JP5368764B2 - 極端紫外光源装置及び極端紫外光の生成方法 - Google Patents

極端紫外光源装置及び極端紫外光の生成方法 Download PDF

Info

Publication number
JP5368764B2
JP5368764B2 JP2008267122A JP2008267122A JP5368764B2 JP 5368764 B2 JP5368764 B2 JP 5368764B2 JP 2008267122 A JP2008267122 A JP 2008267122A JP 2008267122 A JP2008267122 A JP 2008267122A JP 5368764 B2 JP5368764 B2 JP 5368764B2
Authority
JP
Japan
Prior art keywords
target material
light source
target
laser light
extreme ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008267122A
Other languages
English (en)
Other versions
JP2010097800A (ja
Inventor
達哉 柳田
陽一 佐々木
理 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2008267122A priority Critical patent/JP5368764B2/ja
Publication of JP2010097800A publication Critical patent/JP2010097800A/ja
Application granted granted Critical
Publication of JP5368764B2 publication Critical patent/JP5368764B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、極端紫外光源装置及び極端紫外光の生成方法に関する。
例えば、レジストを塗布したウェハ上に、回路パターンの描かれたマスクを縮小投影し、エッチングや薄膜形成等の処理を繰り返すことにより、半導体チップが生成される。半導体プロセスの微細化に伴い、より短い波長の光が求められている。
そこで、13.5nmという極端に波長の短い光と縮小光学系とを使用する、半導体露光技術が研究されている。この技術は、EUVL(Extreme Ultra Violet Lithography:極端紫外線露光)と呼ばれる。以下、極端紫外光をEUV光と呼ぶ。
EUV光源としては、LPP(Laser Produced Plasma:レーザ生成プラズマ)式の光源と、DPP(Discharge Produced Plasma)式の光源と、SR(Synchrotron Radiation)式の光源との三種類が知られている。LPP式光源とは、ターゲット物質にレーザ光を照射してプラズマを生成し、このプラズマから放射されるEUV光を利用する光源である。DPP式光源とは、放電によって生成されるプラズマを利用する光源である。SR式光源とは、軌道放射光を使用する光源である。以上三種類の光源のうち、LPP式光源は、他の方式に比べてプラズマ密度を高くすることができ、かつ、捕集立体角を大きくできるため、高出力のEUV光を得られる可能性が高い。
EUV光は波長が短く、物質に吸収されやすいため、EUVLでは、反射光学系が採用される。反射光学系は、例えば、モリブデン(Mo)とシリコン(Si)とを用いた多層膜を使用して構築される。Mo/Siの多層膜は、13.5nm付近の反射率が高いため、EUVLでは13.5nmのEUV光を使用する。
しかし、多層膜の反射率は70%程度のため、反射を繰り返すにつれて、EUV光の出力は次第に低下する。露光装置内でEUV光は十数回反射するため、EUV光源装置は、高出力のEUV光を露光装置に供給する必要がある。そこで、EUV光源装置として、LPP式の光源に期待が寄せられている(特許文献1)。
LPP式のEUV光源装置は、錫(Sn)やキセノン(Xe)あるいはリチウム(Li)等をターゲット物質として使用し、このターゲット物質にレーザ光を照射する。特に、液体金属である錫のドロップレット(ターゲット)と炭酸ガス(CO2)パルスレーザとを組み合わせるLPP式光源は、必要最小量のドロップレットを使用すればよく、かつ、EUV光の発光効率が高いことから、有望な構成であると見られている。
ドロップレットの量を最小にとどめることにより、デブリ(debris)の発生量を抑制し、EUV集光ミラー等の各種光学部品への悪影響を少なくできる。しかし、ドロップレットの量が少ないため、ドロップレットの直径に比べて炭酸ガスレーザの照射直径が大きくなり易い。多くのレーザ光がドロップレットに作用せずに通過するため、EUV光の出力効率の点で改善の余地がある。
そこで、ドロップレットにメインパルスレーザを照射する前に、プリパルスレーザをドロップレットに照射することにより、ドロップレットの形状や密度を変化させて、プレフォーミングする技術が提案されている(特許文献2,特許文献3,特許文献4,特許文献5)。
特開2006−80255号公報 米国特許出願公開第2006/0255298号明細書 国際公開第2003/96764号パンフレット 特表2005−525687号公報 米国特許出願公開第2008/0149861号明細書
従来技術では、メインパルスレーザの照射前にプレパルスレーザをターゲットに照射する方法を提案する。しかし、錫のような金属材料のターゲットは、熱容量が大きいため、プリパルスレーザを照射しても蒸発しにくい。プリパルスレーザの出力が低い場合、ドロップレットに生じるアブレーション及び蒸発は、ドロップレットの表面にとどまるため、多くの材料が液体のまま飛散する。このため、デブリが発生して、集光ミラー等の光学部品が汚損し、極端紫外光源装置の寿命が低下する。さらに、期待された出力のEUV光を取り出すこともできない。
プリパルスレーザの出力を高くすれば、ドロップレットの多くが液体のままで飛散してしまうという現象を改善することができる。しかし、プリパルスレーザの出力を高くするためには、大出力のレーザ光源を必要とし、エネルギ効率が著しく低下する。
そこで、本発明の目的は、比較的高いエネルギ効率で、ターゲット物質をプラズマ化させる前に加熱することのできる極端紫外光源装置及び極端紫外光の生成方法を提供することにある。本発明の他の目的は、連続光または疑似連続光のいずれかとして構成される第1レーザ光を用い、かつ、ターゲット物質の移動する軌跡と第1レーザ光との角度とを所定角度以下に設定することにより、第1レーザ光がターゲット物質を照射する時間を比較的長くして、第2レーザ光が照射される前にターゲット物質を効率的に加熱することのできる、極端紫外光源装置及び極端紫外光の生成方法を提供することにある。本発明の更なる目的は、後述する実施形態の記載から明らかになるであろう。
上記課題を解決するために、本発明の第1観点に係る極端紫外光源装置は、レーザ光をターゲット物質に照射してプラズマ化させることにより、極端紫外光を発生させる極端紫外光源装置であって、チャンバと、チャンバ内に向けて、吐出口からターゲット物質を供給するターゲット物質供給部と、連続光または疑似連続光のいずれかとして構成される第1レーザ光を出力する第1レーザ光源と、第1レーザ光をターゲット物質に照射して加熱させる加熱用光学系と、第1レーザ光により加熱されたターゲット物質に、第2レーザ光を照射してターゲット物質をプラズマ化させるための第2レーザ光源と、プラズマから放射される極端紫外光を集光するための集光ミラーと、を備え、ターゲット物質の移動する軌跡とターゲット物質に照射される第1レーザ光の光軸との角度が、所定角度以下に設定され、所定角度は、ターゲット物質の大きさと第1レーザ光の品質とに応じて設定され、加熱用光学系は、ターゲット物質が通過するための穴部を有する第1反射ミラーを備え、第1反射ミラーは、穴部がターゲット物質の軌跡上に位置するようにしてチャンバ内に設けられており、第1レーザ光源から入射する第1レーザ光を、ターゲット物質の軌跡と同軸方向に反射させる
前記加熱用光学系は、前記第1反射ミラーによって反射される前記第1レーザ光を、前記ターゲット物質の軌跡と同軸で前記第1反射ミラーに向けて反射させるための、別の反射ミラーを備えてもよい。前記第1レーザ光源と前記第1反射ミラーとの間には、前記第1レーザ光源に向けて前記第1レーザ光が戻るのを防止するための逆流防止用光学系が設けられてもよい。
ターゲット物質が、ターゲット物質の大きさに応じて定まる所定距離以上、第1レーザ光の中を移動できるように、所定角度を設定することができる。
ターゲット物質が直径10μmのドロップレットである場合に、所定角度は10度以下の値に設定することができる。
ターゲット物質が直径20μmのドロップレットである場合に、所定角度は4度以下の値に設定することができる。
ターゲット物質が直径30μmのドロップレットである場合に、所定角度は2度以下に設定することができる。
ターゲット物質の移動する軌跡が曲線の場合、第1レーザ光のウエスト部で曲線に接する接線と第1レーザ光の光軸との角度が、所定角度以下となるように設定する。
本発明の他の観点に従う、チャンバと、前記チャンバ内に向けて吐出口からターゲット物質を供給するターゲット物質供給部と、連続光または疑似連続光のいずれかとして構成される第1レーザ光を出力する第1レーザ光源と、前記第1レーザ光を前記ターゲット物質に照射して加熱させる加熱用光学系と、前記第1レーザ光により加熱された前記ターゲット物質に第2レーザ光を照射して前記ターゲット物質をプラズマ化させるための第2レーザ光源と、前記プラズマから放射される前記極端紫外光を集光するための集光ミラーとを備える極端紫外光光源装置における極端紫外光の生成方法は前記ターゲット物質供給部から前記チャンバ内に前記ターゲット物質を供給し、前記第1レーザ光源から出力された第1レーザ光と前記ターゲット物質供給部から供給された前記ターゲット物質の移動する軌跡との角度が所定角度以下となるように、前記加熱用光学系を介して前記ターゲット物質に前記第1レーザ光を照射して該ターゲット物質を加熱し、加熱された前記ターゲット物質に第2レーザ光を照射して前記ターゲット物質をプラズマに変換し、前記プラズマから放射される極端紫外光を集光前記所定角度は、前記ターゲット物質の大きさと前記第1レーザ光の品質とに応じて設定され、前記加熱用光学系は、前記ターゲット物質が通過するための穴部を有する第1反射ミラーを備え、前記第1反射ミラーは、前記穴部が前記ターゲット物質の軌跡上に位置するようにして前記チャンバ内に設けられており、前記第1レーザ光源から入射する前記第1レーザ光を、前記ターゲット物質の軌跡と同軸方向に反射させる
本発明によれば、連続光または疑似連続光として構成される第1レーザ光を、ターゲット物質に比較的長時間照射して加熱することができる。従って、第2レーザ光が照射される前に、ターゲット物質を気化させて密度を低下させることができ、極端紫外光の生成効率を高めることができる。さらに、本発明によれば、第1レーザ光をターゲット物質に照射する時間を比較的長くできるため、比較的低出力のレーザ光源を第1レーザ光源として使用することができ、極端紫外光源装置のコストや寸法を小さくできる。
以下、図を参照しながら、本発明の実施形態を詳細に説明する。本実施形態では、以下に述べるように、連続光または疑似連続光として構成される加熱用レーザ光を先にターゲット物質に照射して気化させる。次に、本実施形態では、パルスレーザ光として構成されるメインパルスレーザ光を、気化したターゲット物質に照射してプラズマ化させ、EUV光を生成させる。ここで、本実施形態では、加熱用レーザ光がターゲット物質を照射する時間を長くするために、ターゲット物質の移動する軌跡と加熱用レーザ光の光軸との角度が所定角度となるように設定している。
図1〜図10に基づいて第1実施例を説明する。図1は、EUV光源装置10の全体構成を示す説明図である。
図1に示すEUV光源装置10は、後述のように、例えば、真空チャンバ100と、メインパルスレーザ光源110と、加熱用レーザ光源120と、ターゲット供給部130と、真空ポンプ140と、制御部150と、EUV集光ミラー160とを、反射ミラー170と、集光レンズ180と、凹面ミラー190を備える。
真空チャンバ100は、真空ポンプ140によって真空状態に保たれる。真空チャンバ100は、露光装置に接続される接続部101と、複数の入射窓102,103とを備えている。接続部101は、例えば、ゲートバルブを備えており、そのゲートバルブを介してEUV光が露光装置に送られる。なお、ゲートバルブは、通常時において開いているが、メンテナンス時には閉じられる。
一つの入射窓102は、メインパルスレーザ光源110からのメインパルスレーザ光を真空チャンバ100内に入射させるための窓である。他の一つの入射窓103は、加熱用レーザ光源120からの連続光または疑似連続光を、真空チャンバ100内に入射させるための窓である。
「ターゲット物質供給部」としてのターゲット供給部130は、例えば、錫(Sn)等の金属材料を加熱溶解することにより、ターゲット200を供給する。ターゲット200は、固体または液体のドロップレットとして構成される。本実施例では、ターゲット物質として、錫を例に挙げて説明するが、これに限らず、例えば、リチウム(Li)等の他の物質を用いてもよい。あるいは、アルゴン(Ar)、キセノン(Xe)、クリプトン(Kr)、水、アルコール、スタナン(SnH4)、四塩化錫(SnCl4)等の材料を、液体または氷にして、ドロップレットを生成する構成でもよい。ターゲット供給部130は、プラズマを発生させるために必要な最小量のターゲット200を、「吐出口」としてのノズル131から吐出させる。なお、以下の説明では、ターゲットをドロップレットと呼ぶ場合もある。
メインパルスレーザ光源110は、ターゲット供給部130から供給されるターゲット200を励起させるためのパルスレーザ光111を出力する光源装置である。メインパルスレーザ光源110は「第2レーザ光源装置」に、パルスレーザ光111は「第2レーザ光」に、それぞれ該当する。
メインパルスレーザ光源110は、例えば、CO2(炭酸ガス)パルスレーザ光源として構成される。メインパルスレーザ光源110は、例えば、波長10.6μm程度のレーザ光111を出力する。このメインパルスレーザ光111は、軸外放物面ミラー112び入射窓102等を介して、真空チャンバ100内に入射し、ガス状のターゲット210を照射する。なお、レーザ光源としてCO2パルスレーザを例に挙げるが、本発明はこれに限定されない。
加熱用のレーザ光源120は、ターゲット200の形状及び状態(密度等)を事前に整えるための光源装置である。加熱用レーザ光源120は「第1レーザ光源装置」に、レーザ光121は「第1レーザ光」に、それぞれ該当する。加熱用レーザ光源120は、例えば、連続光(CW)または疑似連続光(Quasi−CW)のレーザ光を出力する。本実施例における連続光または疑似連続光は、例えば、ターゲット表面のアブレーション閾値を下回る程度のピーク強度を有するレーザ光、として定義可能である。
加熱用レーザ光源120としては、例えば、YAG(Yttrium Aluminum Garnet)レーザ等のレーザ光源を使用することができる。但し、本発明は、加熱用レーザ光源の種類を特に問わない。例えば、炭酸ガスレーザ、Nd:YAGレーザ、Yb:YAGレーザやこれらの高調波光等を、加熱用レーザ光として用いてもよい。
さらに、可視光から近赤外域にかけての発振波長を有するレーザダイオード等を、加熱用レーザ光として用いてもよい。レーザダイオード光を用いる場合は、ファイバ結合させて輝度を高めることにより、微少なターゲット200への照射が容易となる。さらに輝度を向上させるために、ファイバーレーザを用いてもよい。
加熱用レーザ光源120と入射窓103との間には、偏光板122と、λ/4波長板123と、ダンパ124とが設けられている。加熱用レーザ光源120から出力されるレーザ光は、偏光板122,λ/4波長板123及び入射窓103を介して、真空チャンバ100内に入射する。
レーザ光121は、集光レンズ180を介して反射ミラー170に入射し、反射ミラー170によってターゲット200の軌跡方向と同一方向に反射される。これにより、加熱用レーザ光121の光軸とターゲット200の移動する軌跡とは、略一致する。ターゲット200は、レーザ光121に照射されながら、メインパルスレーザ光111の集光点に向けて移動する。
反射ミラー170は、電動ステージ172に搭載されており、電動ステージ172によってターゲット200の移動方向に移動できるようになっている。電動ステージ172は、電気フィードスルー173を介して外部の図示せぬ制御機器に接続されている。電気フィードスルー173は、真空チャンバ100内の電動ステージ172に、電気信号を与えるためのものである。
さらに、反射ミラー170は、モーションフィードスルー173を介して、外部の図示せぬ手動操作器と接続される。反射ミラー170は、手動操作器によって、チルト及びロールの角度が調節される。その様子は、図2で後述する。
ターゲット200は、加熱用レーザ光121により加熱された蒸発し、ガス状のターゲット210として所定位置に到達する。所定位置とは、メインパルスレーザ光111の集光点である。ガス状のターゲット200にメインパルスレーザ光111が照射されると、プラズマが発生し、そのプラズマからEUV光が放射される。
EUV集光ミラー160は、EUV光を反射させて集めるためのミラーである。EUV集光ミラー160には、メインパルスレーザ光111が通過するための穴部161を設けることもできる。
EUV集光ミラー160の表面は、凹面状に形成されており、例えば、モリブデン膜とシリコン膜とから構成される多層膜(Mo/Si)がコーティングされている。これにより、EUV集光ミラー160は、波長13.5nm程度のEUV光を反射する。
EUV集光ミラー160により反射されるEUV光は、接続部101内に位置する中間集光点(IF:Intermediate Focus)に集まり、露光装置に供給される。なお、EUV光の純度を高めるために、回折格子やフィルタ等の光学部品を用いてもよい。
ダンパ163は、EUV集光ミラー160と接続部101との間に設けられており、メインパルスレーザ光111を吸収して熱に変換する。ダンパ163は、図示せぬ冷却装置により冷却することができる。ダンパ163は、メインパルスレーザ光111が露光装置側に入射するのを防止する。
制御部150は、極端紫外光源装置1の動作を制御する装置である。説明の便宜上、本実施例の制御部150は、各レーザ光源110,120及びターゲット供給部130等の動作をそれぞれ制御する。図1中では電気信号線を省略してるが、制御部150は、真空ポンプ140の動作も制御する。なお、図1では、便宜上、単一の制御部150によって、レーザ光の照射及びドロップレットの供給等を制御するかのように示すが、レーザ光源装置110,120とターゲット供給部130とを、それぞれ別々の制御装置で制御する構成でもよい。
反射ミラー170に対向するようにして、「別の反射ミラー」としての凹面ミラー190が設けられている。凹面ミラー190は、手動操作器192によって、その角度等を調節できるようになっている。凹面ミラー190には、反射ミラー170によって反射されたレーザ光121が入射する。
凹面ミラー190は、入射方向と逆方向にレーザ光121を反射する。凹面ミラー190は、集光レンズ180の焦点位置で集光するように、レーザ光121を反射する。従って、レーザ光121を効率的に使用してターゲット200を加熱することができる。
真空ポンプ140の吸引口141は、ターゲット200の落下する軌跡からメインパルスレーザ光111の進行方向側にずれて設けられている。ターゲット200は、所定位置でメインパルスレーザ光111に照射されると、メインパルスレーザ光111の進行方向側に斜めに移動する。これにより、ターゲット200のうちEUV光の発生に使用されなかった部分(デブリ)は、凹面ミラー190に衝突することなく、真空ポンプ140に吸引される。
凹面ミラー190によって反射されたレーザ光121は、入射方向を逆に進んで反射ミラー170に入射する。この加熱用レーザ光源120に向けて進むレーザ光を、戻り光121Bと呼ぶ。戻り光121Bは、反射ミラー170により反射され、集光レンズ180及び入射窓103等を介して、チャンバ100の外部に出射する。戻り光121Bは、偏光板122により反射されてダンパ124に入射し、ダンパ124に吸収される。
図2は、反射ミラー170を拡大して示す斜視図である。ターゲット200を通過させるための穴171は、例えば、反射ミラー170の中央部に設けられる。穴171は、反射ミラー170の角度がF1方向またはF2方向に調整された場合でも、ターゲット200が通過できるように、その形成位置及び直径が設定される。
図2中に示す軸AX1は、ターゲット200の移動する軌跡を示す軸である。別の軸AX2は、加熱用レーザ光121の光軸を示す。図2に示すように、本実施例では、ターゲット200の軌跡AX1とレーザ光121の光軸とを略一致させることができる。以下の説明では、ターゲット200の移動する軌跡AX1を、ターゲット軌跡AX1と呼ぶ場合があり、加熱用レーザ光121の光軸AX2をレーザ光軸AX2と呼ぶ場合がある。
電動ステージ172は、外部からの制御信号に応じて、反射ミラー170を、ターゲット軌跡AX1に沿うF3方向に移動させる。さらに、図外の手動操作器を用いることにより、反射ミラー170を、図中F1方向及びF2方向に所定範囲内で回動させることもできる。ターゲット軌跡AX1をZ軸とすると、F1方向は、X軸を中心に回動する方向である。F2方向は、Y軸を中心に回動する方向である。
図2に示すように、ターゲット軌跡AX1とレーザ光121の光軸AX2とが略一致する場合は、従来技術よりも長い時間、ターゲット200に加熱用レーザ光121を照射することができる。照射時間が長くできるため、加熱用のレーザ光源120の出力を比較的小さくすることができる。低出力のレーザ光源120は、高出力のレーザ光源に比べて、コストも取付寸法も小さくできる。
次に、図3〜図9を参照して、従来技術よりも長い時間、ターゲット200に加熱用レーザ光121を照射するための方法を検討する。図3は、ターゲット軌跡AX1とレーザ光軸AX2とが一致しない場合を示す。図中では、ターゲット200の位置に応じて(1),(2),(3)等の符号を添える。ターゲット200は、例えば、数十μmの直径Ddpを有している。
ターゲット軌跡AX1に示すように、ターゲット200は、メインパルスレーザ光の集光する所定位置に向けて、鉛直線上を落下する。加熱用レーザ光121は、ターゲット軌跡AX1から角度αだけ傾いた方向から、ターゲット200を照射する。
ターゲット200(1)の位置では、加熱用レーザ光121のエネルギ密度が十分に高まっていない。ターゲット200(2)の位置では、加熱用レーザ光121のエネルギ密度が高くなり、ターゲット200は加熱される。ターゲット200(3)の位置は、加熱用レーザ光121のビーム径が最も細くなるウエスト121wである。
加熱用レーザ光121は、ウエスト121wで集光した後、広がっていく。ウエスト121wの位置は、集光レンズ180により定まる。ウエスト121wの位置では、加熱用レーザ光121のエネルギ密度が最も高くなる。ウエスト121wを通過後、ビーム径が広がるにつれて、ターゲット200に加えられる熱が小さくなる。
このように、加熱用レーザ光121のビーム径はウエスト121wで最も小さくなり、その前後では広がる。従って、加熱用レーザ光121の中でターゲット200を移動させて加熱するためには、有効な領域が存在する。その加熱に有効な領域に、ターゲット200を位置させるためには、ターゲット軌跡AX1とレーザ光軸AX2との角度αを、所定角度以内に収める必要がある。この点については、図5〜図9で後述する。
図4は、ターゲット軌跡AX1が曲線を描く場合を示す。ターゲット200は、常に鉛直線上を落下するとは限らない。例えば、意図的にあるいは意図せずに設けられる磁場等の影響により、ターゲット軌跡AX1aが曲線を描く場合もある。あるいは、後述の実施例のように、ターゲット供給部130がターゲット200を斜め上方に射出する場合も考えられる。
ターゲット軌跡AX1aが曲線になっても、レーザ光軸AX2を曲線にすることはできない。そこで、この場合は、ターゲット軌跡AX1aに接線TLを引き、その接線TLとレーザ光軸AX2との角度αが所定角度以内になるように設定する。接線TLは、加熱用レーザ光121のウエスト121wにおける、ターゲット軌跡AX1aに接するようにして設けられる。
図5は、加熱用レーザ光121を模式的に示す説明図である。上述の通り、加熱用レーザ光121は、集光レンズ180によって集光点に集光される。集光点でのビーム径は最も細くなり、ウエスト121wと呼ばれる。ウエスト121wでのエネルギ密度が最も高く、ウエスト121wから離れてビーム径が広がるほど、エネルギ密度が低下する。ウエスト121wから遠ざかるほど、レーザ光のエネルギ密度が低下し、ターゲット200に伝わる熱量が少なくなる。
そこで、本実施例では、レーザ光121でターゲット200を有効に加熱できる領域を、ウエスト121wを中心とする距離nwの範囲に設定する。距離nwとは、ウエスト121wの径寸法をwとした場合、そのn倍の長さである。ウエスト121wを中心とする上下nwずつの範囲が、ターゲット200を有効に加熱できる範囲であると考える。例えば、n=5に設定することができる。しかし、本発明は、n=5に限定されない。例えば、n=4.5〜5.5、あるいは、n=4〜6、あるいは、n=3〜7等のように、nを5以上または5未満の値に設定することもできる。
図6は、加熱用レーザ光121のビーム径を説明するための図である。ウエスト121wにおけるビーム半径をW0、レーザ光の進行方向上の或る位置zにおけるビーム半径をW(z)とする。ウエスト121wは、レーザ光の進行方向(図6中のZ軸であり、このZ軸は図5に示す光軸AX2に一致する)の原点0に位置する。この場合、或る位置におけるビーム半径W(z)は、下記の式1で示される。
W(z)=W0・(1+(M2)/(λ/π/W0^2)^2/z^2)^(1/2)・・・式1
M2は、ビーム品質を示すM^2を意味する。λはレーザ光の波長である。
ターゲット200の径とウエスト121wの径とを一致させれば、効果的にターゲット200を加熱できる。一方、数百WのEUV光を得るためには、ターゲット200の体積を、少なくとも10μm以上の直径を有する球の体積と同程度にする必要がある。それ以下の量のターゲットでは、十分な強さのEUV光を得ることができない。それ以上のターゲットでは、ターゲット物質の消費量が増大し、経済性の面で不利となる。
レーザ光121の波長λは、どのようなレーザを使用するかによって変化する。現在では、YAGレーザが比較的効率が良いと考えられているため、λ=1.064μmを用いることにする。
ビーム品質を示すM2は、理想的には1であることが好ましい(M2=1)。しかし、レーザ発振器の構成やレーザ光の通過する光学系の仕様等によって、M2は変化するため、M2=1を得るのは難しい。そこで、本実施例では、M2が4未満の範囲で検討する(M2<4)。M2が4以上の場合(M2≧4)、レーザ光を集光させるのが難しく、かつ、その集光光学系も複雑となって実用性に欠けるためである。
図7は、ウエスト121wを中心として所定範囲(−nwからnwまでの範囲:n=5)の、ビーム径の変化を示すグラフである。縦軸は、レーザ光121の半径W(z)を示し、横軸は、光軸上の距離を示す。横軸は、レーザ光軸AX2である。図7には、ターゲット200の直径Ddp=10μm、ビーム品質M2=4の場合の、ビーム径の変化が示されている。
図7に示すように、ビームウエスト121wの直径(2×W0)と、ターゲット200の直径とを共に10μmに設定し、ターゲット200を−50μmから50μmまでの所定範囲を通過させると、ターゲット200を効率的に気化させて密度を調整できる。
従って、レーザ光軸AX2とターゲット軌跡AX1との角度αの限界値を求めると、α=Arctan(9.4/50)=10.7度となる。ウエスト121wから50μm離れた位置におけるビーム半径W(50)ば、図7のグラフによれば9.4である。
なお、Ddp=10μm、M2=4というパラメータ設定は、最悪のケースを想定したものである。従って、M2<4、Ddp>10μmの場合でも、ターゲット軌跡AX1とレーザ光軸AX2との角度αが10.7度以内であれば、ビームウエストの直径の2n倍(本実施例では10倍である)の範囲で、ターゲット200を加熱できる。
図8,図9は、ターゲット200の直径(μm)とレーザ光121のビーム品質M2とによって、角度αを求めるためのグラフである。横軸はターゲット直径を示し、縦軸はビーム品質を示す。図9は、図8中の一部を抜き出して示す図である。
角度αを求めるためのグラフには、複数の境界線G1〜G14が含まれている。境界線G1までの領域は、ターゲット直径が10−40μm、M2が1−5までの範囲をカバーしている。境界線G1までの領域では、角度αを0−2度に設定する必要がある。例えば、G1までの領域では、ターゲット直径が30μm、M2=2〜4の場合、角度αを0−2度に設定すれば、ウエスト直径の2n倍の範囲でターゲットを加熱できる。
境界線G1から境界線G2までの領域(以下、領域G1−G2と呼ぶ)では、角度αを2−4度に設定する必要がある。領域G2−G3ではα=4−6度、領域G3−G4ではα=6−8度、領域G4−G5ではα=8−10度、領域G5−G6ではα=10−12度、領域G6−G7ではα=12−14度に、設定する。
図9に移り、領域G7−G8ではα=14−16度に、領域G8−G9ではα=16−18度に、領域G9−G10ではα=18−20度に、領域G10−G11ではα=20−22度に、領域G11−G12ではα=22−24度に、領域G12−G13ではα=24−26度に、領域G13−G14ではα=26−28度に、領域G14ではα=28−30度に、設定する。
図9中に太い点線は、ターゲット直径=10μm、ビーム品質M2=4の場合の範囲を示す。その点線の範囲内でパラメータを設定するならば、例えば、次の3つの場合を挙げることができる。第1の場合は、ターゲット直径=10μm、角度αが10度以下の場合である。第2の場合は、ターゲット直径=20μm、角度αが4度以下の場合である。第3の場合は、ターゲット直径30μm、角度αが2度以下の場合である。
以上の3つの場合は例示であって、本発明はそれらの数値に限定されない。上記点線の範囲内であれば、角度α、M2、ターゲット直径の各パラメータを設定できる。例えば、ターゲット直径が15μmの場合、角度αは6度以下に設定すればよい。
図10は、レーザ光121でターゲット200を加熱できる時間(横軸、単位sec)と、加熱用レーザ光121に求められる出力(縦軸、単位キロワット)との関係を示すグラフである。図10中の太い実線は、ターゲットを完全に気化させるための領域を示す。その太い実線から右側の領域では、ターゲットを完全に気化させることができる。
図10中の(a)は、従来技術の場合を示す。従来技術のように、ターゲットを短時間だけしか照射できない場合は、2キロワット近い出力のレーザ光源が必要となる。図10中の(b)は、本実施例の場合を示す。本実施例では、レーザ光軸とターゲット軌跡との角度αを所定角度に設定するため、従来よりも長時間、ターゲット200をレーザ光121で加熱できる。従って、レーザ光源120に求められる出力は、0.2キロワット程度でよい。
本実施例は上述の構成を備えるため、以下の効果を奏する。本実施例では、加熱用レーザ光121の光軸AX2とターゲット軌跡AX1との角度を所定角度α以内に設定するため、従来よりも長時間ターゲット200を加熱することができる。従って、加熱用レーザ光源120の出力を小さくすることができ、レーザ光源120のコスト及び取付寸法を小さくできる。
本実施例では、穴171を有する反射ミラー170をターゲット軌跡上に配置するため、レーザ光軸AX2とターゲット軌跡AX1とを略一致させることができる。なお、反射ミラー170に入射するレーザ光121のビーム径は、穴171の直径に比べて十分大きいため、穴171を通過するレーザ光による損失を、ほぼ無視することができる。
本実施例では、反射ミラー170に対向するようにして凹面ミラー190を設け、加熱用レーザ光121を、集光レンズ180による集光点に向けて反射させる。従って、加熱用レーザ光121を有効に利用することができ、効率を高めることができる。
本実施例では、メインパルスレーザ光111によってターゲット200が押される側(図1中の左側)に、真空ポンプ140の吸引口141を設ける。従って、EUV光の発生に使用されなかった、ターゲット物質の余り等を速やかに吸引できる。
図11に基づいて第2実施例を説明する。以下に述べる各実施例は、第1実施例の変形例に相当する。従って、第1実施例との相違点を中心に説明する。本実施例では、ターゲットの移動方向とは逆の方向から加熱用レーザ光121を照射することにより、ターゲット200を加熱し、蒸発させる。
図11は、本実施例の極端紫外光源装置10Aを示す。ターゲット供給部130に対向するようにして、軸外放物面ミラー310が設けられている。その軸外放物面ミラー310は、電動ステージ312によって位置や姿勢を調節可能である。電動ステージ312は、電気フィードスルー313を介して外部の制御装置に接続される。
図11において、軸外放物面ミラー310は、真横から入射する加熱用レーザ光121を上側に反射させる。反射されたレーザ光121の光軸は、ターゲット軌跡AX1と略一致する。ターゲット供給部130から吐出されるターゲット200は、レーザ光121により加熱されつつ、メインパルスレーザ光111の集光点に向けて落下する。
ターゲット200は、メインパルスレーザ光111が照射されることにより、その後の軌跡が変化する。ターゲット200の移動する軌跡は、メインパルスレーザ光111の進行方向側にシフトするため、軸外放物面ミラー310にターゲット200の余りが直接着弾するのを防止できる。従って、軸外放物面ミラー310にターゲット200を通すための穴を設ける必要はない。このように構成される本実施例も第1実施例と同様の効果を奏する。
図12に基づいて第3実施例を説明する。図12の極端紫外光源装置10Bに示すように、本実施例では、図11に示す第2実施例の構成に、凹面ミラー320を加える。凹面ミラー320は、ターゲット供給部130とEUV集光ミラー160との間に位置し、その中心の穴321がターゲット200の軌跡に一致するようにして設けられる。穴321の直径は、ターゲット200が穴321を通過できる値に設定される。凹面ミラー320は、下側から入射する加熱用レーザ光121を、下側に向けて反射させる。
このように構成される本実施例も第1実施例、第2実施例と同様の効果を奏する。さらに、本実施例では、凹面ミラー320を設けるため、軸外放物面ミラー310で反射されたレーザ光121を有効に利用して、ターゲット200を加熱できる。
図13に基づいて第4実施例を説明する。図13の極端紫外光源装置10Cに示すように、本実施例では、第1実施例で述べた穴あき反射ミラー170に代えて、穴の無い反射ミラー330を用いる。
反射ミラー330は、ターゲット軌跡に干渉しないように、ターゲット軌跡から離れて設けられる。反射ミラー330は、ターゲット軌跡に対して角度αだけ傾いた方向で、加熱用レーザ光121を反射させる。反射ミラー330は、電動ステージ172によって、その位置が調整される。
このように構成される本実施例も第1実施例と同様の効果を奏する。さらに、本実施例では、反射ミラー330をターゲット軌跡に干渉しないように設けるため、ターゲット200が通過するための穴を形成する必要がない。従って、ターゲット200が反射ミラー330に着弾して汚損するのを未然に防止でき、信頼性を高めることができる。
図14に基づいて第5実施例を説明する。図14の極端紫外光源装置10Dに示すように、本実施例では、図13に示す第4実施例において、凹面ミラー190を設ける。従って、加熱用レーザ光121を有効に利用することができる。
図15に基づいて第6実施例を説明する。図15の極端紫外光源装置10Eに示すように、本実施例では、集光レンズ180及び反射ミラー170に代えて、軸外放物面ミラー340を用いる。軸外放物面ミラー340、反射ミラー170と同様に、ターゲット軌跡上に配置されており、その中央部にはターゲット200を通過させるための穴341が形成されている。
このように構成される本実施例も第1実施例と同様の効果を奏する。さらに、本実施例では、集光レンズ180及び反射ミラー170の組合せに代えて、一つの軸外放物面ミラー340を用いるため、部品点数を少なくして製造コストを低減できる。
図16に基づいて第7実施例を説明する。図16に示す極端紫外光源装置10Fに示すように、本実施例では、ターゲット供給部130を真空チャンバ100の底部に設け、上方に臨むノズル131からターゲット200を射出させる。そして、本実施例では、ターゲット200の移動方向逆向きから加熱用レーザ光121を照射し、ターゲット200を加熱して蒸発させる。
本実施例では、重力に逆らってターゲット200を射出するため、ターゲット軌跡は放物線を描く。従って、図4で述べたように、ターゲット軌跡に接線を引き、その接線とレーザ光121の光軸との角度が所定角度αとなるように設定する。このように構成される本実施例も第1実施例と同様の効果を奏する。
なお、本発明は、上述した実施の形態に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。例えば、当業者であれば、前記各実施例を適宜組み合わせることができる。
第1実施例に係る極端紫外光源装置の構成図。 ターゲットを通過させるための穴が形成されている反射ミラーの斜視図。 ターゲット軌跡と加熱用レーザ光の光軸との関係を示す説明図。 ターゲット軌跡が曲線の場合の、レーザ光軸との関係を示す説明図。 ターゲットを有効に加熱できる範囲を示す説明図。 加熱用レーザ光のビーム径の変化を示す説明図。 ビーム径の変化とターゲットとの関係を示す説明図。 ターゲット直径とビーム品質によって所定角度を求めるための特性図。 図8の一部を抜き出して示す特性図。 加熱用レーザ光をターゲットに照射可能な時間と、加熱用レーザ光源に求められる出力との関係を示す説明図。 第2実施例に係る極端紫外光源装置の説明図。 第3実施例に係る極端紫外光源装置の説明図。 第4実施例に係る極端紫外光源装置の説明図。 第5実施例に係る極端紫外光源装置の説明図。 第6実施例に係る極端紫外光源装置の説明図。 第7実施例に係る極端紫外光源装置の説明図。
符号の説明
10,10A ,10B,10C,10D,10E,10F:極端紫外光源装置、100:真空チャンバ、101:接続部、102,103:入射窓、110:メインパルスレーザ光源、111:メインパルスレーザ光、120加熱用レーザ光源、121:加熱用レーザ光、121B:戻り光、121w:ビームウエスト、130:ターゲット供給部、131:ノズル、140:真空ポンプ、141:吸引口、150:制御部、160:集光ミラー 、161:穴部、170:反射ミラー、171:穴、180:集光レンズ、190:凹面ミラー、200:ターゲット、210:気化したターゲット、310:軸外放物面ミラー、320:凹面ミラー、321:穴、330:反射ミラー、340:軸外放物面ミラー、341:穴、AX1,AX1a:ターゲット軌跡、AX2:加熱用レーザ光の光軸、TL:接線

Claims (8)

  1. レーザ光をターゲット物質に照射してプラズマ化させることにより、極端紫外光を発生させる極端紫外光源装置であって、
    チャンバと、
    前記チャンバ内に向けて、吐出口から前記ターゲット物質を供給するターゲット物質供給部と、
    連続光または疑似連続光のいずれかとして構成される第1レーザ光を出力する第1レーザ光源と、
    前記第1レーザ光を前記ターゲット物質に照射して加熱させる加熱用光学系と、
    前記第1レーザ光により加熱された前記ターゲット物質に、第2レーザ光を照射して前記ターゲット物質をプラズマ化させるための第2レーザ光源と、
    前記プラズマから放射される前記極端紫外光を集光するための集光ミラーと、
    を備え、
    前記ターゲット物質の移動する軌跡と前記ターゲット物質に照射される前記第1レーザ光の光軸との角度が、所定角度以下に設定され
    前記所定角度は、前記ターゲット物質の大きさと前記第1レーザ光の品質とに応じて設定され、
    前記加熱用光学系は、前記ターゲット物質が通過するための穴部を有する第1反射ミラーを備え、
    前記第1反射ミラーは、前記穴部が前記ターゲット物質の軌跡上に位置するようにして前記チャンバ内に設けられており、前記第1レーザ光源から入射する前記第1レーザ光を、前記ターゲット物質の軌跡と同軸方向に反射させる、極端紫外光源装置。
  2. 前記加熱用光学系は、前記第1反射ミラーによって反射される前記第1レーザ光を、前記ターゲット物質の軌跡と同軸で前記第1反射ミラーに向けて反射させるための、別の反射ミラーを備えており、
    前記第1レーザ光源と前記第1反射ミラーとの間には、前記第1レーザ光源に向けて前記第1レーザ光が戻るのを防止するための逆流防止用光学系が設けられている、
    請求項1に記載の極端紫外光源装置。
  3. 前記ターゲット物質が、前記ターゲット物質の大きさに応じて定まる所定距離以上、前記第1レーザ光の中を移動できるように、前記所定角度が設定される、請求項1に記載の極端紫外光源装置。
  4. 前記ターゲット物質が直径10μmのドロップレットである場合に、前記所定角度は10度以下の値に設定される、請求項1に記載の極端紫外光源装置。
  5. 前記ターゲット物質が直径20μmのドロップレットである場合に、前記所定角度は4度以下の値に設定される、請求項1に記載の極端紫外光源装置。
  6. 前記ターゲット物質が直径30μmのドロップレットである場合に、前記所定角度は2度以下に設定される、請求項1に記載の極端紫外光源装置。
  7. 前記ターゲット物質の移動する軌跡が曲線の場合、前記第1レーザ光のウエスト部で前記曲線に接する接線と前記第1レーザ光の光軸との角度が、前記所定角度以下となるように設定される、請求項1〜請求項のいずれかに記載の極端紫外光源装置。
  8. チャンバと、前記チャンバ内に向けて吐出口からターゲット物質を供給するターゲット物質供給部と、連続光または疑似連続光のいずれかとして構成される第1レーザ光を出力する第1レーザ光源と、前記第1レーザ光を前記ターゲット物質に照射して加熱させる加熱用光学系と、前記第1レーザ光により加熱された前記ターゲット物質に第2レーザ光を照射して前記ターゲット物質をプラズマ化させるための第2レーザ光源と、前記プラズマから放射される前記極端紫外光を集光するための集光ミラーとを備える極端紫外光光源装置における極端紫外光の生成方法であって、
    前記ターゲット物質供給部から前記チャンバ内に前記ターゲット物質を供給し、
    前記第1レーザ光源から出力された第1レーザ光と前記ターゲット物質供給部から供給された前記ターゲット物質の移動する軌跡との角度が所定角度以下となるように、前記加熱用光学系を介して前記ターゲット物質に前記第1レーザ光を照射して該ターゲット物質を加熱し、
    加熱された前記ターゲット物質に第2レーザ光を照射して前記ターゲット物質をプラズマに変換し、
    前記プラズマから放射される極端紫外光を集光
    前記所定角度は、前記ターゲット物質の大きさと前記第1レーザ光の品質とに応じて設定され、
    前記加熱用光学系は、前記ターゲット物質が通過するための穴部を有する第1反射ミラーを備え、
    前記第1反射ミラーは、前記穴部が前記ターゲット物質の軌跡上に位置するようにして前記チャンバ内に設けられており、前記第1レーザ光源から入射する前記第1レーザ光を、前記ターゲット物質の軌跡と同軸方向に反射させる、
    極端紫外光の生成方法。
JP2008267122A 2008-10-16 2008-10-16 極端紫外光源装置及び極端紫外光の生成方法 Expired - Fee Related JP5368764B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267122A JP5368764B2 (ja) 2008-10-16 2008-10-16 極端紫外光源装置及び極端紫外光の生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267122A JP5368764B2 (ja) 2008-10-16 2008-10-16 極端紫外光源装置及び極端紫外光の生成方法

Publications (2)

Publication Number Publication Date
JP2010097800A JP2010097800A (ja) 2010-04-30
JP5368764B2 true JP5368764B2 (ja) 2013-12-18

Family

ID=42259342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267122A Expired - Fee Related JP5368764B2 (ja) 2008-10-16 2008-10-16 極端紫外光源装置及び極端紫外光の生成方法

Country Status (1)

Country Link
JP (1) JP5368764B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232623B2 (en) 2014-01-22 2016-01-05 Asml Netherlands B.V. Extreme ultraviolet light source
EP3726940A3 (en) * 2019-04-16 2020-11-11 Okinawa Institute of Science and Technology School Corporation Laser-driven microplasma xuv source

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973164B2 (en) * 2003-06-26 2005-12-06 University Of Central Florida Research Foundation, Inc. Laser-produced plasma EUV light source with pre-pulse enhancement
JP2005116331A (ja) * 2003-10-08 2005-04-28 National Institute Of Advanced Industrial & Technology レーザープラズマ発生装置
DE102004028943B4 (de) * 2004-06-11 2006-10-12 Xtreme Technologies Gmbh Vorrichtung zur zeitlich stabilen Erzeugung von EUV-Strahlung mittels eines laserinduzierten Plasmas
FR2871622B1 (fr) * 2004-06-14 2008-09-12 Commissariat Energie Atomique Dispositif de generation de lumiere dans l'extreme ultraviolet et application a une source de lithographie par rayonnement dans l'extreme ultraviolet
JP4496355B2 (ja) * 2005-01-27 2010-07-07 独立行政法人産業技術総合研究所 液滴供給方法および装置
DE102005014433B3 (de) * 2005-03-24 2006-10-05 Xtreme Technologies Gmbh Verfahren und Anordnung zur effizienten Erzeugung von kurzwelliger Strahlung auf Basis eines lasererzeugten Plasmas
JP4875879B2 (ja) * 2005-10-12 2012-02-15 株式会社小松製作所 極端紫外光源装置の初期アライメント方法
JP4937616B2 (ja) * 2006-03-24 2012-05-23 株式会社小松製作所 極端紫外光源装置

Also Published As

Publication number Publication date
JP2010097800A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5335298B2 (ja) 極端紫外光源装置及び極端紫外光の生成方法
JP5593554B2 (ja) 極紫外線光源
JP5865339B2 (ja) 極端紫外光源装置
US8017924B2 (en) Drive laser delivery systems for EUV light source
JP4884152B2 (ja) 極端紫外光源装置
JP2008503078A (ja) 極端紫外線発生装置および該装置の極端紫外線を用いたリソグラフィー用光源への応用
KR101357231B1 (ko) Lpp 방식의 euv 광원과 그 발생 방법
TWI391033B (zh) 用於雷射生成式電漿超紫外線(euv)光源之源材料收集單元
EP1492394B1 (en) Laser-produced plasma EUV light source with pre-pulse enhancement
JP5694784B2 (ja) Gicミラー及びlpp・euv光源を備えた光源集光モジュール
US10842009B2 (en) System and method for extreme ultraviolet source control
JP2010103499A (ja) 極端紫外光源装置および極端紫外光生成方法
JP5777951B2 (ja) Gicミラー及びスズ蒸気lppターゲットシステムを備える光源集光モジュール
JP2017509000A (ja) 放射源装置およびリソグラフィ装置
JP2012049526A (ja) Gicミラー及び液体キセノンeuv・lppターゲットシステムを備える光源集光モジュール
JP4995379B2 (ja) 光源装置及びそれを用いた露光装置
WO2011124434A1 (en) Euv radiation source and euv radiation generation method
TW201418903A (zh) 用於產生輻射之方法及裝置
JP5511882B2 (ja) 極端紫外光源装置
JP5368764B2 (ja) 極端紫外光源装置及び極端紫外光の生成方法
JP2008085075A (ja) 極端紫外光源装置
WO2016027346A1 (ja) 極端紫外光生成システムおよび極端紫外光生成方法
JP5578483B2 (ja) Lpp方式のeuv光源とその発生方法
JP2005276673A (ja) Lpp型euv光源装置
JP5578482B2 (ja) Lpp方式のeuv光源とその発生方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111006

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5368764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees