JP3776507B2 - Manufacturing method of high-strength stainless steel bolts - Google Patents

Manufacturing method of high-strength stainless steel bolts Download PDF

Info

Publication number
JP3776507B2
JP3776507B2 JP12815596A JP12815596A JP3776507B2 JP 3776507 B2 JP3776507 B2 JP 3776507B2 JP 12815596 A JP12815596 A JP 12815596A JP 12815596 A JP12815596 A JP 12815596A JP 3776507 B2 JP3776507 B2 JP 3776507B2
Authority
JP
Japan
Prior art keywords
bolt
heat treatment
temperature
less
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12815596A
Other languages
Japanese (ja)
Other versions
JPH09314276A (en
Inventor
哲也 清水
道生 岡部
安通 高木
英二 長崎
誠之 志水
禎史 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12815596A priority Critical patent/JP3776507B2/en
Publication of JPH09314276A publication Critical patent/JPH09314276A/en
Application granted granted Critical
Publication of JP3776507B2 publication Critical patent/JP3776507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れた高強度ボルトの製造方法に関する。
【0002】
【従来の技術】
近来、建築用その他の鋼構造接合用ボルトとして、高強度で、かつ、耐食性を有するボルトに対する要求が高まっている。このような用途には、比較的低廉であり、また、太径ボルトも製造可能なJIS SUS630のようなマルテンサイト系析出硬化型ステンレス鋼からなるボルトが使用されている。
【0003】
ボルトの製造工程には、線材に鍛造加工を施して所定のボルト頭部形状を有するボルト素形材に成形加工する工程が含まれている。前記の鍛造加工方法としては、熱間鍛造加工と冷間鍛造加工とある。熱間加工法による場合、成形加工は容易であるが、寸法精度、表面品質の維持が困難であるという問題がある。他方、冷間鍛造加工は、寸法精度、表面品質の優れた製品を大量生産するのに適するが、冷間加工性のよい素材に限られる。
【0004】
ところで、マルテンサイト系析出硬化型ステンレス鋼は固溶化熱処理状態ではマルテンサイト組織を呈し、一般に硬さが高く、例えば、SUS630では固溶化熱処理後の硬さがHRC35程度となり、冷間加工性が劣る。SUS630では、鋼を620〜800℃の温度で焼鈍し、オーステナイト相を多量に含んだ金属組織状態とすれば、冷間鍛造によってボルト頭部等の成形を行うことができる。この場合には、高強度ボルトとするために、ボルト成形後に固溶化熱処理を施し、しかる後析出硬化熱処理して高強度化する必要がある。製品の表面品質を維持するには、前記固溶化熱処理を保護雰囲気中で行う必要があり、そのためコストが高くなるきらいがあった。
【0005】
SUS630において、C、Nの含有率を低く押える等の鋼成分調整によって冷間加工性を高めることが考えられる。このように成分調整した鋼を用いることにより、ボルト形状の成形は可能となった。しかし、これによっても、なお、ボルト頭部に内部割れが生じるものがあり、この内部われを完全に防止することができなかった。
【0006】
【発明が解決しようとする課題】
本発明は、上記の現状に鑑みてなされたもので、その目的とするところは、マルテンサイト系析出硬化型ステンレス鋼をボルト形状に成形したときにボルト頭部の内部に生じる割れの発生を防止することによって、表面品質の優れた高強度ステンレスボルトを安価に供給できる製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の高強度ステンレスボルトの製造方法は、(1)900〜1100℃で固溶化熱処理して、体積百分率で、マルテンサイト相90%以上としたマルテンサイト系析出硬化型ステンレス鋼を、冷間鍛造または200℃以下の温度で加熱して行う温間鍛造によってボルト素形材に成形した後、該ボルト素形材の表面温度が150℃以下となるまで徐冷却し、その後450〜650℃の温度で析出硬化熱処理することを特徴とする。
(2)900〜1100℃で固溶化熱処理して、体積百分率で、マルテンサイト相90%以上としたマルテンサイト系析出硬化型ステンレス鋼を、冷間鍛造または200℃以下の温度で加熱して行う温間鍛造によってボルト素形材に成形した後に冷却し、この冷却過程において該ボルト素形材の表面温度が100℃より低い温度に達する以前に加熱し、450〜650℃の温度で析出硬化熱処理することを特徴とする。
(3)上記(1)および(2)の何れか1項記載の高強度ステンレスボルトの製造方法において、マルテンサイト系析出硬化型ステンレス鋼が、以下の化学組成を有することを特徴とする。
【0008】
質量%で、
C :0.015%以下、
N :0.015〜0.050%、
Si:1.0%以下、
Mn:1.0%以下、
P :0.040%以下、
S :0.030%以下、
Cu:1.5〜5.0%、
Ni:3.0〜8.0%、
Cr:13.0〜16.5%、
Mo:1.5%以下、
Nb:0.1〜0.5%、
残余Feおよび不可避的不純物元素。
【0009】
【発明の実施の形態】
本発明の高強度ステンレスボルトの製造方法では、予め固溶化熱処理を施したマルテンサイト系析出硬化型ステンレス鋼を冷間鍛造してボルト素形材に成形する。そのため、従来のようにボルト成形後に固溶化熱処理を行う必要がないという大きな効果がある。
【0010】
ここに、マルテンサイト系析出硬化型ステンレス鋼としては、固溶化熱処理によって、鋼マトリックスがマルテンサイト化して高強度となるとともに、析出硬化元素を固溶し、その後に行われる析出硬化熱処理によって、さらに強度が上昇する鋼であって、好ましい鋼としては、JIS SUS630が挙げられる。
さらに好ましくは、質量%で、C:0.015%以下、N:0.015〜0.050%、Si:1.0%以下、Mn:1.0%以下、P:0.040%以下、S:0.030%以下、Cu:1.5〜5.0%、Ni:3.0〜8.0%、Cr:13.0〜16.5%、Mo:1.5%以下、Nb:0.1〜0.5%を含み残余Feおよび不可避的不純物元素からなる鋼とする。
【0011】
以下に、本発明を適用する好ましい鋼の化学組成を限定した理由について述べる。
C:0.015%以下
Cは、固溶化熱処理時の硬さ、変形能に大きく影響する元素で、その含有率が低いほど硬さは低く、変形能は増加する。本発明の鋼においては、C含有率は低いほど好ましいが、製造コストを考慮して上限を0.015%とする。好ましくは、C含有率は0.008%以下とする。
【0012】
N:0.015〜0.050%
Nは、鋼の固溶化熱処理時の硬さ、変形能に及ぼす影響はCと同様の傾向を示すが、その影響の程度はCに比べて遥かに少ない。ピーク時効時の靭延性および過時効時の強度保持効果を有するので0.015%以上含有させる。好ましくは0.030%以上とする。しかし、過剰にNを含有すると固溶化熱処理状態の鋼の硬さを高め、また、必要以上にγ相を安定として固溶化熱処理時に多量の不安定γ相が残留するほか、過時効時に多量の逆変態γ相を生じて強度の低下をきたすので、N含有率の上限を0.050%とする。
【0013】
Si:1.0%以下
Siは鋼の脱酸剤として添加する。しかし、含有量が過大となると固溶化熱処理後の硬さが高くなる。また、δ−フェライトの形成量が過大となり、鋼の熱間加工性を損うので含有率の上限を1.0%とする。
Mn:1.0%以下
Mnは、鋼の脱酸剤として作用するほか、高価なNiの代替元素としても有効なので添加する。しかし、Mn含有率が過大となると鋼のMs 点を低下し、また、過時効時の強度を低下するので含有率の上限を1.0%とする。
【0014】
P:0.040%以下
Pは鋼の結晶粒界に偏析しやすく、熱間加工性を害する。また、冷間加工性をも害するのでP含有率は低いほど好ましいが、製造コストを考慮して許容し得るP含有率の上限を0.040%とする。
S:0.030%以下
Sは、耐食性を著しく損い、また冷間加工性をも害するので含有率を低くすることが必要である。許容限を0.030%とするが、好ましくは含有率を0.010%以下とする。
【0015】
Cu:1.5〜5.0%
Cuは、時効加熱時にε相を形成して鋼を硬化するために添加する。前記効果を発揮するためには1.5%の含有を必要とするが、過大に含有すれば、鋼の熱間加工性を損うので、含有率の上限を5.0%とする。
Ni:3.0〜8.0%
Niは、強力なオーステナイト形成元素で、δ−フェライトの生成を抑制し、鋼の耐食性を向上するので3.0%以上を含有させる。しかし、過大に含有すれば、鋼のMs 点を低下して残留オーステナイト量を増し、析出硬化熱処理後の強度を損うので含有率の上限を8.0%とする。
【0016】
Cr:13.0〜16.5%
Crは耐食性を確保するために13.0%以上添加する。しかし過大に含有すれば、δ−フェライトを多量に生成し、熱間加工性を害するとともに、鋼の強度を著しく低下するので含有率の上限を16.5%とする。
Mo:1.5%以下
Moは耐食性を向上するために添加してもよい。しかし、フェライト安定化元素であって、多量に含有するとδ−フェライトを生成し、鋼の熱間加工性を損うので含有率の上限を1.5%とする。
【0017】
Nb:0.1〜0.5%
Nbは炭窒化物を形成し、鋼の結晶粒を微細化して固溶化熱処理後の鋼の硬さを低め、冷間加工性を向上する。また、析出硬化処理後の靭延性、特にピーク時効処理後の靭延性を高めるために添加する。前記効果を得るためには、0.1%以上のNb含有率が必要である。しかしNbを多量に含有するとδ−フェライト量を増し鋼の熱間加工性を損うので含有率の上限を0.5%とする。
【0018】
本発明の高強度ステンレスボルトの製造方法において、固溶化熱処理は、鋼組織を強度の高いマルテンサイトとするとともに、析出硬化元素Cuを鋼マトリックスに固溶するために行う。固溶化熱処理の温度が900℃未満では、析出硬化元素の固溶が十分に行われないか、または析出硬化元素は固溶するが炭化物、窒化物、炭窒化物等の固溶が十分に行われないため、強度の高いマルテンサイトが得られない。また、固溶化熱処理の温度が1100℃を超えると、炭化物、窒化物、炭窒化物等の固溶が進みすぎて、鋼の結晶粒が粗大化したり、固溶化熱処理後の鋼組織がフェライト相の多いものとなって、鋼強度が低下したりする。それゆえ、固溶化熱処理の温度は、900〜1100℃とする。
【0019】
本発明の高強度ステンレスボルトの製造方法においては、前述のマルテンサイト系析出硬化型ステンレス鋼に固溶化熱処理を施して、体積率で90%以上のマルテンサイト相を含む金属組織とする。前記固溶化熱処理の後に該鋼に含まれる主な金属組織はオーステナイトとフェライトであるが、このオーステナイトとフェライトはマルテンサイトに比べて強度が低い。それゆえ、鋼の強度を維持するために、マルテンサイトが90体積%以上とすることが必要である。
【0020】
本発明の高強度ステンレスボルトの製造方法においては、前記鋼を冷間鍛造してボルト素形材に成形する。鋼の再結晶温度以下の温度に加熱して冷間加工する温間鍛造によれば、鍛造加工の際の変形抵抗を減ずることができるが、この鋼の場合、200℃を超える温度に加熱して鍛造するとボルト頭部に割れを生じるので、温間鍛造の際の加熱温度は200℃以下とする必要がある。
【0021】
上記の鍛造加工に際して、被加工材の内部ではひずみエネルギーによって、また、表層部では被加工材とダイス、パンチなどの加工工具との摩擦によって発熱し、昇温する。本発明の高強度ステンレスボルトの製造方法の第1の実施態様においては、前記の鍛造加工によって昇温したボルト素形材を、該鍛造加工後少なくとも該ボルト素形材の表面温度が150℃以下となるまで徐冷却する。その後、450〜650℃の温度に加熱して析出硬化熱処理する。
【0022】
ここに、徐冷却とは、発熱剤を用いるか、または断熱材、保温媒体によって鍛造加工後の前記ボルト素形材を覆う等の方法によって、積極的に該ボルト素形材の冷却を遅延する手段を講じて、放冷よりは遅い冷却速度で冷却することである。該ボルト素形材を、適度に加熱した空気、油等の浴槽に浸漬して冷却するのは好ましい方法である。
【0023】
上記のように、鍛造加工後、昇温したボルト素形材を150℃以下の温度まで徐冷却することにより、ボルト素形材の頭部に発生する内部割れを防止することができる。
上記本発明の第1の実施態様による場合には、鍛造加工後のボルト素形材を、いったん室温まで冷却した後、ねじ切り加工等の後加工を行うことができる利点がある。
【0024】
本発明の高強度ステンレスボルトの製造方法の第2の実施態様においては、前記の鍛造加工によって昇温したボルト素形材を、100℃より低い温度に達する以前に加熱して、450〜650℃の析出硬化熱処理温度に持ちきたす。鍛造加工後のボルト素形材の冷却の下限温度を100℃としたのは、100℃よりも低い温度まで冷却するとボルト素形材の頭部に内部割れが発生するからである。
【0025】
上記本発明の第2の実施態様による場合には、100℃以上の温度における冷却速度には制限がないので、鍛造加工後のボルト素形材を短時間で冷却できる利点がある。
本発明の高強度ステンレスボルトの製造方法に用いるマルテンサイト系析出硬化型ステンレス鋼では、析出硬化熱処理の温度が、450℃以下では析出硬化に長時間を要し、また650℃以上では過時効となって軟化してしまう。450〜650℃の温度で析出硬化熱処理することによって高い強度を得ることができる。
【0026】
【実施例】
(実験1)
表1に示す化学組成の鋼1および鋼2を溶製し、熱間圧延により直径10mmの線材コイルに加工後、1040℃、または950℃で固溶化熱処理し、直径9.8mmに引抜き加工して素材とした。該素材を鍛造加工によって図1に示す4工程でM10六角ボルト素形材に成形した。鍛造加工としては、冷間鍛造、または素材を150℃に加熱し温間鍛造によって行った。
【0027】
【表1】

Figure 0003776507
【0028】
鍛造加工したボルト素形材は、直ちに徐冷バックまたはオイルバスに投入して徐冷却した。徐冷バッックは鉄箱に断熱材を内張りされたものであり、ボルト素材を装入する前に熱風にてあらかじめ加熱した。また、オイルバスは120℃に保持した焼入油の油槽である。徐冷却開始後適当な時間保持してから徐冷装置から取り出し、ボルト素形材の頭部表面の温度を接触温度計によって測定し、そのまま空冷して室温まで冷却した。比較のために、鍛造加工後そのまま空冷したボルト素形材を作製した。これらのボルト素形材に所定の析出硬化熱処理を施して供試材とした。
【0029】
前記供試材について、超音波探傷試験によるボルト素形材の頭部の内部割れの有無、ボルト素形材の頭部のロックウエル硬さを調べた。また、ボルト素形材状態での引張強さを調べた。その結果を表2に示す。
【0030】
【表2】
Figure 0003776507
【0031】
(実験2)
表1に示す鋼2の化学組成を有する鋼を、熱間圧延して直径17.5mmの線材コイルとした。これを1040℃で固溶化熱処理後、切断して長さ81mmのスラグとし、冷間鍛造によって、図2に示す4工程でM16高力ボルト素形材に加工した。
【0032】
冷間鍛造したボルト素形材は、直ちに実験1の場合と同様の徐冷バックに投入して徐冷却した。冷間鍛造による成形終了後の時間経過に伴うボルト素形材頭部の表面温度を測定した。成形終了後15分経過したときのボルト素形材頭部の表面温度を表3に示す。徐冷却終了時のボルト素形材頭部表面の温度を測定した後、室温まで空冷した。比較のために鍛造加工後そのまま空冷したボルト素形材を作製した。転造によってM16、ピッチ2mmのねじを切り、その後595℃で析出硬化熱処理を行ってM16高力ボルトを製作し、供試材とした。
【0033】
前記供試材について、超音波探傷試験によるボルト素形材の頭部の内部割れの有無、ボルト素形材の頭部のロックウエル硬さを調べた。また、ボルト素形材状態での引張強さを調べた。その結果を表3に示す。
【0034】
【表3】
Figure 0003776507
【0035】
(実験3)
表1に示す鋼3の化学組成を有する鋼を、熱間圧延して直径16.5mmの線材コイルとした。これを1040℃または950℃で固溶化熱処理後、引抜き加工して直径16.2mmの素材とした。該素材を、鍛造加工によって、図3に示す4工程でM16ボルト素形材に加工した。鍛造加工としては、冷間鍛造、または素材を150℃に加熱して温間鍛造によって行った。
【0036】
鍛造加工したボルト素形材は、直ちに実験1の場合と同様の徐冷バックまたはオイルバスに投入して徐冷却した。鍛造加工による成形終了後の時間経過に伴うボルト素形材頭部の表面温度を測定した。成形終了後15分経過したときのボルト素形材頭部の表面温度を表4に示す。徐冷却終了時のボルト素形材頭部表面の温度を測定した後、室温まで空冷した。比較のために鍛造加工後そのまま空冷したボルト素形材を作成した。転造によってM16、ピッチ2mmのねじを切り、その後595℃で析出硬化熱処理を行ってM16ボルトを製作し、供試材とした。
【0037】
前記供試材について、超音波探傷試験によるボルト素形材の頭部の内部割れの有無、ボルト素形材の頭部のロックウエル硬さを調べた。また、供試材からの削り出し試験片によって引張強さを調べた。その結果を表4に示す。
【0038】
【表4】
Figure 0003776507
【0039】
冷間鍛造または200℃以下の温度に加熱して行う温間鍛造の鍛造加工によってボルト素形材に成形し、その終了後15分経過したときのボルト素形材頭部の表面温度を測定した結果を表3および表4に示す。この結果によれば、本実施例における徐冷バックまたはオイルバスを使用した場合は、前記鍛造加工終了後空冷した場合に比べて、冷却速度が遅くなっていることが明らかである。
【0040】
表1〜4から判るように、冷間鍛造または温間鍛造後に空冷するか、あるいは冷間鍛造後に徐冷却しても、徐冷却の終了温度が150℃よりも高い温度から放冷した比較例1のような場合には、ボルト素形材頭部に内部割れが検出されるものがあった。これに対して、本発明の実施例においては、析出硬化熱処理後のボルト素形材の頭部の内部割れは全く検出されない。また、本発明の実施例においては、高強度ステンレスボルトとして十分な硬さと引張強さとを示している。
(実験4)
表1に示す鋼1および鋼2の化学組成を有する鋼を、熱間圧延して直径10mmの線材コイルとした。これを1040℃または950℃で固溶化熱処理後、引抜き加工して直径9.8mmの素材とした。該素材を、鍛造加工によって、図1に示す4工程でM10ボルト素形材に加工した。鍛造加工としては、冷間鍛造、または前記素材を150℃に加熱して温間鍛造によって行った。
【0041】
ボルト素形材は、鍛造加工終了後放冷し、所定の温度に達したら、予め所定の析出硬化熱処理温度に調整した熱処理炉に装入して析出硬化熱処理を施し、供試材とした。
前記供試材について、超音波探傷試験によるボルト素形材の頭部の内部割れの有無、ボルト素形材の頭部のロックウエル硬さを調べた。また、供試材からの削り出し試験片によって引張強さを調べた。その結果を表5に示す。
【0042】
【表5】
Figure 0003776507
【0043】
(実験5)
表1に示す鋼2の化学組成を有する鋼を、熱間圧延して直径17.5mmの線材コイルとした。これを1040℃で固溶化熱処理後、切断して長さ81mmのスラグとし、冷間鍛造によって、図2に示す4工程でM16高力ボルト素形材に加工した。
【0044】
前記ボルト素形材は、冷間鍛造終了後放冷し、所定の温度に達したら、予め所定の析出硬化熱処理温度に調整した熱処理炉に装入して析出硬化熱処理を施して供試材とした。
前記供試材について、超音波探傷試験によるボルト素形材の頭部の内部割れの有無、ボルト素形材の頭部のロックウエル硬さを調べた。また、供試材からの削り出し試験片によって引張強さを調べた。その結果を表6に示す。
【0045】
【表6】
Figure 0003776507
【0046】
表5および表6から判るように、冷間鍛造または温間鍛造後に100℃よりも低い温度まで冷却した比較例においては、ボルト素形材頭部に内部割れが検出されるものがあった。これに対して、鍛造加工後100℃以上の温度から析出硬化熱処理温度に移した本発明の実施例においては、析出硬化熱処理後のボルト素形材には頭部の内部割れは全く検出されない。また、本発明の実施例においては、高強度ステンレスボルトとして十分な硬さと引張強さとを示している。
【0047】
【発明の効果】
以上のように、本発明によれば、予め固溶化熱処理を施したマルテンサイト系析出硬化型ステンレス鋼を冷間鍛造または温間鍛造によってボルト成形するとき、ボルト頭部の内部に生じる割れの発生を防止することができ、表面品質の優れた高強度ステンレスボルトを安価製造する方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例におけるボルト素形材の成形過程を示す工程図である。
【図2】本発明の実施例におけるボルト素形材の成形過程を示す第2の工程図である。
【図3】本発明の実施例におけるボルト素形材の成形過程を示す第3の工程図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength bolt excellent in corrosion resistance.
[0002]
[Prior art]
Recently, there is an increasing demand for bolts having high strength and corrosion resistance as bolts for joining steel structures for construction and other purposes. For such applications, bolts made of martensite precipitation hardening stainless steel such as JIS SUS630, which is relatively inexpensive and can also produce large diameter bolts, are used.
[0003]
The manufacturing process of the bolt includes a step of forging the wire and forming it into a bolt body having a predetermined bolt head shape. The forging methods include hot forging and cold forging. In the case of the hot working method, the forming process is easy, but there is a problem that it is difficult to maintain the dimensional accuracy and the surface quality. On the other hand, cold forging is suitable for mass production of products with excellent dimensional accuracy and surface quality, but is limited to materials with good cold workability.
[0004]
By the way, martensitic precipitation hardening stainless steel exhibits a martensitic structure in a solution heat treatment state and generally has a high hardness. For example, in SUS630, the hardness after solution heat treatment is about HRC35, and cold workability is inferior. . In SUS630, if the steel is annealed at a temperature of 620 to 800 ° C. to form a metal structure containing a large amount of austenite phase, a bolt head or the like can be formed by cold forging. In this case, in order to obtain a high-strength bolt, it is necessary to perform a solution heat treatment after forming the bolt, and then increase the strength by performing precipitation hardening heat treatment. In order to maintain the surface quality of the product, it is necessary to perform the solution heat treatment in a protective atmosphere, and therefore, the cost tends to increase.
[0005]
In SUS630, it is conceivable to improve cold workability by adjusting steel components such as keeping the C and N content low. By using the steel whose components are adjusted in this way, the bolt shape can be formed. However, even in this case, there is a case where an internal crack occurs in the bolt head, and this internal crack cannot be completely prevented.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned present situation, and its purpose is to prevent the occurrence of cracks generated in the bolt head when martensitic precipitation hardening stainless steel is formed into a bolt shape. Thus, an object of the present invention is to provide a manufacturing method capable of supplying high-strength stainless steel bolts having excellent surface quality at low cost.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a high-strength stainless steel bolt according to the present invention comprises (1) martensitic precipitation at a volume percentage of 90% or more by performing a solution heat treatment at 900 to 1100 ° C. After hardening hardened stainless steel is formed into a bolt shape material by cold forging or warm forging performed at a temperature of 200 ° C. or less, it is gradually cooled until the surface temperature of the bolt shape material becomes 150 ° C. or less. Thereafter, precipitation hardening heat treatment is performed at a temperature of 450 to 650 ° C.
(2) Perform a solution heat treatment at 900 to 1100 ° C. and heat the martensite precipitation hardening stainless steel with a volume percentage of 90% or more by cold forging or at a temperature of 200 ° C. or less. It is cooled after being formed into a bolt shape material by warm forging , and is heated before the surface temperature of the bolt shape material reaches a temperature lower than 100 ° C. in this cooling process, and precipitation hardening is performed at a temperature of 450 to 650 ° C. It is characterized by heat treatment.
(3) The method for producing a high-strength stainless steel bolt according to any one of (1) and (2) above, wherein the martensite precipitation hardening stainless steel has the following chemical composition.
[0008]
% By mass
C: 0.015% or less,
N: 0.015-0.050%,
Si: 1.0% or less,
Mn: 1.0% or less,
P: 0.040% or less,
S: 0.030% or less,
Cu: 1.5 to 5.0%,
Ni: 3.0-8.0%,
Cr: 13.0 to 16.5%,
Mo: 1.5% or less,
Nb: 0.1 to 0.5%
Residual Fe and inevitable impurity elements.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing a high-strength stainless steel bolt according to the present invention, a martensitic precipitation hardening stainless steel that has been previously subjected to solution heat treatment is cold-forged and formed into a bolt shape material. Therefore, there is a great effect that it is not necessary to perform a solution heat treatment after bolt forming as in the prior art.
[0010]
Here, as a martensitic precipitation hardening type stainless steel, the steel matrix becomes martensite by solid solution heat treatment and becomes high strength, and the precipitation hardening element is dissolved in a solid solution. JIS SUS630 is mentioned as steel with which intensity | strength rises and it is preferable.
More preferably, by mass, C: 0.015% or less, N: 0.015 to 0.050%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less S: 0.030% or less, Cu: 1.5 to 5.0%, Ni: 3.0 to 8.0%, Cr: 13.0 to 16.5%, Mo: 1.5% or less, Nb: steel containing 0.1 to 0.5% and remaining Fe and inevitable impurity elements.
[0011]
The reason why the chemical composition of the preferred steel to which the present invention is applied will be described below.
C: 0.015% or less C is an element that greatly affects the hardness and deformability during solution heat treatment. The lower the content, the lower the hardness and the more deformable. In the steel of the present invention, the C content is preferably as low as possible, but the upper limit is made 0.015% in consideration of the manufacturing cost. Preferably, the C content is 0.008% or less.
[0012]
N: 0.015 to 0.050%
N has the same tendency as C as to the influence on the hardness and deformability during the solution heat treatment of steel, but the degree of the influence is much smaller than that of C. It has a toughness at peak aging and a strength retention effect at overaging, so it is contained in an amount of 0.015% or more. Preferably it is 0.030% or more. However, when N is contained excessively, the hardness of the steel in the solution heat treatment state is increased, and the γ phase is stabilized more than necessary, so that a large amount of unstable γ phase remains during the solution heat treatment, and a large amount during overaging. Since the reverse transformation γ phase is generated and the strength is lowered, the upper limit of the N content is set to 0.050%.
[0013]
Si: 1.0% or less Si is added as a deoxidizer for steel. However, when the content is excessive, the hardness after the solution heat treatment is increased. In addition, the amount of δ-ferrite is excessive and the hot workability of the steel is impaired, so the upper limit of the content is set to 1.0%.
Mn: 1.0% or less Mn acts as a deoxidizer for steel and is also effective as an alternative element for expensive Ni. However, if the Mn content is excessive, the Ms point of the steel is lowered and the strength at the time of overaging is lowered, so the upper limit of the content is made 1.0%.
[0014]
P: 0.040% or less P is liable to segregate at the grain boundaries of steel and impairs hot workability. Moreover, since cold workability is also impaired, it is preferable that the P content is low. However, the upper limit of the P content that can be allowed in consideration of the manufacturing cost is set to 0.040%.
S: 0.030% or less S needs to reduce the content because it significantly impairs corrosion resistance and also harms cold workability. The allowable limit is 0.030%, but the content is preferably 0.010% or less.
[0015]
Cu: 1.5-5.0%
Cu is added to harden the steel by forming an ε phase during aging heating. In order to exert the above effect, the content of 1.5% is required. However, if it is excessively contained, the hot workability of the steel is impaired, so the upper limit of the content is set to 5.0%.
Ni: 3.0-8.0%
Ni is a strong austenite-forming element, suppresses the formation of δ-ferrite, and improves the corrosion resistance of steel, so 3.0% or more is contained. However, if contained excessively, the Ms point of the steel is lowered to increase the amount of retained austenite and the strength after precipitation hardening heat treatment is impaired, so the upper limit of the content is made 8.0%.
[0016]
Cr: 13.0 to 16.5%
Cr is added in an amount of 13.0% or more to ensure corrosion resistance. However, if it is excessively contained, a large amount of δ-ferrite is generated, hot workability is impaired, and the strength of the steel is remarkably reduced, so the upper limit of the content is set to 16.5%.
Mo: 1.5% or less Mo may be added to improve the corrosion resistance. However, it is a ferrite stabilizing element, and if it is contained in a large amount, δ-ferrite is formed and the hot workability of steel is impaired, so the upper limit of the content is made 1.5%.
[0017]
Nb: 0.1 to 0.5%
Nb forms carbonitrides, refines the crystal grains of the steel, lowers the hardness of the steel after solution heat treatment, and improves cold workability. Moreover, it adds in order to improve the toughness after precipitation hardening process, especially the toughness after peak aging treatment. In order to acquire the said effect, 0.1% or more of Nb content rate is required. However, if Nb is contained in a large amount, the amount of δ-ferrite is increased and the hot workability of the steel is impaired, so the upper limit of the content is set to 0.5%.
[0018]
In the method for producing a high-strength stainless steel bolt according to the present invention, the solution heat treatment is performed so that the steel structure is martensite having high strength and the precipitation hardening element Cu is dissolved in the steel matrix. If the temperature of the solution heat treatment is less than 900 ° C., the precipitation hardening element is not sufficiently dissolved, or the precipitation hardening element is dissolved, but the carbide, nitride, carbonitride, etc. are sufficiently dissolved. Therefore, high strength martensite cannot be obtained. Further, when the temperature of the solution heat treatment exceeds 1100 ° C., the solid solution of carbide, nitride, carbonitride, etc. proceeds too much and the steel crystal grains become coarse, or the steel structure after the solution heat treatment becomes a ferrite phase. As a result, the strength of the steel decreases. Therefore, the temperature of the solution heat treatment is set to 900 to 1100 ° C.
[0019]
In the method for producing a high-strength stainless steel bolt of the present invention, the martensitic precipitation hardening stainless steel is subjected to a solution heat treatment to obtain a metal structure containing a martensite phase having a volume ratio of 90% or more. The main metal structures contained in the steel after the solution heat treatment are austenite and ferrite, but the austenite and ferrite have lower strength than martensite. Therefore, in order to maintain the strength of the steel, the martensite needs to be 90% by volume or more.
[0020]
In the method for producing a high-strength stainless steel bolt of the present invention, the steel is cold-forged and formed into a bolt shape material. According to warm forging in which cold working is performed by heating to a temperature lower than the recrystallization temperature of steel, deformation resistance during forging can be reduced. In the case of this steel, heating to a temperature exceeding 200 ° C. When forging, the bolt head cracks, so the heating temperature during warm forging needs to be 200 ° C. or less.
[0021]
In the forging process described above, heat is generated due to strain energy inside the work material and at the surface layer part due to friction between the work material and a work tool such as a die or a punch to raise the temperature. In the first embodiment of the method for producing a high-strength stainless steel bolt of the present invention, the bolt shape material that has been heated by the forging process has a surface temperature of at least 150 ° C. or less after the forging process. Slowly cool until Then, precipitation hardening heat processing is performed by heating to a temperature of 450-650 degreeC.
[0022]
Here, the slow cooling means that the cooling of the bolt shape material is positively delayed by using a heat generating agent, or by covering the bolt shape material after forging with a heat insulating material or a heat retaining medium. Take measures and cool at a cooling rate slower than that of cooling. It is a preferable method to cool the bolt shaped material by immersing it in a suitably heated air or oil bath.
[0023]
As described above, after the forging process, the internal temperature generated at the head of the bolt shape material can be prevented by gradually cooling the heated temperature of the bolt shape material to a temperature of 150 ° C. or less.
In the case of the first embodiment of the present invention described above, there is an advantage that after the forging process, the bolt shaped material is once cooled to room temperature and then subjected to post-processing such as threading.
[0024]
In the second embodiment of the method for producing a high-strength stainless steel bolt of the present invention, the bolt shape material that has been heated by the forging process is heated before reaching a temperature lower than 100 ° C., and 450 to 650 ° C. Bring to the precipitation hardening heat treatment temperature. The reason why the lower limit temperature for cooling the bolt shaped material after forging is set to 100 ° C. is that internal cracking occurs at the head of the bolt shaped material when cooled to a temperature lower than 100 ° C.
[0025]
In the case of the second embodiment of the present invention, there is no limitation on the cooling rate at a temperature of 100 ° C. or higher, so that there is an advantage that the bolt shaped material after forging can be cooled in a short time.
In the martensitic precipitation hardening stainless steel used in the method for producing a high-strength stainless steel bolt of the present invention, the precipitation hardening heat treatment requires a long time for precipitation hardening when the temperature of the precipitation hardening heat treatment is 450 ° C. or less, and is overaged at 650 ° C. or more. It becomes soft. High strength can be obtained by performing precipitation hardening heat treatment at a temperature of 450 to 650 ° C.
[0026]
【Example】
(Experiment 1)
Steel 1 and steel 2 having the chemical composition shown in Table 1 are melted, processed into a wire coil having a diameter of 10 mm by hot rolling, and then subjected to a solution heat treatment at 1040 ° C. or 950 ° C., and drawn to a diameter of 9.8 mm. And made the material. The material was formed into an M10 hexagon bolt shaped material by forging process in four steps shown in FIG. As the forging process, cold forging or warm forging was performed by heating the material to 150 ° C.
[0027]
[Table 1]
Figure 0003776507
[0028]
The forged bolt material was immediately put into a slow cooling bag or oil bath and gradually cooled. The slow cooling bag is a steel box lined with a heat insulating material, and heated beforehand with hot air before inserting the bolt material. The oil bath is a hardened oil tank maintained at 120 ° C. After the start of gradual cooling, after holding for an appropriate time, it was taken out from the gradual cooling apparatus, the temperature of the head surface of the bolt shaped material was measured with a contact thermometer, and then cooled by air to room temperature. For comparison, a bolt shape material that was air-cooled as it was after forging was produced. Predetermined precipitation hardening heat treatments were applied to these bolt shaped materials to obtain test materials.
[0029]
About the said test material, the presence or absence of the internal crack of the head of a bolt shape material by the ultrasonic flaw test and the Rockwell hardness of the head of a bolt shape material were investigated. In addition, the tensile strength in the bolt shape was examined. The results are shown in Table 2.
[0030]
[Table 2]
Figure 0003776507
[0031]
(Experiment 2)
Steel having the chemical composition of steel 2 shown in Table 1 was hot-rolled to form a wire coil having a diameter of 17.5 mm. This was subjected to a solution heat treatment at 1040 ° C. and then cut into an 81 mm long slag, which was processed into a M16 high-strength bolt base material by cold forging in four steps shown in FIG.
[0032]
The cold forged bolt base material was immediately put into the same slow cooling bag as in Experiment 1 and gradually cooled. The surface temperature of the head portion of the bolt shape member with the passage of time after the end of forming by cold forging was measured. Table 3 shows the surface temperature of the bolt shape head when 15 minutes have elapsed after the completion of molding. After measuring the temperature of the head of the bolt shape member at the end of the slow cooling, it was cooled to room temperature. For comparison, a bolt shape material that was air-cooled as it was after forging was prepared. A M16 thread with a pitch of 2 mm was cut by rolling, followed by precipitation hardening heat treatment at 595 ° C. to produce an M16 high-strength bolt as a test material.
[0033]
About the said test material, the presence or absence of the internal crack of the head of a bolt shape material by the ultrasonic flaw test and the Rockwell hardness of the head of a bolt shape material were investigated. In addition, the tensile strength in the bolt shape was examined. The results are shown in Table 3.
[0034]
[Table 3]
Figure 0003776507
[0035]
(Experiment 3)
Steel having the chemical composition of steel 3 shown in Table 1 was hot-rolled to form a wire coil having a diameter of 16.5 mm. This was subjected to a solution heat treatment at 1040 ° C. or 950 ° C. and then drawn to obtain a material having a diameter of 16.2 mm. The raw material was processed into an M16 bolt shape material by forging process in four steps shown in FIG. As forging, cold forging or warm forging was performed by heating the material to 150 ° C.
[0036]
The forged bolt shaped material was immediately put into the same slow cooling bag or oil bath as in Experiment 1 and gradually cooled. The surface temperature of the head part of the bolt shape member with the passage of time after completion of the forging process was measured. Table 4 shows the surface temperature of the bolt shape head when 15 minutes have elapsed after the completion of molding. After measuring the temperature of the head of the bolt shape member at the end of the slow cooling, it was cooled to room temperature. For comparison, a bolt shape material that was air-cooled as it was after forging was prepared. M16 bolts with a pitch of 2 mm were cut by rolling, followed by precipitation hardening heat treatment at 595 ° C. to produce M16 bolts, which were used as test materials.
[0037]
About the said test material, the presence or absence of the internal crack of the head of a bolt shape material by the ultrasonic flaw test and the Rockwell hardness of the head of a bolt shape material were investigated. Moreover, the tensile strength was investigated with the test piece cut out from the test material. The results are shown in Table 4.
[0038]
[Table 4]
Figure 0003776507
[0039]
A bolt forging was formed by cold forging or forging by warm forging performed by heating to a temperature of 200 ° C. or less, and the surface temperature of the bolt shape head was measured when 15 minutes had elapsed after the completion. The results are shown in Table 3 and Table 4. According to this result, it is clear that when the slow cooling bag or the oil bath in this example is used, the cooling rate is slower than when the air cooling is performed after the forging process is completed.
[0040]
As can be seen from Tables 1 to 4, even after cold forging or warm forging, even after cooling forcibly after cold forging, a comparative example in which the end temperature of slow cooling was allowed to cool from a temperature higher than 150 ° C. In the case of 1, there was one in which an internal crack was detected at the head of the bolt base material. On the other hand, in the embodiment of the present invention, no internal cracks are detected in the head portion of the bolt body after the precipitation hardening heat treatment. Moreover, in the Example of this invention, sufficient hardness and tensile strength are shown as a high intensity | strength stainless steel volt | bolt.
(Experiment 4)
Steel having the chemical composition of steel 1 and steel 2 shown in Table 1 was hot-rolled to form a wire coil having a diameter of 10 mm. This was subjected to a solution heat treatment at 1040 ° C. or 950 ° C. and then drawn to obtain a material having a diameter of 9.8 mm. The material was processed into an M10 bolt shape material by four processes shown in FIG. 1 by forging. The forging process was performed by cold forging or warm forging by heating the material to 150 ° C.
[0041]
The bolt shape material was allowed to cool after completion of the forging process, and when it reached a predetermined temperature, it was placed in a heat treatment furnace adjusted in advance to a predetermined precipitation hardening heat treatment temperature and subjected to precipitation hardening heat treatment to obtain a test material.
About the said test material, the presence or absence of the internal crack of the head of a bolt shape material by the ultrasonic flaw test and the Rockwell hardness of the head of a bolt shape material were investigated. Moreover, the tensile strength was investigated with the test piece cut out from the test material. The results are shown in Table 5.
[0042]
[Table 5]
Figure 0003776507
[0043]
(Experiment 5)
Steel having the chemical composition of steel 2 shown in Table 1 was hot-rolled to form a wire coil having a diameter of 17.5 mm. This was subjected to a solution heat treatment at 1040 ° C. and then cut into an 81 mm long slag, which was processed into a M16 high-strength bolt base material by cold forging in four steps shown in FIG.
[0044]
The bolt shape material is allowed to cool after the end of cold forging, and when the temperature reaches a predetermined temperature, the bolt shape material is placed in a heat treatment furnace adjusted to a predetermined precipitation hardening heat treatment temperature in advance and subjected to precipitation hardening heat treatment. did.
About the said test material, the presence or absence of the internal crack of the head of a bolt shape material by the ultrasonic flaw test and the Rockwell hardness of the head of a bolt shape material were investigated. Moreover, the tensile strength was investigated with the test piece cut out from the test material. The results are shown in Table 6.
[0045]
[Table 6]
Figure 0003776507
[0046]
As can be seen from Tables 5 and 6, in the comparative example in which cooling was performed to a temperature lower than 100 ° C. after cold forging or warm forging, there was a case where an internal crack was detected in the head portion of the bolt shape material. On the other hand, in the example of the present invention which was shifted from the temperature of 100 ° C. or higher after the forging to the precipitation hardening heat treatment temperature, no internal cracks in the head were detected in the bolt shaped material after the precipitation hardening heat treatment. Moreover, in the Example of this invention, sufficient hardness and tensile strength are shown as a high intensity | strength stainless steel volt | bolt.
[0047]
【The invention's effect】
As described above, according to the present invention, when martensitic precipitation hardened stainless steel that has been subjected to solution heat treatment in advance is bolt-formed by cold forging or warm forging, occurrence of cracks that occur inside the bolt head Thus, it is possible to provide a method for inexpensively manufacturing a high-strength stainless steel bolt having excellent surface quality.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a process of forming a bolt shape material in an embodiment of the present invention.
FIG. 2 is a second process diagram showing a process of forming a bolt shape material in the embodiment of the present invention.
FIG. 3 is a third process diagram showing a process of forming a bolt shape material in the embodiment of the present invention.

Claims (3)

900〜1100℃で固溶化熱処理して、体積百分率で、マルテンサイト相90%以上としたマルテンサイト系析出硬化型ステンレス鋼を、冷間鍛造または200℃以下の温度で加熱して行う温間鍛造によってボルト素形材に成形した後、該ボルト素形材の表面温度が150℃以下となるまで徐冷却し、その後450〜650℃の温度で析出硬化熱処理することを特徴とする高強度ステンレスボルトの製造方法。Cold forging or warm forging performed by heating at a temperature of 200 ° C. or less, martensitic precipitation hardening stainless steel having a volume percentage of martensite phase 90% or higher by heat treatment at 900 to 1100 ° C. A high strength stainless steel bolt characterized in that it is formed into a bolt shape material by gradual cooling until the surface temperature of the bolt shape material becomes 150 ° C. or lower, followed by precipitation hardening heat treatment at a temperature of 450 to 650 ° C. Manufacturing method. 900〜1100℃で固溶化熱処理して、体積百分率で、マルテンサイト相90%以上としたマルテンサイト系析出硬化型ステンレス鋼を、冷間鍛造または200℃以下の温度で加熱して行う温間鍛造によってボルト素形材に成形した後に冷却し、この冷却過程において該ボルト素形材の表面温度が100℃より低い温度に達する以前に加熱し、450〜650℃の温度で析出硬化熱処理することを特徴とする高強度ステンレスボルトの製造方法。Cold forging or warm forging performed by heating at a temperature of 200 ° C. or less of a martensitic precipitation hardening stainless steel having a volume percentage and a martensite phase of 90% or more by heat treatment at 900 to 1100 ° C. And then cooling it after forming it into a bolt shape material and heating it before the surface temperature of the bolt shape material reaches below 100 ° C. in this cooling process, and subjecting it to a precipitation hardening heat treatment at a temperature of 450 to 650 ° C. A method for producing a high-strength stainless steel bolt characterized by 請求項1および請求項2の何れか1項記載の高強度ステンレスボルトの製造方法において、マルテンサイト系析出硬化型ステンレス鋼が、以下の化学組成を有することを特徴とする。
質量%で、
C :0.015%以下、
N :0.015〜0.050%、
Si:1.0%以下、
Mn:1.0%以下、
P :0.040%以下、
S :0.030%以下、
Cu:1.5〜5.0%、
Ni:3.0〜8.0%、
Cr:13.0〜16.5%、
Mo:1.5%以下、
Nb:0.1〜0.5%、
残余Feおよび不可避的不純物元素。
The method for producing a high-strength stainless steel bolt according to any one of claims 1 and 2, wherein the martensite precipitation hardening stainless steel has the following chemical composition.
% By mass
C: 0.015% or less,
N: 0.015-0.050%,
Si: 1.0% or less,
Mn: 1.0% or less,
P: 0.040% or less,
S: 0.030% or less,
Cu: 1.5 to 5.0%,
Ni: 3.0-8.0%,
Cr: 13.0 to 16.5%,
Mo: 1.5% or less,
Nb: 0.1 to 0.5%
Residual Fe and inevitable impurity elements.
JP12815596A 1996-05-23 1996-05-23 Manufacturing method of high-strength stainless steel bolts Expired - Fee Related JP3776507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12815596A JP3776507B2 (en) 1996-05-23 1996-05-23 Manufacturing method of high-strength stainless steel bolts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12815596A JP3776507B2 (en) 1996-05-23 1996-05-23 Manufacturing method of high-strength stainless steel bolts

Publications (2)

Publication Number Publication Date
JPH09314276A JPH09314276A (en) 1997-12-09
JP3776507B2 true JP3776507B2 (en) 2006-05-17

Family

ID=14977752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12815596A Expired - Fee Related JP3776507B2 (en) 1996-05-23 1996-05-23 Manufacturing method of high-strength stainless steel bolts

Country Status (1)

Country Link
JP (1) JP3776507B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109851A (en) * 1999-01-13 2000-08-29 Illinois Tool Works Inc. Screws having selected heat treatment and hardening
TWI394848B (en) 2007-10-10 2013-05-01 Nippon Steel & Sumikin Sst Two-phase stainless steel wire rod, steel wire, bolt and manufacturing method thereof
JP5541575B2 (en) * 2010-03-18 2014-07-09 新日鐵住金ステンレス株式会社 Stainless steel wire rod for warm forging and its plastic working method
JP6091046B2 (en) 2010-11-10 2017-03-08 株式会社トープラ Aluminum alloy bolt manufacturing method and aluminum alloy bolt
CN103866198B (en) * 2012-12-17 2015-10-14 中国科学院金属研究所 A kind of surgical operation precipitation hardening of martensitic stainless steel and thermal treatment process thereof
CN103398067B (en) * 2013-07-17 2015-08-05 春雨(东莞)五金制品有限公司 A kind of screw bolt manufacture process
JP7320936B2 (en) * 2018-11-16 2023-08-04 日鉄ステンレス株式会社 bar steel

Also Published As

Publication number Publication date
JPH09314276A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
JP6031022B2 (en) Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
JP5776623B2 (en) Steel wire rods / bars with excellent cold workability and manufacturing method thereof
EP2765213A1 (en) Steel wire for bolt, bolt, and manufacturing processes therefor
JP5277658B2 (en) Manufacturing method of hot press member
US6059898A (en) Induction hardening of heat treated gear teeth
CN107406949B (en) Steel wire for machine structural parts
JP2007131907A (en) Steel for induction hardening with excellent cold workability, and its manufacturing method
JP3776507B2 (en) Manufacturing method of high-strength stainless steel bolts
JP4497842B2 (en) Method for manufacturing ultra-high temperature hot forged non-tempered parts
JPH09263875A (en) High strength steel for machine structural use, excellent in delayed fracture characteristic, and its production
JPH11131176A (en) Induction hardened parts and production thereof
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP6454635B2 (en) High-strength bolts with excellent delayed fracture resistance and fatigue characteristics, and manufacturing method thereof
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP4488228B2 (en) Induction hardening steel
JP2000063935A (en) Production of nitrided part
JPH02166229A (en) Manufacture of steel wire rod for non-heat treated bolt
JPH11131134A (en) Production of high strength formed part made of non-refining steel
US20060057419A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
JP4786063B2 (en) Method for producing martensitic precipitation hardened stainless steel
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JPH07305139A (en) Non-heat treated machine parts and production thereof
JPH11131135A (en) Induction-hardened parts and production thereof
JPH09202921A (en) Production of wire for cold forging
JP3623313B2 (en) Carburized gear parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees