JPS6137339A - Fatigue-resistant bolt and its production - Google Patents

Fatigue-resistant bolt and its production

Info

Publication number
JPS6137339A
JPS6137339A JP15996184A JP15996184A JPS6137339A JP S6137339 A JPS6137339 A JP S6137339A JP 15996184 A JP15996184 A JP 15996184A JP 15996184 A JP15996184 A JP 15996184A JP S6137339 A JPS6137339 A JP S6137339A
Authority
JP
Japan
Prior art keywords
bolt
rolling
fatigue
blank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15996184A
Other languages
Japanese (ja)
Other versions
JPH0462818B2 (en
Inventor
Akira Masuda
益田 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP15996184A priority Critical patent/JPS6137339A/en
Publication of JPS6137339A publication Critical patent/JPS6137339A/en
Publication of JPH0462818B2 publication Critical patent/JPH0462818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling

Abstract

PURPOSE:To increase the surface hardness and hardening depth of a screw bottom and to obtain a fatigue-resistant bolt by improving the conditions for rolling the bolt consisting of a middle-carbon steel or low-alloy steel. CONSTITUTION:A bolt blank 1 is formed by using the middle-carbon steel or low-alloy steel as a blank material. The blank is then subjected to a heat treatment for hardening and tempering and is heated to a 250-350 deg.C range. The blank is thereafter subjected to thread rolling under the conditions of >=6m/sec biting speed of rolling dies right after the heating. The bolt 4 obtd. in the above- described manner has >=0.075 ratio of the surface hardened layer thickness with respect to 1/2 root diameter and >=1.15 increase rate of the surface hardness with respect to the axial center. The fatigue strength of the bolt is thus remarkably improved and the bolt 4 having excellent thread accuracy is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ねじ転造により中炭素鋼または低合金鋼ボル
トを製造する方法、よシ詳しくは転造方法に工夫をなす
ことにより疲れ強さの可及的向上を図った耐疲労ボルト
およびその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for manufacturing medium carbon steel or low alloy steel bolts by thread rolling, and more specifically, a method for manufacturing medium carbon steel or low alloy steel bolts by thread rolling. The present invention relates to a fatigue-resistant bolt with improved strength as much as possible and a method for manufacturing the same.

(従来の技術) 中炭素鋼または低合金を使用するボルトは。(Conventional technology) Bolts using medium carbon steel or low alloys.

熱処理層の冷間ねじ転造によって疲れ強さの増大するこ
とが良く知られている。これはねじ転造によってねじ底
に圧縮残留応力が生じ、かつ表面硬化層が生じるためと
されている。この内。
It is well known that cold thread rolling of heat-treated layers increases fatigue strength. This is said to be because compressive residual stress is generated at the thread bottom due to thread rolling, and a hardened surface layer is formed. Of this.

表面硬化層は表面硬さと硬化深さが関与するもので、い
ま、表面硬さと軸心との硬度差に関係する表面硬化係数
をに、ボルトの谷径をdr、硬化深さをtrとすると、
鋼ボルトの疲れ強さの増大率H(表面硬化したボルトの
疲れ強さ7表面硬化のないボルトの疲れ強さ)との間に
近似的に次式の関係が成立することが矧られている。
The surface hardening layer is related to the surface hardness and hardening depth, and if the surface hardening coefficient, which is related to the difference in hardness between the surface hardness and the shaft center, is dr, the root diameter of the bolt is dr, and the hardening depth is tr, then ,
It is assumed that the following relationship approximately holds true between the fatigue strength increase rate H of steel bolts (fatigue strength of surface hardened bolts 7 fatigue strength of bolts without surface hardening) .

したがって、鋼ボルトの疲れ強さを向上させるには、上
式の表面硬化係数にと硬化深さtrを増大すれば良いこ
とが分かる。
Therefore, it can be seen that in order to improve the fatigue strength of a steel bolt, it is sufficient to increase the surface hardening coefficient in the above formula and the hardening depth tr.

(発明が解決しようとする問題点) しかしながら、従来の冷間転造法によるボルトのJA造
では、上記表面硬化係数にと硬化深さtrの増大に一定
の限界があシ、このため中炭素鋼または低合金鋼を使用
するボルトの疲れ強さを思うように上げ得ない現状にあ
った。
(Problems to be Solved by the Invention) However, in JA construction of bolts using the conventional cold rolling method, there is a certain limit to the increase in the surface hardening coefficient and the hardening depth tr. The current situation was that it was not possible to increase the fatigue strength of bolts made of steel or low-alloy steel as desired.

本発明は上記現状に鑑み、転造方法に工夫をなし、よシ
耐疲労性に優れたボルトを得ようとするものである。
In view of the above-mentioned current situation, the present invention attempts to improve the rolling method and obtain a bolt with excellent fatigue resistance.

(問題点を解決するための手段) このため、本発明は、中炭素鋼または低合金鋼を素材に
ボルト素形品を形成し、次いで焼入れ焼もどしの熱処理
を行い、しかる后に250〜350℃の温度範囲に加熱
し、その直属に転造ダイスの食い込み速度6 trrm
 / see以上の条件下でねじ転造を行うようにした
(Means for Solving the Problems) Therefore, the present invention involves forming a bolt preform from medium carbon steel or low alloy steel, then subjecting it to quenching and tempering heat treatment, and then heating it to a temperature of 250 to 350 The rolling die is heated to a temperature range of 6 trrm.
Thread rolling is now performed under conditions of /see or higher.

こXで、焼入れ焼もどし処理したボルト素形品を250
〜350℃の温度範囲に加熱し、その直属にねじ転造を
行うようにしたのは、前記式における表面硬化係数K並
びに硬化深さtrを可及的に増大せしめて疲れ強さを向
上させるためである。
With this X, 250
The reason for heating to a temperature range of ~350°C and performing thread rolling directly is to increase the surface hardening coefficient K and hardening depth tr in the above formula as much as possible to improve fatigue strength. It's for a reason.

すなわち、初期のマルテンサイトを加工すると格子欠陥
である空孔が多数形成され、加熱時、こ\に炭素原子が
集まることが推量される。一方素材に特有の高温引張強
さが最高値になる温度付近で加工すると加工硬化が起き
易くなることが期待される。本発明は前記2つの現象の
相乗効果によシ表面硬化係数Kを可及的に増大せしめよ
うとしたもので、加熱温度(転造温度)が250℃未満
並びに350℃を越えるとその効果  ゛が小さくなる
ので、これを250〜350℃に限定した。
That is, it is inferred that when initial martensite is processed, many vacancies, which are lattice defects, are formed, and carbon atoms gather in these holes when heated. On the other hand, it is expected that work hardening will occur more easily if the material is processed near the temperature at which the high-temperature tensile strength characteristic of the material reaches its maximum value. The present invention aims to increase the surface hardening coefficient K as much as possible through the synergistic effect of the above two phenomena, and the effect is greater when the heating temperature (rolling temperature) is lower than 250°C or higher than 350°C. Since the temperature becomes small, this temperature was limited to 250 to 350°C.

また温度を上げて加工すると、変形抵抗の低下によって
ねじ底における材料の流動域が拡大し、結果的に硬化深
さtrが増大するようになる。
Further, when processing is performed at a higher temperature, the flow area of the material at the thread bottom is expanded due to a decrease in deformation resistance, and as a result, the hardening depth tr increases.

さらに、前記加熱温度範囲250〜350℃は青熱脆性
域に相当する。しかして高速加工を行えは青熱脆性域が
高温側へ移行することが知られており、本発明において
は加工速度すなわち転造ダイスの食い込み速度を6■/
see以上に限定することによシ青熱脆性域を同寸した
Furthermore, the heating temperature range of 250 to 350°C corresponds to the blue brittle region. However, it is known that when high-speed machining is performed, the blue brittle region shifts to the high temperature side, and in the present invention, the machining speed, that is, the biting speed of the rolling die, is set to
The blue heat brittle region was made the same size by limiting the range to be equal to or larger than .

そして上記のごとくして得たボルトにおいて率が1.1
5以上となる。この結果、該ボルトの疲れ強さは、転造
熱処理して得たボルトに対してはもちろんのこと、熱処
理層冷間転造して得たボルトに対しても著しく向上し、
しかもねじ精度に優れたボルトを得ることができる。
And in the bolt obtained as above, the ratio is 1.1
5 or more. As a result, the fatigue strength of the bolt is significantly improved not only for bolts obtained by heat-rolling, but also for bolts obtained by cold-rolling in heat-treated layers.
Moreover, a bolt with excellent thread accuracy can be obtained.

(実施例) 以下1本発明の実施例を添伺図面も俗曲して説明する。(Example) An embodiment of the present invention will be described below with reference to the accompanying drawings.

実施12リ I JIS 80M435の線材(ミガキ品)を素材に。Implementation 12 I Made from JIS 80M435 wire rod (polished product).

これを定寸法に切断、続いて冷間鍛造を行ってボルト頭
を成形し、第1図(a) 、 (b)に示すごとき。
This was cut to a fixed size, and then cold forged to form a bolt head, as shown in Figs. 1(a) and (b).

ボルト素形品1を得た。ボルト素形品1は後にねじが成
形される軸部2と皿状の頭部3とを具備している。
Bolt basic product 1 was obtained. The bolt blank 1 includes a shaft portion 2 on which a thread will later be formed, and a dish-shaped head portion 3.

次に、前記ボルト素形品1を850℃油冷→540℃油
冷の条件で熱処理した。熱処理層の機械的性質は、引張
強さが120Kj’/mmζ硬さHRC35であった。
Next, the bolt blank 1 was heat-treated under the conditions of oil cooling at 850°C and then oil cooling at 540°C. The mechanical properties of the heat-treated layer were as follows: tensile strength: 120 Kj'/mmζ hardness: HRC35.

続いて、前記熱処理を終えたボルト素形品1を常温(室
温)から600℃までの各種温度に高周波加熱装置で加
熱し、加熱終了と同時に、平ダイス転造盤によシ、転造
ダイスの食い込み速度6.7 tan / secでね
じ転造を行い、后転造加工されたボルトを油中に落下・
冷却した。第2図は前記のごとくして得たボルトの寸法
・形状を示したもので、4で表わすボルトの反頭部側に
は、所定距離(こ\では20mn)に・わたつ七所定形
状(こ\ではMgF2.25)のねじ5が成形されてい
るう その后、前記ボルト4を硬さ試験に供してねし底の表面
硬さと硬化深さとを測定し、並行して疲労試験および衝
撃試験に供して疲れ限度および衝撃強さを測定した。な
お、硬さ試験はビッカース硬さ計によシ、疲労試験は何
本式強振型試験機によシ、@撃試験は衝撃引張試験機に
よシ行った。
Next, the bolt product 1 that has undergone the heat treatment is heated to various temperatures from normal temperature (room temperature) to 600° C. using a high-frequency heating device, and at the same time as the heating is finished, it is transferred to a flat die rolling machine and rolled into a rolling die. Thread rolling is performed at a biting speed of 6.7 tan/sec, and the rolled bolt is then dropped into oil.
Cooled. Figure 2 shows the dimensions and shape of the bolt obtained as described above.On the side opposite to the head of the bolt, indicated by 4, there is a predetermined distance (20 mm in this case) and a predetermined shape. In this case, after the screw 5 of MgF2.25) is molded, the bolt 4 is subjected to a hardness test to measure the surface hardness and hardening depth of the screw bottom, and in parallel, a fatigue test and an impact test are performed. It was subjected to tests to measure fatigue limits and impact strength. The hardness test was conducted using a Vickers hardness tester, the fatigue test was conducted using a strong vibration tester, and the impact test was conducted using an impact tensile tester.

σa (”J’ / rrrrtt” )の関係を示し
たものである。なお同図には、比較例として冷間転造后
熱処理したものの結果も、P表示として示しである。
It shows the relationship of σa ("J'/rrrrtt"). In addition, in the same figure, the results of heat treatment after cold rolling as a comparative example are also shown as P.

これよシ、疲れ限度σaは表面硬さHと硬化深さt’r
とがともに増大する程高値になる傾向にある。そして本
発明の範囲である転造温度範囲250〜350℃で処理
した場合、疲れ限度σaはよシ高値となシ、その値は室
温転造したもの(R2T)の2倍弱、転造后冷間転造し
たもの(P)の2.5倍強となっている。さらに衝撃強
さEは転造温度500℃で急激に低下しており、青熱脆
性域が高温側に移行したことが確認できた。
This is it, the fatigue limit σa is the surface hardness H and the hardening depth t'r.
The value tends to increase as both increase. When processing is carried out in the rolling temperature range of 250 to 350°C, which is the range of the present invention, the fatigue limit σa is much higher, and the value is slightly less than twice that of the one rolled at room temperature (R2T), after rolling. It is more than 2.5 times that of the cold rolled product (P). Furthermore, the impact strength E rapidly decreased at a rolling temperature of 500°C, confirming that the blue brittle region had shifted to the high temperature side.

こ\で1本転造温度範囲250〜350℃で処理したボ
ルトの、A谷径に対する表面硬化層深さの割合は0.0
9程度となっている。また、−例として転造温度300
℃で処理したボルトの表面硬さ分布を示すと、第4図の
とおり釦なっている。
The ratio of the surface hardening layer depth to the A valley diameter of the bolt processed at a rolling temperature range of 250 to 350°C is 0.0.
It is about 9. Also, as an example, the rolling temperature is 300
The surface hardness distribution of bolts treated at ℃ shows a button pattern as shown in Figure 4.

これよシ、内部に対する表面の硬さの上昇率が1.2程
度となっている。
In this case, the increase rate of the surface hardness relative to the internal hardness is about 1.2.

実施例2 JIS 45Cの線材(ミガキ)品を素材にして、実施
例1と同様に第1図(a) 、 (b)に示すボルト素
強さ87TiP/鰭1.硬さHRC24であった。
Example 2 JIS 45C wire rod (polished) material was used as the raw material, and the bolt strength was 87 TiP/fin 1.0 as shown in FIGS. 1(a) and 1(b) in the same manner as in Example 1. The hardness was HRC24.

続いて、前記熱処理を終えた素形品1を常温から600
℃までの各温度に加熱し、以降実施例1と同様の処理を
行ってボルト4(第2図参照)を得、さらに実施例1と
同様の試験を行った。
Subsequently, the preformed product 1 that has undergone the heat treatment is heated from room temperature to 600°C.
The bolt 4 (see FIG. 2) was obtained by heating to various temperatures up to .degree. C., and then subjected to the same treatment as in Example 1, and then subjected to the same tests as in Example 1.

第5図は、その試験結果を示したもので、疲れ限度σa
は、SCM 435の場合と同様、表面硬さHと硬化深
さtrとがともに増大する程高値になる傾向にある。そ
して本発明の範囲である転造温度250〜350℃で処
理した場合、疲れ限度σaは室温転造したもの(几、T
 )の約1.5〜23倍、熱処理后冷間転造したもの(
P)の約4.5〜7倍の値となった。さらに衝撃強さE
は転造温度500℃を越えると急激に低下しておシ、青
熱脆性域が高温側に移行したことが確認できた。
Figure 5 shows the test results, and the fatigue limit σa
As in the case of SCM 435, the value tends to increase as both the surface hardness H and the hardening depth tr increase. When processing is performed at a rolling temperature of 250 to 350°C, which is the range of the present invention, the fatigue limit σa is
), which is approximately 1.5 to 23 times that of cold rolled after heat treatment (
The value was approximately 4.5 to 7 times that of P). Furthermore, impact strength E
It was confirmed that when the rolling temperature exceeded 500°C, the temperature rapidly decreased, and the blue brittle region shifted to the high temperature side.

割合は、雨間で0.10程度となっている。また−例と
して転造温度300 ’qで処理したボルトの表面硬さ
分布を示すと、第6図のとおりになっている。こnより
、内部に対する狭面の硬さの上昇率が1.15程度とな
っている。
The ratio is about 0.10 during the rainy season. As an example, the surface hardness distribution of a bolt treated at a rolling temperature of 300'q is shown in FIG. From this, the rate of increase in hardness of the narrow surface relative to the inside is approximately 1.15.

なお、80M435 、8450に関し、別途実施例1
゜2と同様の熱処理を行い、高温引張試験を行ったとこ
ろ、第7図に示すように1両者とも約300℃付近で高
温引張強さが最高値となった。
Regarding 80M435 and 8450, Example 1 is provided separately.
When the same heat treatment as in Example 2 was carried out and a high-temperature tensile test was conducted, the high-temperature tensile strength of both cases reached the highest value at around 300° C., as shown in FIG.

この温度は本発明における加熱温度範囲250〜350
℃円にあシ、このことが、疲れ限度の向上に有効的に動
いたものと推動される。
This temperature is within the heating temperature range of 250 to 350 in the present invention.
It is believed that this was an effective move to improve the fatigue limit.

(発明の効果) 以上、詳細に説明したように1本発明は、始めポルト素
形品を熱処理し、しかる后に250〜350℃に加熱し
てねじ転造を行うようにしたもので、これによシねじ底
の表面硬化層における表面硬さ並びに硬化深さが増大し
、従来にも増して耐疲労性に優れたボルトを得ることが
可能になった。
(Effects of the Invention) As explained above in detail, the present invention first heat-treats the Porto molded product, and then heats it to 250 to 350°C to perform thread rolling. The surface hardness and hardening depth of the hardened surface layer at the bottom of the screw thread have increased, making it possible to obtain a bolt with better fatigue resistance than ever before.

【図面の簡単な説明】[Brief explanation of the drawing]

、’gi図(a) 、 (b)は本発明の方法の中間工
程で得たボルト素形品の寸法・形状を示す正面図と側面
図、第2図は本発明にかメる完成ボルトの寸法・形状を
示す側面図、第3図は本発明の範囲i同図、第4図は3
00℃で転心したSCM 435ポルす相関図、第6図
は300℃転造した545Cボルトの表面硬さ分布を示
す相関図、第7図は80M435と545Cの高温引張
特性を示す相関図である。 1・・・ボルト素形品 4・・・(完成)ボルト 第1図 第2図 第7図 第3図 転逢温屓(’C) 第4図 ねじjFS力)らの距離(mm) 第5図 第6図 ねじ爪力ゝらの距離(mm)
, 'gi Figures (a) and (b) are a front view and a side view showing the dimensions and shape of the bolt material obtained in the intermediate process of the method of the present invention, and Figure 2 is a completed bolt fitted according to the present invention. Figure 3 is a side view showing the dimensions and shape of the invention.
Figure 6 is a correlation diagram showing the surface hardness distribution of 545C bolt rolled at 300℃, Figure 7 is a correlation diagram showing the high temperature tensile properties of 80M435 and 545C. be. 1... Bolt original product 4... (Completed) Bolt Figure 1 Figure 2 Figure 7 Figure 3 Turning temperature ('C) Figure 4 Distance between screw jFS force) (mm) Figure 5 Figure 6 Distance between screw claw force (mm)

Claims (2)

【特許請求の範囲】[Claims] (1)中炭素鋼または低合金鋼を素材として温間転造に
よりねじ部が形成されたボルトであつて、前記ねじ部に
おける1/2谷径に対する表面硬化層厚さの割合が0.
075以上でかつ軸心に対する表面の硬さの上昇率が1
.15以上であることを特徴とする耐疲労ボルト。
(1) A bolt in which a threaded portion is formed by warm rolling using medium carbon steel or low alloy steel as a material, wherein the ratio of the surface hardened layer thickness to the 1/2 root diameter of the threaded portion is 0.
075 or higher and the rate of increase in surface hardness relative to the axis is 1
.. A fatigue-resistant bolt characterized by having a resistance of 15 or more.
(2)中炭素鋼または低合金鋼を素材にボルト素形品を
形成し、次いで焼入れ焼もどしの熱処理を行い、しかる
后に250〜350℃の温度範囲に加熱し、その直後に
転造ダイスの食い込み速度6mm/sec以上の条件で
ねじ転造を行うことを特徴とする耐疲労ボルトの製造方
法。
(2) Form a bolt shape from medium carbon steel or low alloy steel, then heat treat it by quenching and tempering, then heat it to a temperature range of 250 to 350°C, and immediately after that, roll it into a rolling die. A method for manufacturing a fatigue-resistant bolt, characterized in that thread rolling is performed under conditions of a biting speed of 6 mm/sec or more.
JP15996184A 1984-07-30 1984-07-30 Fatigue-resistant bolt and its production Granted JPS6137339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15996184A JPS6137339A (en) 1984-07-30 1984-07-30 Fatigue-resistant bolt and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15996184A JPS6137339A (en) 1984-07-30 1984-07-30 Fatigue-resistant bolt and its production

Publications (2)

Publication Number Publication Date
JPS6137339A true JPS6137339A (en) 1986-02-22
JPH0462818B2 JPH0462818B2 (en) 1992-10-07

Family

ID=15704948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15996184A Granted JPS6137339A (en) 1984-07-30 1984-07-30 Fatigue-resistant bolt and its production

Country Status (1)

Country Link
JP (1) JPS6137339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375618U (en) * 1986-11-07 1988-05-20
WO2007058364A1 (en) * 2005-11-21 2007-05-24 National Institute For Materials Science Steel for warm working, method of warm working of the steel, and steel material and steel part obtained by the same
KR100792395B1 (en) 2007-09-14 2008-01-08 주식회사 삼진금속 Menufacturing process of inconel tension stud bolt for a gas turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375618U (en) * 1986-11-07 1988-05-20
JPH0511373Y2 (en) * 1986-11-07 1993-03-22
WO2007058364A1 (en) * 2005-11-21 2007-05-24 National Institute For Materials Science Steel for warm working, method of warm working of the steel, and steel material and steel part obtained by the same
KR100792395B1 (en) 2007-09-14 2008-01-08 주식회사 삼진금속 Menufacturing process of inconel tension stud bolt for a gas turbine

Also Published As

Publication number Publication date
JPH0462818B2 (en) 1992-10-07

Similar Documents

Publication Publication Date Title
US4317355A (en) Forging of a camshaft
CN105057988B (en) The method that alloy wire prepares turbine sealing ring
US6059898A (en) Induction hardening of heat treated gear teeth
JPS6137339A (en) Fatigue-resistant bolt and its production
JPS5823812B2 (en) Manufacturing method of steel quenched piston ring
JP3776507B2 (en) Manufacturing method of high-strength stainless steel bolts
JPS6223930A (en) Production of high-strength spur gear
JPS5823813B2 (en) Manufacturing method of steel quenched piston ring
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JP3716454B2 (en) Manufacturing method of high strength and toughness mold by warm hobbing
JPH0551643B2 (en)
JPS58221226A (en) Manufacture of machine structural steel
GB2109276A (en) Method for the manufacture of prefabricated components from high-alloy ferritic materials and components made by the method
DE925175C (en) Process for producing steel work pieces with zones of different hardnesses
JPS6410567B2 (en)
JPH06100942A (en) Production of piston pin
JPH03111551A (en) Production of gear
JPH11254077A (en) Manufacture of die of high strength and high toughness
JP4086451B2 (en) Cold forging billet processing method and cold continuous forging method
RU2026885C1 (en) Torsion shaft manufacturing method
SU1328391A1 (en) Method of manufacturing tool
JP4184147B2 (en) NITRIDED TOOL, DIE AND ITS MANUFACTURING METHOD
JPH0734134A (en) Surface treatment of crank shaft
JPH08104919A (en) Part made of precipitation hardening type stainless steel and its production
RU2048538C1 (en) Pump rod production method