となり、目的とする発光色を得られなくなる場合がある。
以上白色発光の半導体発光デバイス用途について例示したが、具体的な蛍光体含有率は目的色、蛍光体の発光効率、混色形式、蛍光体比重、塗布膜厚、デバイス形状により多様であり、この限りではない。
本発明に使用する蛍光体は、更に耐水性を高める目的で、表面処理が行われていてもよい。上記表面処理の例としては、例えば特表2006−523245号公報に記載されるような、蛍光体に熱処理などを行うことにより、蛍光体の元来の成分を化学的に変性させることによって被覆物を形成させる等の公知の表面処理が挙げられる。
また、金属リン酸塩を被覆する表面処理も有効である。具体的には、例えば以下の(i)〜(iii)の手順で進められる表面処理方法が挙げられる。(i)所定量のリン酸カリウム、リン酸ナトリウムなどの水溶性のリン酸塩と塩化カルシウム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、Zn及びMnの中の少なくとも1種の水溶性の金属塩化合物とを蛍光体懸濁液中に混合し、攪拌する。(ii)アルカリ土類金属、Zn及びMnの中の少なくとも1種の金属のリン酸塩を懸濁液中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。(iii)水分を除去する。
1−3.(C)液状媒体
次に、本発明に用いる液状媒体について説明する。液状媒体とは、上記シリカ微粒子及び蛍光体を均一に分散させることが可能な液状の媒体であり、蛍光体含有組成物を硬化した際に上記蛍光体を担持する機能を有するバインダー成分のみからなるもの、または上記バインダー成分及び溶剤を含有するもの、また上記バインダー成分に必要な添加剤を加えたもの等とすることができる。以下、それぞれの成分について説明する。
1−3−1.バインダー成分
上記液状媒体に含有されるバインダー成分としては、無機系材料および/または有機系材料が使用できる。
本発明においては、上記無機系材料及び/または有機系材料を1種単独で、また2種以上を任意の比率及び組み合わせで用いることが可能である。
液状媒体中におけるバインダー成分の含有量としては、通常60重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上である。また通常100重量%以下である。
無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液、またはこれらの組み合わせを固化した無機系材料(例えばシロキサン結合を有する無機系材料)等を挙げることができる。
有機系材料としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。従来、半導体発光装置用の蛍光体含有組成物のバインダー成分としては、一般的にエポキシ樹脂が用いられてきたが、特に照明など大出力の発光装置が必要な場合、耐熱性や耐光性等を目的として珪素含有化合物を使用するのが好ましい。
珪素含有化合物とは分子中に珪素原子を有する化合物をいい、ポリオルガノシロキサン等の有機材料(シリコーン系材料)、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等の無機材料、及びホウケイ酸塩、ホスホケイ酸塩、アルカリケイ酸塩等のガラス材料を挙げることができる。中でも、ハンドリングの容易さや、硬化物が応力緩和力を有する点から、シリコーン系材料が好ましい。半導体発光装置用シリコーン樹脂に関しては例えば特開平10−228249号公報や特許2927279号公報、特開2001−36147号公報などで封止剤への使用、特開2000−123981号公報において波長調整コーティングへの使用が試みられている。
上記シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例えば一般組成式で表される化合物及び/またはそれらの混合物が挙げられる。
(R123SiO1/2M(R45SiO2/2D(R6SiO3/2T(SiO4/2Q
ここで、R1からR6は同じであっても異なってもよく、有機官能基、水酸基、水素原子からなる群から選択される。またM、D、T及びQは0から1未満であり、M+D+T+Q=1を満足する数である。
シリコーン系材料をバインダー成分とした本発明の蛍光体含有組成物を半導体発光素子の封止に用いる場合、蛍光体含有組成物を用いて封止した後、熱や光によって硬化させて用いることができる。
シリコーン系材料を硬化のメカニズムにより分類すると、通常付加重合硬化タイプ、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン系材料を挙げることができる。これらの中では、付加重合硬化タイプ(付加型シリコーン系材料)、及び縮合硬化タイプ(縮合型シリコーン系材料)が好適である。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明する。
a.付加型シリコーン系材料
付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架橋されたものをいう。代表的なものとしては、例えばビニルシラン等の(C1)アルケニル基を有する珪素含有化合物と、例えばヒドロシラン等の(C2)ヒドロシリル基を含有する珪素化合物とを総ヒドロシリル基量が0.5倍以上、2.0倍以下となる量比で混合し、(C3)Pt触媒などの付加重合触媒の存在下反応させて得られるSi−C−C−Si結合を架橋点に有する化合物等を挙げることができる。
(C1)アルケニル基を有する珪素含有化合物としては、下記一般式
nSiO〔(4-n)/2〕
(但し、式中Rは同一又は異種の置換又は非置換の1価炭化水素基、アルコキシ基、又は水酸基で、nは1≦n<2を満たす正数である。)で示される1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンが挙げられる。
上記式のRにおいて、アルケニル基とはビニル基、アリル基、ブテニル基、ペンテニル基などの炭素数2〜8のアルケニル基である。Rが炭化水素基である場合はメチル基、エチル基などのアルキル基、ビニル基、フェニル基等の炭素数1〜20の1価炭化水素基から選択される。好ましくは、メチル基、エチル基、フェニル基である。それぞれは異なっても良いが、耐UV性が要求される場合にはRの80%以上はメチル基であることが好ましい。Rが炭素数1〜8のアルコキシ基や水酸基であってもよいが、アルコキシ基や水酸基の含有率は(C1)アルケニル基を有する珪素含有化合物の重量の3%以下であることが好ましい。またnは1≦n<2を満たす正数であるが、この値が2以上であると蛍光体含有組成物を封止剤等に用いる際に十分な強度が得られなくなり、1未満であると合成上このオルガノポリシロキサンの合成が困難になる。
上記アルケニル基を有する珪素含有化合物としては、例えばビニルシラン、ビニル基含有ポリオルガノシロキサンを挙げることができ、これらを1種単独で、または2種以上を任意の比率及び組み合わせで用いることができる。上記の中でも分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサンが好ましい。
分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサンとして具体的には、Gelest社製の両末端ビニルポリジメチルシロキサン
DMS−V00、
DMS−V03、
DMS−V05、
DMS−V21、
DMS−V22、
DMS−V25、
DMS−V31、
DMS−V33、
DMS−V35、
DMS−V41、
DMS−V42、
DMS−V46、
DMS−V52、
両末端ビニルジメチルシロキサン−ジフェニルシロキサンコポリマー
PDV−0325、
PDV−0331、
PDV−0341、
PDV−0346、
PDV−0525、
PDV−0541、
PDV−1625、
PDV−1631、
PDV−1635、
PDV−1641、
PDV−2331、
PDV−2335、
両末端ビニルフェニルメチルシロキサン
PMV−9925、
トリメチルシリル基封鎖ビニルメチルシロキサン−ジメチルシロキサンコポリマー
VDT−123、
VDT−127、
VDT−131、
VDT−153、
VDT−431、
VDT−731、
VDT−954、
ビニルT−構造ポリマー
VTT−106、
MTV−124、
等が挙げられる。
また、(C2)ヒドロシリル基を有する珪素含有化合物としては、例えばヒドロシラン、ヒドロシリル基含有ポリオルガノシロキサンを挙げることができ、これらを1種単独で、または2種以上を任意の比率及び組み合わせで用いることができる。上記の中でも分子内に2個以上のヒドロシリル基を有するヒドロシリル基含有ポリオルガノシロキサンが好ましい。
分子中に2個以上のヒドロシリル基を含有するポリオルガノシロキサンとして具体的には、Gelest社製の両末端ヒドロシリルポリジメチルシロキサン
DMS−H03、
DMS−H11、
DMS−H21、
DMS−H25、
DMS−H31、
DMS−H41、
両末端トリメチルシリル封鎖メチルヒドロシロキサン−ジメチルシロキサンコポリマー
HMS−013、
HMS−031、
HMS−064、
HMS−071、
HMS−082、
HMS−151、
HMS−301、
HMS−501、
などが挙げられる。
本発明における上記(C2)ヒドロシリル基を有する珪素化合物の使用量は、(C1)ビニルシリル基を有する珪素化合物1molに対して通常0.5mol以上であり、好ましくは0.7mol以上、より好ましくは0.8mol以上である。また通常2.0mol以下であり、好ましくは1.8mol以下、より好ましくは1.5mol以下である。これにより硬化後の未反応末端基の残存量を低減し、点灯使用時の着色や剥離等の経時変化が少ない硬化物を得ることができる。
また、(C3)付加重合触媒としては、(C1)成分中のアルケニル基と(C2)成分中のヒドロシリル基とのヒドロシリル化付加反応を促進するための触媒であり、この付加重合触媒の例としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。なお、この(C3)付加重合触媒の配合量は触媒量とすることができるが、通常、白金族金属として(C1)及び(C2)成分の合計重量に対して通常1ppm以上、好ましくは2ppm以上であり、通常500ppm以下、好ましくは100ppm以下である。これにより触媒活性を高いものとすることができる。
b.縮合型シリコーン系材料
縮合型シリコーン系材料としては、例えば、アルキルアルコキシシランの加水分解・重縮合で得られるSi−O−Si結合を架橋点に有する化合物を挙げることができる。具体的には、下記一般式(1)及び/又は(2)で表わされる化合物、及び/又はそのオリゴマーを加水分解・重縮合して得られる重縮合物が挙げられる。
m+n1 m-1 (1)
(式(1)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基を表わし、mは、Mの価数を表わす1以上の整数を表わし、nは、X基の数を表わす1以上の整数を表わす。但し、m≧nである。)
(Ms+t1 s-t-1u2 (2)
(式(2)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基を表わし、Y2は、u価の有機基を表わし、sは、Mの価数を表わす1以上の整数を表わし、tは、1以上、s−1以下の整数を表わし、uは、2以上の整数を表わす。)
また、硬化触媒としては、例えば金属キレート化合物などを好適なものとして用いることができる。金属キレート化合物は、Ti、Ta、Zrのいずれか1以上を含むものが好ましく、Zrを含むものがさらに好ましい。
縮合型シリコーン系材料は公知のものを使用することができ、例えば、特開2006−77234号公報、特開2006−291018号公報、特開2006−316264号公報、特開2006−336010号公報、特開2006−348284号公報、および国際公開2006/090804号パンフレットに記載の半導体発光デバイス用部材が好適である。
c.特に好ましいシリコーン系材料
シリコーン系材料の中で、特に好ましい材料について、以下に説明する。
シリコーン系材料は、一般に半導体発光装置に用いた場合、半導体発光素子や半導体素子を配置する基板、パッケージ等との接着性が弱いことがあるが、これらと密着性が高いシリコーン系材料とするため、特に、以下の[1]〜[3]のうち1つ以上の特徴を有するシリコーン系材料が好ましい。
[1]ケイ素含有率が20重量%以上である。
[2]測定した固体Si−核磁気共鳴(NMR)スペクトルにおいて、下記(a)及び/又は(b)のSiに由来するピークを少なくとも1つ有する。
(a)ピークトップの位置がシリコーンゴムを基準としてケミカルシフト−40ppm以上、0ppm以下の領域にあり、ピークの半値幅が0.3ppm以上、3.0ppm以下であるピーク。
(b)ピークトップの位置がシリコーンゴムを基準としてケミカルシフト−80ppm以上、−40ppm未満の領域にあり、ピークの半値幅が0.3ppm以上5.0ppm以下であるピーク。
[3]シラノール含有率が0.01重量%以上、10重量%以下である。
本発明においては、上記の特徴[1]〜[3]のうち、特徴[1]を有するシリコーン系材料が好ましい。さらに好ましくは、上記の特徴[1]及び[2]を有するシリコーン系材料が好ましい。特に好ましくは、上記の特徴[1]〜[3]を全て有するシリコーン系材料が好ましい。また、上記の特徴を有するシリコーン系材料の中でも、大型素子や紫外発光素子に用いる場合には、縮合型シリコーン系材料が本発明により製造される蛍光体含有組成物の硬化物の耐熱性、耐光性等の観点からは好ましい。
なお、発光素子が小型であったり、発光素子の発光色が青色あったりして、耐熱、耐光性が大きく必要とされない場合には、付加型、縮合型いずれのシリコーン材料も用いることができる。
1−3−2.液状媒体に用いられる溶剤
上記液状媒体には、溶剤が含有されていてもよい。本発明でいう溶剤とは、上記バインダー成分を分散または溶解させることが可能なものをいうこととする。
上記溶剤としては、特に限定されるものではなく、例えば、C1〜C3の低級アルコール類、C6〜C10の炭化水素類、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、N−メチル−2−ピロリドンなどの極性溶剤、トルエン、キシレンなどの芳香族系溶剤などを挙げることが出来る。上記溶剤は1種単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いることができる。上記の中でも不飽和結合を含む沸点150℃以下の溶剤が硬化時の発泡や点灯時の着色を抑制できる点から好ましい。
上記液状媒体中に含有される溶剤の量の下限としては、通常0重量%より大きく、また通常40重量%以下、好ましくは30重量%以下、より好ましくは20重量%以下である。上記液状媒体中に溶剤を含有することにより、液状媒体の粘度を調整したり、保存時の反応性を制御したりすることができる。
1−3−3.その他の成分
液状媒体中には、上記バインダー成分、及び溶剤以外に、本発明の要旨を損なわない限り、必要に応じて他の成分を1種、または2種以上を任意の比率及び組み合わせで含有させることができる。このような成分としては、例えばエポキシ樹脂等の熱硬化性樹脂等が挙げられる。上記熱硬化性樹脂の含有量は、通常、バインダー成分に対して25重量%以下、好ましくは10重量%以下である。
また上記液状媒体中には、その他、老化防止剤、ラジカル禁止剤、紫外線吸収剤、接着性改良剤、難燃剤、界面活性剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、カップリング剤、酸化防止剤、熱安定剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、物性調整剤などを本発明の目的および効果を損なわない範囲において含有させることができる。なお、カップリング剤としては例えばシランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類;3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。
1−3−4.液状媒体の使用量
本発明における液状媒体の使用量は、製造される蛍光体含有組成物中に、通常40重量%以上であり、好ましくは45重量%以上であり、より好ましくは50重量%以上である。また通常90重量%以下であり、好ましくは85重量%以下、より好ましくは80重量%以下である。
液状媒体の量は、蛍光体含有組成物の硬化物の色度や、演色性、発光効率等を良好なものとするためには、通常上記範囲内とされる。また少なすぎると流動性がなく取り扱いにくいことがある。
1−4.(D)その他の成分
本発明においては、上記(A)シリカ微粒子、(B)蛍光体、(C)液状媒体他に、本発明の要旨を損なわない限り、必要に応じて(D)その他の成分を1種、または2種以上を任意の比率及び組み合わせで含有させることができる。このような成分としては、例えば色素、酸化防止剤、安定化剤(燐系加工安定化剤などの加工安定化剤、酸化安定化剤、熱安定化剤、紫外線吸収剤などの耐光性安定化剤等)、光拡散材、フィラーなど、当該分野で公知の添加物のいずれをも用いることができる。
2.製造方法
次に、本発明における蛍光体含有組成物の製造方法について説明する。本発明における蛍光体含有組成物の製造方法は、上記材料の混合、分散方法に応じて2種類の実施態様が挙げられる。以下、各実施態様ごとに説明する。
2−1.第1の実施態様
本発明の蛍光体含有組成物の製造方法の第1の実施態様は、(A)シリカ微粒子と(C)液状媒体とを混合、及び分散した後に、(B)蛍光体を混合、及び分散する工程を有することを特徴とする。
蛍光体含有組成物を製造する際、蛍光体含有組成物塗布時の取り扱い性(塗布液の粘度調整、塗布後の形状維持、蛍光体沈降防止、レベリング性の制御など)を向上させる目的にてシリカ微粒子を混合する。このときに蛍光体含有組成物に含有されるシリカ微粒子の分散が不十分である場合、凝集したシリカ微粒子により過剰な光散乱が起きて光出力が低下したり、チキソ性の発現が不安定となり蛍光体粒子が沈降や分散ムラを起こしたり、ポッティング時の吐出量にムラが生じたりして、得られる半導体発光装置内の色むらや発光装置ごとの色度ずれにつながり、製造時の歩留まりや品質に影響を与えることがある。また高出力白色LEDでは蛍光体分散のムラは製造時の色ムラにつながるのみならず、長期点灯時の色ずれや輝度低下につながるので蛍光体を均一に分散させることは特に重要である。本実施態様においては、上記(A)シリカ微粒子を(C)液状媒体に十分に分散させた後に(B)蛍光体を分散させることによって、一括混合と比較して(A)シリカ微粒子を十分に分散させることが可能となり、チキソ性の発現が安定し、製造時の歩留まりや品質、長期点灯時の信頼性に優れた硬化物を提供することができる。
以下、(A)シリカ微粒子と(C)液状媒体とを混合、及び分散する工程、及び(B)蛍光体を混合、及び分散する工程について説明する。
2−1−1.(A)シリカ微粒子と(C)液状媒体とを混合、及び分散する工程
(A)シリカ微粒子と(C)液状媒体とを混合、及び分散する方法としては、(A)シリカ微粒子と(C)液状媒体とを混合し、(C)液状媒体中に(A)シリカ微粒子を均一に分散することが可能な方法であれば特に制限はなく、例えばホモミキサー、高速ディスパー、ホモジナイザー、3本ロール、ニーダー、ビーズミル等、従来公知の方法を用いることができる。本実施態様における第一の分散工程においては上記の中でも特にビーズミル、3本ロールのような高剪断かつ発熱が少なく、混合機由来の金属磨耗粒子の混入が少ないものが好ましい。なお、発熱しやすい混合機は冷却手段をとることにより使用することが出来る。本工程においては、上記方法を一種のみ行ってもよく、また二種以上を組み合わせて行ってもよい。
また、上記(C)液状媒体が、(C1)アルケニル基を含有する珪素含有化合物及び(C2)ヒドロシリル基を含有する珪素含有化合物を含有する場合には、(C1)アルケニル基を含有する珪素含有化合物及び(C2)ヒドロシリル基を含有する珪素含有化合物をあらかじめ混合しておいてもよく、また(A)シリカ微粒子と混合する前、または同時にこれらを混合してもよい。
またさらに、本工程では、上記(A)シリカ微粒子と(C)液状媒体と共に、上述した(D)その他の成分を混合し、分散させてもよい。
また本工程終了後の上記(A)シリカ微粒子及び(C)液状媒体を含有する分散液中に、通常100μmを超えるシリカ微粒子の集塊粒子が少ないことが好ましく、後述する蛍光体含有組成物の硬化物断面中のシリカ微粒子の集塊粒子観察において、断面中に観察される100μmを超える集塊粒子の数が、通常5個以下、好ましくは3個以下、より好ましくは0個である。
また本工程終了後の上記(A)シリカ微粒子及び(C)液状媒体を含有する分散液の粘度の下限は通常1000mPa・s以上であり、好ましくは3000mPa・s以上であり、より好ましくは7000mPa・s以上である。また通常上限は30000mPa・s以下であり、好ましくは25000mPa・s以下、より好ましくは20000mPa・s以下である。これにより、後述する工程で(B)蛍光体を均一に分散させることが可能となる。上記粘度はRV型粘度計(例えばブルックフィールド社製RV型粘度計「RVDV−II+Pro」により測定できる。
2−1−2.(B)蛍光体を混合、及び分散する工程
次に、(B)蛍光体を混合、及び分散する工程について説明する。上記(A)シリカ微粒子と(C)液状媒体とを混合、及び分散する工程を行った後、上記(A)シリカ微粒子及び(C)液状媒体を含有する分散液に、(B)蛍光体を混合及び分散する工程を行う。
上記(B)蛍光体を分散する方法としては、特に制限がなく、(B)蛍光体の結晶構造に損傷を与えず、(B)蛍光体を均一に分散することが可能な方法であれば特に制限はなく、例えばホモミキサー、高速ディスパー、ホモジナイザー、3本ロール、2本ロール、ニーダー、ビーズミル等、従来公知の方法を用いることが出来る。本実施態様においては上記の中でも特に、遊星攪拌ミキサー、3本ロール、2本ロールなど、分散にあたり発熱の少ないものや混合機由来の金属磨耗粒子の混入が少ないものが好ましく、なかでも遊星攪拌ミキサーが蛍光体の損傷が少なく脱泡しながら混合・分散できるので好ましい。
また、本工程では、上記(B)蛍光体と共に、上述した(D)その他の成分を混合し、分散させてもよい。
2−1−3.その他の工程
本実施態様においては、上記(A)シリカ微粒子と(C)液状媒体とを混合、及び分散する工程、及び(B)蛍光体を混合、及び分散する工程以外にも、本実施態様の要旨を損なわない限り、任意の工程を有するものとすることが可能である。
2−2.第2の実施態様
本発明の蛍光体含有組成物の製造方法の第2の実施態様は、上述した(C)液状媒体が(C1)アルケニル基を含有する珪素含有化合物及び(C3)付加重合触媒を含む第1の液状媒体、及び(C2)ヒドロシリル基を含有する珪素含有化合物を含む第2の液状媒体を混合して得られるものである場合に適用される。
本実施態様は、(A)シリカ微粒子と、前記第1の液状媒体及び前記第2の液状媒体の一方とを混合、及び分散する第一工程と、前記第1の液状媒体及び前記第2の液状媒体の他方を混合、及び分散する第二工程と、前記第一工程より後に、前記(B)蛍光体を混合、及び分散する蛍光体分散工程とを有することを特徴とする。
前記(C)液状媒体は(C1)アルケニル基を含有するケイ素化合物、(C2)ヒドロシリル基を含有するケイ素含有化合物、及び(C3)付加重合触媒を混合して1液とすると、室温でも徐々に増粘し、物性が変化する可能性がある。そこで、(C2)ヒドロシリル基を含有するケイ素含有化合物と(C3)付加重合触媒とを分割して、上述の(C1)アルケニル基を含有するケイ素化合物及び(C3)付加重合触媒を含む第1の液状媒体と、(C2)ヒドロシリル基を含有するケイ素含有化合物を含む第2の液状媒体との2液とすることにより、液物性の経時変化が少なく取り扱いやすい。なお(C1)アルケニル基を含有するケイ素化合物は、場合により第2の液状媒体に含まれていても良い。即ち、(C1)アルケニル基を含有するケイ素化合物は、第1の液状媒体のみに含まれていてもよく、混合比を調整するため両方の液に分配されていても良い。
また蛍光体含有組成物を製造する際、シリカ微粒子や蛍光体を分散させる際には攪拌熱により温度が上昇しやすい。第1の液状媒体及び第2の液状媒体を混合し、1液とした場合には発熱により前記液状媒体が増粘しやすく粘度やチキソ性などの液物性が混合中に変化し、得られる蛍光体含有組成物の性能に影響を与える場合がある。本実施態様においては、上記(A)シリカ微粒子を第1の液状媒体または第2の液状媒体のいずれか一方に分散させた後に他方を混合、分散させることから、混合時の不要な増粘をおさえることが可能となる。したがって、蛍光体の分散や塗布物性が安定し、これに起因するLED製品の色ムラ、色度ずれや長期点灯時の剥離、輝度低下の頻度を抑制し、安定した品質の製品を得ることができる。
以下、上記第一工程、第二工程、及び蛍光体分散工程について説明する。
<第一工程>
まず、本実施態様における第一工程において説明する。本実施態様における第一工程は、(A)シリカ微粒子と、上記第1の液状媒体及び第2の液状媒体のうちの一方とを混合、及び分散する工程である。本工程では、第1の液状媒体及び第2の液状媒体のうち、いずれを用いても良いが、通常第1の液状媒体、及び第2の液状媒体のそれぞれの粘度や量比を考慮し、いずれか一方が選択される。
本工程に用いられる第1の液状媒体、及び第2の液状媒体の粘度の下限は通常30mPa・s以上であり、好ましくは50mPa・s以上、より好ましくは100mPa・s以上である。また、通常15000mPa・s以下、10000mPa・s以下、より好ましくは8000mPa・s以下である。
また本工程において、(A)シリカ微粒子と、第1の液状媒体及び第2の液状媒体のうちのいずれか一方とを混合、分散する方法としては、特に制限がなく、例えばホモミキサー、遊星攪拌ミキサー、高速ディスパー、ホモジナイザー、3本ロール、2本ロール、ニーダー、ビーズミル等、従来公知の方法を用いることができる。本実施態様においては特に、3本ロール、2本ロール、及びビーズミルのような高剪断かつ発熱が少なく、混合機由来の金属磨耗粒子の混入が少ないものが好ましい。なお、発熱しやすい混合機は冷却手段をとることにより使用することができる。
なお上記方法は一種のみ行ってもよく、また二種以上を組み合わせて行ってもよい。
また、本工程では、上記(A)シリカ微粒子等と共に、上述した(D)その他の成分を混合し、分散させてもよい。
また本工程終了後の上記(A)シリカ微粒子と、第1の液状媒体及び第2の液状媒体のうちのいずれか一方とを混合した分散液中に、通常100μmを超えるシリカ微粒子の集塊粒子が少ないことが好ましく、後述する蛍光体含有組成物の硬化物断面中のシリカ微粒子の集塊粒子観察において、断面中に観察される100μmを超える集塊粒子の数が、通常5個以下、好ましくは3個以下、より好ましくは0個である。
2−2−2.第二工程
本実施態様における第二工程は、第1の液状媒体及び第2の液状媒体のうちの他方、すなわち、第一工程で用いられなかったものを、第一工程により得られた分散液、若しくは後述する蛍光体分散工程後に得られた分散液に混合、及び分散する工程である。
上記第1の液状媒体及び第2の液状媒体のうち、第一工程で用いられなかったものを混合、分散する方法としては、特に制限がなく、例えばホモミキサー、高速ディスパー、ホモジナイザー、3本ロール、ニーダー等、従来公知の方法を用いることができる。なお上記方法は一種のみ行ってもよく、また二種以上を組み合わせて行ってもよい。
また、本工程では、上記混合及び分散の際、上述した(D)その他の成分を同時に混合し、分散させてもよい。
2−2−3.蛍光体分散工程
本実施態様における蛍光体分散工程は、上記第一工程により得られた分散液、または上記第二工程後に得られた分散液に(B)蛍光体を分散させる工程である。本工程は、上記第二工程前に行ってもよく、第二工程と同時に行なってもよく、また第二工程後に行ってもよいが、本実施態様においては特に上記第二工程前に行うことが好ましい。上記(C1)アルケニル基を含有する珪素含有化合物、及び(C2)ヒドロシリル基を含有する珪素含有化合物の付加反応を生じさせる前に(B)蛍光体を分散させることによって、混合中の増粘を防ぎ、(B)蛍光体をより均一に再現性よく分散させることが可能となるからである。
なお、本工程に用いられる、(A)蛍光体を混合及び分散させる前の分散液、すなわち第一工または第二工程後に得られた分散液の粘度の下限は通常1000mPa・s以上であり、好ましくは3000mPa・s以上であり、より好ましくは7000mPa・s以上である。また通常上限は30000mPa・s以下であり、好ましくは25000mPa・s以下、より好ましくは20000mPa・s以下である。これにより、本工程で(B)蛍光体を均一に、分散させることが可能となる。上記粘度はRV型粘度計(例えばブルックフィールド社製RV型粘度計「RVDV−II+Pro」により測定できる。
上記(B)蛍光体を分散する方法としては、特に制限がなく、(B)蛍光体の結晶構造に損傷を与えず、(B)蛍光体を均一に分散することが可能な方法であれば特に制限はなく、例えばホモミキサー、高速ディスパー、ホモジナイザー、3本ロール、2本ロール、ニーダー、ビーズミル等、従来公知の方法を用いることが出来る。本実施態様においては上記の中でも特に、遊星攪拌ミキサー、3本ロール、2本ロールなど、分散にあたり発熱の少ないものや混合機由来の金属磨耗粒子の混入が少ないものが好ましく、なかでも遊星攪拌ミキサーが蛍光体の損傷が少なく脱泡しながら混合・分散できるので好ましい。
また、本工程では、上記(B)蛍光体と共に、上述した(D)その他の成分を混合し、分散させてもよい。
また本工程終了後の分散液(本工程が第二工程後に行われた場合には蛍光体含有組成物)に、通常100μmを超えるシリカ微粒子の集塊粒子が少ないことが好ましく、後述する蛍光体含有組成物の硬化物断面中のシリカ微粒子の集塊粒子観察において、断面中に観察される100μmを超える集塊粒子の数が、通常5個以内、好ましくは3個以内、より好ましくは0個である。
2−2−4.その他の工程
本実施態様においては、上記第一工程、第二工程、及び蛍光体分散工程以外にも、本実施態様の要旨を損なわない限り、任意の工程を有するものとすることが可能である。
3.蛍光体含有組成物
本工程により製造される蛍光体含有組成物について、以下説明する。
3−1.物性
本発明により製造される蛍光体含有組成物は、上記各成分を含有するものであれば特に制限はないが、粘度が通常500mPa・s以上、好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上であり、通常15000mPa・s以下、10000mPa・s以下、好ましくは8000mPa・s以下である。粘度が高すぎると蛍光体含有組成物を塗布装置に充填する際等に、配管の閉塞などトラブルの原因となる場合がある。また粘度が低すぎると蛍光体の沈降が起こることがある。
なお本発明により製造される蛍光体含有組成物は、取り扱い性等の観点や、液状媒体を硬化させる前に蛍光体が沈降しないために、塗布方法に応じ、適度なチキソトロープ性を示すものが好ましい。チキソトロープ性を示すことは、ローター回転数を1rpmおよび5rpmとした場合のB型粘度計における粘度が1rpmの粘度が5rpmの粘度より大きいことで確認することができる。
3−2.用途
本発明により製造される蛍光体含有組成物は、公知の半導体発光装置の半導体発光デバイス用部材の形成に用いられるもの等とすることができるが、この限りではない。またポッティング、スピンコート、印刷などの各種塗布方法に柔軟に対応したものとすることができる。
上記蛍光体含有組成物を半導体発光デバイス用部材の形成に用いた場合、シリカ微粒子が十分に解砕され粗大な集塊粒子が含まれないのでチキソ性の発現及び蛍光体の分散性が安定し、塗布物の形状ムラや蛍光体沈降を抑えることができるため、色度ムラ少なく色再現性に優れた半導体発光デバイスを提供することが出来る。またシリカ微粒子の集塊粒子による白濁も低減するため光取り出し効率が高く、再現性良く高輝度の半導体発光デバイスを提供することが出来る。
以下、本発明により製造される蛍光体含有組成物を半導体発光デバイス用部材の形成に用いた半導体発光デバイスについて説明する。
3−2−1.半導体発光デバイスの基本概念
上記半導体発光デバイス用部材を用いた半導体発光デバイスは、例えば、以下の適用例がある。半導体発光デバイス用部材は、上記適用例において、従来の半導体発光デバイス用部材と比較して、優れた耐光性、密着性及び耐熱性を示し、クラックや剥離が起きにくく、輝度の低下が少ない。したがって、本発明により製造される蛍光体含有組成物を用いた半導体発光デバイス用部材によれば、長期にわたって信頼性の高い部材を提供することができる。
(適用例)発光素子の近傍に、蛍光体を含有する半導体発光デバイス用部材(以下適宜、「蛍光体部」という)を配設し、発光素子からの光により蛍光体部中の蛍光体や蛍光体成分を励起させ、蛍光を利用して所望の波長の光を発光する半導体発光デバイス。
この適用例においては、上記半導体発光デバイス用部材の高い耐久性、透明性および封止材性能を生かし、高耐久性で光取り出し効率の高い蛍光体部を形成することができる。さらに、上記半導体発光デバイス用部材に、蛍光体や蛍光体成分に加えて透明高屈折成分を併せて保持させた場合、上記半導体発光デバイス用部材の屈折率を発光素子や蛍光体の屈折率近傍にすることで、界面反射を低減し、より高い光取り出し効率を得ることができる。
以下に、上記半導体発光デバイス用部材を適用した基本概念について、図1を参照しながら説明する。なお、図1は上記適用例の基本概念の説明図である。発光装置(半導体発光デバイス)1Bは、図1に示すように、LEDチップからなる発光素子2と、発光素子2の近傍に配設された上記半導体発光デバイス用部材3Bとを備えている。
図1に示すような半導体発光装置1Bは半導体発光デバイス用部材3Bに蛍光体や蛍光体成分を含む。この場合、半導体発光デバイス用部材3Bは、発光素子2の封止、光取り出し機能、機能性成分保持機能や、波長変換機能を発揮できる。なお、以下の説明において、蛍光体や蛍光体成分を含有する半導体発光デバイス用部材3Bを、適宜「蛍光体部」と呼ぶ。また、蛍光体部は、その形状や機能などに応じて、適宜、符号33,34などで示す場合もある。
発光素子2は、例えば、青色光ないし紫外光を放射するLEDチップにより構成されるが、これら以外の発光色のLEDチップであってもよい。
蛍光体部3Bは、発光素子2の高耐久性封止材、光取出し膜、諸機能付加膜などの機能を発揮しうると共に、発光素子2からの光により励起されて所望の波長の光を発光する波長変換機能を発揮するものである。蛍光体部3Bは、発光素子2からの光により励起されて所望の波長の光を発光する蛍光物質を少なくとも含んでいればよい。このような蛍光物質の例としては、上に例示した各種の蛍光体が挙げられる。蛍光体部3Bの発光色としては、赤色(R)、緑色(G)及び青色(B)の3原色は勿論のこと、蛍光灯のような白色や電球のような黄色も可能である。要するに、蛍光体部3Bは、励起光とは異なる所望の波長の光を放射する波長変換機能を有している。
図1に示す発光装置1Bでは、発光素子2から放射された光の一部4aは蛍光体部3Bをそのまま透過し、発光装置1Bの外部へ放射される。また、発光装置1Bでは、発光素子2から放射された光の他の一部4bが蛍光体部3Bに吸収されて蛍光体部3Bが励起され、蛍光体部3Bに含有される蛍光体粒子、蛍光イオン、蛍光染料等の蛍光成分特有の波長の光5が発光装置1Bの外部へ放射される。
したがって、発光装置1Bからは、発光素子2で発光して蛍光体部3Bを透過した光4aと蛍光体部3Bで発光した光5との合成光6が、波長変換された光として放射されることになり、発光素子2の発光色と蛍光体部3Bの発光色とで発光装置1B全体としての発光色が決まることになる。なお、発光素子2で発光して蛍光体部3Bを透過する光4aは必ずしも必要ではない。
3−2−2.実施形態
〔実施形態1〕
本実施形態の発光装置1Bは、図2(a)に示すように、LEDチップからなる発光素子2と、透光性の透明な材料を砲弾形に成形したモールド部11とを備えている。モールド部11は発光素子2を覆っており、発光素子2は導電性材料により形成したリード端子12,13に電気的に接続されている。リード端子12,13はリードフレームにより形成されている。
発光素子2は、窒化ガリウム系のLEDチップであり、図2(a)における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図2の上方を前方として説明する。発光素子2の後面はリード端子13の前端部に取り付けられたミラー(カップ部)14に対してダイボンドによって接合されている。また、発光素子2は、上述のp形半導体層及びn形半導体層それぞれに導電ワイヤ(例えば、金ワイヤ)15,15がボンディングにより接続され、この導電ワイヤ15,15を介して発光素子2とリード端子12,13とが電気的に接続されている。なお、導電ワイヤ15,15は発光素子2から放射される光を妨げないように断面積の小さいものが用いられている。
ミラー14は発光素子2の側面及び後面から放射された光を前方に反射する機能を有し、LEDチップから放射された光及びミラー14により前方に反射された光は、レンズとして機能するモールド部11の前端部を通してモールド部11から前方に放射される。モールド部11は、ミラー14、導電ワイヤ15,15、リード端子12,13の一部とともに、発光素子2を覆っており、発光素子2が大気中の水分などと反応することによる特性の劣化が防止されている。各リード端子12,13の後端部はそれぞれモールド部11の後面から外部に突出している。
ところで、発光素子2は、図2(b)に示すように、窒化ガリウム系半導体からなる発光層部21が、蛍光体部3B上に半導体プロセスを利用して形成されており、蛍光体部3Bの後面には反射層23が形成されている。発光層部21からの発光による光は全方位に放射されるが、蛍光体部3Bに吸収された一部の光は蛍光体部3Bを励起し、上記蛍光成分特有の波長の光を放射する。この蛍光体部3Bで発光した光は反射層3によって反射されて前方へ放射される。したがって、発光装置1Bは、発光層部21から放射された光と蛍光体部3Bから放射された光との合成光が得られることになる。
しかして、本実施形態の発光装置1Bは、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなる。ここで、蛍光体部3Bとして透光性に優れたものを用いれば、発光素子2から放射された光の一部がそのまま外部へ放射されるとともに、発光素子2から放射された光の他の一部によって発光中心となる蛍光成分が励起されて当該蛍光成分特有の発光による光が外部へ放射されるから、発光素子2から放射される光と蛍光体部3Bの蛍光成分から放射される光との合成光を得ることができ、また、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。即ち、蛍光体部3Bとして、曇りや濁りがなく透明性が高いものを用いれば、光色の均一性に優れ、発光装置1B間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Bの長寿命化を図ることが可能となる。
また、本実施形態の発光装置1Bでは、蛍光体部3Bが発光素子2を形成する基板に兼用されているので、発光素子2からの光の一部により蛍光体部中の発光中心となる蛍光体を効率良く励起することができ、当該蛍光成分特有の発光による光の輝度を高めることができる。
〔実施形態2〕
本実施形態の発光装置1Bは、図3に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。ここにおいて、発光素子2は、実施形態1と同様の構成であって、窒化ガリウム系半導体からなる発光層部21が蛍光体部3B上に形成され、蛍光体部3Bの後面に反射層23が形成されている。また、発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。
また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。
しかして、本実施形態の発光装置1Bにおいても、実施形態1と同様に、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなるので、発光素子2からの光と蛍光体からの光との合成光を得ることができる。また、実施形態1と同様、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができ、長寿命化を図ることも可能となる。
〔実施形態3〕
本実施形態の発光装置1Bの基本構成は実施形態2と略同じであって、実施形態2で説明した枠材18(図3参照)を用いておらず、図4に示すように、封止部19の形状が異なる。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態における封止部19は、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。
しかして、本実施形態の発光装置1Bでは、実施形態2に比べて部品点数を少なくすることができ、小型化及び軽量化を図ることができる。しかも、封止部19の一部にレンズとして機能するレンズ機能部19bを設けたことにより、指向性の優れた配光を得ることができる。
〔実施形態4〕
本実施形態の発光装置1Bの基本構成は実施形態22と略同じであって、図5に示すように、絶縁基板16の一面(図5における上面)に発光素子2を収納する凹所16aが設けられており、凹所16aの底部に発光素子2が実装され、凹所16a内に封止部19を設けている点に特徴がある。ここにおいて、絶縁基板16に形成されたプリント配線17,17は凹所16aの底部まで延長され、導電ワイヤ15,15を介して発光素子2の窒化ガリウム系半導体からなる発光層部21に電気的に接続されている。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは封止部19が絶縁基板16の上面に形成された凹所16aを充填することで形成されているので、実施形態2で説明した枠材18(図3参照)や実施形態3で説明した成形用金型を用いることなく封止部19を形成することができ、実施形態2,3に比べて発光素子2の封止工程を簡便に行なえるという利点がある。
〔実施形態5〕
本実施形態の発光装置1Bの基本構成は実施形態4と略同じであって、図6に示すように、発光素子2が絶縁基板16に所謂フリップチップ実装されている点に特徴がある。すなわち、発光素子2は、発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれの表面側に導電性材料からなるバンプ24,24が設けられており、発光層部21がフェースダウンでバンプ24,24を介して絶縁基板16のプリント配線17,17と電気的に接続されている。したがって、本実施形態における発光素子2は、絶縁基板16に最も近い側に発光層部21が配設され、絶縁基板16から最も遠い側に反射層23が配設され、発光層部21と反射層23との間に蛍光体部3Bが介在することになる。なお、実施形態4と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置1Bでは、反射層23で図6における下方(後方)へ反射された光は、凹所16aの内周面で反射されて同図における上方(前方)へ放射される。ここにおいて、凹所16aの内周面であってプリント配線17,17以外の部位には、反射率の高い材料からなる反射層を別途に設けることが望ましい。
しかして、本実施形態の発光装置1Bでは絶縁基板16に設けられたプリント配線17,17と発光素子2とを接続するために実施形態4のような導電ワイヤ15,15を必要としないので、実施形態4に比べて機械的強度及び信頼性を向上させることが可能となる。
〔実施形態6〕
本実施形態の発光装置1Bの基本構成は実施形態5と略同じであって、図7に示すように、実施形態5で説明した反射層23を設けていない点が相違する。要するに、本実施形態の発光装置1Bでは、発光層部21で発光した光及び蛍光体部3Bで発光した光が封止部19を透過してそのまま前方へ放射されることになる。なお、実施形態5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態5に比べて部品点数を削減できて製造が容易になる。
〔実施形態7〕
本実施形態の発光装置1Bの基本構成は実施形態1と略同じであって、図8に示すように、発光素子2を覆うモールド部11を備えており、モールド部11を蛍光体部と一体に形成している点に特徴がある。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置1Bの製造にあたっては、モールド部11を設けていない仕掛品を蛍光体含有組成物を溜めた成形金型の中に浸漬し、蛍光体含有組成物を硬化させる方法などによってモールド部11を形成している。
しかして、本実施形態では、モールド部11が蛍光体部と一体に形成されているので、蛍光体部として後述するように上記半導体発光デバイス用部材を用いることにより、モールド部11の耐光性、密着性、封止性、透明性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態8〕
本実施形態の発光装置1Bの基本構成は実施形態1と略同じであって、図9に示すように、モールド部11の外面に後面が開口されたカップ状の蛍光体部3Bが装着されている点に特徴がある。すなわち、本実施形態では、実施形態1のように発光素子2に蛍光体部3Bを設ける代わりに、モールド部11の外周に沿う形状の蛍光体部3Bを設けているのである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態における蛍光体部3Bは、実施形態7で説明した蛍光体含有組成物を硬化させる方法により薄膜として形成してもよいし、あるいは予め固体の蛍光体部をカップ状に成形加工した部材をモールド部11に装着するようにしてもよい。
しかして、本実施形態の発光装置1Bでは、実施形態7の発光装置1Bのようにモールド部11全体を蛍光体部と一体に形成する場合に比べて、蛍光体部の材料使用量の削減を図ることができ、低コスト化を図れる。
〔実施形態9〕
本実施形態の発光装置1Bの基本構成は、実施形態2と略同じであって、図10に示すように、絶縁基板16の一面(図10の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように上記半導体発光デバイス用部材を用いることにより、封止部19の耐光性、密着性、封止性、透明性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態10〕
本実施形態の発光装置1Bの基本構成は、実施形態2と略同じであって、図11に示すように、絶縁基板16の一面(図11の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように上記半導体発光デバイス用部材を用いることにより、封止部19の耐光性、密着性、封止性、透明性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態9に比べてより一層効率的に行なえるという利点がある。
〔実施形態11〕
本実施形態の発光装置1Bの基本構成は実施形態2と略同じであって、図12に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態2で説明した蛍光体部3Bと同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行なうことができる。
〔実施形態12〕
本実施形態の発光装置1Bの基本構成は実施形態2と略同じであって、図13に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態2で説明した蛍光体部3Bと同様と同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行なうことができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成されているので、蛍光体部の励起、発光を実施形態11に比べてより一層効率的に行なえるという利点がある。
〔実施形態13〕
本実施形態の発光装置1Bの基本構成は実施形態3と略同じであって、図14に示すように、絶縁基板16の上面側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここに、封止部19は、実施形態3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態12に比べてより一層効率的に行なえるという利点がある。
〔実施形態14〕
本実施形態の発光装置1Bの基本構成は実施形態3と略同じであって、図15に示すように、絶縁基板16の一面(図15の上面)側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここに、封止部19は、実施形態3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。
〔実施形態15〕
本実施形態の発光装置1Bの基本構成は実施形態3と略同じであって、図16に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に透光性樹脂からなる封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態13,14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部32に水蒸気を透過しにくい樹脂又はガラス等の材料を選択し、その内側に上記半導体発光デバイス用部材を形状とすることで、外部からの水分による発光素子2の劣化をより確実に防止することができる。
〔実施形態16〕
本実施形態の発光装置1Bの基本構成は実施形態3と略同じであって、図17に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態13,14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部32に水蒸気を透過しにくい樹脂又はガラス等の材料を選択し、その内側に上記半導体発光デバイス用部材を形状とすることで、外部からの水分による発光素子2の劣化をより確実に防止することができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態15に比べてより一層効率的に行なえるという利点がある。
〔実施形態17〕
本実施形態の発光装置1Bの基本構成は実施形態4と略同じであって、図18に示すように、絶縁基板16の一面(図18における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここにおいて、蛍光体部は実施形態1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように上記半導体発光デバイス用部材を用いることにより、封止部19の耐光性、密着性、封止性、透明性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部3Bにより形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態15に比べてより一層効率的に行なえるという利点がある。
〔実施形態18〕
本実施形態の発光装置1Bの基本構成は実施形態4と略同じであって、図19に示すように、絶縁基板16の一面(図19における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、蛍光体部3Bは実施形態1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように上記半導体発光デバイス用部材を用いることにより、封止部19の耐光性、密着性、封止性、透明性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態19〕
本実施形態の発光装置1Bの基本構成は実施形態4と略同じであって、図20に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行なうことができる。
〔実施形態20〕
本実施形態の発光装置1Bの基本構成は実施形態4と略同じであって、図21に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行なうことができる。また、本実施形態では、発光素子2の発光層部21の後面にも蛍光体部3Bが配設されているので、実施形態19に比べて蛍光体部の励起、発光がより一層効率的に行なわれるという利点がある。
〔実施形態21〕
本実施形態の発光装置1Bの基本構成は実施形態5と略同じであって、図22に示すように、絶縁基板16の一面(図22における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図23に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように上記半導体発光デバイス用部材を用いることにより、封止部19の耐光性、密着性、封止性、透明性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21から前方へ放射された光が反射層23によって一旦、凹所16aの内底面側に向けて反射されるので、凹所16aの内底面及び内周面に反射層を設けておけば、凹所16aの内底面及び内周面でさらに反射されて前方へ放射されることになって光路長を長くとれ、蛍光体部3Bにより効率的に励起、発光を行なうことができるという利点がある。
〔実施形態22〕
本実施形態の発光装置1Bの基本構成は実施形態5と略同じであって、図24に示すように、絶縁基板16の一面(図24における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図25に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部3Bにより形成されているので、蛍光体部3Bとして後述するように上記半導体発光デバイス用部材を用いることにより、封止部19の耐光性、密着性、封止性、透明性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態23〕
本実施形態の発光装置1Bの基本構成は実施形態6と略同じであって、図26に示すように、発光素子2の上面に、予めロッド状に加工した蛍光体部3Bを配設している点に特徴がある。ここにおいて、発光素子2及び蛍光体部3Bの周囲には透光性材料からなる封止部19が形成されており、蛍光体部3Bは一端面(図26における下端面)が発光素子2の発光層部21に密着し他端面(図26における上端面)が露出している。なお、実施形態6と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、上記一端面が発光素子2の発光層部21に密着する蛍光体部3Bがロッド状に形成されているので、発光層部21で発光した光を蛍光体部3Bの上記一端面を通して蛍光体部3Bへ効率的に取り込むことができ、取り込んだ光により励起された蛍光体部3Bの発光を蛍光体部3Bの上記他端面を通して外部へ効率的に放射させることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図27に示すように蛍光体部3Bを比較的小径のファイバ状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
〔実施形態24〕
本実施形態の発光装置1Bの基本構成は実施形態23と略同じであって、図28に示すように、絶縁基板16の凹所16a内に設けた封止部19を備え、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図29に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための貫通孔19dを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態23と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19も蛍光体部3Bにより形成されているので、長寿命化及び発光の高効率化を図ることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図30に示すように蛍光体部3Bを比較的小径のファイバ状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
〔実施形態25〕
本実施形態の発光装置1Bの基本構成は実施形態2と略同じであって、図31に示すように絶縁基板16の一面(図31における上面)側に配設された枠材18を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、枠材18の内側の封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散されている点に特徴がある。また、本実施形態では、蛍光体部3Bとして、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。
したがって、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。本実施形態では、蛍光体部3Bから青色光が放射されるとともに、蛍光体粉末から黄色光が放射され、いずれの発光色とも異なる白色光を得ることができる。
なお、既存の蛍光体粉末や蛍光体部の蛍光体粒子ではそれぞれに発光可能な材料が限定されており、いずれか一方だけでは所望の光色が得られないこともあり、このような場合には本実施形態は極めて有効である。つまり、蛍光体部3Bだけで所望の光色特性が得られない場合には、蛍光体部3Bに欠けている適当な光色特性を有する蛍光体粉末を併用して補完することにより、所望の光色特性の発光装置1Bが実現できる。また、本実施形態では、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。ここに、蛍光体部3Bと蛍光体粉末とで発光色を略同色とする場合には、例えば、蛍光体部3Bの蛍光体粒子として赤色光を発光するP25・SrF2・BaF2:Eu3+を用いるとともに、蛍光体粉末として赤色光を発光するY22S:Eu3+を用いれば、赤色発光の高効率化を図れる。この蛍光体部3Bと蛍光体粉末との組み合わせは一例であって他の組み合わせを採用してもよいことは勿論である。
〔実施形態26〕
本実施形態の発光装置1Bの基本構成は実施形態3と略同じであって、図32に示すように、絶縁基板16の一面(図32の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP2
5・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、
実施形態3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態27〕
本実施形態の発光装置1Bの基本構成は実施形態4と略同じであって、図33に示すように、絶縁基板16の上面に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態28〕
本実施形態の発光装置1Bの基本構成は実施形態5と略同じであって、図34に示すように、絶縁基板16の一面(図34における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態29〕
本実施形態の発光装置1Bの基本構成は実施形態6と略同じであって、図35に示すように、絶縁基板16の一面(図35における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態6と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態30〕
本実施形態の発光装置1Bの基本構成は実施形態1と略同じであって、図36(a),(b)に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態31〕
本実施形態の発光装置1Bの基本構成は実施形態8と略同じであって、図37に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21(図37では図示を略している。)がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態8と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態32〕
本実施形態の発光装置1Bの基本構成は実施形態11と略同じであって、図38に示すように、絶縁基板16の一面(図38の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態11と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態33〕
本実施形態の発光装置1Bの基本構成は実施形態15と略同じであって、図39に示すように、絶縁基板16の一面(図39上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部34の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態15と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部34から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部34と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部34の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部34の発光色に揃えておけば、蛍光体部34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態34〕
本実施形態の発光装置1Bの基本構成は実施形態19と略同じであって、図40に示すように、絶縁基板16の一面(図40における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態19と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態35〕
本実施形態の発光装置1Bの基本構成は実施形態12,22と略同じであって、図41に示すように、絶縁基板16の一面(図41における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態12,22と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態36〕
本実施形態の発光装置1Bの基本構成は実施形態12と略同じであって、図42に示すように、絶縁基板16の上面側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態12と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態37〕
本実施形態の発光装置1Bの基本構成は実施形態16と略同じであって、図43に示すように、絶縁基板16の一面(図43の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部34の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態16と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部34から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部34と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部34の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部34の発光色に揃えておけば、蛍光体部34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態38〕
本実施形態の発光装置1Bの基本構成は実施形態20と略同じであって、図44に示すように、絶縁基板16の一面(図44における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態20と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態39〕
本実施形態の発光装置1Bの基本構成は実施形態5,12と略同じであって、図45に示すように、絶縁基板16の一面(図45における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態5,12と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態40〕
本実施形態の発光装置1Bの基本構成は実施形態20,21と略同じであって、図46に示すように、絶縁基板16の一面(図46における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態20,21と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
ところで、上記各実施形態では、蛍光体部3Bを所望の形状に加工したりゾルゲル法で形成したりしているが、図46に示すように、蛍光体部3Bを直径が可視波長よりもやや大きな球状に形成して多数の蛍光体部3Bを透光性材料からなる固体媒質35中に分散させて上記各実施形態における蛍光体部の代わりに用いるようにすれば、可視波長域での蛍光体部の透明性を維持しながらも蛍光体部の材料使用量の低減化を図ることができ、低コスト化を図れる。
また、上記各実施形態の発光装置1Bは1個の発光素子2しか備えていないが、複数個の発光素子2により1単位のモジュールを構成し、モジュールの少なくとも一部に発光物質としての蛍光体部を近接して配設するようにしてもよいことは勿論である。なお、例えば実施形態1で説明したような砲弾形のモールド部11を備える発光装置の場合には複数個の発光装置を同一プリント基板に実装して1単位のモジュールを構成するようにしてもよい。また、例えば実施形態2で説明したような表面実装型の発光装置については複数個の発光素子2を同一の絶縁基板16上に配設して1単位のモジュールを構成するようにしてもよい。
〔半導体発光デバイス用部材の適用〕
以上説明した各実施形態1〜40の発光装置(半導体発光デバイス)1Bにおいて、上記半導体発光デバイス部材を適用する箇所は特に制限されない。上記の各実施形態においては、蛍光体部3B,33,34などを形成する部材として上記半導体発光デバイス部材を適用した例を示したが、これ以外にも、例えば上述のモールド部11、枠材18、封止部19等を形成する部材として好適に用いることができる。これらの部材のうち一部又は全てとして上記半導体発光デバイス部材を用いることにより、通常は、上述した優れた耐光性、密着性、封止性、透明性、耐熱性、成膜性、長期間使用に伴うクラックや剥離の抑制等の各種の効果を得ることが可能となる。さらに、必要に応じて他の樹脂及びガラス等の材料と組み合わせることも可能であり、その場合にも、高機能且つ高寿命な半導体発光デバイスを得ることができる。
また、上記半導体発光デバイス部材を適用する場合には、本発明を適用する箇所に応じて、適宜変形を加えるのが好ましい。例えば、蛍光体部3B,33,34に本発明を適用する場合には、上述した蛍光体と併せて蛍光体イオンや蛍光染料等の蛍光成分を上記半導体発光デバイス用部材を形成する蛍光体含有組成物に混合してもよい。これによって、上に挙げた各種効果に加え、蛍光体の保持性をより高めるという効果を得ることができる。
また、例えば無機粒子を上記半導体発光デバイス用部材の形成に用いる蛍光体含有組成物中に混合して用いれば、上に挙げた各種効果に加え、光取り出し効率の向上やクラックの発生防止等、種々の効果を得ることが可能となる。特に、無機粒子を併用することにより、発光素子の屈折率と近い屈折率となるように調整したものは、好適な光取り出し膜として作用する。
〔半導体発光デバイスの用途等〕
半導体発光デバイスは、例えば、発光装置に用いることができる。半導体発光デバイスを発光装置に用いる場合、当該発光装置は、赤色蛍光体、青色蛍光体及び緑色蛍光体の混合物を含む蛍光体部を、光源上に配置すればよい。この場合、赤色蛍光体は、青色蛍光体、緑色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、青色蛍光体と緑色蛍光体を含有する層の上に赤色蛍光体を含有する層が積層されていてもよい。
発光装置において、蛍光体部は光源の上部に設けることができる。蛍光体部は、例えば、光源と封止部との間の接触層として、または、封止部の外側のコーティング層として、または、外部キャップの内側のコーティング層として提供できる。また、封止材中に蛍光体を含有させた形態をとることもできる。
使用される封止材としては、上記半導体発光デバイス用部材を用いることができる。また、その他の封止材を併用することもできる。そのような封止材としては、通常、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を用いることができる。また、LEDチップに直接触れず外付け可能な封止部(例えば、外部キャップ、ドーム状の封止部など)であれば、溶融法ガラスも用いることができる。なお、封止材は、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
封止材に対する蛍光体の使用量は特に限定されるものではないが、通常、封止材100重量部に対して0.01重量部以上、好ましくは0.1重量部以上、より好ましくは1重量部以上、また、通常100重量部以下、好ましくは80重量部以下、より好ましくは60重量部以下である。
また、封止材に蛍光体や無機粒子以外の成分を含有させることもできる。例えば、色調補正用の色素、酸化防止剤、燐系加工安定剤等の加工・酸化および熱安定化剤、紫外線吸収剤等の耐光性安定化剤およびシランカップリング剤を含有させることができる。なお、これらの成分は、1種で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
上記半導体発光デバイスに用いる光源は、特に制限されず、幅広い発光波長領域の発光体を使用することができる。通常は、紫外領域から青色領域までの発光波長を有する発光体が使用される。本発明においては、近紫外領域から青色領域までの発光波長を有する光源を使用することが特に好ましい。
前記光源の発光波長の具体的数値としては、通常200nm以上が望ましい。このうち、近紫外光を励起光として用いる場合には、通常300nm以上、好ましくは330nm以上、より好ましくは360nm以上、また、通常420nm以下、好ましくは410nm以下、より好ましくは400nm以下のピーク発光波長を有する発光体を使用することが望ましい。また、青色光を励起光として用いる場合には、通常420nm以上、好ましくは430nm以上、また、通常500nm以下、好ましくは480nm以下のピーク発光波長を有する発光体を使用することが望ましい。何れも、発光装置の色純度の観点からである。
前記光源としては、一般的には半導体発光素子が用いられ、具体的には発光LEDや半導体レーザーダイオード(semiconductor laser diode。以下、適宜「LD」と略称する。)等が使用できる。その他、光源として使用できる発光体としては、例えば、有機エレクトロルミネッセンス発光素子、無機エレクトロルミネッセンス発光素子等が挙げられる。但し、光源として使用できるものは本明細書に例示されるものに限られない。
その中でも、光源としては、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。
なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
発光装置は、白色光を発するものであり、装置の発光効率が20lm/W以上、好ましくは22lm/W以上、より好ましくは25lm/W以上であり、特に好ましくは28lm/W以上であり、平均演色評価指数Raが80以上、好ましくは85以上、より好ましくは88以上である。
発光装置は、単独で、又は複数個を組み合わせることにより、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置として使用することができる。
さらに、上記半導体発光デバイス用部材の形成液(蛍光体含有組成物)はLED素子封止用、特に青色LED及び紫外LEDの素子封止用として有用なものである。また、青色発光素子又は紫外発光素子を励起光源とし、蛍光体により波長変換した白色LED及び電球色LEDなどの高出力照明光源用蛍光体保持材として好ましく使用することが出来る。その他にもその優れた耐熱性、耐紫外線性、透明性等の特性から下記のディスプレイ材料等の用途に用いることができる。
ディスプレイ材料としては、例えば、液晶ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等の液晶表示装置周辺材料、次世代フラットパネルディスプレイであるカラープラズマディスプレイ(PDP)の封止剤、反射防止フィルム、光学補正フィルム、ハウジング材・前面ガラスの保護フィルム、前面ガラス代替材料、接着材等、プラズマアドレス液晶(PALC)ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等、有機EL(エレクトロルミネッセンス)ディスプレイの前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等、フィールドエミッションディスプレイ(FED)の各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等が挙げられる。
上記半導体発光デバイス用部材の形成液(蛍光体含有組成物)は密着性に優れ、公知の付加重合型シリコーン樹脂では困難な重ね塗りによる積層が可能である。この特性を生かし、例えばメチル基主体の上記半導体発光デバイス用部材の形成液(蛍光体含有組成物)を低屈折率層とし、フェニル基などの高屈折有機基やジルコニアナノ粒子などを導入した高屈折率層と積層することにより、屈折率差のある層構造を形成し、高耐久かつ密着性及び可撓性に優れた導光層を容易に形成することができる。
以下、本発明について、実施例を用いてさらに詳細に説明するが、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
<半導体発光装置の作製>
クリー社製の900μm角チップ「C405−XB900」を、Au−Sn共晶半田でサブマウント上に固着後、Au−Sn共晶半田にてサブマウントを、図47(a)〜(c)の模式図に示されるエムシーオー社製9mmφメタルパッケージ「Metal LED 3PIN No Cup」の中央に固着させた。このパッケージは銅素材表面に下地層としてニッケルメッキ、最外表面層に銀メッキが施してある。ピン素材はコバールであり、3本のピンのうち1本は直接パッケージに接続され残りの2本は低融点ガラスによりハーメチックシールされパッケージから絶縁された状態になっている。チップ上の電極から金線にてメタルパッケージ上のハーメチックシールされたピンのうち1本にワイヤボンディングした。ハーメチックシールされた残り1本のピンは未使用とした。
〔実施例1〕
[合成例1](液状媒体の作製)
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製両末端シラノールジメチルシリコーンオイルXC96−723を385g、メチルトリメトキシシランを10.28g、及び、触媒としてジルコニウムテトラアセチルアセトネート粉末を0.791gを、攪拌翼と、分留管、ジムロートコンデンサ及びリービッヒコンデンサとを取り付けた500ml三つ口コルベン中に計量し、室温にて15分触媒の粗大粒子が溶解するまで攪拌した。この後、反応液を100℃まで昇温して触媒を完全溶解し、100℃全還流下で30分間500rpmで攪拌しつつ初期加水分解を行った。
続いて留出をリービッヒコンデンサ側に接続し、窒素をSV20で液中に吹き込み生成メタノール及び水分、副生物の低沸ケイ素成分を窒素に随伴させて留去しつつ100℃、500rpmにて1時間攪拌した。窒素をSV20で液中に吹き込みながらさらに130℃に昇温、保持しつつ5.5時間重合反応を継続し、粘度389mPa・sの反応液を得た。なお、ここで「SV」とは「Space Velocity」の略称であり、単位時間当たりの吹き込み体積量を指す。よって、SV20とは、1時間に反応液の20倍の体積のN2を吹き込むことをいう。
窒素の吹き込みを停止し反応液をいったん室温まで冷却した後、ナス型フラスコに反応液を移し、ロータリーエバポレーターを用いてオイルバス上120℃、1kPaで20分間微量に残留しているメタノール及び水分、低沸ケイ素成分を留去し、粘度584mPa・sの無溶剤の液状媒体を得た。
<蛍光体含有組成物の調製>
前述の合成例1で合成した液状媒体を表1の配合比にて、シリカ微粒子、及び蛍光体と混合し、実施例1の蛍光体含有組成物を得た。詳細な混合手順を下記に説明する。
前述の合成例1で合成した液状媒体1.0gに日本アエロジル社製 疎水性ヒュームドシリカ「アエロジルRX200」を0.12g添加し、シンキー社製攪拌脱泡装置「泡取り錬太郎AR−100」で混合モード(自転公転)2分間粗混合した後、超音波洗浄器にて水を時々取り替えながら水温25度にて30分間分散し、半透明の分散液を得た。この液に表1の配合比にて蛍光体を計量した後、シンキー社製攪拌脱泡装置「泡取り錬太郎AR−100」にて混合モード(自転公転)2分、脱泡モード(自転のみ)3分攪拌し、実施例1の蛍光体含有組成物を得た。
本実施例では少量のため超音波洗浄器を用いたが、工業的にはこの工程部分に2本ロール、3本ロール、ビーズミルなど高剪断力で金属磨耗粒子の混入しにくい公知の攪拌装置を用いることができる。マイクロピペットを用いて、得られた蛍光体含有組成物40μlを前出の半導体発光装置に注液し、減圧できるデシケーターボックス中で25℃、1kPaの条件下5分保持して注液時に生じた巻き込み気泡や溶存空気・水分を除去した。この後90℃で2時間次いで110℃で1時間、150℃で3時間保持して蛍光体含有組成物を硬化させ、チップの封止を行なった。
Figure 0005374855
〔実施例2〕
信越化学工業株式会社製シリコーン樹脂LPS2410の主剤2.0gに日本アエロジル社製疎水性ヒュームドシリカ0.11g添加し、シンキー社製攪拌脱泡装置「泡取り錬太郎AR−100」を用いて混合モード(自転公転)で2分間粗混合した後、超音波洗浄器にて水を時々取り替えながら水温25度にて30分間分散し、半透明の分散液を得た。この液に表1の配合比の蛍光体および硬化剤0.2gを計量した後、シンキー社製攪拌脱泡装置「泡取り錬太郎AR−100」にて混合モード(自転公転)2分、脱泡モード(自転のみ)3分攪拌し、実施例3の蛍光体含有組成物を得た。
本実施例では少量のため超音波洗浄器を用いたが、工業的にはこの工程部分に2本ロール、3本ロール、ビーズミルなど高剪断力で金属磨耗粒子の混入しにくい公知の攪拌装置を用いることができる。
マイクロピペットを用いて、得られた蛍光体含有組成物40μlを前出の半導体発光装置に注液し、減圧できるデシケーターボックス中で25℃、1kPaの条件下5分保持して注液時に生じた巻き込み気泡や溶存空気・水分を除去した。この後150℃で2時間保持して蛍光体含有組成物を硬化させ、チップの封止を行なった。
〔比較例1〕
前述の合成例1で合成した液状媒体2gに日本アエロジル社製 疎水性ヒュームドシリカ「アエロジルRX200」0.11g及び蛍光体を表1の配合比で計量した後、シンキー社製攪拌脱泡装置「泡取り錬太郎AR−100」にて混合モード(自転公転)2分、脱泡モード(自転のみ)3分攪拌し、比較例1の蛍光体含有組成物を得た。
マイクロピペットを用いて、得られた蛍光体含有組成物40μlを前出の半導体発光装置に注液し、減圧できるデシケーターボックス中で25℃、1kPaの条件下5分保持して注液時に生じた巻き込み気泡や溶存空気・水分を除去した。この後90℃で2時間次いで110℃で1時間、150℃で3時間保持して蛍光体含有組成物を硬化させ、チップの封止を行なった。
〔比較例2〕
前述の信越化学工業株式会社製シリコーン樹脂LPS2410の主剤2.0gに硬化剤0.2gを計量し、シンキー社製攪拌脱泡装置「泡とり錬太郎AR−100」を用いて混合モード(自転公転)2分間攪拌した。この液に日本アエロジル社製疎水性ヒュームドシリカ及び蛍光体を表1の配合比で計量した後、シンキー社製攪拌脱泡装置「泡取り錬太郎AR−100」にて混合モード(自転公転)2分、脱泡モード(自転のみ)3分攪拌し、比較例2の蛍光体含有組成物を得た。
マイクロピペットを用いて、得られた蛍光体含有組成物40μlを前出の半導体発光装置に注液し、減圧できるデシケーターボックス中で25℃、1kPaの条件下5分保持して注液時に生じた巻き込み気泡や溶存空気・水分を除去した。この後150℃で1時間保持して蛍光体含有組成物を硬化させ、チップの封止を行なった。
〔評価方法〕
<発光特性評価>
オーシャンオプティクス社製分光器「USB2000」(積算波長範囲:380−800nm、受光方式:100mmφの積分球)を用い、分光器本体の温度変化によるデータ外乱を防ぐため分光器を25℃恒温槽内に保持して、輝度(mW)及び色度を測定した。測定中は半導体発光装置の温度上昇を防ぐために、熱伝導性絶縁シートを介し3mm厚のアルミ板にて放熱を行なった。
<色度ずれ>
上記の方法にて作成した封止前の半導体発光装置をあらかじめ発光特性評価し、同じ発光波長、同じ輝度の発光装置を10個選別した。これに実施例及び比較例の方法にて蛍光体含有組成物をポッティング・硬化させ白色ランプを得た。n=10にて発光特性評価し、色度座標(x,y)値のうち今回蛍光体の中で最も比重、粒径大きく沈降しやすい緑色蛍光体の挙動を示すy値の10個平均値からの最大誤差範囲(%)を求めた。なお他の蛍光体を使用する場合には、系の中で最も沈降しやすい蛍光体にあわせて色度座標を選択すればよい。
<輝度再現性>
色度ずれと同様の方法にて作成した白色ランプの輝度(mW)をn=10にて測定し、輝度の10個平均値からの最大誤差範囲(%)を求めた。
<蛍光体沈降評価>
実施例及び比較例にて得られた蛍光体含有組成物について、以下の要領で蛍光体沈降性を評価した。即ち、蛍光体沈降性は得られた蛍光体含有組成物を4mlのガラス製スクリュー管瓶に入れ、25℃にて6時間静置した後に瓶の外側からブラックライトを照射して目視観察し、最も沈降しやすい前記緑色蛍光体(Ba1.39Sr0.46Eu0.15SiO4)の粗大粒子(約20μm超の青色輝点として観察される)について全く沈降がみられないものを○、ほとんど沈降無いが液最上部にてBSS粗大粒子の減少が見られるものを×として蛍光体沈降性を評価した。
<硬化物断面中のシリカ微粒子の集塊粒子観察>
実施例及び比較例にて得られた蛍光体含有組成物について、以下の要領でシリカ微粒子の集塊粒子の観察を行なった。
(1)混合直後の蛍光体含有組成物を2cc駒込ピペットを用いてスライドガラス上に1滴滴下し、これを実施例及び比較例と同様の温度条件で硬化させ、直径約1cm、最大厚み約500μmの円形フィルム状の塗布硬化物を得た。
(2)この硬化物をカッターナイフを用いて直径方向に切り分け、直径部分を含む厚さ約300μmの切片を切り出した。
(3)この切片に赤、青、緑蛍光体を励起可能なブラックライトを照射しつつ実体顕微鏡で断面観察し、発光しない粒子はシリカ微粒子の集塊粒子であるとして断面全体において100μmを超える集塊粒子の有無を観察した。
<実施例よりわかること>
上記評価結果を下記表2に示す。
Figure 0005374855
実施例では蛍光体を分散する前に前もってシリカ微粒子のみを分散し、蛍光体粒子に損傷を与えずシリカ微粒子のみに高せん断力を加えて分散することが出来たため、蛍光体の分散が安定した。これにより同じペースト液から繰り返しポッティングを行なった際の蛍光体の分散不良や沈降に起因する偏在による色度むらや輝度むらが改善した。また、ペーストの長時間放置時の蛍光体沈降も抑制された。これらのことから異なるロットでペーストを調液した時の輝度、色度の再現性もより向上すると考えられる。また蛍光体は一般に高剪断の粉砕を行なうと結晶構造が変化し輝度が低下するほか、高温高湿環境では粉砕による小粒子化に伴う表面積増大により加水分解などの劣化による消光が進みやすいことが知られており、本発明の分散方法により分散操作による蛍光体輝度低下や長時間点灯時の輝度低下が抑制されることが期待される。
本発明の蛍光体含有組成物の製造方法によれば、混合により蛍光体の輝度を損なうことがなく、また蛍光体を均一に分散することが可能である。したがって、例えば照明装置、画像表示装置、薄型テレビなどの液晶バックライト用光源などの広範な分野における半導体発光装置等に好適に使用することが出来る。特に光取り出し効率や、密着性、耐熱性等に優れる特徴から、従来適切な封止剤の無かった近紫外光・紫外光を発する半導体発光装置、並びにそれが適用されうる照明装置、及び画像表示装置等の各分野において、その産業上の利用可能性は極めて高い。
本発明により製造された蛍光体含有組成物の用途である半導体発光デバイスの基本概念の説明図である。 実施形態1を示し、(a)は概略断面図、(b)は(a)の要部拡大図である。 実施形態2を示す概略断面図である。 実施形態3を示す概略断面図である。 実施形態4を示す概略断面図である。 実施形態5を示す概略断面図である。 実施形態6を示す概略断面図である。 実施形態7を示す概略断面図である。 実施形態8を示す概略断面図である。 実施形態9を示す概略断面図である。 実施形態10を示す概略断面図である。 実施形態11を示す概略断面図である。 実施形態12を示す概略断面図である。 実施形態13を示す概略断面図である。 実施形態14を示す概略断面図である。 実施形態15を示す概略断面図である。 実施形態16を示す概略断面図である。 実施形態17を示す概略断面図である。 実施形態18を示す概略断面図である。 実施形態19を示す概略断面図である。 実施形態20を示す概略断面図である。 実施形態21を示す概略断面図である。 実施形態21について示す要部断面図である。 実施形態22を示す概略断面図である。 実施形態22について示す要部断面図である。 実施形態23を示す概略断面図である。 実施形態23について示す要部斜視図である。 実施形態24を示す概略断面図である。 実施形態24について示す要部断面図である。 実施形態24について示す要部斜視図である。 実施形態25を示す概略断面図である。 実施形態26を示す概略断面図である。 実施形態27を示す概略断面図である。 実施形態28を示す概略断面図である。 実施形態29を示す概略断面図である。 実施形態30を示し、(a)は概略断面図、(b)は(a)の要部拡大図である。 実施形態31を示す概略断面図である。 実施形態32を示す概略断面図である。 実施形態33を示す概略断面図である。 実施形態34を示す概略断面図である。 実施形態35を示す概略断面図である。 実施形態36を示す概略断面図である。 実施形態37を示す概略断面図である。 実施形態38を示す概略断面図である。 実施形態39を示す概略断面図である。 実施形態40を示す概略断面図である。 (a)〜(c)はいずれも実施例及び比較例で用いたメタルパッケージを示す模式図である。
符号の説明
1,1B 発光装置(半導体発光デバイス)
2 発光素子
3B 蛍光体部(半導体発光デバイス用部材)
4a,4b 発光素子から放射された光の一部
5 蛍光体部に含有される蛍光体粒子、蛍光イオン、蛍光染料などの蛍光成分特有の波長の光
11 モールド部
12,13 リード端子
14 ミラー(カップ部)15 導電ワイヤ
16 絶縁基板
16a 凹所
17 プリント配線
18 枠材
19 封止部
19a 封止機能部
19b レンズ機能部
19c 凹部
19d 貫通孔
21 発光層部
23 反射層
24 バンプ
33,34 蛍光体部
35 固体媒質
101 カップ
102 LEDチップ
103 LED素子

Claims (3)

  1. (A)シリカ微粒子、(B)蛍光体、及び(C)付加重合硬化タイプのシリコーン系材料を含有する蛍光体含有組成物の製造方法であって、
    前記(C)付加重合硬化タイプのシリコーン系材料が(C1)アルケニル基を含有するオルガノポリシロキサン及び(C3)付加重合触媒を含む第1の液状媒体、及び(C2)ヒドロシリル基を含有するオルガノポリシロキサンを含む第2の液状媒体を混合して得られるものであり、
    前記(A)シリカ微粒子、前記第1の液状媒体及び前記第2の液状媒体の一方に、100μmを超えるシリカ微粒子の集塊粒子が存在しないように分散させる第一工程と、
    前記第1の液状媒体及び前記第2の液状媒体の他方を前記第一工程で得た分散液に合する第二工程と、
    前記第一工程で得た分散液又は前記第二工程で得た混合液に、前記(B)蛍光体を分させる蛍光体分散工程とを有する
    ことを特徴とする、蛍光体含有組成物の製造方法。
  2. 前記第1の液状媒体体及び前記第2の液状媒体のうち前記第一工程で用いられる液状媒体の粘度が、30mPa・s以上、15000mPa・s以下である
    ことを特徴とする、請求項に記載の蛍光体含有組成物の製造方法。
  3. 前記蛍光体分散工程を前記第二工程より前に有する
    ことを特徴とする、請求項1または2に記載の蛍光体含有組成物の製造方法。
JP2007272191A 2007-10-19 2007-10-19 蛍光体含有組成物の製造方法 Active JP5374855B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272191A JP5374855B2 (ja) 2007-10-19 2007-10-19 蛍光体含有組成物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272191A JP5374855B2 (ja) 2007-10-19 2007-10-19 蛍光体含有組成物の製造方法

Publications (3)

Publication Number Publication Date
JP2009096947A JP2009096947A (ja) 2009-05-07
JP2009096947A5 JP2009096947A5 (ja) 2010-12-02
JP5374855B2 true JP5374855B2 (ja) 2013-12-25

Family

ID=40700253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272191A Active JP5374855B2 (ja) 2007-10-19 2007-10-19 蛍光体含有組成物の製造方法

Country Status (1)

Country Link
JP (1) JP5374855B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870736B2 (ja) * 2012-02-16 2016-03-01 コニカミノルタ株式会社 蛍光体分散液の製造方法、およびそれを用いてled装置を製造する方法
JP5739380B2 (ja) * 2012-06-22 2015-06-24 信越化学工業株式会社 硬化性樹脂組成物、その硬化物及びそれを用いた光半導体デバイス
JPWO2014103330A1 (ja) * 2012-12-27 2017-01-12 コニカミノルタ株式会社 蛍光体分散液、led装置およびその製造方法
JP2013153175A (ja) * 2013-02-26 2013-08-08 Shin Etsu Chem Co Ltd 封止樹脂の変色抑制方法
KR101813432B1 (ko) 2014-06-02 2017-12-28 쇼와 덴코 가부시키가이샤 반도체 나노 입자 함유 경화성 조성물, 경화물, 광학 재료 및 전자 재료
KR20190053876A (ko) 2016-09-07 2019-05-20 스미또모 가가꾸 가부시키가이샤 파장 변환 재료 함유 실리콘 수지 조성물 및 파장 변환 재료 함유 시트
JP6553139B2 (ja) * 2016-09-07 2019-07-31 住友化学株式会社 波長変換材料含有縮合型シリコーン組成物の製造方法及び波長変換シートの製造方法
JP7144154B2 (ja) * 2017-02-28 2022-09-29 株式会社アルバック 金属窒化物ナノ粒子分散液の製造方法
KR102126949B1 (ko) * 2018-08-28 2020-07-08 주성원 봉지재 조성물, 봉지재, 그 제조방법 및 전자 소자 패키지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806658B2 (en) * 2003-03-07 2004-10-19 Agilent Technologies, Inc. Method for making an LED
WO2007018260A1 (ja) * 2005-08-10 2007-02-15 Mitsubishi Chemical Corporation 蛍光体及びそれを用いた発光装置
CN101379164B (zh) * 2006-02-10 2012-11-21 三菱化学株式会社 荧光体及其制造方法、含荧光体的组合物、发光装置、图像显示装置和照明装置

Also Published As

Publication number Publication date
JP2009096947A (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5374857B2 (ja) 蛍光体含有組成物の製造方法、及び半導体発光デバイスの製造方法
JP5374855B2 (ja) 蛍光体含有組成物の製造方法
JP6213585B2 (ja) 半導体デバイス用部材、及び半導体発光デバイス
JP5552748B2 (ja) 硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置
JP2010100743A (ja) 蛍光体含有組成物の製造方法
JP5386800B2 (ja) 蛍光体含有組成物、発光装置、照明装置、および画像表示装置
JP5742916B2 (ja) シリコーン系半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5332921B2 (ja) 半導体発光装置、照明装置、及び画像表示装置
JP5761397B2 (ja) 半導体発光デバイス用部材形成液、半導体発光デバイス用部材、航空宇宙産業用部材、半導体発光デバイス、及び蛍光体組成物
JP2009013186A (ja) 被覆蛍光体粒子、被覆蛍光体粒子の製造方法、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
JP2009135485A (ja) 半導体発光装置及びその製造方法
JP2010004035A (ja) 半導体発光装置、照明装置、および画像表示装置
JP2008260930A (ja) 蛍光体含有組成物、発光装置、照明装置、および画像表示装置
JP2007116139A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5446078B2 (ja) 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物
JP2010004034A (ja) 半導体発光装置、照明装置、および画像表示装置
JP2010100733A (ja) 蛍光体含有組成物の製造方法
WO2010098285A1 (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2009224754A (ja) 半導体発光装置、照明装置、及び画像表示装置
JP2009179677A (ja) 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材
JP2008276175A (ja) 光学部材、光導波路および導光板

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5374855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350