JP5344454B2 - Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby - Google Patents

Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby Download PDF

Info

Publication number
JP5344454B2
JP5344454B2 JP2007545344A JP2007545344A JP5344454B2 JP 5344454 B2 JP5344454 B2 JP 5344454B2 JP 2007545344 A JP2007545344 A JP 2007545344A JP 2007545344 A JP2007545344 A JP 2007545344A JP 5344454 B2 JP5344454 B2 JP 5344454B2
Authority
JP
Japan
Prior art keywords
steel
less
mass
warm
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007545344A
Other languages
Japanese (ja)
Other versions
JPWO2007058364A1 (en
Inventor
勇次 木村
忠信 井上
兼彰 津崎
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007545344A priority Critical patent/JP5344454B2/en
Publication of JPWO2007058364A1 publication Critical patent/JPWO2007058364A1/en
Application granted granted Critical
Publication of JP5344454B2 publication Critical patent/JP5344454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0431Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

There are provided a steel for warm working, to be subjected to warm working as various structures, components of cars, and the like, a warm working method thereof, and a steel material and a steel component obtainable from the warm working method. [Solving Means] A steel is to have a particle dispersion type fiber structure formed in the matrix by warm working. The steel is characterized in that the total amount of the dispersed second-phase particles at room temperature is 7 × 10 -3 or more in terms of volume fraction, and the Vickers hardness (HV) is equal to or larger than the hardness H of the following equation (2): H = (5.2 - 1.2 × 10 -4 ») × 10 2 ... (2) when the steel is subjected to any of annealing, tempering, and aging treatments in the as-unworked state under conditions such that a parameter » expressed by the following equation (1): » = T(logt + 20) (T; temperature (K), t; time (hr)) ... (1) is 1.4 × 10 4 or more in a prescribed temperature range of 350°C or more and Ac1 point or less. This steel is taken as the steel for warm working.

Description

本発明は、各種の構造物や自動車の部品等に加工して使用される鋼に関し、より詳しくは、温間加工に供される温間加工用鋼とその温間加工方法、ならびにこの温間加工方法により得られる鋼材および鋼部品に関するものである。   The present invention relates to steel used by being processed into various structures, automobile parts, and the like. More specifically, the present invention relates to steel for warm working to be used for warm working, its warm working method, and the warm working steel. The present invention relates to steel materials and steel parts obtained by a processing method.

近年、構造物の大型化や自動車部品などの軽量化に伴い、これまで以上に強靱でかつ高性能な高強度鋼の実現が求められている。鋼の靱性を向上させるための方策としては、従来、(1)脆化原因となるP、Sなどの不純物元素の低減、(2)介在物の微細化および低減、(3)合金元素の添加、(4)炭素の低減、(5)結晶粒微細化、(6)炭化物粒子などの第2相分散粒子の微細化などが一般に知られている。   In recent years, with the increase in the size of structures and the weight reduction of automobile parts, there has been a demand for realization of tougher and higher performance high strength steel than ever before. Conventional measures for improving the toughness of steel include (1) reduction of impurity elements such as P and S that cause embrittlement, (2) refinement and reduction of inclusions, and (3) addition of alloying elements. (4) Reduction of carbon, (5) Crystal grain refinement, (6) Refinement of second phase dispersed particles such as carbide particles are generally known.

なかでも結晶粒微細化は、粒界への応力集中の低減、不純物元素の粒界での希釈の効果を併せ持ち、降伏応力が上昇すると同時に脆性破壊応力を上昇できることから注目されている。たとえば、最近、省資源やリサイクル性を考慮した低炭素鋼でフェライト粒径を1μm以下に超微細化して鋼の高強度化と長寿命化を達成する試みがなされている。   In particular, crystal grain refinement is attracting attention because it has the effect of reducing stress concentration at grain boundaries and diluting impurity elements at grain boundaries, and can increase brittle fracture stress at the same time as yield stress increases. For example, recently, attempts have been made to achieve high strength and long life of steel by reducing the ferrite grain size to 1 μm or less in a low carbon steel considering resource saving and recyclability.

しかしながら、これまでの低炭素フェライト鋼の結晶粒微細化に関する研究は1000MPa以下の強度レベルに集中している(たとえば非特許文献1−2;特許文献1−2)。それは、フェライト粒の微細化のみで1000MPa以上の高強度を得るには、結晶粒を0.5μm以下に超微細化する必要があり、大量生産を前提とした鋼の加工熱処理では0.5μm以下の超微細化が極めて困難なことによる。また、実験室規模では、粉末冶金のMM(非特許文献3)、やARB(非特許文献4)などの超強加工法により0.5μm以下の超微細粒が得られているものの、このような超微細粒鋼では一様伸びをほとんど示さずネッキングによる不均一変形が伸びの主体となり、延性が大幅に低下してしまう。これと同じ早期塑性不安定性は、伸線加工により転位強化した純鉄線でも確認されている(非特許文献5)。   However, research related to grain refinement of low-carbon ferritic steels so far has concentrated on a strength level of 1000 MPa or less (for example, Non-Patent Document 1-2; Patent Document 1-2). In order to obtain high strength of 1000 MPa or more only by refining ferrite grains, it is necessary to make the grains ultrafine to 0.5 μm or less, and 0.5 μm or less in the thermomechanical processing of steel assuming mass production. This is because it is extremely difficult to miniaturize the material. On the laboratory scale, ultrafine grains of 0.5 μm or less are obtained by super-strong processing methods such as powder metallurgy MM (Non-patent Document 3) and ARB (Non-patent Document 4). Such ultra-fine grain steel shows almost no uniform elongation and non-uniform deformation due to necking becomes the main component of elongation, resulting in a significant decrease in ductility. This same early plastic instability has also been confirmed in pure iron wires strengthened by dislocation by wire drawing (Non-Patent Document 5).

一般に鋼の高強度化は、延性、靱性、耐遅れ破壊特性、疲労特性、成形性などの諸特性を大幅に低下させるという問題がある。特に汎用性の高い低合金マルテンサイト鋼では、1.2GPa以上に強化すると靱性や耐遅れ破壊特性等が著しく低下することから、高強度鋼の実用化が大きく妨げられている。そこで低合金鋼の高強度化と強靭化および耐遅れ破壊特性の向上を同時に達成することが強く望まれているところである。だが、従来の知見によれば、低合金マルテンサイト鋼の破壊特性を向上させるための手段としては、(a)500℃付近の焼戻脆化温度域を避けた高温焼戻し、(b)旧オーステナイト粒微細化、(c)オースフォーム、(d)繊維状組織化またはこれらの組み合わせが考えられるが、これらの手段の適用については以下のような問題点があった。
(a)高温焼戻し
高温焼戻しは、約550℃以上、A1点以下で行われ、これによれば、(1)焼入れで導入される内部応力を転位の回復を伴って大幅に低減できる、(2)破壊靱性を低下させる整合析出炭化物(例えば、フィルム状セメンタイト)を非整合化(球状化)できることなどの利点がある。このため、靱性が特に必要とされる機械構造用鋼では通常650℃付近で焼戻しが行われる。ただし、このような温度域では焼戻し中に第2相分散粒子も容易に成長するので鋼の強度低下は免れない。また、従来は、炭素を多量に添加して炭化物の析出量を増して強度を増加する手法が取られたが靱性は低下した。したがって、高温焼戻しのみによる高強度化には限界があった。高温焼戻しでも高強度化が達成できるのはマルエージング鋼(非特許文献6−10)などの特殊な合金元素を多量に添加した鋼に限られていた。
(b)結晶粒微細化
鋼の高強度化に際しては十分な靱性が確保できるように旧オーステナイト粒を微細化しておくことは不可欠である。オーステナイト粒の微細化手法としては、(1)加工オーステナイトの再結晶による方法と(2)相変態を利用する方法がある。なかでも後者に分類される、マルテンサイト組織を冷間または温間域で加工した後、オーステナイト化処理を行う加工熱処理が最も効果的にオーステナイト粒を微細化できる(非特許文献11、12)と考えられていた。たとえば、数μm以下のオーステナイト粒の微細化により焼戻マルテンサイト鋼の靱性が向上(非特許文献13)するとともに遅れ破壊特性が改善(特許文献4)されることが知られている(特許文献3)。オーステナイトの微細化では、結晶粒が微細になるほど粒成長速度も大きくなるのでオーステナイト時の粒成長を如何にして抑制するかが特に重要なポイントであった。そこで、従来では、オーステナイトの成長を抑制するために有効なピンニング粒子の分散やオーステナイト化温度の低下、高周波加熱を利用した急速短時間のオーステナイト化などが一般に適用されていた。しかしながら超微細オーステナイト粒の成長を抑制することは極めて困難であり、実際には細粒化は数μm程度で頭打ちになっている。また結晶粒を微細化しすぎると粒界での拡散型相変態が促進されて焼きが入りにくくなるなどの問題点もあり、オーステナイト粒超微細化のプロセスウインドウは比較的狭いものであった。
(c)オースフォーム
オースフォームは、オーステナイト化した鋼を準安定オーステナイト域まで急冷し、その温度で加工した後焼入れしてマルテンサイトまたはベイナイト変態を起こさせ、しかる後に焼戻しを行う処理であり、鋼を、その靱性をあまり損なうことなしに強化できるという特徴を有している。このオースフォームでは、(1)有効結晶粒とされるパケットやブロックの微細化、(2)加工オーステナイトからマルテンサイトへの転位引継ぎ、(3)炭素原子または炭化物による転位のピン止めなどの効果が重複して起こり鋼が強化されていると考えられている。最近では、高温の準安定オーステナイト域で加工を行う改良オースフォームが中炭素低合金鋼に適用され、疲労や遅れ破壊特性の改善が報告されている。また、改良オースフォームによる特性改善の主要因としては、基地組織の微細化、粒界凹凸の導入による粗大粒界セメンタイトの形成抑制(非特許文献14)や集合組織の形成(非特許文献15)が考えられている。ただし、オースフォームはオーステナイト組織の加工であるため、加工中に準安定なオーステナイト相が初析フェライト変態やパーライト変態などを起こさないように合金成分や加工熱処理条件を厳密に調整する必要があった。しかも加工後の冷却中に焼割れを生じる問題もあることから、適用される部材も板や棒などの単純形状のものに限定されていた。
(d)繊維状組織化
鋼の強靭化には冷間や温間での加工よって繊維組織を内部に生成させることも有効である。このことは、オースフォーム処理された鋼(非特許文献16、17)や強冷間伸線用高強度低炭素線材(特許文献5)、ピアノ線、純鉄線(非特許文献5)などにおいてすでに提案されている。
In general, increasing the strength of steel has the problem of significantly reducing various properties such as ductility, toughness, delayed fracture resistance, fatigue characteristics, and formability. In particular, in the low-alloy martensitic steel with high versatility, when strengthened to 1.2 GPa or more, the toughness, delayed fracture resistance and the like are remarkably lowered, so that the practical application of high-strength steel is greatly hindered. Therefore, it is strongly desired to simultaneously achieve high strength and toughness of low alloy steel and improvement of delayed fracture resistance. However, according to the conventional knowledge, as means for improving the fracture characteristics of the low alloy martensitic steel, (a) high temperature tempering avoiding the temper embrittlement temperature range around 500 ° C., (b) old austenite Although refinement of grains, (c) ausfoam, (d) fibrous organization, or a combination of these may be considered, there are the following problems with the application of these means.
(A) High-temperature tempering High-temperature tempering is performed at about 550 ° C. or more and A1 point or less. According to this, (1) the internal stress introduced by quenching can be significantly reduced with the recovery of dislocations. ) There are advantages such as being able to non-align (spheroidize) matched precipitated carbides (for example, film-like cementite) that reduce fracture toughness. For this reason, tempering is usually performed at around 650 ° C. in mechanical structural steels that particularly require toughness. However, in such a temperature range, the second phase dispersed particles easily grow during tempering, so that the strength of the steel is inevitably lowered. Conventionally, a technique has been adopted in which a large amount of carbon is added to increase the precipitation amount of carbides to increase the strength, but the toughness is lowered. Therefore, there is a limit to increasing the strength only by high-temperature tempering. The high strength can be achieved even by high temperature tempering, limited to steels added with a large amount of special alloy elements such as maraging steel (Non-Patent Document 6-10).
(B) Crystal grain refinement It is indispensable to refine the prior austenite grains so that sufficient toughness can be ensured when steel is strengthened. As a method for refining austenite grains, there are (1) a method by recrystallization of processed austenite and (2) a method using phase transformation. Among them, the work heat treatment in which the martensite structure, which is classified as the latter, is processed in the cold or warm region and then austenitized, can most effectively refine the austenite grains (Non-patent Documents 11 and 12). It was thought. For example, it is known that the toughness of tempered martensitic steel is improved (Non-patent Document 13) and delayed fracture characteristics are improved (Patent Document 4) by refining austenite grains of several μm or less (Patent Document 4). 3). In the refinement of austenite, the grain growth rate increases as the crystal grains become finer, so how to suppress the grain growth during austenite was a particularly important point. Therefore, conventionally, dispersion of pinning particles effective for suppressing the growth of austenite, reduction of austenitizing temperature, rapid austenitizing using high-frequency heating, and the like have been generally applied. However, it is extremely difficult to suppress the growth of ultrafine austenite grains, and in actuality, the grain refinement has reached its peak at about several μm. Further, if the crystal grains are made too fine, there is a problem that diffusion phase transformation at the grain boundary is promoted and it becomes difficult to burn, and the process window for austenite grain ultrafine refinement is relatively narrow.
(C) Ausfoam Ausfoam is a process in which austenitized steel is rapidly cooled to the metastable austenite region, processed at that temperature, quenched and martensitic or bainite transformed, and then tempered. Can be strengthened without significantly impairing its toughness. In this ausform, there are effects such as (1) miniaturization of packets and blocks that are effective crystal grains, (2) dislocation takeover from processed austenite to martensite, and (3) dislocation pinning by carbon atoms or carbides. It is thought that the steel is strengthened by overlapping. Recently, improved ausforms that process in the high temperature metastable austenite region have been applied to medium carbon low alloy steels, and improvements in fatigue and delayed fracture properties have been reported. The main factors for improving the characteristics by the improved ausfoam are the refinement of the base structure, the suppression of the formation of coarse grain boundary cementite by the introduction of grain boundary irregularities (Non-Patent Document 14) and the formation of texture (Non-Patent Document 15). Is considered. However, since austenite is an austenitic structure process, it was necessary to strictly adjust the alloy components and thermomechanical conditions so that the metastable austenite phase does not cause pro-eutectoid ferrite transformation or pearlite transformation during processing. . In addition, since there is a problem of causing burning cracks during cooling after processing, the applied members are limited to simple shapes such as plates and bars.
(D) Fibrous organization It is also effective to generate a fiber structure inside by cold or warm processing for strengthening steel. This is already the case with ausformed steel (Non-Patent Documents 16 and 17), high-strength low-carbon wire for cold wire drawing (Patent Document 5), piano wire, pure iron wire (Non-Patent Document 5), etc. Proposed.

鋼材の加工については、ボルトなどの複雑形状の部品を寸法精度よく量産できることから、冷間加工が今日では部材成形の主要プロセスとなっている。ただし、引張強さが1.2GPaを超えるような鋼材に対しては、その強度ゆえに冷間鍛造が極めて困難であることから、たとえば上記のような冷間成形プロセスで繊維組織が形成される部材は線材などに限定されていた。   With regard to the processing of steel materials, cold-working has become the main process for forming parts today because it can mass-produce parts with complex shapes such as bolts with dimensional accuracy. However, for steel materials having a tensile strength exceeding 1.2 GPa, cold forging is extremely difficult due to the strength, and thus, for example, a member in which a fiber structure is formed by the cold forming process as described above. Was limited to wire.

一方、Ac1点以下のフェライト相と炭化物の2相域での温間加工についても、これまでに多くの試みがなされている。例えば、高強度部材および高強度鋼材の素材を準備し、その素材の強度特性を実質的に保持するか高める状態で所望幾何学形状の部材を作るように該素材を温間加工することで繊維組織を形成させ、少なくとも引張強さが1GPaの高強度鋼構造部材を作る方法や成形法が知られていた(特許文献6)。   On the other hand, many attempts have been made for warm working in a two-phase region of a ferrite phase and a carbide below the Ac1 point. For example, a high-strength member and a high-strength steel material are prepared, and the material is warm-processed so as to produce a member having a desired geometric shape in a state in which the strength characteristics of the material are substantially retained or enhanced. There has been known a method and a forming method for forming a structure and producing a high-strength steel structural member having at least a tensile strength of 1 GPa (Patent Document 6).

さらに、超微細組織を有する素材を温間加工または冷間加工し、短径が3μm以下の伸張したフェライト粒からなる鋼材を素材として用い、調質処理を施すことなく、成形のみを行い、調質処理を行わないことを特徴とする成形品の製造方法が知られてもいる(特許文献3)。   Furthermore, a material having an ultrafine structure is warm-worked or cold-worked, a steel material made of expanded ferrite grains having a minor axis of 3 μm or less is used as the material, and only the forming is performed without any tempering treatment. There is also known a method for producing a molded product characterized by not performing quality treatment (Patent Document 3).

また、焼戻マルテンサイト組織などの複相組織を有する鋼では、逆変態オーステナイトを微細化するための焼入処理前の加工組織を得ることを目的として温間加工が適用されてきている(非特許文献11、12)。鋼の強度は温間加工に引き続く鋼の調質処理により達成されるため、焼戻マルテンサイト組織の温間加工のままで材料を使用する試みはなされてこなかった。   Further, in steels having a multiphase structure such as a tempered martensite structure, warm working has been applied for the purpose of obtaining a processed structure before quenching treatment for refining reverse transformed austenite (non- Patent Documents 11 and 12). Since the strength of the steel is achieved by tempering the steel subsequent to the warm working, no attempt has been made to use the material in the warm working of the tempered martensite structure.

さらに、炭素量が0.7mass%以上の高炭素鋼の温間整直加工では、1.8GPa超級の線材が得られているものの、線材の伸びは6%前後と低かった(非特許文献18)。   Furthermore, in warm straightening of high carbon steel having a carbon content of 0.7 mass% or more, a wire rod exceeding 1.8 GPa is obtained, but the elongation of the wire rod is as low as about 6% (Non-patent Document 18). ).

前述のように、旧オーステナイト粒微細化やオースフォームは鋼の重要な強靱化技術であり、その研究および発明は莫大な量にのぼる。しかしながら、これらのプロセスでは、焼入れおよび焼戻しが基本であり、焼入れ性や焼割れの問題、そして焼戻脆性の問題によって高強度化が制約を受けていた。また、高強度化を図れば図るほど強化に必要な炭化物などの第2相分散粒子の量も増加するため、球状化焼なまし等による軟質化が困難であった。また、焼なましによって特に炭化物が粗大化した場合では冷間鍛造等で材料を部品へ成形する過程で材料内部に割れが生じるなどの問題もある。このため、焼入れおよび焼戻しによる従来の高強度化プロセスによる限り、引張強さが1.2GPa以上、更には、軟質化が困難となるような1.5GPa超級の高強度鋼の特性を大幅に向上させて実用化に結びつけることは不可能とされていた。   As described above, prior austenite grain refinement and ausforming are important toughening techniques for steel, and their research and inventions are enormous. However, in these processes, quenching and tempering are fundamental, and the increase in strength is limited by the problems of hardenability and tempering cracks and the problem of temper embrittlement. Further, as the strength is increased, the amount of second phase dispersed particles such as carbide necessary for strengthening also increases, so that softening by spheroidizing annealing or the like is difficult. In addition, particularly when the carbide is coarsened by annealing, there is a problem that cracks are generated in the material during the process of forming the material into parts by cold forging or the like. Therefore, as long as the conventional high-strength process by quenching and tempering is used, the tensile strength is 1.2 GPa or more, and the characteristics of high-strength steel of 1.5 GPa or higher that makes it difficult to soften are greatly improved. It was impossible to make it practical.

また、これまでの温間加工に関する研究や発明は、部材への成形や前組織の作製が主な目的である。それゆえ、変形抵抗が低いフェライトやパーライト組織または高温で焼戻を施したマルテンサイト組織などの比較的に軟質な基地組織を出発材とし、変形抵抗が低くなるような条件下で温間加工を施すのが大半であった。しかも、第2相分散粒子の分散状態や熱的安定性を考慮に入れた微細複相組織化が図られておらず、温間加工後に引張強さが1.2GPa以上でしかも延性や靭性、遅れ破壊特性などに優れた高強度部材を実現するには至っていない。特に室温において1.2GPa以上の引張強さを有する焼戻マルテンサイト鋼などの複相組織鋼については、その強度故に温間加工ができない恐れがあることから、温間加工の適用は従来からほとんど不可能視されていた。   In addition, research and inventions related to warm working so far are mainly aimed at forming into a member and preparing a pre-structure. Therefore, starting with a relatively soft base structure such as ferrite, pearlite structure with low deformation resistance, or martensite structure tempered at high temperature, warm processing is performed under conditions where deformation resistance is low. Most of them were applied. In addition, the fine multiphase structure is not taken into consideration in consideration of the dispersion state and thermal stability of the second phase dispersed particles, and the tensile strength is 1.2 GPa or more after warm working, and the ductility and toughness. A high strength member excellent in delayed fracture characteristics has not been realized. In particular, for multiphase steels such as tempered martensite steel having a tensile strength of 1.2 GPa or more at room temperature, there is a risk that warm working cannot be performed due to its strength. It seemed impossible.

そこで、本発明は、以上の通り問題点を解消し、1.2GPa以上の引張強度を有し、延性、耐遅れ破壊性に優れ、靱性が飛躍的に向上された高強度鋼を温間加工により得るための粒子分散型繊維状組織を生成できる温間加工用鋼と、それを使用した温間加工方法を提供することを目的とする。また、これにより得られる上記の特性を備えた鋼板、鋼棒等の鋼材ならびにボルト、切削加工部品等の鋼部品を提供することをも目的とする。   Therefore, the present invention solves the problems as described above, warm-works high-strength steel having a tensile strength of 1.2 GPa or more, excellent ductility and delayed fracture resistance, and dramatically improved toughness. It aims at providing the steel for warm work which can produce | generate the particle dispersion type | mold fibrous structure | tissue for obtaining by this, and the warm work method using the same. Another object of the present invention is to provide a steel material such as a steel plate and a steel bar, and a steel part such as a bolt and a machined part provided with the above characteristics.

本発明者は、上記の課題の解決のために鋭意検討し、その結果として以下の発明を行った。   The inventor has intensively studied to solve the above problems, and as a result, has made the following invention.

第1:化学組成が、
C:0.70mass%以下、
Si:0.05mass%以上2.5mass%以下、
Mn:0.05mass%以上3.0mass%以下、
Cr:0.01mass%以上2.01mass%以下、
Al:0.5mass%以下、
O:0.3mass%以下、
N:0.3mass%以下、
Mo:0.002mass%以上5.0mass%以下、
残部は実質的にFeおよび不可避的不純物である鋼材であって、前記鋼材は<011>//RD(圧延方向)集合組織を呈する粒子分散型繊維状結晶粒組織からなり、基地組織を成す繊維状フェライト結晶の短軸の平均粒径が3μm以下で、第2相粒子が7×10−3以上12×10−2以下の体積率で基地組織内に微細に分散され、鋼材の室温におけるビッカース硬さがHV3.7×10以上であることを特徴とする鋼材。
First: the chemical composition is
C: 0.70 mass% or less,
Si: 0.05 mass% or more and 2.5 mass% or less,
Mn: 0.05 mass% or more and 3.0 mass% or less,
Cr: 0.01 mass% or more and 2.01 mass% or less,
Al: 0.5 mass% or less,
O: 0.3 mass% or less,
N: 0.3 mass% or less,
Mo: 0.002 mass% or more and 5.0 mass% or less,
The balance a steel material which is substantially Fe and incidental impurities, wherein the steel consists of grain disperse fibrous grain structure exhibiting a <011> // RD (rolling direction) texture, fibers constituting the base structure Vickers of the steel material at room temperature is obtained by finely dispersing the second phase particles in the matrix structure at a volume ratio of 7 × 10 −3 or more and 12 × 10 −2 or less with an average particle size of minor axis of the ferrite ferrite crystal of 3 μm or less. A steel material having a hardness of HV 3.7 × 10 2 or more.

第2:上記基地組織は、短軸の平均粒径が1μm以下の繊維状フェライト結晶からなることを特徴とする鋼材。   Second: The steel structure is characterized in that the base structure is composed of a fibrous ferrite crystal having a minor axis average particle diameter of 1 μm or less.

第3:上記基地組織は、短軸の平均粒径が0.5μm以下の繊維状フェライト結晶からなることを特徴とする鋼材。   Third: The steel structure is characterized in that the base structure is composed of a fibrous ferrite crystal having a minor axis average particle size of 0.5 μm or less.

第4:第2相分散粒子の長軸の平均粒径が0.1μm以下であることを特徴とする鋼材。
第5:上記鋼材であって、
W:5.0mass%以下、
V:5.0mass%以下、
Ti:3.0mass%以下、
Nb:1.0mass%以下、
Ta:1.0mass%以下
から成る群より選ばれる1種または2種以上をさらに含有することを特徴とする鋼材。
第6:上記鋼材であって、
Ni:0.05mass%以上9mass%以下、
Cu:2.0mass%以下
の1種または2種をさらに含有することを特徴とする鋼材。
Fourth: A steel material wherein the average particle size of the major axis of the second phase dispersed particles is 0.1 μm or less.
Fifth: The above steel material,
W: 5.0 mass% or less,
V: 5.0 mass% or less,
Ti: 3.0 mass% or less,
Nb: 1.0 mass% or less,
Ta: 1.0 mass% or less
A steel material further comprising one or more selected from the group consisting of:
Sixth: The above steel material,
Ni: 0.05 mass% or more and 9 mass% or less,
Cu: 2.0 mass% or less
A steel material characterized by further containing one or two of the above.

:温間加工により上記の鋼材を創製するための温間加工用鋼であって、350℃以上Ac1点以下の所定の温度域において下記式(1)で表されるパラメーターλが1.4×10以上となる条件で焼鈍、焼戻しまたは時効処理のうちのいずれか一方の熱処理を施すことにより第2相粒子を生成し、この熱処理後における室温での第2相粒子の体積率が7×10−3以上12×10−2以下で、かつ、鋼材のビッカース硬さ(HV)が下記式(2)の硬さH以上であることを特徴とする温間加工用鋼。λ=T(logt+20)(T;温度(K)、t;時間(hr))・・・(1)
H=(5.2−1.2×10−4λ)×10・・・(2)
:基地組織の80体積%以上がマルテンサイトとベイナイトのいずれか単独組織、またはこれらの混合組織であることを特徴とする温間加工用鋼。
Seventh : A steel for warm working for creating the above steel material by warm working, and a parameter λ represented by the following formula (1) is 1. in a predetermined temperature range of 350 ° C. or higher and Ac1 point or lower. Second phase particles are generated by performing heat treatment of any one of annealing , tempering, or aging treatment under the condition of 4 × 10 4 or more, and the volume ratio of the second phase particles at room temperature after this heat treatment is in 7 × 10 -3 or more 12 × 10 -2 or less, and steel Vickers hardness (HV) is the following formula (2) in hardness H or more warm working steel, characterized in that the. λ = T (logt + 20) (T; temperature (K), t; time (hr)) (1)
H = (5.2-1.2 × 10 −4 λ) × 10 2 (2)
Eighth : A steel for warm working characterized in that 80% by volume or more of the base structure is a single structure of martensite or bainite, or a mixed structure thereof.

:上記温間加工用鋼を温間加工して得られた鋼製板材であって、少なくともその表層部に粒子分散型繊維状結晶組織が生成さていることを特徴とする鋼製板材。 9: a steel plate obtained by processing between the temperature of the above warm working steel, steel, characterized in that the particle dispersion type fibrous crystal structure at least on its surface layer portion is generated Board material.

第10:上記温間加工用鋼を温間加工して得られた鋼製棒材であって、少なくともその表層部に粒子分散型繊維状結晶組織が生成されていることを特徴とする鋼製棒材。 Tenth: A steel bar obtained by warm-working the above-mentioned warm-working steel, wherein a particle-dispersed fibrous crystal structure is generated at least on the surface layer thereof. Bar material.

第11:上記温間加工用鋼を温間加工して得られた鋼製ボルトであって、少なくともその表層部に粒子分散型繊維状結晶組織が生成されていることを特徴とする鋼製ボルト。 11th: A steel bolt obtained by warm-working the above-mentioned steel for warm-working, wherein the steel-coated bolt has a particle-dispersed fibrous crystal structure formed at least on its surface layer .

第12:上記鋼材、鋼製板材、鋼製棒材または鋼製ボルトを製造する方法であって、上記温間加工用鋼を350℃以上Ac1点以下の所定の温度域において下記式(1)で表されるパラメーターλが1.4×10以上となる条件で、かつ0.7以上の歪みで温間加工して所望の形状とすることを特徴とする温間加工方法。
λ=T(logt+20)(T;温度(K)、t;時間(hr))・・・(1)
第13:鋼材を切削加工した鋼加工品であって、前記鋼材が、上記鋼材、鋼製板材、鋼製棒材または鋼製ボルトのいずれかであることを特徴する鋼加工品。
12: the steel, the steel plate, a method for producing a steel bar or steel bolts, the following formula in a predetermined temperature range below Ac1 point 350 ° C. or higher for the warm working steel (1) A warm working method characterized in that a desired shape is obtained by warm working with a strain of 0.7 or more under the condition that the parameter λ expressed by is 1.4 × 10 4 or more.
λ = T (logt + 20) (T; temperature (K), t; time (hr)) (1)
13th : A steel processed product obtained by cutting a steel material, wherein the steel material is any one of the above steel material, a steel plate material, a steel bar material, or a steel bolt.

第1の発明によると、高い靱性を有するのみならず、その微細繊維組織の形成によって2次加工性をも向上された鋼材が実現される。また、第1の発明によると、経済性およびリサイクル性に優れた合金組成により、温間加工に供した場合に得られる鋼の高強度化を達成できる。 According to the first invention, a steel material having not only high toughness but also improved secondary workability by the formation of the fine fiber structure is realized. In addition, according to the first invention, it is possible to achieve high strength of steel obtained when subjected to warm working by an alloy composition excellent in economic efficiency and recyclability.

第2の発明によると、短軸の平均間隔が1μm以下の、第3の発明によると短軸の平均間隔が0.5μm以下の緻密な繊維組織が発達され、温間加工前よりも強度と靭性ならびに加工性がより一層高められた鋼材が実現される。   According to the second invention, a dense fiber structure having an average short axis average interval of 1 μm or less and according to the third invention an average short axis interval of 0.5 μm or less is developed. A steel material with higher toughness and workability is realized.

第4の発明によると、第2相分散粒子の長軸の平均粒子径を0.1μm以下に制御することによって、少量の第2相分散粒子の分散でより一層の高強度化および強靭化が実現できる。
第5の発明によると、より微細でかつ水素トラップ性に優れた第2相分散粒子を分散させることができ、また温間加工に供した場合に得られる鋼材の高強度化と低温域での靭性、ならびに耐遅れ破壊特性を大幅に高めることができる。
第6の発明によると、さらに低温域まで靭性を向上させることができる。
According to the fourth invention, by controlling the average particle diameter of the long axis of the second phase dispersed particles to be 0.1 μm or less, further enhancement of strength and toughness can be achieved by dispersing a small amount of the second phase dispersed particles. realizable.
According to the fifth aspect of the invention, it is possible to disperse the second phase dispersed particles that are finer and excellent in hydrogen trapping properties, and to increase the strength of the steel material obtained when subjected to warm working and in a low temperature range. Toughness and delayed fracture resistance can be greatly improved.
According to the sixth invention, the toughness can be further improved to a low temperature range.

および第の発明によると、温間加工時の軟化抵抗と第2相分散粒子の体積率を制御することで、温間加工に供した場合に、引張強度が飛躍的に向上すると同時に粒子分散型繊維状組織が生成するようになった。この結果、温間加工後の鋼材が1.2GPa以上の引張強度を常温において保持しながら、その靱性を飛躍的に向上させる温間加工用鋼が実現される。 According to the seventh and eighth inventions, by controlling the softening resistance at the time of warm working and the volume fraction of the second phase dispersed particles, when subjected to warm working, the tensile strength is dramatically improved. A particle-dispersed fibrous structure was produced. As a result, a steel for warm working is realized in which the steel material after warm working retains a tensile strength of 1.2 GPa or more at room temperature while dramatically improving its toughness.

また、マルテンサイト変態やベイナイト変態を利用して炭化物粒子などの第2相分散粒子が微細に分散した超微細複相組織とすることで、温間加工に供した場合に、効率的に内部にまで繊維組織の生成を行わせることが出来るようになる。これとともに、耐遅れ破壊特性を大幅に向上させることが可能となる。   In addition, by using a martensitic transformation or bainite transformation to form an ultra-fine multiphase structure in which second-phase dispersed particles such as carbide particles are finely dispersed, it is efficiently incorporated inside when subjected to warm working. It becomes possible to generate the fiber structure. At the same time, the delayed fracture resistance can be greatly improved.

および第10の発明によると、高い靱性と引張強度を有するのみならず、2次加工性を有することから各種の部品、製品の製造に使用が可能な、実用性が飛躍的に高められた鋼板および鋼棒線が実現された。 According to the ninth and tenth inventions, not only has high toughness and tensile strength, but also has secondary workability, so that it can be used for manufacturing various parts and products, and the practicality is dramatically improved. Steel plates and bar wires have been realized.

第1の発明によると、特に応力が集中するネジ部の谷底に繊維組織が生成された、耐衝撃性および耐遅れ破壊性に優れたボルトが実現される。 According to the first aspect of the invention, a bolt excellent in impact resistance and delayed fracture resistance in which a fiber structure is generated at the bottom of the threaded portion where stress is concentrated is realized.

12の発明によると、温間加工用鋼を所望の形状に加工しながら、繊維組織を生成させて高い靱性を得ることができる。なお、設備としては従来から実用化されている温間加工設備を利用することができるので、極めて高い実用性を有するものである。 According to the twelfth invention, a high-toughness can be obtained by generating a fiber structure while processing the warm-working steel into a desired shape. In addition, since the warm processing equipment conventionally utilized as an equipment can be utilized, it has extremely high practicality.

13の発明によると、複雑形状な高強度部品であっても、かつ耐衝撃性および耐遅れ破壊性に優れたものとして提供される。 According to the thirteenth invention, even a high-strength part having a complicated shape is provided as being excellent in impact resistance and delayed fracture resistance.

以上のように、本発明は、少量の第2相分散粒子の微細分散によって複相化を図った高強度鋼、とりわけ軟質化が困難で難成形の超高強度鋼に対しても、変形抵抗が低下してかつ材料中に割れが生じない温度域で所定の変形を与えて所定の形状(薄板、厚板、棒線、部品)に成形することで、従来の球状化焼きなましや部品成型後の焼入れおよび焼戻し処理を省略すると同時に超微細複相組織を繊維状に発達させて高強度とトレードオフバランスの関係にある延性、特に靱性や耐遅れ破壊特性を大幅に向上させた高強度鋼および部材を提供する。   As described above, the present invention is applicable to high-strength steel that has been made into a multi-phase by fine dispersion of a small amount of second-phase dispersed particles, particularly to ultra-high-strength steel that is difficult to soften and difficult to form. After the conventional spheroidizing annealing and component molding, the material is molded into a predetermined shape (thin plate, thick plate, bar wire, part) by giving a predetermined deformation in a temperature range where the material does not crack and does not crack in the material High-strength steels that significantly improve the ductility, especially toughness and delayed fracture resistance, which have a trade-off balance between high strength by developing an ultrafine multiphase structure into a fibrous shape while omitting quenching and tempering Providing a member.

前記効果は、以下のようなメカニズムによるものである。
(a)温間加工による結晶粒超微細化と繊維状基地組織の形成
ある特定の条件を満たす素材であれば、従来のオースフォーム鋼などと比較しても靭性や耐遅れ破壊性がはるかに優れた粒子分散型繊維組織を部材に形成できるとの知見を得た。すなわち、第2相分散粒子の微細分散または析出によるピンニング効果を有効に利用し、変形で導入された転位の回復は適度に起こるものの1次再結晶や顕著な粒成長が起こらない温度域で材料を変形させて所定のひずみを付与し結晶粒を微細化すると、内部応力の低い、割れ発生起点のない超微細粒複相組織を作りこむことができる。特にこのような超微細粒において、さらに結晶粒界間隔の狭い繊維組織を発達させることで、亀裂の発生だけでなく亀裂の伝播を抑制して破壊靱性を大幅に高めることができる。
(b)粗大第2相の微細化
冷間加工では割れ発生の原因となるような粗大な第2相分散粒子でも温間加工では割れ発生なく比較的容易に変形させることができる。そこで、特に加工中に生じる第2相分散粒子の分解および再析出を利用して、粒界割れの原因と考えられている粗大なフィルム状析出物を球状化するだけでなく微細に分散させて強化に利用することができる。
(c)合金炭化物および金属間化合物等の超微細分散
Mo、V、W、Ta、Ti、Nbなどの炭化物形成能の高い合金元素は、すでに存在しているセメンタイトとは独自に、MoC、V、WC、TaC、NbC、TiCなどのナノサイズの合金炭化物を500℃から600℃付近の温度域で形成する、それゆえ、これらの合金元素の添加は鋼の高強度化には有効である。これらのナノサイズの合金炭化物による析出強化の極大値は、強化機構がCuttingからOrowan機構への遷移域で得られるが、このような時効段階では析出物のまわりに整合ひずみが多く存在し鋼の靱性は低下する。そのため、鋼の強度を多少犠牲にしても、鋼はこれらの炭化物の十分な過時効状態まで焼戻されるのが通常である。一方、温間加工によるこれらの合金炭化物の動的析出を利用すれば、上記析出遷移温度域であっても炭化物の成長をあまりともなわずに炭化物を非整合析出させることも可能である。すなわちOrowan機構による合金炭化物の析出強化を最大限有効に使うことも可能である。また、上記合金元素とNi,Alなどからなる金属間化合物や窒化物、酸化物、Cu粒子等の析出に対しても同様の効果が期待できる。
The said effect is based on the following mechanisms.
(A) Ultrafine grain refinement and formation of a fibrous base structure by warm working If the material satisfies certain conditions, it has far greater toughness and delayed fracture resistance than conventional ausfoam steel. The knowledge that an excellent particle-dispersed fiber structure can be formed on a member was obtained. That is, the pinning effect by the fine dispersion or precipitation of the second phase dispersed particles is effectively utilized, and the recovery of dislocations introduced by deformation occurs moderately, but the material does not undergo primary recrystallization or significant grain growth. When the crystal grains are refined by applying a predetermined strain by deforming, an ultrafine grained multiphase structure having low internal stress and no crack initiation point can be created. In particular, in such ultrafine grains, by developing a fiber structure with a narrower crystal grain boundary interval, it is possible to significantly increase fracture toughness by suppressing not only the occurrence of cracks but also the propagation of cracks.
(B) Refinement of coarse second phase Even coarse second phase dispersed particles that cause cracking in cold working can be relatively easily deformed without cracking in warm working. Therefore, by utilizing the decomposition and reprecipitation of the second phase dispersed particles generated during processing, not only spheroidizing the coarse film-like precipitate considered to be the cause of intergranular cracking but also finely dispersing it. Can be used for strengthening.
(C) Ultrafine dispersion of alloy carbides and intermetallic compounds, etc. Alloy elements with high carbide forming ability such as Mo, V, W, Ta, Ti, Nb, etc. are unique in Mo 2 C. , V 4 C 3 , W 2 C, TaC, NbC, TiC and other nano-sized alloy carbides are formed in the temperature range of 500 ° C. to 600 ° C. Therefore, the addition of these alloying elements can increase the strength of steel It is effective for conversion. The maximum value of precipitation strengthening by these nano-sized alloy carbides is obtained in the transition region where the strengthening mechanism changes from Cutting to the Owanan mechanism. Toughness decreases. For this reason, steel is usually tempered to a sufficiently overaged state of these carbides, even at the expense of some strength of the steel. On the other hand, if dynamic precipitation of these alloy carbides by warm working is utilized, it is possible to cause inconsistent precipitation of carbides without much carbide growth even in the above-mentioned precipitation transition temperature range. In other words, precipitation strengthening of alloy carbide by the Orowan mechanism can be used to the maximum extent possible. Similar effects can also be expected for precipitation of intermetallic compounds, nitrides, oxides, Cu particles, and the like composed of the above alloy elements and Ni, Al, and the like.

本発明は上記の通りの特徴をもつものであるが、以下、本発明の要件等について詳しく説明する。   The present invention has the features as described above. The requirements of the present invention will be described in detail below.

本発明の温間加工用鋼は、350℃以上Ac1点以下の所定の温度域において下記式(1)で表されるパラメーターλが1.4×10以上となる条件で無加工のまま焼鈍、焼戻しまたは時効処理のうちのいずれか一方の熱処理を施すことにより第2相粒子を生成する合金元素を含有し、この熱処理後における室温での第2相粒子の体積率が7×10−3以上12×10−2以下で、かつ、そのビッカース硬さ(HV)が下記式(2)の硬さH以上であることを特徴としている。
λ=T(logt+20)(T;温度(K)、t;時間(hr))・・・(1)
H=(5.2−1.2×10−4λ)×10・・・(2)
このように、本発明の温間加工用鋼は、これに施す温間加工中に第2相分散粒子の分散状態や基地組織が変化するため、温間加工の熱履歴を模擬した焼戻し処理で得られる無加工材の硬さ(組織)に対して式(2)の下限を設定することで、構成されている。すなわち、以下に説明する通り、硬さにより組織状態を表すものである。
The steel for warm working of the present invention is annealed without being processed under the condition that the parameter λ represented by the following formula (1) is 1.4 × 10 4 or more in a predetermined temperature range of 350 ° C. or more and Ac1 point or less. And an alloy element that generates second phase particles by performing heat treatment of either one of tempering or aging treatment, and the volume ratio of the second phase particles at room temperature after this heat treatment is 7 × 10 −3. It is characterized in that it is 12 × 10 −2 or less and its Vickers hardness (HV) is not less than the hardness H of the following formula (2).
λ = T (logt + 20) (T; temperature (K), t; time (hr)) (1)
H = (5.2-1.2 × 10 −4 λ) × 10 2 (2)
Thus, since the steel for warm working of the present invention changes the dispersion state of the second phase dispersed particles and the base structure during the warm working applied thereto, it is a tempering process that simulates the heat history of warm working. It is comprised by setting the minimum of Formula (2) with respect to the hardness (structure | tissue) of the unprocessed material obtained. That is, as described below, the tissue state is represented by hardness.

(a)温間加工用鋼の組織
温間加工により複相組織鋼の高強度化と強靭化を同時に達成するには、できるだけ少量でかつ微細な第2相分散粒子の分散による強化と、基地組織の微細化および繊維組織化を同時に行えることが重要である。そしてこの超微細複相組織化を達成するには、素材である温間加工用鋼における第2相分散粒子の微細分散または微細分散能が重要である。
(A) Structure of steel for warm working In order to achieve high strength and toughening of the duplex structure steel simultaneously by warm working, strengthening by dispersing the second phase dispersed particles as small as possible and the base It is important that the structure can be refined and the fiber textured simultaneously. In order to achieve this ultrafine multiphase structure, the fine dispersion or fine dispersion ability of the second phase dispersed particles in the steel for warm working as the material is important.

本発明において、第2相分散粒子の微細分散または微細分散能については、
(i)温間加工用鋼において既に焼戻し処理が施され、第2相分散粒子が分散している
(ii)温間加工用鋼において第2相分散粒子は分散していないが、温間加工中に第2相分散粒子が1種または2種以上析出し、加工処理後に粒子分散型繊維組織が形成される
(iii)温間加工用鋼において既に焼戻し処理が施され、第2相分散粒子が分散しているが、温間加工中にそれとは別の粒子が析出する
の3通りを考慮することができる。
In the present invention, regarding the fine dispersion or fine dispersion ability of the second phase dispersed particles,
(I) The tempering treatment is already performed in the steel for warm working and the second phase dispersed particles are dispersed. (Ii) The second phase dispersed particles are not dispersed in the steel for warm working. One type or two or more types of second phase dispersed particles are precipitated therein, and a particle dispersed fiber structure is formed after processing (iii). Are dispersed, but three types of precipitation of other particles during warm working can be considered.

そして、第2相分散粒子による分散(析出)強化は、第2相分散粒子の体積率、粒子の大きさ、硬さや形状等の分散状態に依存する。分散強化がOrowan機構による場合、下記の式(A)(「鉄鋼の析出制御メタラジー最前線(日本鉄鋼協会)(2001)P.69」)より、粒子径(d)が小さくて、体積率(f)が大きいほど分散強化量は大きくなる。すなわち、第2相分散粒子の分散状態(および分散能)は硬さと密接な関係を有することになる。   The dispersion (precipitation) strengthening by the second phase dispersed particles depends on the dispersion state such as the volume ratio of the second phase dispersed particles, the size of the particles, the hardness and the shape. When dispersion strengthening is based on the Orowan mechanism, the particle diameter (d) is smaller than the following formula (A) (“Steel Precipitation Control Metallurgy Frontline (Japan Iron and Steel Institute) (2001) P.69”), and the volume fraction ( The dispersion strengthening amount increases as f) increases. That is, the dispersion state (and dispersibility) of the second phase dispersed particles has a close relationship with the hardness.

Δσ=(3.2Gb)/[(0.9f-1/2−0.8)d] ・・・(A)
ここで、Gは鋼の剛性率80GPa、bはバーガースペクトル0.25nmである。
ところが、粒子がある臨界粒子径よりも小さくなりすぎると転位が粒子によってピン止めされなくなり、転位によって粒子がせん断されるようになるためOrowan機構が成立しなくなる。転位によって粒子がせん断される、いわゆるCutting機構では粒子径が大きくなるほど分散強化量は増加する。すなわちOrowan機構が成立する最小粒子径で最大の分散強化量が得られることになる。最大の分散強化が達成できる最小粒子径は粒子の硬さに依存し、粒子の硬さに逆比例して小さくなる(鉄鋼の析出制御メタラジー最前線(日本鉄鋼協会)(2001)P.69)。したがって、同一体積率で比較した場合、硬い粒子ほどOrowan機構が成立する最小粒子径も小さくなるため最大の粒子分散強化量も大きくなる。
Δσ = (3.2 Gb) / [(0.9f −1/2 −0.8) d] (A)
Here, G is a steel rigidity of 80 GPa, and b is a Burger spectrum of 0.25 nm.
However, if the particle becomes too smaller than a certain critical particle size, the dislocation is not pinned by the particle, and the particle is sheared by the dislocation, so that the Orowan mechanism is not established. In the so-called Cutting mechanism in which particles are sheared by dislocation, the amount of dispersion strengthening increases as the particle diameter increases. That is, the maximum dispersion strengthening amount can be obtained with the minimum particle diameter at which the Orowan mechanism is established. The minimum particle size at which the maximum dispersion strengthening can be achieved depends on the hardness of the particles and decreases in inverse proportion to the hardness of the particles (frontier of precipitation control metallurgy of steel (Japan Iron and Steel Institute) (2001) p. 69) . Therefore, when compared at the same volume ratio, the harder particles have a smaller minimum particle diameter at which the Owanan mechanism is established, and therefore the maximum amount of particle dispersion strengthening is increased.

たとえば、TiCは合金炭化物の中でも高い硬度を有し、密度も小さいことから有効な分散粒子強化が行えることが知られている。いま、TiCでOrowan機構の適用できる最小粒子径として7nmが得られるとすれば、7×10-3の体積率の分散で0.9GPa程度(TS(GPa)≒0.0032HV,HV2.8×102)の粒子分散強化量が期待できる。ちなみに、TiCの密度が4.94Mg/m3、Tiの原子量47.9、Cの原子量12では、体積率7×10-3のTiCを析出させるのに必要なTiは0.35mass%、Cは0.087mass%となる。加えて、実用フェライト鋼の基地の強度は0.3GPa(約HV0.9×102)程度であるので、フェライト基地中に上記TiCが分散した鋼の室温強度は1.2GPa以上(HV3.7×102以上)と予想される。よって、TiCについて理想的な分散状態を考察すると、Orowan機構が適用できる分散粒子では大きさが7nmあれば7×10-3の少量の体積率での分散強化のみでもHV3.7×102を十分に満足できることになる。これは、炭窒化物、金属間化合物、酸化物、Cu粒子等からなる第2相分散粒子についても同様の効果が期待できる。そしてこのような第2相分散粒子としては、たとえば、具体的には、MoC、V、WC、TaC、NbC、TiC等の炭化物、Fe,Fe,Al,Cr,SiO,Ti等の酸化物、AlN,CrN,TiN等の窒化物、NiTi,NiAl,TiB,FeMo,NiNb,NiMo等の金属間化合物、Cu粒子などの金属粒子等を考慮することができる。 For example, it is known that TiC has a high hardness among alloy carbides and has a small density, so that effective dispersion particle strengthening can be performed. Assuming that 7 nm is obtained as the minimum particle size applicable to the Orowan mechanism with TiC, about 0.9 GPa (TS (GPa) ≈0.0032 HV, HV 2.8 ×) with a volume fraction dispersion of 7 × 10 −3. A particle dispersion strengthening amount of 10 2 ) can be expected. Incidentally, when the density of TiC is 4.94 Mg / m 3 , the atomic weight of Ti is 47.9, and the atomic weight of C is 12, the Ti necessary for precipitating TiC with a volume ratio of 7 × 10 −3 is 0.35 mass%, C Is 0.087 mass%. In addition, since the strength of the base of the practical ferritic steel is about 0.3 GPa (about HV 0.9 × 10 2 ), the room temperature strength of the steel in which the TiC is dispersed in the ferrite base is 1.2 GPa or more (HV 3.7). X10 2 or more). Therefore, considering the ideal dispersion state for TiC, the dispersion particles to which the Orowan mechanism can be applied have an HV of 3.7 × 10 2 only by dispersion strengthening at a small volume ratio of 7 × 10 −3 if the size is 7 nm. You will be fully satisfied. The same effect can be expected for the second phase dispersed particles composed of carbonitride, intermetallic compound, oxide, Cu particles and the like. As such second phase dispersed particles, specifically, for example, carbides such as Mo 2 C, V 4 C 3 , W 2 C, TaC, NbC, TiC, Fe 3 O 4 , Fe 2 O 3 , Al 2 O 3 , Cr 2 O 3 , SiO 2 , Ti 2 O 3 and other oxides, AlN, CrN, TiN and other nitrides, Ni 3 Ti, NiAl, TiB, Fe 2 Mo, Ni 3 Nb, Ni 3 Intermetallic compounds such as Mo, metal particles such as Cu particles, and the like can be considered.

なお、MoやTiなどの金属炭化物粒子は一般に10nm前後の大きさであり、体積率が10×10-3未満の少量の分散によっても高強度化が有効に図れることは知られている。ただし、合金元素等の偏析等によって第2相分散粒子の大きさや基地組織中での分布にもばらつきがある。よって、本発明においては、第2相分散粒子の分布のばらつきがあっても温間加工により微細な結晶組織が安定して得られるように考慮して、第2相分散粒子の室温における体積率を7×10-3以上と規定している。なお、低合金マルテンサイト鋼やベイトナイト鋼については、温間加工前の一般的なセメンタイト(FeC)の平均粒子径が数十nm以上であることを考慮すれば、第2相分散粒子の体積率を20×10-3以上とするのが好ましい。 It is known that metal carbide particles such as Mo and Ti are generally about 10 nm in size, and that high strength can be effectively achieved even with a small amount of dispersion having a volume ratio of less than 10 × 10 −3 . However, the size of the second phase dispersed particles and the distribution in the matrix structure also vary due to segregation of alloy elements and the like. Therefore, in the present invention, even if there is variation in the distribution of the second phase dispersed particles, the volume fraction of the second phase dispersed particles at room temperature is considered so that a fine crystal structure can be stably obtained by warm working. Is defined as 7 × 10 −3 or more. For low alloy martensitic steels and baitnite steels, the second phase dispersed particles are taken into account when the average particle size of general cementite (Fe 3 C) before warm working is several tens of nanometers or more. The volume ratio is preferably 20 × 10 −3 or more.

また、高強度化を図る上で第2相分散粒子の体積率の上限は靭性を考慮すれば、12×10−2以下とする。また、Orowan機構による粒子分散強化は、(A)式から、数十nm以下の領域で顕著になることが予想され、平均粒子径が0.5μmより大きな第2相分散粒子の分散状態では1.2GPa以上の強度が得られにくい。よって、第2相分散粒子の平均粒子径は0.5μm以下、より好ましくは0.1μm以下であることが温間加工用鋼として望まれる。 In addition, when the strength is increased, the upper limit of the volume ratio of the second phase dispersed particles is set to 12 × 10 −2 or less in consideration of toughness. Further, the particle dispersion strengthening by the Orowan mechanism is expected to become remarkable in the region of several tens of nm or less from the formula (A), and 1 in the dispersed state of the second phase dispersed particles having an average particle diameter larger than 0.5 μm. It is difficult to obtain a strength of 2 GPa or more. Therefore, it is desired for the steel for warm working that the average particle size of the second phase dispersed particles is 0.5 μm or less, more preferably 0.1 μm or less.

ただし、上記条件は350℃の焼戻第3段階以上の温度域でも第2相分散粒子が成長しないことを前提としている。つまり、温間加工後も1.2GPa以上の強度を有するためには、加熱、加工中ならびに加工後に基地組織に加え、特に第2相分散粒子が著しくオストワルド成長して強度が低下しないことが必要条件となる。よって、一般に焼戻しパラメーターとして知られている次の(1)式で表されるλを指標として組織の熱安定性を評価した場合、350℃以上Ac1点以下の所定の温度域において、λ≧1.4×10の条件で、無加工のままで焼戻しを施した場合の室温におけるビッカース硬さ(HV)が下記式(2)で与えられる硬さH以上となるような焼戻軟化抵抗を示すことが前加工組織、すなわち本発明の温間加工用鋼としての必要十分条件であると考えることができる。 However, the above conditions are based on the premise that the second phase dispersed particles do not grow even in a temperature range of 350 ° C. or higher in the third stage or higher. In other words, in order to have a strength of 1.2 GPa or more even after warm processing, it is necessary that the second phase dispersed particles notably decrease in strength due to remarkable Ostwald growth in addition to the matrix structure during and after heating, processing. It becomes a condition. Therefore, when the thermal stability of the tissue is evaluated using λ represented by the following equation (1), which is generally known as a tempering parameter, as an index, λ ≧ 1 in a predetermined temperature range of 350 ° C. or more and Ac1 point or less. Temper softening resistance such that the Vickers hardness (HV) at room temperature when tempering is performed without processing under the condition of 4 × 10 4 is equal to or higher than the hardness H given by the following formula (2) It can be considered that the pre-processed structure, that is, the necessary and sufficient condition for the warm-working steel of the present invention is shown.

λ=T(logt+20)・・・(1)
ここで、Tは温度(K)、tは時間(h)である。
λ = T (logt + 20) (1)
Here, T is temperature (K), and t is time (h).

H=(5.2−1.2×10-4λ)×102・・・(2)
なお、所定の温度域においてとは、350℃からAc1点のいずれかの温度で上記条件を満たせばよいことを示し、すべての温度域にわたって上記条件を満たす必要は無いことを意味している。つまり、時効または焼戻処理した場合に、素材が顕著な時効硬化や2次硬化を起こして上記範囲内のある温度域に限って硬さH以上となる場合も、本発明の温間加工用鋼とすることができる。
H = (5.2-1.2 × 10 −4 λ) × 10 2 (2)
The term “in the predetermined temperature range” means that the above condition should be satisfied at any temperature from 350 ° C. to Ac1 point, and means that the above condition need not be satisfied over the entire temperature range. That is, in the case of aging or tempering treatment, when the material undergoes remarkable age hardening or secondary hardening and becomes a hardness H or more only in a certain temperature range within the above range, Can be steel.

ここで、たとえば前記のTiCについて、粒成長抑制効果を考察する。一般に良く知られているZenerの関係式(D=B×d/f)より、TiCが分散(d=7×10-3μm、体積率f=7×10-3、B=4/9〜4/3)したフェライト組織の定常粒成長で得られる安定結晶粒径Dを見積もると0.4〜1.3μm程度となる。つまり、このような安定結晶粒は再結晶粒の正常粒成長に対して成立するものであるから、再結晶温度よりも低温域の温間加工では所定のひずみ付与による基地組織の微細化とTiCによる粒界ピニングの2つの効果により平均粒径が3μm以下の繊維状組織が得られることは十分に予想される。 Here, for example, the grain growth suppressing effect of the TiC will be considered. From the well-known Zener relation (D = B × d / f), TiC is dispersed (d = 7 × 10 −3 μm, volume ratio f = 7 × 10 −3 , B = 4 / 9˜ 4/3) The stable crystal grain size D obtained by the steady grain growth of the ferrite structure is estimated to be about 0.4 to 1.3 μm. That is, since such stable crystal grains are established for normal grain growth of recrystallized grains, in the warm working in a region lower than the recrystallization temperature, the refinement of the base structure by applying a predetermined strain and TiC It is sufficiently expected that a fibrous structure having an average particle diameter of 3 μm or less can be obtained by the two effects of grain boundary pinning.

このように、TiC炭化物の理想分散状態による析出強化を基に、温間加工により1.2GPa以上の引張強さを有する超微細複相組織を得るには、第2相分散粒子の体積率の下限値を7×10-3とし、かつT(logt+20)≧1.4×104の条件で焼戻し処理後の鋼の硬さがHV≧(5.2−1.2×10-4λ)×102を有することを前加工組織の必要十分条件としている。すなわち、温間加工用鋼として、第2相分散粒子を基地組織中に粒子分散強化粒子として微細に分散または析出させること、および第2相分散粒子の熱的安定性を高める組織制御が、本発明の特徴である。 Thus, in order to obtain an ultrafine multiphase structure having a tensile strength of 1.2 GPa or more by warm working on the basis of precipitation strengthening by the ideal dispersion state of TiC carbide, the volume fraction of the second phase dispersed particles is The hardness of the steel after tempering is HV ≧ (5.2-1.2 × 10 −4 λ) under the condition that the lower limit is 7 × 10 −3 and T (logt + 20) ≧ 1.4 × 10 4. Having x10 2 is a necessary and sufficient condition for the pre-processed structure. That is, as the steel for warm working, the second phase dispersed particles are finely dispersed or precipitated as the particle dispersion strengthened particles in the base structure, and the structure control for improving the thermal stability of the second phase dispersed particles It is a feature of the invention.

以上のような本発明の温間加工用鋼の組織については、温間加工の処理中に第2相分散粒子の分散状態や基地組織が種々変化されるため、室温の組織形態で限定されることはないが、実際的には、パーライト組織を主組織とする鋼を除く、強度1.2GPa以上の鋼をすべて温間加工用鋼として考慮することができる。このようなものとしては、例えば、具体的には、マルテンサイト鋼(焼戻マルテンサイト組織)ではJIS−G4053の低合金鋼、JIS−G−4801のばね鋼や、それ以上の強度レベルの2次硬化鋼、マルエージ鋼、TRIP鋼、オースフォームド鋼等である。   About the structure | tissue of the steel for warm processing of this invention as mentioned above, since the dispersion state and base structure | tissue of a 2nd phase dispersion particle are variously changed during the process of warm processing, it is limited by the structure | tissue form of room temperature. However, in reality, all steels having a strength of 1.2 GPa or more, excluding steels having a pearlite structure as the main structure, can be considered as warm work steels. As such a material, specifically, for martensite steel (tempered martensite structure), a low alloy steel of JIS-G4053, a spring steel of JIS-G-4801, and a strength level of 2 or higher. Secondary hardened steel, maraging steel, TRIP steel, ausformed steel and the like.

そして、本発明の温間加工用鋼は、基地組織の80体積%以上をマルテンサイトとベイナイトのいずれかの単独組織またはこれらの混合組織とするようにしている。これは、中炭素低合金鋼では、マルテンサイトの有効結晶粒とされるブロックの幅が1μm以下である(Scripta Mater.,49(2003),P.1157)ことが最近の研究で明らかになっており、炭化物等を微細に分散した焼戻マルテンサイト組織に温間加工を施すことで繊維組織を効率よく形成できることに加え、ベイナイト組織も炭化物が微細に分散した針状や板状の組織形態を有しており、これを前加工組織とした場合も同様に繊維状組織を得ることができるためである。本発明の温間加工用鋼においては、このようなマルテンサイトとベイナイトのいずれかの単独組織またはこれらの混合組織が、基地組織の90体積%以上であることをより好ましい形態としている。   And the steel for warm work of this invention makes it 80 volume% or more of a base structure to be a single structure of martensite and bainite, or these mixed structures. This is because, in a medium carbon low alloy steel, the width of a block that is considered to be an effective crystal grain of martensite is 1 μm or less (Script Mater., 49 (2003), P. 1157). In addition to being able to efficiently form a fiber structure by performing warm working on a tempered martensite structure in which carbides are finely dispersed, the bainite structure is also a needle-like or plate-like structure form in which carbides are finely dispersed. This is because a fibrous structure can be obtained in the same manner when this is used as a pre-processed structure. In the steel for warm working of the present invention, it is more preferable that the single structure of such martensite and bainite or the mixed structure thereof is 90% by volume or more of the base structure.

特に温間加工後に1.2GPa以上の強度を安定して維持するためには、JIS−SCM430鋼の焼戻マルテンサイト鋼と同等またはそれ以上の焼戻軟化抵抗を有するマルテンサイトまたはベイナイト組織を80%以上含むことが望ましい。なお、マルテンサイトまたはベイナイトおよびこれらの混合組織以外の20体積%以下は、フェライト、パーライト、オーステナイト組織など、如何なる組織であってもよい。というのは、このようなフェライト、パーライト、オーステナイト組織等は温間加工熱処理中に分解・消失したり、微細な組織へと変化するため20体積%以下であれば問題ないと判断されるためである。
(b)化学組成
本発明の温間加工用鋼の好ましい化学組成としては、C:0.70mass%以下、Si:0.05mass%以上、Mn:0.05mass%以上、Cr:0.01mass%以上、Al:0.5mass%以下、O:0.3mass%以下、N:0.3mass%以下を含有し、残部は実質的にFeおよび不可避的不純物であることが示される。さらに、Mo:5.0mass%以下、W:5.0mass%以下、V:5.0mass%以下、Ti:3.0mass%以下、Nb:1.0mass%以下、Ta:1.0mass%以下から成る群より選ばれる1種または2種以上を含有することや、Ni:0.05mass%以上、Cu:2.0mass%以下の1種または2種を含有することなどを考慮することができる。以下に、本発明の温間加工用鋼の好ましい各成分組織について述べる。
In particular, in order to stably maintain a strength of 1.2 GPa or more after warm working, a martensite or bainite structure having a temper softening resistance equal to or higher than that of tempered martensite steel of JIS-SCM430 steel is 80. % Or more is desirable. In addition, 20 volume% or less other than martensite or bainite and mixed structures thereof may be any structure such as ferrite, pearlite, and austenite structure. This is because such a ferrite, pearlite, austenite structure, etc. decomposes / disappears during the warm working heat treatment or changes to a fine structure, so it is judged that there is no problem if it is 20 volume% or less. is there.
(B) Chemical composition As a preferable chemical composition of the steel for warm working of the present invention, C: 0.70 mass% or less, Si: 0.05 mass% or more, Mn: 0.05 mass% or more, Cr: 0.01 mass% As described above, Al: 0.5 mass% or less, O: 0.3 mass% or less, N: 0.3 mass% or less are contained, and the balance is substantially Fe and inevitable impurities. Furthermore, Mo: 5.0 mass% or less, W: 5.0 mass% or less, V: 5.0 mass% or less, Ti: 3.0 mass% or less, Nb: 1.0 mass% or less, Ta: 1.0 mass% or less It can be considered to contain one or two or more selected from the group consisting of Ni, 0.05% by mass or more and Cu: 2.0% by mass or less. Below, the preferable each component structure | tissue of the steel for warm work of this invention is described.

C:Cは炭化物粒子を形成し、強度増加に最も有効な成分であるが、0.70mass%を超えると靱性劣化を招くことから、含有量を0.70mass%以下とした。強度増加を充分に期待するためには、好ましくは、0.08mass%以上、より好ましくは0.15mass%以上を含有させる。   C: C forms carbide particles and is the most effective component for increasing the strength. However, if it exceeds 0.70 mass%, the toughness is deteriorated, so the content is set to 0.70 mass% or less. In order to sufficiently expect an increase in strength, it is preferable to contain 0.08 mass% or more, more preferably 0.15 mass% or more.

Si:Siは脱酸およびフェライト中に固溶して鋼の強度を高めるとともにセメンタイトを微細に分散させるのに有効な元素である。従って、脱酸材として添加したもので鋼中に残るものも含め、含有量を0.05mass%以上とする。鋼材の加工性を考慮して2.5mass%以下とする。   Si: Si is an element effective for deoxidizing and dissolving in ferrite to increase the strength of steel and finely disperse cementite. Therefore, the content of 0.05% by mass or more including those added as a deoxidizer and remaining in the steel. Considering the workability of the steel material, it is set to 2.5 mass% or less.

Mn:Mnはオーステナイト化温度を低下させオーステナイトの微細化に有効であるとともに、焼入れ性ならびにセメンタイト中に固溶してセメンタイトの粗大化を抑制するのに有効な元素である。0.05mass%未満では所望の効果が得られないため、0.05mass%以上と定めた。より好ましくは0.2mass%以上を含有させる。得られる鋼材の靭性を考慮して3.0mass%以下とする。   Mn: Mn is an element that is effective for lowering the austenitizing temperature and making the austenite finer, and is effective for suppressing the coarsening of the cementite by hardening into the hardenability and cementite. If the amount is less than 0.05 mass%, a desired effect cannot be obtained. More preferably, 0.2 mass% or more is contained. In consideration of the toughness of the obtained steel material, it is set to 3.0 mass% or less.

Cr:Crは焼入れ性向上に有効な元素であるとともにセメンタイト中に固溶してセメンタイトの成長を遅滞させる作用が強い元素である。また、比較的多く添加することでセメンタイトよりも熱的に安定な高Cr炭化物を形成したり、耐食性を向上させる、本発明では重要な元素のひとつでもある。従って、少なくとも0.01mass%以上含有させる必要がある。好ましくは0.1mass%以上であって、より好ましくは0.8mass%以上を含有させる。   Cr: Cr is an element effective for improving hardenability and is an element having a strong effect of delaying the growth of cementite by being dissolved in cementite. In addition, it is also one of the important elements in the present invention that, by adding a relatively large amount, forms a high Cr carbide that is more thermally stable than cementite and improves corrosion resistance. Therefore, it is necessary to contain at least 0.01 mass%. Preferably it is 0.1 mass% or more, More preferably, 0.8 mass% or more is contained.

Al:Alは脱酸およびNiなどの元素と金属間化合物を形成して鋼の強度を高めるのに有効な元素である。ただし過剰な添加は靱性を低下させるため、0.5mass%以下とした。なお、Alと他の元素の金属間化合物やAlの窒化物や酸化物などを第2相分散粒子として利用しない場合は、0.02mass%以下、さらに限定的には0.01mass%以下とすることが好ましい。   Al: Al is an element effective for deoxidizing and forming an intermetallic compound with an element such as Ni to increase the strength of the steel. However, since excessive addition reduces toughness, it was made into 0.5 mass% or less. In the case where an intermetallic compound of Al and another element, Al nitride, oxide, or the like is not used as the second phase dispersed particles, it is 0.02 mass% or less, and more specifically 0.01 mass% or less. It is preferable.

O:O(酸素)は酸化物として微細で均一に分散させることができれば、介在物ではなく、粒成長抑制や分散強化粒子として有効に作用する。ただし、過剰に含有させると靱性を低下させるので0.3mass%以下とした。酸化物を第2相分散粒子として利用しない場合は、0.01mass%以下とすることが好ましい。   If O: O (oxygen) can be finely and uniformly dispersed as an oxide, it effectively acts not as inclusions but as grain growth suppression and dispersion strengthening particles. However, if excessively contained, the toughness is lowered, so the content was made 0.3 mass% or less. When the oxide is not used as the second phase dispersed particles, the content is preferably 0.01% by mass or less.

N:N(窒素)は窒化物として微細で均一に分散させることができれば、粒成長抑制粒子や分散強化粒子として有効に作用する。ただし、過剰に含有させると靱性を低下させるので0.3mass%以下とした。窒化物を第2相分散粒子として利用しない場合は、0.01mass%以下とすることが好ましい。   If N: N (nitrogen) can be finely and uniformly dispersed as a nitride, it effectively acts as a grain growth inhibiting particle or dispersion strengthening particle. However, if excessively contained, the toughness is lowered, so the content was made 0.3 mass% or less. When nitride is not used as the second phase dispersed particles, the content is preferably 0.01 mass% or less.

Mo:Moは本発明において鋼の高強度化に有効な元素であり、鋼の焼入れ性向上を向上させるだけでなく、セメンタイト中にも少量固溶してセメンタイトを熱的に安定にする。特にセメンタイトとはまったく別個に基地相中に新しく転位上に合金炭化物を核生成(separate nucleation)することで2次硬化を起こして鋼を強化する。しかも形成された合金炭化物は微細粒化に有効であると共に水素の置換にも有効である。したがって、好ましくは0.1mass%以上、より好ましくは0.5mass%以上を含有させるが、高価な元素であるとともに過剰な添加は粗大な未固溶炭化物または金属間化合物を形成して靱性を劣化させるため、添加量の上限を5mass%に定めた。経済性の観点からは、2mass%以下とすることが好ましい。   Mo: Mo is an element effective for increasing the strength of steel in the present invention, and not only improves the hardenability of the steel, but also solidifies a small amount in cementite to make the cementite thermally stable. In particular, the steel is strengthened by secondary hardening by completely nucleating alloy carbide on the dislocations in the matrix phase completely separate from cementite. Moreover, the formed alloy carbide is effective for atomization and also for hydrogen replacement. Therefore, preferably 0.1 mass% or more, more preferably 0.5 mass% or more is contained, but it is an expensive element and excessive addition forms coarse undissolved carbides or intermetallic compounds to deteriorate toughness. Therefore, the upper limit of the addition amount is set to 5 mass%. From an economical viewpoint, it is preferable to set it as 2 mass% or less.

なお、W、V、Ti、NbならびにTaについてもMoと同様な効果を示し、それぞれ前記上限の添加量を定めた。さらにこれらの元素の複合添加は、分散強化粒子を微細に分散する上で有効である。   W, V, Ti, Nb and Ta also showed the same effect as Mo, and the upper limit addition amount was determined for each. Furthermore, the combined addition of these elements is effective in finely dispersing the dispersion strengthening particles.

Ni:Niは焼き入れ性の向上に有効であるとともに、オーステナイト化温度を低下させオーステナイトの微細化や靱性の向上、耐食性の向上に有効な元素である。また、適量を含有させればTiやAlと金属間化合物を形成して鋼を析出強化させるのにも有効な元素である。0.01mass%未満では所望の効果が得られないため、0.01mass%以上と定めた。より好ましくは0.2mass%以上を含有させる。上限については特に制限は無いが、高価な元素であるため、9mass%以下とすることが好ましい。   Ni: Ni is an element that is effective for improving hardenability and is effective for reducing the austenitizing temperature and reducing the austenite, improving toughness, and improving corrosion resistance. Moreover, if it contains an appropriate amount, it is an element that is effective in forming an intermetallic compound with Ti or Al to strengthen precipitation of steel. If the amount is less than 0.01 mass%, the desired effect cannot be obtained. More preferably, 0.2 mass% or more is contained. Although there is no restriction | limiting in particular about an upper limit, Since it is an expensive element, it is preferable to set it as 9 mass% or less.

Cu:Cuは熱間脆性を引き起こす有害な元素である反面、適量を添加すれば500℃〜600℃で微細なCu粒子の析出をもたらし、鋼を強化する。多量に添加すると熱間脆性を引き起こすので、フェライト中へのほぼ最大固溶量である2mass%以下とした。   Cu: Cu is a harmful element that causes hot brittleness, but if an appropriate amount is added, it causes precipitation of fine Cu particles at 500 ° C. to 600 ° C. and strengthens the steel. When added in a large amount, hot brittleness is caused, so the amount was set to 2 mass% or less, which is almost the maximum solid solution amount in ferrite.

P(燐)およびS(硫黄)については特に規定されないが、PやSは粒界強度を低下させるため極力取り除きたい元素であり、それぞれ0.03mass%以下とすることが好ましい。   P (phosphorus) and S (sulfur) are not particularly defined, but P and S are elements that should be removed as much as possible in order to reduce the grain boundary strength, and are each preferably 0.03 mass% or less.

なお、上記以外の元素についても、本発明の効果を下げない範囲で各種の元素が含有されることが許容される。   In addition, it is permissible for elements other than those described above to be contained in various elements as long as the effects of the present invention are not reduced.

(c)温間加工用鋼の調製
なお、以上のような温間加工用鋼の作製方法は、たとえば、JIS規格のマルテンサイト組織やベイナイト組織の製造方法等に準じて、多種多様なものを考慮することができる。
(C) Preparation of steel for warm working The method for producing the steel for warm working as described above is, for example, a variety of methods according to the manufacturing method of martensite structure and bainite structure of JIS standard. Can be considered.

(d)温間加工
本発明の温間加工方法は、上記いずれかの温間加工用鋼に対し、350℃以上Ac1点−20℃以下の温度域で、0.7以上のひずみを与える温間加工を施すことを特徴としている。温間加工を施した後、350℃以上Ac1点以下の温度域で時効処理を施すことも考慮される。このような温間加工によると、
(1)転位の回復が適度に起こり、結晶粒微細化が図れるとともに内部応力を低減できる
(2)合金元素の拡散が比較的容易となり、炭化物等の第2相分散粒子の分解および再析出が顕著に起こり、組織の微細化を図ることができる
(3)鋼の変形抵抗(高温硬さ)が顕著に下がりクラック等の発生なく成形できる
との利点を得ることができる。
(D) Warm working The warm working method of the present invention is a temperature that gives a strain of 0.7 or more to any one of the above-mentioned steels for warm working in a temperature range of 350 ° C or higher and Ac1 point -20 ° C or lower. It is characterized by inter-processing. It is also considered to perform an aging treatment in a temperature range of 350 ° C. or higher and Ac1 point or lower after the warm working. According to such warm processing,
(1) Dislocation recovery occurs moderately, crystal grains can be refined and internal stress can be reduced (2) Diffusion of alloy elements becomes relatively easy, and decomposition and reprecipitation of second phase dispersed particles such as carbides Remarkably occurs and the structure can be refined. (3) The deformation resistance (high temperature hardness) of the steel is remarkably lowered, and an advantage that it can be formed without occurrence of cracks can be obtained.

このような加工温度について、より具体的には、例えば、一般機械構造用鋼として用いられている中炭素低合金鋼でマルテンサイト組織を基地とする場合では、セメンタイトが析出する焼戻第3段階にほぼ相当する350℃温度以上とすることができる。特に、合金炭化物、金属間化合物やCuなどを第2相分散粒子として有効に利用するには、これらの第2相分散粒子の析出温度である500℃から650℃の温度域で加工することが望ましい。   More specifically, with respect to such a processing temperature, for example, in the case of a medium carbon low alloy steel used as a general machine structural steel and based on a martensite structure, a tempering third stage in which cementite precipitates. It is possible to set the temperature to 350 ° C. or higher that substantially corresponds to In particular, in order to effectively use alloy carbides, intermetallic compounds, Cu, and the like as the second phase dispersed particles, it is necessary to process in a temperature range of 500 ° C. to 650 ° C., which is the precipitation temperature of these second phase dispersed particles. desirable.

一方、加工中にオーステナイト変態した部分では冷却過程でパーライト変態やマルテンサイト変態などの相変態を起こし、その結果、割れ発生の原因となるような不均一な組織が形成される可能性が高い。また、加工発熱による温度上昇も考慮して、加工の上限温度はAc1点−20℃とした。ただし、素材の加工温度と時間の組み合わせとしては、焼戻しパラメーターλで硬さを整理した場合、無加工のままで素材に焼戻しを施した場合に室温におけるビッカース硬さがHV3.7×102以下にならない組み合わせが温間加工後に1.2GPa以上の強度を得るために好ましい。特に高温域での加工では、素材の軟化抵抗性と加熱時間を考慮に入れて加工に要する時間を短くする必要がある。 On the other hand, in the portion that has undergone austenite transformation during processing, phase transformation such as pearlite transformation or martensite transformation occurs in the cooling process, and as a result, there is a high possibility that a non-uniform structure that causes cracking is formed. Moreover, the upper limit temperature of processing was made into Ac1 point-20 degreeC also considering the temperature rise by process heat_generation | fever. However, as a combination of the processing temperature and time of the material, when the hardness is arranged by the tempering parameter λ, the Vickers hardness at room temperature is HV 3.7 × 10 2 or less when the material is tempered without being processed. The combination which does not become is preferable in order to obtain the strength of 1.2 GPa or more after warm working. Particularly in processing in a high temperature range, it is necessary to shorten the time required for processing in consideration of the softening resistance of the material and the heating time.

組織の発達の度合いは、前加工組織、加工温度とひずみ量に依存する。つまり、前加工組織や加工温度によって必要なひずみ量も変わるためここでひずみ量を厳密に規定はできないが、材料内部に繊維状組織を形成させようとする場合には、0.7以上、より好ましくは1以上のひずみを付与することが好ましい。あらかじめオーステナイトの未再結晶温度域で加工を加えるなどして旧オーステナイト結晶粒を微細な繊維状に伸長させたマルテンサイトやベイナイト組織を有する温間加工用鋼に対しては、1より小さなひずみ量の付与で微細な繊維組織を均一に生成させることができる。しかしながら、おおよその場合において、ひずみ量は好ましくは1以上、さら好適には1.5以上とするのが望ましい。   The degree of tissue development depends on the pre-processed structure, processing temperature and strain. In other words, the amount of strain required varies depending on the pre-processed structure and processing temperature, so the amount of strain cannot be strictly defined here, but when trying to form a fibrous structure inside the material, 0.7 or more, more It is preferable to apply one or more strains. Less than 1 strain amount for warm work steels with martensite and bainite structure in which prior austenite grains are elongated into fine fibers by processing in advance in the non-recrystallization temperature range of austenite A fine fiber structure can be uniformly generated by the application of. However, in an approximate case, the amount of strain is preferably 1 or more, more preferably 1.5 or more.

このとき、付与するひずみは1回の加工に限らず、複数回の加工に分けて導入しても良い。また、加工の方向は常に同じ方向に限定されない。さらに、パス間の時間も特に限定するものではない。さらに、被加工材の全域でなく、特定の領域(たとえば、高強度化が必要な表層や部品のR部など)に所定のひずみを付与することも含まれる。ただし、実際のひずみ量は被加工材の材料特性、ロール(鍛造であれば金型)と被加工材の摩擦条件(たとえば、潤滑剤の種類や有無など)、ロール(鍛造であれば金型)の変形、圧延(鍛造)速度、圧延(鍛造)温度などを考慮してはじめて理解できるものである。特に、鍛造によって部品成型を行う場合には、不均一なひずみが導入されていることは必須である。よって、ひずみの量を精度の高い数値解析技術によって予測することが望ましいが、一般的に平面ひずみ状態を前提とした板圧延の場合累積圧下率は45%以上、棒線圧延の場合累積減面率45%以上であれば、ひずみ0.7以上は被加工材の全域に導入されていると考えられる。なお、累積圧下率または累積減面率が58%以上であればひずみ1以上が被加工材の全域に導入されていると考えられる。ただし、たとえば、圧下率(減面率)45%未満であっても摩擦などの影響で0.7以上のひずみが被加工材の全域または特定の領域に導入されることもあるので、その場合には数値解析によって導入されたひずみの量を定量的に検討することが必要である。   At this time, the strain to be applied is not limited to a single process, and may be introduced in a plurality of processes. Further, the processing direction is not always limited to the same direction. Furthermore, the time between passes is not particularly limited. Furthermore, it includes applying a predetermined strain to a specific region (for example, a surface layer that requires high strength, an R portion of a part, or the like) instead of the entire area of the workpiece. However, the actual amount of strain depends on the material properties of the workpiece, the conditions of the roll (mold if it is forged) and the workpiece (such as the type and presence of lubricant), and the roll (the mold if forged). ), The rolling (forging) speed, the rolling (forging) temperature, etc., can only be understood. In particular, when parts are formed by forging, it is essential that non-uniform strain is introduced. Therefore, it is desirable to predict the amount of strain by a highly accurate numerical analysis technique, but generally the rolling reduction is 45% or more in the case of sheet rolling on the premise of a plane strain state, and the cumulative surface reduction in the case of bar rolling. If the rate is 45% or more, it is considered that a strain of 0.7 or more is introduced in the entire area of the workpiece. If the cumulative rolling reduction or cumulative area reduction is 58% or more, it is considered that a strain of 1 or more is introduced throughout the workpiece. However, for example, even if the rolling reduction (area reduction) is less than 45%, a strain of 0.7 or more may be introduced into the entire area of the workpiece or a specific region due to the influence of friction, in that case. It is necessary to quantitatively study the amount of strain introduced by numerical analysis.

(e)鋼材
本発明の鋼材は、上記の通りに温間加工用鋼を温間加工して得られる鋼材であって、短軸の平均粒径が3μm以下の繊維状結晶からなる基地組織を有し、第2相分散粒子が室温において7×10-3以上の体積率で基地組織内に微細に分散し、室温におけるビッカース硬さがHV3.7×102以上であることを特徴としている。なお、本発明の鋼材における基地組織は、伸展度(アスペクト比)が2を超え、代表的にはアスペクト比5以上の繊維状フェライト結晶からなり、これに第2相分散粒子が微細に分散されているものと理解することができる。
(E) Steel material The steel material of the present invention is a steel material obtained by warm-working the steel for warm working as described above, and has a base structure composed of fibrous crystals having a minor axis average particle size of 3 μm or less. And the second phase dispersed particles are finely dispersed in the matrix structure at a volume ratio of 7 × 10 −3 or more at room temperature, and the Vickers hardness at room temperature is HV3.7 × 10 2 or more. . The base structure in the steel material of the present invention is composed of fibrous ferrite crystals having an extensibility (aspect ratio) exceeding 2 and typically an aspect ratio of 5 or more, and the second phase dispersed particles are finely dispersed therein. Can be understood.

鋼の機械的特性に及ぼす結晶粒微細化の効果は、数μm以下の結晶粒領域において顕著になることが知られており、本発明では繊維状結晶からなる基地組織の平均間隔(すなわち短軸平均粒径)の上限を3μmとしている。なお、ここで結晶粒とは、15°以上の結晶方位差の粒界で囲まれた基地の結晶粒である。一方、分散粒子の長軸の平均粒径が0.3μmより大きい場合では、粒子分散強化がほとんど望めないうえに、1.2GPa以上の鋼では靭性を著しく劣化される可能性が高い。よって、長軸の平均粒径が0.3μm以下であることが望ましい。   The effect of grain refinement on the mechanical properties of steel is known to be noticeable in the grain region of several μm or less. In the present invention, the average interval between the base structures composed of fibrous crystals (that is, the minor axis) The upper limit of (average particle diameter) is 3 μm. Here, the crystal grain is a base crystal grain surrounded by a grain boundary having a crystal orientation difference of 15 ° or more. On the other hand, when the average particle size of the long axis of the dispersed particles is larger than 0.3 μm, the particle dispersion strengthening can hardly be expected, and the steel having 1.2 GPa or more is highly likely to significantly deteriorate the toughness. Therefore, it is desirable that the average particle diameter of the major axis is 0.3 μm or less.

特に結晶粒微細化の効果は平均結晶粒径が1μm以下、Orowan機構による粒子分散強化は、平均粒子径が0.1μm以下の領域で特に顕著になる。よって、結晶繊維状化による強化と粒子分散強化を重畳して有効に利用するには、さらに繊維状結晶の短軸平均粒径を1μm以下、さらには0.5μm以下とすることが有効である。そして、第2相分散粒子の長軸の平均粒子径も、基地組織の微細化に応じて0.1μm以下、さらには0.05μm以下とするのがより好ましい。   In particular, the effect of refining crystal grains becomes particularly remarkable in the region where the average crystal grain size is 1 μm or less, and the particle dispersion strengthening by the Orowan mechanism is in the region where the average particle size is 0.1 μm or less. Therefore, in order to effectively utilize the strengthening by crystal fiber formation and the particle dispersion strengthening, it is effective to further reduce the minor axis average particle diameter of the fibrous crystal to 1 μm or less, further 0.5 μm or less. . The average particle diameter of the major axis of the second phase dispersed particles is also preferably 0.1 μm or less, more preferably 0.05 μm or less, depending on the refinement of the matrix structure.

このような温間加工鋼材では、上記強化機構の他に固溶強化ならびに転位強化などの強化機構も加えることができるものであり、これらの強化機構が重畳する効果によって上記強化機構の単純な加算では予測できないような高機能性の材料が得られるに至っている。   In such warm-worked steel materials, strengthening mechanisms such as solid solution strengthening and dislocation strengthening can be added in addition to the strengthening mechanism described above, and a simple addition of the strengthening mechanism due to the effect of superimposing these strengthening mechanisms. In this way, highly functional materials that cannot be predicted have been obtained.

このように微細な繊維組織は、板材を始めとし、棒線材、ボルトのネジ部等の温間成形によって形成することができる。特に累積ひずみ量が小さい場合でも、局所的に強変形を被った表層部などに繊維組織を形成させることができ、各種の部品および所望の部分の特性を大幅に向上させることができる。   Such a fine fiber structure can be formed by warm forming of a plate material, a rod wire, a bolt thread portion, and the like. In particular, even when the amount of accumulated strain is small, a fiber structure can be formed in a surface layer portion or the like that has undergone strong local deformation, and the characteristics of various parts and desired portions can be greatly improved.

以下、添付した図面に沿って実施例を示し、この出願の発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

表1に、本発明範囲の鋼成分(A〜K、M、NならびにO)と範囲外の鋼成分(L)を示す。なお、実施例では炭化物を第2相分散粒子として利用するようにした。表2には、表1の組成の鋼で第2相分散粒子として分散し得る金属炭化物ならびにセメンタイトの体積率を示した。実施例の鋼は、Co添加のマルエージング鋼を除く、SCM435から2GPa級の2次硬化鋼までのマルテンサイト鋼を網羅するものである。   Table 1 shows steel components (A to K, M, N and O) within the range of the present invention and steel components (L) outside the range. In the examples, carbide was used as the second phase dispersed particles. Table 2 shows the volume ratios of metal carbide and cementite that can be dispersed as second phase dispersed particles in the steel having the composition shown in Table 1. The steels of the examples cover martensitic steels ranging from SCM435 to 2GPa grade secondary hardened steel, excluding Co-added maraging steel.

鋼の成分および熱処理条件により種々の化学量論組成の炭化物が実際の鋼中には存在する。そのため、第2相分散粒子の体積率を化学分析や組織観察によって厳密に測定することは難しく、実用的ではない。そこで発明者らは、炭化物の構造解析等によって求められる周知の炭化物の理論密度((株)東京化学同人、化学大辞典、(1989)、P.1361−1363)から計算によって炭化物の体積率を求めた。計算の近似式等は表3の通りである。   There are various stoichiometric carbides in the actual steel depending on the steel components and heat treatment conditions. For this reason, it is difficult to strictly measure the volume fraction of the second phase dispersed particles by chemical analysis or structural observation, which is not practical. Therefore, the inventors calculated the volume fraction of carbides by calculation from the well-known theoretical density of carbides obtained by structural analysis of carbides (Tokyo Chemical Doujin, Chemical Dictionary, (1989), P.1361-1363). Asked. Table 3 shows approximate equations for calculation.

計算に際しては、炭化物形成能の強い合金元素(Nb>Mo>Cr>Feなど)の順に炭素と結合して炭化物を形成するものと仮定した。Nb、Moについては、鋼中で独自の炭化物を作りやすくしかもセメンタイト中に解けにくい元素であることはよく知られており、NbC、Mo2Cの析出を想定した。ただし、G鋼やL鋼については、0.002mass%のMoは十分にセメンタイト中に固溶し得る量であるため、Mo炭化物の体積率の見積もりからは除外した。Crについては、Crの添加量が多い場合は、高Cr濃度のM23C6、M7C3などの炭化物を形成するが、本実施例の添加量ではCrはセメンタイト中に固溶してこれらの合金炭化物を形成する可能性は低い。従って、Crの合金炭化物の体積率は見積もりから除外した。   In the calculation, it was assumed that carbides are formed by combining with carbon in the order of alloy elements having a strong carbide forming ability (Nb> Mo> Cr> Fe, etc.). It is well known that Nb and Mo are elements that make it easy to produce unique carbides in steel and are difficult to dissolve in cementite, and precipitation of NbC and Mo2C was assumed. However, about G steel and L steel, since 0.002 mass% Mo is the quantity which can fully dissolve in cementite, it excluded from the estimation of the volume fraction of Mo carbide. As for Cr, when a large amount of Cr is added, carbides such as M23C6 and M7C3 having a high Cr concentration are formed. However, with the addition amount of this example, Cr forms a solid solution in cementite to form these alloy carbides. The possibility of doing is low. Therefore, the volume fraction of Cr alloy carbide was excluded from the estimation.

ここで最も重要なことは、中炭素低合金鋼では分散強化粒子である炭化物の分散量は炭素量に依存し、特にセメンタイトに対して密度が十分に大きな金属炭化物を形成する可能性が無い場合や金属炭化物を形成する元素の添加量が少量の場合ではセメンタイトの量で第2相分散粒子の分散量がほぼ決定されることである。すなわち、表2に示すように、表1の実施例で用いたC量が0.2mass%以上の鋼では第2相の体積率の総量は7×10-3を十分に上回る。 The most important thing here is that in medium-carbon low alloy steel, the amount of dispersion of carbides, which are dispersion strengthened particles, depends on the amount of carbon, especially when there is no possibility of forming metal carbide with a sufficiently high density relative to cementite. In addition, when the amount of the element forming the metal carbide is small, the amount of the second phase dispersed particles is almost determined by the amount of cementite. That is, as shown in Table 2, the total amount of the volume fraction of the second phase sufficiently exceeds 7 × 10 −3 in the steel having the C content of 0.2 mass% or more used in the examples of Table 1.

図1、図2ならびに図3に、実施例で適用した加工熱処理の工程を例示した。このプロセスは、基本的に、(1)粗大な未固溶炭化物を減ずるための固溶化熱処理と加工、(2)本発明の温間加工用鋼の組織としての焼戻マルテンサイトまたはベイナイト組織を得るための焼入れ処理および焼戻、(3)部品への形状成型も兼ねた温間加工からなる。なお、図1の加工熱処理パターン1では、固溶化熱処理に引き続く低温でのオーステナイト化による逆変態オーステナイト粒の微細化、図2のパターン2では、固溶化熱処理に引き続く熱間加工によって得られる再結晶オーステナイトや温間加工によって得られる未再結晶オーステナイト(伸長オーステナイト)組織からの焼入れを念頭に入れている。図3は、準安定オーステナイト域でのオースフォーム処理による加工オーステナイト(伸長オーステナイト)組織からの焼入れプロセスである。これらの加工熱処理プロセスにおいては、結晶粒が微細なほどより小さい累積ひずみ量の温間加工で微細組織を得ることができ、特に繊維組織を効率良く発達させるための加工前組織としては微細な未再結晶オーステナイト(伸長オーステナイト)から得られるマルテンサイトを前組織とすることは最も有効である。   1, 2, and 3 exemplify the heat treatment process applied in the embodiment. This process basically consists of (1) solution heat treatment and processing for reducing coarse undissolved carbide, and (2) tempered martensite or bainite structure as the structure of the steel for warm working of the present invention. It consists of quenching and tempering to obtain, and (3) warm working that also serves to shape the parts. In the thermomechanical processing pattern 1 of FIG. 1, the reverse transformation austenite grains are refined by austenitizing at a low temperature following the solution heat treatment, and in the pattern 2 of FIG. 2, recrystallization obtained by hot working subsequent to the solution heat treatment. Considering quenching from austenite and unrecrystallized austenite (elongated austenite) structure obtained by warm working. FIG. 3 shows a quenching process from a processed austenite (elongated austenite) structure by ausforming treatment in a metastable austenite region. In these thermomechanical processes, the finer the crystal grains, the finer the microstructure can be obtained by warm processing with a smaller cumulative strain amount. In particular, the microstructure before processing for efficiently developing the fiber structure is not fine. It is most effective to use martensite obtained from recrystallized austenite (elongated austenite) as a pre-structure.

まず、熱延鋼板または鍛造材から切り出した約40mm角×長さ120mmの角材に加工熱処理パターン1、2ならびに3における焼入れ処理までを施して、ほぼ100体積%に近いマルテンサイト単一組織を得た。これが本発明の温間加工用鋼の一例に相当する。ついで角材は所定の温度まで0.5時間で加熱して焼戻しを施した後、溝ロールを用いて所定の減面率まで温間圧延加工を施してひずみを付与し、空冷した。   First, about 40 mm square × 120 mm long square cut out from a hot-rolled steel sheet or forged material is subjected to quenching treatment in the heat treatment patterns 1, 2 and 3 to obtain a martensite single structure close to almost 100% by volume. It was. This corresponds to an example of the steel for warm working according to the present invention. The square was then heated to a predetermined temperature in 0.5 hours and tempered, and then subjected to warm rolling using a grooved roll to a predetermined area reduction rate to impart strain and air-cooled.

得られた鋼材の組織を、光学顕微鏡、透過型電子顕微鏡(TEM)、ならびにFE−SEMおよびEBSP分析装置を用い、圧延加工(RD)方向に平行な断面を研磨仕上げして観察した。旧オーステナイト粒径は、研磨面をピクリン酸アルコール水溶液で腐食して旧オーステナイト粒界を現出させ、JIS G 0552で規定されている比較法または切断法に準じて求めた。第2相分散粒子の平均粒子径は、TEMまたはSEMを用いて、1万倍から10万倍の倍率で3視野以上を観察し、合計で250個以上の粒子の長軸の長さを測定して求めた。なお、いくつかの粒子が合体凝集している場合は、それを1つの粒子と見なした。最大粒子径は、測定した炭化物の中で最も大きな炭化物の長軸の長さに対応させた。繊維組織における伸長粒の短軸および長軸の平均粒径は、EBSP解析によって、15°以上の結晶方位差を有する伸長結晶粒の短軸および長軸の平均切片長さを切断法で測定した(図5を参照)。   The structure of the obtained steel material was observed by polishing a cross section parallel to the rolling (RD) direction using an optical microscope, a transmission electron microscope (TEM), and an FE-SEM and EBSP analyzer. The prior austenite grain size was determined in accordance with a comparison method or cutting method defined in JIS G 0552 by corroding the polished surface with an aqueous picric acid alcohol solution to reveal prior austenite grain boundaries. The average particle size of the second phase dispersed particles is measured with three or more fields of view at a magnification of 10,000 to 100,000 times using TEM or SEM, and the major axis length of 250 or more particles in total is measured. And asked. When some particles were coalesced and aggregated, it was regarded as one particle. The maximum particle size was made to correspond to the length of the long axis of the largest carbide among the measured carbides. The average grain size of the short axis and long axis of the elongated grains in the fiber structure was measured by the cutting method by the EBSP analysis by measuring the average section length of the short axis and long axis of the elongated grains having a crystal orientation difference of 15 ° or more. (See FIG. 5).

得られた鋼材の硬さは、JIS Z 2244で規定されている試験方法に準じて、ビッカース硬さ試験機を用いて、荷重20kg、保持時間15sで測定した。   The hardness of the obtained steel material was measured at a load of 20 kg and a holding time of 15 s using a Vickers hardness tester in accordance with a test method defined in JIS Z 2244.

引張試験は、JIS Z 2241で規定されている試験方法に準じて、1)平行部直径3.5mm、長さ24.5mm、評点間距離17.5mm、または6mm、長さ42mm、評点間距離30mmのJIS14号A比例試験片、または2)平行部直径10mm、長さ45mm、評点間距離35mmのJIS4号サブサイズ試験片についてインストロン型引張試験機を用いて常温で行った。クロスヘッドスピードは、1)JIS14号A、2)JIS4号について、それぞれ0.5mm/minおよび10mm/minであり、伸びは、伸び計を試験片に装着して破断まで測定した。   The tensile test conforms to the test method specified in JIS Z 2241. 1) Parallel part diameter 3.5 mm, length 24.5 mm, distance between scores 17.5 mm, or 6 mm, length 42 mm, distance between scores A 30 mm JIS No. 14 A proportional test piece, or 2) a JIS No. 4 subsize test piece having a parallel part diameter of 10 mm, a length of 45 mm, and a distance between marks of 35 mm, was performed at room temperature using an Instron type tensile tester. The crosshead speeds of 1) JIS No. 14A and 2) JIS No. 4 were 0.5 mm / min and 10 mm / min, respectively, and the elongation was measured up to the breakage by attaching an extensometer to the test piece.

衝撃試験は、JIS Z 2242で規定されている試験方法に準じて、断面積が1.8cm2以上の鋼材から切削加工で作製した長さ55mm、高さと幅が10mmのUノッチまたはVノッチ試験片ついて行った。   The impact test is a U-notch or V-notch test piece having a length of 55 mm and a height and width of 10 mm produced by cutting a steel material having a cross-sectional area of 1.8 cm 2 or more in accordance with a test method defined in JIS Z 2242. I followed.

水素脆化特性は、直径10mm、切欠き底径6mm、応力集中係数4.9の切欠き試験片について、低ひずみ速度引張試験機を用いて0.005mm/minのクロスヘッドスピードで常温で評価した。水素脆化試験に際しては、チャージ液および電流密度を変化させた72時間の陰極チャージによって試験片中の平均水素量を変化させ、Cdめっきを施すことにより試験片中の水素が散逸しないようにしたうえで試験を行った。水素の分析は、Cdめっきを除去した試料について、四重極質量分析計を用いた昇温脱離水素分析法により行い、300℃までに放出される水素を拡散性水素と定義して求めた。   Hydrogen embrittlement characteristics were evaluated at room temperature at a crosshead speed of 0.005 mm / min using a low strain rate tensile tester for a notched specimen with a diameter of 10 mm, a notched bottom diameter of 6 mm, and a stress concentration factor of 4.9. did. In the hydrogen embrittlement test, the average amount of hydrogen in the test piece was changed by cathode charging for 72 hours with the charge liquid and current density changed, and Cd plating was applied to prevent the hydrogen in the test piece from being dissipated. The above test was conducted. Hydrogen analysis was performed on the sample from which Cd plating had been removed by a temperature programmed desorption hydrogen analysis method using a quadrupole mass spectrometer, and the hydrogen released up to 300 ° C. was defined as diffusible hydrogen. .

表4に、温間加工用鋼の製造条件と組織形態ならびに無加工材の焼入れおよび焼戻し条件とその硬さ、および本発明の温間加工用鋼としての適正を評価した結果をまとめた。   Table 4 summarizes the results of evaluating the manufacturing conditions and structure of the steel for warm working, the quenching and tempering conditions of the unprocessed material and their hardness, and the suitability as the warm working steel of the present invention.

図4は、T(logt+20)=λと無加工のままの焼戻マルテンサイト鋼の硬さの関係を示したものである。   FIG. 4 shows the relationship between T (logt + 20) = λ and the hardness of the tempered martensitic steel as it is.

比較材のL鋼では、セメンタイトの体積率が33×10-3であるものの、本発明で規定する合金元素が適切に含有されていないためにセメンタイトが熱的に安定でなく加熱によって容易に成長してしまう。よって、λ=1.4×104以上の焼戻処理では、L鋼の硬さは図中に破線で示したH=(5.2−1.2×10-4λ)未満となり、350℃以上の温間加工によってL鋼ではHV3.7×102を達成できない。 In the comparative steel L, the volume fraction of cementite is 33 × 10 −3 , but the cementite is not thermally stable because it does not contain the alloying elements specified in the present invention, and is easily grown by heating. Resulting in. Therefore, in the tempering treatment of λ = 1.4 × 10 4 or more, the hardness of the L steel is less than H = (5.2-1.2 × 10 −4 λ) indicated by a broken line in the figure, and 350 HV3.7 × 10 2 cannot be achieved with L steel by warm working above ℃.

図5は、I鋼を11.0×102℃でγ化後水冷し、5.0×102℃で1.5時間の焼戻処理を施した後、温間溝ロール加工して得られた材料の組織を解析した例を示す。なお、このとき付与された累積ひずみ量は2.4であり、硬さはHV3.7×102である。Bcc相のEBSP解析図(a)およびTEM写真(b)からわかるように、繊維状に伸長したフェライト相基地に球状の炭化物が分散した超微細繊維組織が得られている。EBSP解析によって、15°以上の結晶方位差を有する結晶粒の短軸の平均粒径を切断法で測定した結果(c)、伸長した結晶粒の短軸の平均粒径は、0.3μmであった。ただし、本鋼では繊維組織が複雑に発達しており長軸の平均粒径は測定できなかった。一方、TEMにより287個の炭化物の粒子径(長軸長さ)を測定した結果、炭化物の平均粒子径は、0.06μmおよび最大径は0.2μmであった(d)。 FIG. 5 shows the result of steel I being gamma-ized at 11.0 × 10 2 ° C., water-cooling, tempering at 5.0 × 10 2 ° C. for 1.5 hours, and then hot groove rolling. An example of analyzing the structure of the obtained material is shown. The accumulated strain applied at this time is 2.4, and the hardness is HV 3.7 × 10 2 . As can be seen from the EBSP analysis diagram (a) and the TEM photograph (b) of the Bcc phase, an ultrafine fiber structure in which spherical carbides are dispersed in the ferrite phase base elongated in a fibrous form is obtained. As a result of measuring the minor axis average grain size of the crystal grains having a crystal orientation difference of 15 ° or more by the EBSP analysis (c), the minor axis average grain diameter of the elongated crystal grains is 0.3 μm. there were. However, in this steel, the fiber structure was complicatedly developed, and the average particle diameter of the major axis could not be measured. On the other hand, as a result of measuring the particle diameter (major axis length) of 287 carbides by TEM, the average particle diameter of the carbides was 0.06 μm and the maximum diameter was 0.2 μm (d).

圧延方向(RD)に関する逆極点図から、<011>//RD集合組織が発達した繊維組織であることがわかる。なお、他の開発鋼についても同様の集合組織が形成されていた。Bcc鉄のへき開面は{100}であるため、このような<011>繊維組織の形成は繊維軸方向の引張変形や繊維方向に沿って曲げモーメントを受ける曲げ変形等による破壊には極めて有効であると考える。   From the inverse pole figure regarding the rolling direction (RD), it can be seen that the <011> // RD texture is a developed fiber structure. Similar textures were formed for other developed steels. Since the cleavage plane of Bcc iron is {100}, the formation of such <011> fiber structure is extremely effective for fracture due to tensile deformation in the fiber axis direction or bending deformation that receives a bending moment along the fiber direction. I think there is.

表5に、温間加工条件と、得られた温間加工材の組織および硬さの関係を示した。なお表中のTおよびtは、それぞれ、図1から3で示した加工温度と加工処理時間である。   Table 5 shows the relationship between warm working conditions and the structure and hardness of the obtained warm worked material. In the table, T and t are the processing temperature and processing time shown in FIGS. 1 to 3, respectively.

加工材の硬さは、焼戻軟化抵抗性に大きく依存し、同じλ=T(logt+20)で比較した場合には焼戻軟化抵抗性の大きい鋼ほどより高い硬さの加工材が得られる。特にHV4.0×102以上の加工材では基地組織が平均幅で0.5μm以下に超微細化されている。HV4.0×102以上の加工材では極めて細かい粒子が緻密に分散しているために平均炭化物粒子径を厳密に決定することはできなかったものの、図5のI鋼などの比較的粒子が大きいものと比較した場合、0.1μm未満であると判定できた。 The hardness of the work material greatly depends on the temper softening resistance. When compared with the same λ = T (logt + 20), a steel having a higher temper softening resistance can obtain a higher work material. In particular, in a processed material of HV 4.0 × 10 2 or more, the base structure is ultra-fine to an average width of 0.5 μm or less. In the processed material of HV 4.0 × 10 2 or more, since extremely fine particles are densely dispersed, the average carbide particle diameter could not be determined strictly, but relatively particles such as I steel in FIG. When compared with a larger one, it was possible to determine that it was less than 0.1 μm.

ただし、焼戻軟化抵抗性の高い温間加工用鋼であっても、例えば、700℃の高温域での加工では加工中に炭化物粒子等が容易に成長してしまうため、HV3.7×102以上の温間加工材を得ることが困難となる(比較例3、4、5、7)。したがって、このような高温域での加工では、例えば高周波加熱等を用いて炭化物等が成長しないように短時間の加熱と加工を組み合わせて行うことが望まれる。また、700℃付近の高温域での加工では粒成長も起こりやすくなるためアスペクトが小さい、比較的粒径の大きな結晶粒の割合が増加する。その結果、伸展度は小さくなる。例えば、比較例4、5、7では伸展度が、それぞれ、6、2、4と測定された。実施例については伸展度が測定できなかったものの、比較例7と組織の比較において伸展度は6以上と判定できた。 However, even in the case of steel for warm working with high resistance to temper softening, carbide particles and the like easily grow during processing in a high temperature region of 700 ° C., so that HV 3.7 × 10 It becomes difficult to obtain two or more warm processed materials (Comparative Examples 3, 4, 5, and 7). Therefore, it is desirable that processing in such a high temperature range be performed by combining heating and processing for a short time so that carbides and the like do not grow using high-frequency heating, for example. Further, in the processing in a high temperature region around 700 ° C., grain growth is likely to occur, so the proportion of crystal grains having a small aspect and a relatively large grain size increases. As a result, the degree of extension becomes small. For example, in Comparative Examples 4, 5, and 7, the degree of extension was measured as 6, 2, and 4, respectively. Although the degree of extension could not be measured for the examples, the degree of extension could be determined to be 6 or more in comparison between Comparative Example 7 and the tissue.

表6および表7に、機械的性質について実施例および比較例をまとめた。なお、表においてUE、VEはそれぞれUノッチ、Vノッチ試験片の吸収エネルギーである。   Tables 6 and 7 summarize examples and comparative examples of mechanical properties. In the table, UE and VE are absorbed energy of U-notch and V-notch test pieces, respectively.

ここで示す組成の鋼は、温間加工用鋼として第2相分散粒子が微細に分散するように適切な合金設計と熱処理が図られたものであり、比較例の無加工鋼であっても16以上の引張強さ×全伸びバランスを示す。ただし、同じ組成で比較した場合では、比較例よりも温間加工を施した開発鋼でより大きな引張強さ×全伸びバランスが得られている。また、0.2mass%程度の炭素の添加であってもMoなどの合金元素を適切に配合すれば焼入れ硬さとほぼ同じ程度の1.5GPa超級が得られ、しかも延性に優れることは注目される(A,D,E鋼)。さらにO鋼では2GPa級の超高強度鋼が得られた。   The steel having the composition shown here is a steel for warm working that has been subjected to appropriate alloy design and heat treatment so that the second phase dispersed particles are finely dispersed. 16 or more tensile strength x total elongation balance. However, when compared with the same composition, a larger tensile strength × total elongation balance is obtained with the developed steel subjected to warm working than the comparative example. Moreover, even when carbon of about 0.2 mass% is added, if an alloying element such as Mo is appropriately blended, it is noticed that a 1.5 GPa grade almost equal to the quenching hardness can be obtained, and that the ductility is excellent. (A, D, E steel). Furthermore, as for the O steel, a 2GPa grade ultra high strength steel was obtained.

一方、衝撃吸収エネルギーから開発鋼は低温度域まで従来の高強度鋼よりもはるかに優れた靱性を有することがわかる。   On the other hand, it can be seen from the shock absorption energy that the developed steel has much better toughness than conventional high-strength steels up to low temperatures.

図6に、引張強さと室温での衝撃値(Uノッチ試験片)の関係をまとめた。なお、図中にはJISで規格されている機械構造用鋼のデータ(新日本鋳鍛造協会:現場用機械構造用鋼材料データシート集(1995))も示した。 従来鋼では、1.2GPa以上の強度域では衝撃値が大幅に低下し、1.5GPa以上の強度では70J/cm2以下であるのに対し、本発明鋼では特に1.5GPa以上の強度でも150J/cm2以上の極めて高い衝撃値を示す。 FIG. 6 summarizes the relationship between the tensile strength and the impact value at room temperature (U-notch test piece). In addition, the data of the steel for machine structural standards (New Japan Casting Forging Association: collection of steel materials for machine structural materials for field use (1995)) standardized by JIS are also shown in the figure. In the conventional steel, the impact value is significantly reduced in the strength range of 1.2 GPa or more, and in the strength of 1.5 GPa or more, it is 70 J / cm 2 or less, whereas in the steel of the present invention, even in the strength of 1.5 GPa or more. An extremely high impact value of 150 J / cm 2 or more is exhibited.

図7に、引張強さと室温での吸収エネルギー(Vノッチ試験片)の関係をまとめた。なお、図中にはJISで規格されている機械構造用鋼のデータ(金材技研疲労データシート資料5)も示した。本発明は、従来のオースフォームド鋼、微細粒鋼、マルエージング鋼などと比べても高強度領域で靭性に優れている。   FIG. 7 summarizes the relationship between tensile strength and absorbed energy at room temperature (V-notch test piece). In the figure, data for steel for machine structural use as defined by JIS (Kinki Giken Fatigue Data Sheet Material 5) is also shown. The present invention is excellent in toughness in a high strength region as compared with conventional ausformed steel, fine grain steel, maraging steel and the like.

図8に、試験温度と吸収エネルギーの関係を示した。例えば、実施例1と比較例8および実施例3、5と比較例10から、加工処理によって吸収エネルギーの高い材料が得られることが確認できる。特に開発鋼では室温付近の吸収エネルギーが比較鋼よりも高いだけでなく低温域で最高値を示して下がるような特異な温度依存性を示すものもあることは注目される。例えば、実施例1のA鋼や実施例3のB鋼では−40℃付近、実施例11のF鋼では−100℃付近にピークが認められ、ピーク温度域では一部未破断のものも存在した。そしてこのような開発鋼では、図9に示したように、破面が竹を折ったときのような繊維状を呈しているのが特徴的である。これと類似の現象はオースフォームした0.2mass%C−3mass%Ni−3%Mo鋼(引張強さ;1.6GPa)を200℃付近で試験したときに認められているが、常温近傍の吸収エネルギーは33J程度にまで低下している(非特許文献16)。また、0.5mass%C−0.9mass%Mn−0.8mass%Cr鋼(5150鋼)の改良オースフォーム処理で得られた鋼でも衝撃試験した場合には繊維状の破壊が起こり靱性の改善が認められているが、常温での最大の吸収エネルギーは1.5GPaの強度レベルで90J程度である(非特許文献17)。したがって、1.2GPa以上の引張強さにおいて、本開発鋼のように常温近傍の吸収エネルギーが既存のオースフォーム度鋼よりもはるかに高いことに加えて、−40℃以下の低温域で吸収エネルギーが最高値を示すことは過去に無い特筆すべき知見である。   FIG. 8 shows the relationship between test temperature and absorbed energy. For example, from Example 1, Comparative Example 8, Examples 3, 5, and Comparative Example 10, it can be confirmed that a material having high absorbed energy can be obtained by processing. In particular, it is noteworthy that some developed steels exhibit not only higher absorption energy near room temperature, but also a unique temperature dependence that shows a maximum value in the low temperature range. For example, in steel A of Example 1 and steel B of Example 3, a peak is observed at around −40 ° C., and in steel F of Example 11, a peak of around −100 ° C. is observed, and there are some unbroken parts in the peak temperature range. did. As shown in FIG. 9, the developed steel is characteristic in that it has a fiber shape as if the fracture surface is a bamboo fold. A similar phenomenon is observed when an ausformed 0.2 mass% C-3 mass% Ni-3% Mo steel (tensile strength: 1.6 GPa) is tested at around 200 ° C. The absorbed energy is reduced to about 33J (Non-patent Document 16). In addition, even when a steel obtained by modified ausfoam treatment of 0.5 mass% C-0.9 mass% Mn-0.8 mass% Cr steel (5150 steel) is subjected to an impact test, fibrous fracture occurs and the toughness is improved. However, the maximum absorbed energy at room temperature is about 90 J at an intensity level of 1.5 GPa (Non-patent Document 17). Therefore, in the tensile strength of 1.2 GPa or more, the absorbed energy near normal temperature is much higher than that of the existing ausfoam steel as in the newly developed steel, and the absorbed energy in the low temperature range of -40 ° C or lower. It is a notable finding that has the highest value.

以上のように優れた開発鋼の機械的特性、特に高い衝撃特性は、粒子分散型複相組織の温間加工により緻密に発達した超微細な<011>繊維組織に大きく起因している。   As described above, the mechanical properties, particularly high impact properties, of the excellent developed steel are largely attributed to the ultrafine <011> fiber structure that has been densely developed by warm working of the particle-dispersed multiphase structure.

図10に、温間加工材の硬さと時効温度の関係を示した。Moなどの2次硬化元素を添加した温間加工材では、時効処理により高い温度まで硬さを維持または温間加工ままよりも強度を高めることも可能である。   FIG. 10 shows the relationship between the hardness of the warm processed material and the aging temperature. In a warm processed material to which a secondary hardening element such as Mo is added, it is possible to maintain the hardness up to a high temperature by aging treatment or to increase the strength as compared with the warm processing.

図11に、N鋼の650℃での温間圧延で板材の中心部に形成された超微細繊維組織をSEMで観察した例を示した。   FIG. 11 shows an example in which the ultrafine fiber structure formed in the center of the plate material by warm rolling of N steel at 650 ° C. is observed by SEM.

図12に、局所的に強変形された棒材の表層部に形成された超微細繊維組織をSEMで観察した例を示した。   FIG. 12 shows an example in which an ultrafine fiber structure formed in the surface layer portion of a bar material that is locally strongly deformed is observed with an SEM.

表8に、耐水素脆化特性試験の結果を示した。   Table 8 shows the results of the hydrogen embrittlement resistance test.

ここでは約0.3mass ppmの水素量をチャージした鋼の切欠引張試験を行い、そのときの切欠引張強さが水素をチャージしていない平滑引張試験片の引張強さの0.7倍以上か否かで耐水素脆化特性を評価した。   Here, a notched tensile test is performed on a steel charged with a hydrogen amount of about 0.3 mass ppm, and the notched tensile strength at that time is 0.7 times the tensile strength of a smooth tensile test piece not charged with hydrogen. The hydrogen embrittlement resistance was evaluated based on the result.

開発鋼は引張強さが1.6GPa以上の高強度レベルでも本条件を満足し、耐水素脆化特性に優れるものと判断できる。なお、比較例14は、特願2001−264399で発明した遅れ破壊に優れた高強度機械構造用鋼である。   The developed steel satisfies this condition even at a high strength level with a tensile strength of 1.6 GPa or more, and can be judged to be excellent in hydrogen embrittlement resistance. In addition, the comparative example 14 is the steel for high-strength mechanical structure excellent in the delayed fracture invented in Japanese Patent Application No. 2001-264399.

少量の第2相分散粒子の微細分散によって複相化を図った高強度鋼、とりわけ軟質化が困難で難成形の超高強度鋼に対しても、変形抵抗が低下してかつ材料中に割れが生じない温度域で所定の変形を与えて所定の形状(薄板、厚板、棒線、部品)に成形することで、従来の球状化焼きなましや部品成形後の焼入れおよび焼戻し処理を省略すると同時に超微細複相組織を繊維状に発達させて高強度とトレードオフバランスの関係にある延性、特に靱性や耐水素脆化特性を大幅に向上させた高強度鋼および部材を提供する。   Even for high-strength steels that have been made into a multi-phase by fine dispersion of a small amount of second-phase dispersed particles, especially ultra-high-strength steels that are difficult to soften and difficult to form, deformation resistance is reduced and cracks occur in the material By applying a predetermined deformation in a temperature range that does not cause molding into a predetermined shape (thin plate, thick plate, bar wire, part), the conventional spheroidizing annealing and quenching and tempering processes after forming the part are omitted. Provided is a high-strength steel and a member in which an ultrafine multiphase structure is developed into a fibrous shape, and ductility having a trade-off balance with high strength, particularly toughness and hydrogen embrittlement resistance are greatly improved.

これらは、各種の構造物や自動車の部品等に加工して使用される鋼または部材として有用なものである。   These are useful as steels or members that are processed into various structures and automobile parts.

図1は、加工熱処理パターンの一例を示した図である。FIG. 1 is a diagram showing an example of a heat treatment pattern. 図2は、加工熱処理パターンの一例を示した図である。FIG. 2 is a diagram showing an example of a heat treatment pattern. 図3は、加工熱処理パターンの一例を示した図である。FIG. 3 is a view showing an example of the heat treatment pattern. 図4は、焼戻硬さとT(logt+20)=λの関係を例示した図であり、Tは焼戻温度(K)、tは焼戻時間(hr)である。FIG. 4 is a diagram illustrating the relationship between tempering hardness and T (logt + 20) = λ, where T is a tempering temperature (K) and t is a tempering time (hr). 図5は、500℃温間加工組織(超微細繊維組織)を例示した図である。FIG. 5 is a diagram illustrating a 500 ° C. warm-worked structure (ultrafine fiber structure). 図6は、引張強さと衝撃値(Uノッチ)との関係を例示した図である。FIG. 6 is a diagram illustrating the relationship between tensile strength and impact value (U notch). 図7は、引張強さと吸収エネルギー(Vノッチ)との関係を例示した図である。FIG. 7 is a diagram illustrating the relationship between tensile strength and absorbed energy (V notch). 図8は、吸収エネルギーと試験温度との関係を例示した図である。FIG. 8 is a diagram illustrating the relationship between absorbed energy and test temperature. 図9は、シャルピー衝撃試験(Uノッチ)したB鋼の破壊形態の一例を示した写真図である。FIG. 9 is a photographic view showing an example of a fracture form of B steel subjected to Charpy impact test (U notch). 図10は、温間加工材の硬さと時効温度の関係を例示した図である。FIG. 10 is a diagram illustrating the relationship between the hardness of the warm processed material and the aging temperature. 図11は、板材の中心部に形成された超微細繊維組織を例示した図である。FIG. 11 is a diagram illustrating an ultrafine fiber structure formed in the center of the plate material. 図12は、棒材の表層部に形成された超微細繊維組織を例示した図である。FIG. 12 is a diagram illustrating an ultrafine fiber structure formed in the surface layer portion of the bar.

Claims (13)

化学組成が、
C:0.70mass%以下、
Si:0.05mass%以上2.5mass%以下、
Mn:0.05mass%以上3.0mass%以下、
Cr:0.01mass%以上2.01mass%以下、
Al:0.5mass%以下、
O:0.3mass%以下、
N:0.3mass%以下、
Mo:0.002mass%以上5.0mass%以下、
残部はFeおよび不可避的不純物である鋼材であって、
前記鋼材は<011>//RD(圧延方向)集合組織を呈する粒子分散型繊維状結晶粒組織からなり、基地組織を成す繊維状フェライト結晶の短軸の平均粒径が3μm以下で、第2相粒子が7×10−3以上12×10−2以下の体積率で基地組織内に微細に分散され、鋼材の室温におけるビッカース硬さがHV3.7×10以上であることを特徴とする鋼材。
The chemical composition is
C: 0.70 mass% or less,
Si: 0.05 mass% or more and 2.5 mass% or less,
Mn: 0.05 mass% or more and 3.0 mass% or less,
Cr: 0.01 mass% or more and 2.01 mass% or less,
Al: 0.5 mass% or less,
O: 0.3 mass% or less,
N: 0.3 mass% or less,
Mo: 0.002 mass% or more and 5.0 mass% or less,
The balance is steel that is Fe and inevitable impurities,
The steel material is composed of a particle-dispersed fibrous crystal grain structure exhibiting a <011> // RD (rolling direction) texture, and the average grain diameter of the short axis of the fibrous ferrite crystal forming the base structure is 3 μm or less. The phase particles are finely dispersed in the matrix structure at a volume ratio of 7 × 10 −3 or more and 12 × 10 −2 or less, and the Vickers hardness of the steel material at room temperature is HV3.7 × 10 2 or more. Steel material.
請求項1に記載の鋼材において、前記基地組織は、短軸の平均粒径が1μm以下の繊維状フェライト結晶からなることを特徴とする鋼材。   2. The steel material according to claim 1, wherein the base structure is made of a fibrous ferrite crystal having a minor axis average particle diameter of 1 μm or less. 請求項1または2に記載の鋼材において、前記基地組織は、短軸の平均粒径が0.5μm以下の繊維状フェライト結晶からなることを特徴とする鋼材。   3. The steel material according to claim 1, wherein the base structure is made of a fibrous ferrite crystal having a minor axis average particle diameter of 0.5 μm or less. 請求項1ないし3のいずれかに1項に記載の鋼材において、第2相分散粒子の長軸の平均粒径が0.1μm以下であることを特徴とする鋼材。   The steel material according to any one of claims 1 to 3, wherein the average particle diameter of the major axis of the second phase dispersed particles is 0.1 µm or less. 請求項1ないし4のいずれかに1項に記載の鋼材であって、
W:5.0mass%以下、
V:5.0mass%以下、
Ti:3.0mass%以下、
Nb:1.0mass%以下、
Ta:1.0mass%以下
から成る群より選ばれる1種または2種以上をさらに含有することを特徴とする鋼材。
The steel material according to any one of claims 1 to 4 ,
W: 5.0 mass% or less,
V: 5.0 mass% or less,
Ti: 3.0 mass% or less,
Nb: 1.0 mass% or less,
Ta: Steel material characterized by further containing one or more selected from the group consisting of 1.0 mass% or less.
請求項1ないし5のいずれかに1項に記載の鋼材であって、
Ni:0.05mass%以上9mass%以下
Cu:2.0mass%以下
の1種または2種をさらに含有することを特徴とする鋼材。
The steel material according to any one of claims 1 to 5 ,
Ni: 0.05 mass% or more and 9 mass% or less ,
Cu: Steel material characterized by further containing 1 type or 2 types of 2.0 mass% or less.
温間加工により請求項1からのいずれか1項に記載の鋼材を創製するための温間加工用鋼であって、350℃以上Ac1点以下の所定の温度域において下記式(1)で表されるパラメーターλが1.4×10以上となる条件で焼鈍、焼戻しまたは時効処理のうちのいずれか一方の熱処理を施すことにより第2相粒子を生成し、この熱処理後における室温での第2相粒子の体積率が7×10−3以上12×10−2以下で、かつ鋼材のビッカース硬さ(HV)が下記式(2)の硬さH以上であることを特徴とする温間加工用鋼。
λ=T(logt+20)(T;温度(K)、t;時間(hr))・・・(1)
H=(5.2−1.2×10−4λ)×10・・・(2)
It is steel for warm processing for creating the steel materials of any one of Claim 1 to 6 by warm processing, Comprising: In the predetermined temperature range of 350 degreeC or more and Ac1 point or less, following formula (1) The second phase particles are generated by performing heat treatment of any one of annealing , tempering, or aging treatment under the condition that the parameter λ represented is 1.4 × 10 4 or more, and at room temperature after this heat treatment, The volume ratio of the second phase particles is 7 × 10 −3 or more and 12 × 10 −2 or less, and the Vickers hardness (HV) of the steel material is a hardness H or more of the following formula (2). Inter-working steel.
λ = T (logt + 20) (T; temperature (K), t; time (hr)) (1)
H = (5.2-1.2 × 10 −4 λ) × 10 2 (2)
請求項に記載の温間加工用鋼において、基地組織の80体積%以上がマルテンサイトとベイナイトのいずれか単独組織、またはこれらの混合組織であることを特徴とする温間加工用鋼。 The warm-working steel according to claim 7 , wherein 80% by volume or more of the base structure is a single structure of martensite or bainite, or a mixed structure thereof. 請求項7又は8に記載の温間加工用鋼を温間加工して得られた鋼製板材であって、少なくともその表層部に請求項1から6のいずれか1項に記載の粒子分散型繊維状結晶組織が生成さていることを特徴とする鋼製板材。 A steel plate material obtained by warm-working the warm-working steel according to claim 7 or 8 , wherein at least the surface layer portion has a particle-dispersed type according to any one of claims 1 to 6. A steel plate material in which a fibrous crystal structure is generated. 請求項7又は8に記載の温間加工用鋼を温間加工して得られた鋼製棒材であって、少なくともその表層部に請求項1から6のいずれか1項に記載の粒子分散型繊維状結晶組織が生成されていることを特徴とする鋼製棒材。 A steel rod obtained by warm-working the warm-working steel according to claim 7 or 8 , wherein the particle dispersion according to any one of claims 1 to 6 is at least on a surface layer portion thereof. A steel bar characterized in that a type fibrous crystal structure is generated. 請求項7又は8に記載の温間加工用鋼を温間加工して得られた鋼製ボルトであって、少なくともネジ部の表層部に請求項1から6のいずれか1項に記載の粒子分散型繊維状結晶組織が生成されていることを特徴とする鋼製ボルト。 A steel bolt obtained by warm-working the warm-working steel according to claim 7 or 8 , wherein the particles according to any one of claims 1 to 6 are at least on a surface layer portion of a screw portion. A steel bolt, wherein a dispersed fibrous crystal structure is generated. 請求項1ないし何れかの1項に記載の鋼材、請求項に記載の鋼製板材、請求項10に記載の鋼製棒材、又は請求項11に記載の鋼製ボルトを製造する方法であって、請求項7又は8に記載の温間加工用鋼を350℃以上Ac1点以下の所定の温度域において下記式(1)で表されるパラメータλが1.4×10以上となる条件で、かつ0.7以上の歪みで温間加工して所定の形状とすることを特徴とする温間加工方法。

λ=T(logt+20)(T;温度(K)、t;時間(hr))・・・(1)
A method for producing the steel material according to any one of claims 1 to 6 , the steel plate material according to claim 9 , the steel bar material according to claim 10 , or the steel bolt according to claim 11. In the warm working steel according to claim 7 or 8 , the parameter λ represented by the following formula (1) is 1.4 × 10 4 or more in a predetermined temperature range of 350 ° C. or more and Ac1 point or less. A warm working method characterized in that a predetermined shape is obtained by warm working with a strain of 0.7 or more under the following conditions.

λ = T (logt + 20) (T; temperature (K), t; time (hr)) (1)
鋼材を切削加工した鋼加工品であって、前記鋼材が、請求項1ないし何れかの1項に記載の鋼材、請求項に記載の鋼製板材、請求項10に記載の鋼製棒材、又は請求項11に記載の鋼製ボルトのいずれかであることを特徴する鋼加工品。 A steel product obtained by cutting a steel material, wherein the steel material is a steel material according to any one of claims 1 to 6 , a steel plate material according to claim 9 , and a steel rod according to claim 10. A steel processed product characterized by being either a material or a steel bolt according to claim 11 .
JP2007545344A 2005-11-21 2006-11-21 Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby Expired - Fee Related JP5344454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007545344A JP5344454B2 (en) 2005-11-21 2006-11-21 Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005336331 2005-11-21
JP2005336331 2005-11-21
PCT/JP2006/323248 WO2007058364A1 (en) 2005-11-21 2006-11-21 Steel for warm working, method of warm working of the steel, and steel material and steel part obtained by the same
JP2007545344A JP5344454B2 (en) 2005-11-21 2006-11-21 Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby

Publications (2)

Publication Number Publication Date
JPWO2007058364A1 JPWO2007058364A1 (en) 2009-05-07
JP5344454B2 true JP5344454B2 (en) 2013-11-20

Family

ID=38048742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007545344A Expired - Fee Related JP5344454B2 (en) 2005-11-21 2006-11-21 Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby

Country Status (4)

Country Link
US (1) US20090277539A1 (en)
EP (1) EP1956100B1 (en)
JP (1) JP5344454B2 (en)
WO (1) WO2007058364A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084784A (en) * 2009-10-16 2011-04-28 National Institute For Materials Science Steel to be worm-worked

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052442A1 (en) * 2008-03-25 2011-03-03 Aktiebolaget Skf Bearing component
WO2009126954A2 (en) 2008-04-11 2009-10-15 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US10351922B2 (en) 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
CN102165086B (en) * 2008-07-24 2017-02-08 Crs 控股公司 high strength, high toughness steel alloy
US20110165011A1 (en) * 2008-07-24 2011-07-07 Novotny Paul M High strength, high toughness steel alloy
WO2010098172A1 (en) * 2009-02-25 2010-09-02 独立行政法人産業技術総合研究所 Hydrogen fatigue resistant ferrite steel and manufacturing method thereof
GB2471259B (en) * 2009-03-27 2011-10-26 Rolls Royce Plc An alloy and a method of making an alloy
JP5334769B2 (en) * 2009-09-10 2013-11-06 独立行政法人物質・材料研究機構 High strength bolt
JP5676146B2 (en) 2010-05-25 2015-02-25 株式会社リケン Pressure ring and manufacturing method thereof
DE102011009443B3 (en) * 2011-01-26 2012-03-29 Daimler Ag Wire-shaped spray material
JP5064590B1 (en) * 2011-08-11 2012-10-31 日本発條株式会社 Compression coil spring and method of manufacturing the same
JP5304924B2 (en) * 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
EP2823905B2 (en) * 2012-03-06 2020-03-25 JFE Steel Corporation Warm press forming method and automobile frame component
DE102012006941B4 (en) * 2012-03-30 2013-10-17 Salzgitter Flachstahl Gmbh Method for producing a steel component by hot forming
DE102012221607A1 (en) * 2012-11-27 2014-05-28 Robert Bosch Gmbh Metallic material
RU2532785C1 (en) * 2013-05-17 2014-11-10 Открытое акционерное общество "НПО Энергомаш имени академика В.П. Глушко" Corrosion-resistant martensite ageing steel
JP6327737B2 (en) 2013-07-09 2018-05-23 国立研究開発法人物質・材料研究機構 Martensitic steel and manufacturing method thereof
JP6422176B2 (en) * 2014-08-29 2018-11-14 日産自動車株式会社 Steel for high-strength bolts and high-strength bolts
BR112017007685B1 (en) * 2014-10-17 2021-05-11 Nippon Steel Corporation laminated steel material for fracture split connecting rod
DE102015113058A1 (en) * 2015-08-07 2017-02-09 Böhler Edelstahl GmbH & Co. KG Method for producing a tool steel
US10344345B2 (en) * 2015-10-02 2019-07-09 Daido Steel Co., Ltd. Part obtained from age hardening type bainitic microalloyed steel, process for producing part, and age hardening type bainitic microalloyed steel
US11053562B2 (en) * 2015-10-30 2021-07-06 Hitachi, Ltd. Dispersion strengthened austenitic stainless steel article, method for manufacturing same and product made of same
US11065396B2 (en) * 2016-04-21 2021-07-20 Novo Nordisk A/S Method of producing needle cannula with reduced end portion by electrochemical etching
CN106048151A (en) * 2016-07-20 2016-10-26 柳州科尔特锻造机械有限公司 Tempering deformation treatment method for low-carbon microalloyed steel
CN106048150A (en) * 2016-07-20 2016-10-26 柳州科尔特锻造机械有限公司 Tempering deformation technology for low-carbon micro-alloy steel containing trace of vanadium element
CN107138660B (en) * 2017-06-28 2018-08-07 武汉理工大学 A kind of high-carbon-chromium bearing steel warm-rolling loop forming method for realizing tissue nodularization
CN107587079B (en) * 2017-10-26 2019-05-14 山东汽车弹簧厂淄博有限公司 Nitrogenous microalloying spring steel and preparation method thereof
CN108176954A (en) * 2017-12-15 2018-06-19 浙江天力机车部件有限公司 The forming technology of fastener
JP7406762B2 (en) * 2018-02-20 2023-12-28 兵庫県公立大学法人 High strength, high ductility fine martensitic structure steel and manufacturing method thereof
RU2686706C1 (en) * 2018-06-01 2019-04-30 Общество с ограниченной отвественностью "Лаборатория специальной металлургии" (ООО "Ласмет") Martensite high-strength steel 01h18k9m5t
WO2024043080A1 (en) * 2022-08-24 2024-02-29 日鉄ステンレス株式会社 Austenitic stainless steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192860A (en) * 1997-09-22 1999-04-06 Natl Res Inst For Metals Steel having ultrafine ferritic structure
JPH11315342A (en) * 1998-03-04 1999-11-16 Natl Res Inst For Metals Steel with structure composed essentially of fine ferrite, and its manufacture

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1785786A (en) * 1928-03-26 1930-12-23 Paterson Alexander Method of rolling and annealing sheet metal
US3228808A (en) * 1963-01-28 1966-01-11 Edward J Ripling Toughening high strength steel by warm working
JPS6137339A (en) * 1984-07-30 1986-02-22 Minebea Kk Fatigue-resistant bolt and its production
US4619714A (en) * 1984-08-06 1986-10-28 The Regents Of The University Of California Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
JPS6487746A (en) * 1987-06-19 1989-03-31 Kobe Steel Ltd Ultra-high-strength extra fine wire
EP0678589B1 (en) * 1994-04-18 1999-07-14 Daido Hoxan Inc. Method of carburizing austenitic metal
JP3436867B2 (en) * 1997-08-29 2003-08-18 新日本製鐵株式会社 Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
KR100536828B1 (en) * 1997-09-22 2006-02-28 카가쿠기쥬쯔죠 킨조쿠자이료 기쥬쯔켄큐죠 Grain steel based on fine-ferrite and method thereof
JPH11158590A (en) * 1997-11-28 1999-06-15 Kawasaki Steel Corp Silicon steel sheet excellent in magnetic property and its production
JP3595901B2 (en) * 1998-10-01 2004-12-02 鈴木金属工業株式会社 High strength steel wire for spring and manufacturing method thereof
JP4043754B2 (en) * 2001-10-25 2008-02-06 新日本製鐵株式会社 High strength PC steel bar with excellent delayed fracture characteristics
US7220325B2 (en) * 2002-04-03 2007-05-22 Ipsco Enterprises, Inc. High-strength micro-alloy steel
JP2004244680A (en) * 2003-02-14 2004-09-02 Nippon Steel Corp Hot rolled steel plate with excellent scale adhesion, and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192860A (en) * 1997-09-22 1999-04-06 Natl Res Inst For Metals Steel having ultrafine ferritic structure
JPH11315342A (en) * 1998-03-04 1999-11-16 Natl Res Inst For Metals Steel with structure composed essentially of fine ferrite, and its manufacture

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN4007010998; 林透他: '温間加工による超微細等軸フェライト高強度鋼の開発' 日本機械学会年次大会講演論文集 , 19990726, p.261-262, 日本機械学会 *
JPN4007010999; 林透他: '超微細フェライト組織の等軸化に及ぼす温間加工パス間での変形方向変化度の影響' 第47回日本熱処理技術協会講演大会講演概要集 , 199812, p.35-36, 日本熱処理技術協会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084784A (en) * 2009-10-16 2011-04-28 National Institute For Materials Science Steel to be worm-worked

Also Published As

Publication number Publication date
EP1956100A1 (en) 2008-08-13
WO2007058364A1 (en) 2007-05-24
EP1956100B1 (en) 2019-04-24
JPWO2007058364A1 (en) 2009-05-07
EP1956100A4 (en) 2011-11-09
US20090277539A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5344454B2 (en) Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby
AU2021226961B2 (en) Steel with controlled yield ratio and Manufacturing Method therefor
US7754030B2 (en) High strength steel sheet and method for production thereof
EP2735623B1 (en) High-strength steel sheet for warm forming and process for producing same
JP4268079B2 (en) Ultra-high strength steel sheet having excellent elongation and hydrogen embrittlement resistance, method for producing the same, and method for producing ultra-high strength press-formed parts using the ultra-high strength steel sheet
US8177924B2 (en) High-strength steel sheet and process for producing the same
US8926768B2 (en) High-strength and high-ductility steel for spring, method for producing same, and spring
WO2009110607A1 (en) Cold-rolled steel sheets
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP2005336526A (en) High strength steel sheet having excellent workability and its production method
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2005179703A (en) High strength steel sheet having excellent elongation and stretch-flange formability
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
WO2013146214A1 (en) Steel for spring and method for producing same, and spring
JP2000144306A (en) Medium-high carbon steel excellent in cold forgeability
EP3868909A1 (en) Thin steel sheet and method for manufacturing same
JP5747243B2 (en) Warm working steel
CN106929756B (en) Bearing steel and preparation method thereof
WO2021172298A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172299A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172297A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
CN113322414A (en) High-plasticity steel and preparation method thereof
JP6119894B2 (en) High strength steel plate with excellent workability
WO2011039885A1 (en) Cold-rolled steel sheet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130807

R150 Certificate of patent or registration of utility model

Ref document number: 5344454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees