JP2011084784A - Steel to be worm-worked - Google Patents

Steel to be worm-worked Download PDF

Info

Publication number
JP2011084784A
JP2011084784A JP2009239122A JP2009239122A JP2011084784A JP 2011084784 A JP2011084784 A JP 2011084784A JP 2009239122 A JP2009239122 A JP 2009239122A JP 2009239122 A JP2009239122 A JP 2009239122A JP 2011084784 A JP2011084784 A JP 2011084784A
Authority
JP
Japan
Prior art keywords
steel
less
working
warm
worm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009239122A
Other languages
Japanese (ja)
Other versions
JP5747243B2 (en
Inventor
Yuji Kimura
勇次 木村
Kaneaki Tsuzaki
兼彰 津崎
Tadanobu Inoue
忠信 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009239122A priority Critical patent/JP5747243B2/en
Publication of JP2011084784A publication Critical patent/JP2011084784A/en
Application granted granted Critical
Publication of JP5747243B2 publication Critical patent/JP5747243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel to be worm-worked which is supplied to worm working for various structures, automotive components and the like; a method for worm-working the steel; and a steel material and steel components obtained by this worm working method. <P>SOLUTION: The steel to be worm-worked is a steel which forms a particle-dispersed type fiber structure in its matrix by the worm working; and forms 7×10<SP>-3</SP>or more by a volume rate in total amount of dispersed particles of the second phase at a room temperature, and shows hardness by Vickers hardness (HV) shown by expression (2) HH=(5.2-1.2×10<SP>-4</SP>λ)×10<SP>2</SP>or more, when having been subjected to any one of annealing treatment, tempering treatment and aging treatment without being worked beforehand, in a predetermined temperature range between 350°C and the Ac1 point, on such a condition that a parameter λ expressed by expression (1) λ=T(logt+20) (wherein T is a temperature (K); and t is a time (hr)) is 1.4×10<SP>4</SP>or more. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、350℃以上Ac1点以下の所定の温度域において温間加工により粒子分散型繊維組織が生成する温間加工用鋼に関する。   The present invention relates to a steel for warm working in which a particle-dispersed fiber structure is generated by warm working in a predetermined temperature range of 350 ° C. or higher and Ac1 point or lower.

この種鋼は、本願発明者たちが、既に特許文献1(PCT/JP2006/323248)に示すように、1.2GPa以上の引張強さを有し、延性、耐遅れ破壊性に優れ、靱性が飛躍的に向上された温間加工用の高強度鋼として開発したものである。
当該発明では、高強度鋼の一般に倣い、リン(P)の含有量を0.03wt以下とするのが望ましいとした。
As shown in Patent Document 1 (PCT / JP2006 / 323248), this seed steel has a tensile strength of 1.2 GPa or more, excellent ductility, delayed fracture resistance, and toughness. It was developed as a high-strength steel for warm working that has been dramatically improved.
According to the present invention, it is desirable that the content of phosphorus (P) be 0.03 wt or less, following the general practice of high-strength steel.

Pの添加は鋼の焼入性を向上させて高強度鋼の利用範囲をさらに広げる点では望まれるところであるが、高強度鋼を脆化させるため極力低減すべきものとされていたのが本願の出願時の技術常識であった。   The addition of P is desired in terms of improving the hardenability of the steel and further expanding the range of use of the high-strength steel. However, the present invention is supposed to reduce as much as possible in order to embrittle the high-strength steel. It was common technical knowledge at the time of filing.

本発明は、このような実情に鑑み、これまで不純物元素として精錬で極力取り除かれていたPを焼入性を高める合金元素として有効に使い、かつ良好な靭性が得られる温間加工用鋼を提供することを課題とした。   In view of such circumstances, the present invention uses a steel for warm-working that effectively uses P, which has been removed as much as possible by refining as an impurity element, as an alloying element that enhances hardenability and provides good toughness. It was an issue to provide.

本発明は、特許文献1に示す粒子分散型繊維状組織を有する高強度鋼で、Pの含有量がどのように影響するのかを詳細に調べ、その結果、得られた知見によるものである。   The present invention is a high-strength steel having a particle-dispersed fibrous structure shown in Patent Document 1 and details how the content of P influences, and as a result, is based on the knowledge obtained.

発明1の温間加工用鋼は、350℃以上Ac1点以下の所定の温度域において温間加工により粒子分散型繊維組織が生成する温間加工用鋼であって、そのリンの含有量が0.03wt%超、0.1wt%未満であることを特徴とする。   The warm-working steel of the invention 1 is a warm-working steel in which a particle-dispersed fiber structure is produced by warm working in a predetermined temperature range of 350 ° C. or higher and Ac1 point or lower, and its phosphorus content is 0. 0.03 wt% and less than 0.1 wt%.

発明2は、発明1の温間加工用鋼において、基地組織の80体積%以上がマルテンサイトとベイナイトのいずれか単独組織、あるいはこれらの混合組織となっており、前記温度域において下記式(1)で表される焼戻しパラメーターλ
λ=T(logt+20)(T;温度(K)、t;時間(hr))・・・(1)
が1.4×10以上となる条件で無加工のままで焼戻し処理を施すことにより、ビッカース硬さ(HV)が下記式(2)の硬さH以上となる焼戻軟化抵抗を有し、前記焼戻し処理を施すことにより、室温における第2相分散粒子の総量が体積率として7×10−3以上12×10−2以下となるように、前記第2相分散粒子を析出、分散させる合金元素を含有していることを特徴とする。
H=(5.2−1.2×10−4λ)×10・・・(2)
Invention 2 is the steel for warm-working of Invention 1, wherein 80% by volume or more of the base structure is a single structure of martensite or bainite, or a mixed structure thereof. In the temperature range, the following formula (1 Tempering parameter λ
λ = T (logt + 20) (T; temperature (K), t; time (hr)) (1)
Has a temper softening resistance in which the Vickers hardness (HV) is equal to or higher than the hardness H of the following formula (2) by performing a tempering process without processing under a condition that becomes 1.4 × 10 4 or more. By applying the tempering treatment, the second phase dispersed particles are precipitated and dispersed so that the total amount of the second phase dispersed particles at room temperature is 7 × 10 −3 or more and 12 × 10 −2 or less as a volume ratio. It is characterized by containing an alloy element.
H = (5.2-1.2 × 10 −4 λ) × 10 2 (2)

上記により、従来には、避けられていたPをあえて適量含有することにより、高強度鋼の焼入性を著しく向上することができた。さらに、発明2とすることで、鋼を加熱した場合の軟化抵抗性、すなわち基地組織および第2相分散粒子の熱的安定性と総量とを制御することで、温間加工に供した場合に粒子分散型繊維状組織を生成でき、温間加工後のビッカース硬さを3.7×10以上にすることができるものである。この結果、1.2GPa以上の引張強度を常温において維持向上しながら、その靱性を飛躍的に向上できる温間加工用鋼を提供することができた。
さらに、リンの高含有は、焼入れ性を高めるとともに、従来はリンが高含有されているスクラップの使用は、この種高強度鋼には使用不可能とされていたが、それを用いることを可能とするものであり、いずれにしても、高強度鋼の生産性を向上する効果を有するものである。
As described above, the hardenability of high-strength steel could be remarkably improved by intentionally containing an appropriate amount of P, which was conventionally avoided. Furthermore, by adopting Invention 2, by controlling the softening resistance when the steel is heated, that is, by controlling the thermal stability and the total amount of the base structure and the second phase dispersed particles, when subjected to warm working A particle-dispersed fibrous structure can be generated, and the Vickers hardness after warm working can be increased to 3.7 × 10 2 or more. As a result, it was possible to provide a steel for warm working that can dramatically improve its toughness while maintaining and improving a tensile strength of 1.2 GPa or more at room temperature.
In addition, high phosphorus content enhances hardenability, and the use of scraps with high phosphorus content has been considered impossible for this type of high-strength steel, but it can be used. In any case, it has the effect of improving the productivity of high-strength steel.

図1は焼戻硬さとT(logt+20)=λの関係を例示した図であり、Tは焼戻温度(K)、tは焼戻時間(hr)である。FIG. 1 is a diagram illustrating the relationship between tempering hardness and T (logt + 20) = λ, where T is a tempering temperature (K) and t is a tempering time (hr). 図2は、高P材(開発鋼)の超微細繊維組織を例示した図である。FIG. 2 is a diagram illustrating an ultrafine fiber structure of a high P material (developed steel). 図3は、吸収エネルギーとP量との関係を例示した図である。FIG. 3 is a diagram illustrating the relationship between the absorbed energy and the P amount.

本発明は上記のとおりの特徴をもつものであるが、以下、本発明の要件等について詳しく説明する。   The present invention has the features as described above. The requirements of the present invention will be described in detail below.

本発明は、350℃以上Ac1点以下の所定の温度域において温間加工により粒子分散型繊維組織が生成する温間加工用鋼である。
好ましくは、下記式(1)で表されるパラメーターλ
λ=T(logt+20)(T;温度(K)、t;時間(hr))・・・(1)
が1.4×10以上、より好ましくは1.5×10以上となる条件で、無加工のままで焼鈍、焼戻し、時効処理のいずれかの熱処理を施した場合の室温における第2相分散粒子の総量が体積率として7×10−3以上となる合金成分又は/及び第2相分散粒子を含有し、かつビッカース硬さ(HV)が下記式(2)の硬さH
H=(5.2−1.2×10−4λ)×10・・・(2)
以上を示すことが望ましい。
本発明の温間加工用鋼は、これに施す温間加工中に第2相分散粒子の分散状態や基地組織が変化するため、温間加工の熱履歴を模擬した熱処理で得られる無加工材の硬さ(組織)に対して式(2)の下限を設定することで、構成されている。すなわち、以下に説明するとおり、硬さにより組織状態を表すものである。
(a)温間加工用鋼の組織
温間加工により複相組織鋼の高強度化と靭性の向上を同時に達成するには、できるだけ少量でかつ微細な第2相分散粒子の分散による強化と、基地組織の微細化および繊維組織化を同時に行えることが望まれる。そしてこの超微細複相組織化を達成するには、素材である温間加工用鋼における第2相分散粒子の微細分散または微細分散能が重要である。
The present invention is a steel for warm working in which a particle-dispersed fiber structure is generated by warm working in a predetermined temperature range of 350 ° C. or higher and Ac1 point or lower.
Preferably, the parameter λ represented by the following formula (1)
λ = T (logt + 20) (T; temperature (K), t; time (hr)) (1)
Is a second phase at room temperature when any one of annealing, tempering, and aging treatment is performed without processing under the condition that is 1.4 × 10 4 or more, more preferably 1.5 × 10 4 or more. It contains an alloy component or / and second phase dispersed particles in which the total amount of dispersed particles is 7 × 10 −3 or more as a volume ratio, and the Vickers hardness (HV) is a hardness H of the following formula (2)
H = (5.2-1.2 × 10 −4 λ) × 10 2 (2)
It is desirable to show the above.
The steel for warm working of the present invention is a non-processed material obtained by heat treatment simulating the heat history of warm working because the dispersion state of the second phase dispersed particles and the base structure change during warm working applied thereto. It is comprised by setting the minimum of Formula (2) with respect to hardness (structure | tissue). That is, as described below, the tissue state is represented by hardness.
(A) Structure of steel for warm working In order to achieve high strength and improvement of toughness of duplex structure steel simultaneously by warm working, strengthening by dispersing the second phase dispersed particles as small as possible and as small as possible, It is desired that the base structure can be refined and the fiber structure can be formed simultaneously. In order to achieve this ultrafine multiphase structure, the fine dispersion or fine dispersion ability of the second phase dispersed particles in the steel for warm working as the material is important.

本願発明において、第2相分散粒子の微細分散または微細分散能については、
(i)温間加工用鋼において既に第2相分散粒子が分散している
(ii)温間加工用鋼において第2相分散粒子は分散していないが、温間加工中に第2相分散粒子が1種または2種以上析出し、加工処理後に粒子分散型繊維組織が形成される
(iii)温間加工用鋼において既に第2相分散粒子が分散しているが、温間加工中にそれとは別の粒子が析出する
の3通りを考慮することができる。
In the present invention, for the fine dispersion or fine dispersion ability of the second phase dispersed particles,
(I) The second phase dispersed particles are already dispersed in the warm working steel. (Ii) The second phase dispersed particles are not dispersed in the warm working steel, but the second phase dispersed during the warm working. One or more kinds of particles are precipitated, and a particle-dispersed fiber structure is formed after the processing (iii) The second phase dispersed particles are already dispersed in the steel for warm working. Three ways of precipitation of other particles can be considered.

そして、第2相分散粒子による分散(析出)強化は、第2相分散粒子の体積率、粒子の大きさ、硬さや形状等の分散状態に依存する。分散強化がOrowan機構による場合、下記の式(A)(「鉄鋼の析出制御メタラジー最前線(日本鉄鋼協会)(2001)P.69」)より、粒子径(d)が小さくて、体積率(f)が大きいほど分散強化量は大きくなる。すなわち、第2相分散粒子の分散状態(および分散能)は硬さと密接な関係を有することになる。   The dispersion (precipitation) strengthening by the second phase dispersed particles depends on the dispersion state such as the volume ratio of the second phase dispersed particles, the size of the particles, the hardness and the shape. When dispersion strengthening is based on the Orowan mechanism, the particle diameter (d) is smaller than the following formula (A) (“Steel Precipitation Control Metallurgy Frontline (Japan Iron and Steel Institute) (2001) P.69”), and the volume fraction ( The dispersion strengthening amount increases as f) increases. That is, the dispersion state (and dispersibility) of the second phase dispersed particles has a close relationship with the hardness.

Δσ=(3.2Gb)/[(0.9f−1/2−0.8)d] ・・・(A)
ここで、Gは鋼の剛性率80GPa、bはバーガースペクトル0.25nmである。
ところが、粒子がある臨界粒子径よりも小さくなりすぎると転位が粒子によってピン止めされなくなり、転位によって粒子がせん断されるようになるためOrowan機構が成立しなくなる。転位によって粒子がせん断される、いわゆるCutting機構では粒子径が大きくなるほど分散強化量は増加する。すなわちOrowan機構が成立する最小粒子径で最大の分散強化量が得られることになる。最大の分散強化が達成できる最小粒子径は粒子の硬さに依存し、粒子の硬さに逆比例して小さくなる(鉄鋼の析出制御メタラジー最前線(日本鉄鋼協会)(2001)P.69)。したがって、同一体積率で比較した場合、硬い粒子ほどOrowan機構が成立する最小粒子径も小さくなるため最大の粒子分散強化量も大きくなる。
Δσ = (3.2 Gb) / [(0.9f −1/2 −0.8) d] (A)
Here, G is a steel rigidity of 80 GPa, and b is a Burger spectrum of 0.25 nm.
However, if the particle becomes too smaller than a certain critical particle size, the dislocation is not pinned by the particle, and the particle is sheared by the dislocation, so that the Orowan mechanism is not established. In the so-called Cutting mechanism in which particles are sheared by dislocation, the amount of dispersion strengthening increases as the particle diameter increases. That is, the maximum dispersion strengthening amount can be obtained with the minimum particle diameter at which the Orowan mechanism is established. The minimum particle size at which the maximum dispersion strengthening can be achieved depends on the hardness of the particles and decreases in inverse proportion to the hardness of the particles (frontier of precipitation control metallurgy of steel (Japan Iron and Steel Institute) (2001) p. 69) . Therefore, when compared at the same volume ratio, the harder particles have a smaller minimum particle diameter at which the Owanan mechanism is established, and therefore the maximum amount of particle dispersion strengthening is increased.

たとえば、TiCは合金炭化物の中でも高い硬度を有し、密度も小さいことから有効な分散粒子強化が行えることが知られている。いま、TiCでOrowan機構の適用できる最小粒子径として7nmが得られるとすれば、7×10−3の体積率の分散で0.9GPa程度(TS(GPa)≒0.0032HV,HV2.8×10)の粒子分散強化量が期待できる。ちなみに、TiCの密度が4.94Mg/m、Tiの原子量47.9、Cの原子量12では、体積率7×10−3のTiCを析出させるのに必要なTiは0.35wt%、Cは0.087wt%となる。加えて、実用フェライト鋼の基地の強度は0.3GPa(約HV0.9×10)程度であるので、フェライト基地中に上記TiCが分散した鋼の室温強度は1.2GPa以上(HV3.7×10以上)と予想される。よって、TiCについて理想的な分散状態を考察すると、Orowan機構が適用できる分散粒子では大きさが7nmあれば7×10−3の少量の体積率での分散強化のみでもHV3.7×10を十分に満足できることになる。これは、炭窒化物、金属間化合物、酸化物、Cu粒子等からなる第2相分散粒子についても同様の効果が期待できる。 For example, it is known that TiC has a high hardness among alloy carbides and has a small density, so that effective dispersion particle strengthening can be performed. Now, assuming that 7 nm is obtained as the minimum particle diameter applicable to the Owanan mechanism in TiC, about 0.9 GPa (TS (GPa) ≈0.0032 HV, HV 2.8 ×) with a volume fraction dispersion of 7 × 10 −3. A particle dispersion strengthening amount of 10 2 ) can be expected. Incidentally, when the density of TiC is 4.94 Mg / m 3 , the atomic weight of Ti is 47.9, and the atomic weight of C is 12, the Ti necessary for precipitating TiC with a volume ratio of 7 × 10 −3 is 0.35 wt%, C Is 0.087 wt%. In addition, since the strength of the base of the practical ferritic steel is about 0.3 GPa (about HV 0.9 × 10 2 ), the room temperature strength of the steel in which the TiC is dispersed in the ferrite base is 1.2 GPa or more (HV 3.7). X10 2 or more). Therefore, considering the ideal dispersion state for TiC, if the dispersed particles to which the Orowan mechanism can be applied have a size of 7 nm, HV3.7 × 10 2 can be obtained only by dispersion strengthening at a small volume ratio of 7 × 10 −3. You will be fully satisfied. The same effect can be expected for the second phase dispersed particles composed of carbonitride, intermetallic compound, oxide, Cu particles and the like.

MoやTiなどの金属炭化物粒子は一般に10nm前後の大きさであり、体積率が10×10−3未満の少量の分散によっても高強度化が有効に図れることは知られている。ただし、合金元素等の偏析等によって第2相分散粒子の大きさや基地組織中での分布にもばらつきがある。よって、本発明においては、第2相分散粒子の分布のばらつきがあっても温間加工により微細な結晶組織が安定して得られるように考慮して、第2相分散粒子の室温における体積率を7×10−3以上と規定している。なお、低合金マルテンサイト鋼やベイトナイト鋼については、温間加工前の一般的なセメンタイト(FeC)の平均粒子径が数十nm以上であることを考慮すれば、第2相分散粒子の体積率を20×10−3以上とするのが好ましい。 Metal carbide particles such as Mo and Ti are generally about 10 nm in size, and it is known that high strength can be effectively achieved even with a small amount of dispersion having a volume ratio of less than 10 × 10 −3 . However, the size of the second phase dispersed particles and the distribution in the matrix structure also vary due to segregation of alloy elements and the like. Therefore, in the present invention, even if there is variation in the distribution of the second phase dispersed particles, the volume fraction of the second phase dispersed particles at room temperature is considered so that a fine crystal structure can be stably obtained by warm working. Is defined as 7 × 10 −3 or more. For low alloy martensitic steels and baitnite steels, the second phase dispersed particles are taken into account when the average particle size of general cementite (Fe 3 C) before warm working is several tens of nanometers or more. The volume ratio is preferably 20 × 10 −3 or more.

また、高強度化を図る上で第2相分散粒子の体積率の上限は特に制限しないが、靭性を考慮すれば、12×10−2以下とすることが好ましい。また、Orowan機構による粒子分散強化は、(A)式から、数十nm以下の領域で顕著になることが予想され、平均粒子径が0.5μmより大きな第2相分散粒子の分散状態では1.2GPa以上の強度が得られにくい。よって、第2相分散粒子の平均粒子径は0.5μm以下、より好ましくは0.1μm以下であることが温間加工用鋼として望まれる。 In addition, the upper limit of the volume fraction of the second phase dispersed particles is not particularly limited for increasing the strength, but is preferably 12 × 10 −2 or less in consideration of toughness. Further, the particle dispersion strengthening by the Orowan mechanism is expected to become remarkable in the region of several tens of nm or less from the formula (A), and 1 in the dispersed state of the second phase dispersed particles having an average particle diameter larger than 0.5 μm. It is difficult to obtain a strength of 2 GPa or more. Therefore, it is desired for the steel for warm working that the average particle size of the second phase dispersed particles is 0.5 μm or less, more preferably 0.1 μm or less.

ただし、上記条件は350℃の焼戻第3段階以上の温度域でも第2相分散粒子が成長しないことを前提としている。つまり、温間加工後も1.2GPa以上の強度を有するためには、加熱、加工中ならびに加工後に基地組織に加え、特に第2相分散粒子が著しくオストワルド成長して強度が低下しないことが必要条件となる。よって、一般に焼戻パラメーターとして知られている次の(1)式で表されるλを指標として組織の熱的安定性を評価した場合、350℃以上Ac1点以下の所定の温度域において、λ≧1.4×10の条件で、無加工のままで少なくとも焼鈍、焼戻し、時効のいずれかの熱処理を施した場合の室温におけるビッカース硬さ(HV)が下記式(2)で与えられる硬さH以上となるような軟化抵抗を示すことが前加工組織、すなわち本発明の温間加工用鋼としての必要十分条件であると考えることができる。 However, the above conditions are based on the premise that the second phase dispersed particles do not grow even in a temperature range of 350 ° C. or higher in the third stage or higher. In other words, in order to have a strength of 1.2 GPa or more even after warm processing, it is necessary that the second phase dispersed particles notably decrease in strength due to remarkable Ostwald growth in addition to the matrix structure during and after heating, processing. It becomes a condition. Therefore, when the thermal stability of the tissue is evaluated using λ represented by the following equation (1), which is generally known as a tempering parameter, as an index, in a predetermined temperature range of 350 ° C. or more and Ac1 point or less, λ Hardness at which Vickers hardness (HV) at room temperature is given by the following formula (2) when at least one of annealing, tempering, and aging heat treatment is performed without processing under the condition of ≧ 1.4 × 10 4 It can be considered that a softening resistance that is greater than or equal to H is a necessary and sufficient condition for the pre-worked structure, that is, the steel for warm working of the present invention.

λ=T(logt+20)・・・(1)
ここで、Tは温度(K)、tは時間(h)である。
λ = T (logt + 20) (1)
Here, T is temperature (K), and t is time (h).

H=(5.2−1.2×10−4λ)×10・・・(2)
なお、所定の温度域においてとは、350℃からAc1点のいずれかの温度で上記条件を満たせばよいことを示し、すべての温度域にわたって上記条件を満たす必要は無いことを意味している。つまり、時効または焼戻処理した場合に、素材が顕著な時効硬化や2次硬化を起こして上記範囲内のある温度域に限って硬さH以上となる場合も、本発明の温間加工用鋼とすることができる。
H = (5.2-1.2 × 10 −4 λ) × 10 2 (2)
The term “in the predetermined temperature range” means that the above condition should be satisfied at any temperature from 350 ° C. to Ac1 point, and means that the above condition need not be satisfied over the entire temperature range. That is, in the case of aging or tempering treatment, when the material undergoes remarkable age hardening or secondary hardening and becomes a hardness H or more only in a certain temperature range within the above range, Can be steel.

このように、TiC炭化物の理想分散状態による分散強化を基に、温間加工により1.2GPa上の引張強さを有する超微細複相組織を得るには、第2相分散粒子の体積率の下限値を7×10−3とし、かつT(logt+20)≧1.4×10の条件で焼鈍、焼戻し、時効のいずれかの熱処理後の鋼の硬さがHV≧(5.2−1.2×10−4λ)×10を有することを前加工組織の必要十分条件としている。すなわち、温間加工用鋼として、第2相分散粒子を基地組織中に粒子分散強化粒子として微細に分散又は析出させること、および第2相分散粒子の熱的安定性を高める組織制御が、本発明の特徴である。 Thus, in order to obtain an ultrafine multiphase structure having a tensile strength of 1.2 GPa by warm working on the basis of dispersion strengthening by the ideal dispersion state of TiC carbide, the volume fraction of the second phase dispersed particles is The lower limit is 7 × 10 −3 and the hardness of the steel after any of annealing, tempering, and aging is HV ≧ (5.2-1) under the condition of T (logt + 20) ≧ 1.4 × 10 4. .2 × 10 −4 λ) × 10 2 is a necessary and sufficient condition for the pre-processed structure. That is, as the steel for warm working, the second phase dispersed particles are finely dispersed or precipitated as the particle dispersion strengthened particles in the matrix structure, and the structure control for improving the thermal stability of the second phase dispersed particles It is a feature of the invention.

以上のような本願発明の温間加工用鋼の組織については、温間加工の処理中に第2相分散粒子の分散状態や基地組織が種々変化されるため、室温の組織形態で限定されることはないが、実際的には、パーライト組織を主組織とする鋼を除く、強度1.2GPa以上の鋼をすべて温間加工用鋼として考慮することができる。このようなものとしては、例えば、具体的には、マルテンサイト鋼(焼戻マルテンサイト組織)ではJIS−G4053の低合金鋼、JIS−G−4801のばね鋼や、それ以上の強度レベルの2次硬化鋼、マルエージ鋼、TRIP鋼、オースフォームド鋼等である。   About the structure | tissue of the steel for warm processing of this invention as mentioned above, since the dispersion state and base structure | tissue of a 2nd phase dispersion particle are variously changed during the process of warm processing, it is limited by the structure | tissue form of room temperature. However, in reality, all steels having a strength of 1.2 GPa or more, excluding steels having a pearlite structure as the main structure, can be considered as warm work steels. As such a material, specifically, for martensite steel (tempered martensite structure), a low alloy steel of JIS-G4053, a spring steel of JIS-G-4801, and a strength level of 2 or higher. Secondary hardened steel, maraging steel, TRIP steel, ausformed steel and the like.

そして、本発明の第2の温間加工用鋼は、基地組織の80体積%以上をマルテンサイトとベイナイトのいずれかの単独組織あるいはこれらの混合組織とするようにしている。これは、中炭素低合金鋼では、マルテンサイトの有効結晶粒とされるブロックの幅が1μm以下である(Scripta Mater.,49(2003),P.1157)ことが最近の研究で明らかになっており、炭化物等を微細に分散した焼戻マルテンサイト組織に温間加工を施すことで繊維組織を効率よく形成できることに加え、ベイナイト組織も炭化物が微細に分散した針状や板状の組織形態を有しており、これを前加工組織とした場合も同様に繊維状組織を得ることができるためである。本発明の温間加工用鋼においては、このようなマルテンサイトとベイナイトのいずれかの単独組織あるいはこれらの混合組織が、基地組織の90体積%以上であることをより好ましい形態としている。
とくに温間加工後に1.2GPa以上の強度を安定して維持するためには、JIS−SCM430鋼の焼戻マルテンサイト鋼と同等あるいはそれ以上の焼戻軟化抵抗を有するマルテンサイトまたはベイナイト組織を80%以上含むことが望ましい。なお、マルテンサイト又はベイナイトおよびこれらの混合組織以外の20体積%以下は、フェライト、パーライト、オーステナイト組織など、如何なる組織であってもよい。というのは、このようなフェライト、パーライト、オーステナイト組織等は温間加工熱処理中に分解・消失したり、微細な組織へと変化するため20体積%以下であれば問題ないと判断されるためである。
In the second warm working steel of the present invention, 80% by volume or more of the base structure is made to be either a single structure of martensite or bainite or a mixed structure thereof. This is because, in a medium carbon low alloy steel, the width of a block that is considered to be an effective crystal grain of martensite is 1 μm or less (Script Mater., 49 (2003), P. 1157). In addition to being able to efficiently form a fiber structure by performing warm working on a tempered martensite structure in which carbides are finely dispersed, the bainite structure is also a needle-like or plate-like structure form in which carbides are finely dispersed. This is because a fibrous structure can be obtained in the same manner when this is used as a pre-processed structure. In the steel for warm working of the present invention, it is more preferable that the single structure of such martensite and bainite or the mixed structure thereof is 90% by volume or more of the base structure.
In particular, in order to stably maintain a strength of 1.2 GPa or more after warm working, a martensite or bainite structure having a temper softening resistance equal to or higher than that of tempered martensite steel of JIS-SCM430 steel is 80. % Or more is desirable. In addition, 20 volume% or less other than martensite or bainite and mixed structure thereof may be any structure such as ferrite, pearlite, and austenite structure. This is because such a ferrite, pearlite, austenite structure, etc. decomposes / disappears during the warm working heat treatment or changes to a fine structure, so it is judged that there is no problem if it is 20 volume% or less. is there.

(b)化学組成
本発明の温間加工用鋼は、上記知見に基づいて合金設計されたものであり、その要旨とするところは、化学組成として、P:0.03wt%超0.1wt%未満、C:0.70wt%以下、Si:0.05wt%以上、Mn:0.05wt%以上、Cr:0.01wt%以上、Al:0.5wt%以下、O:0.3wt%以下、N:0.3wt%以下を含有し、残部は実質的にFe及び不可避的不純物であることを特徴とする温間加工用鋼である。また、この温間加工用鋼は、さらに、Mo:5.0wt%以下、W:5.0wt%以下、V:5.0wt%以下、Ti:3.0wt%以下、Nb:1.0wt%以下、Ta:1.0wt%以下から成る群より選ばれる1種又は2種以上を含有することや、Ni:9.0wt%以下、Cu:2.0wt%以下の1種又は2種を含有することなどを考慮することができる。以下に、本発明における鋼の成分組織の限定理由について述べる。
(B) Chemical composition The steel for warm working of the present invention is an alloy designed based on the above knowledge, and the gist thereof is as follows: P: more than 0.03 wt% and 0.1 wt% Less than, C: 0.70 wt% or less, Si: 0.05 wt% or more, Mn: 0.05 wt% or more, Cr: 0.01 wt% or more, Al: 0.5 wt% or less, O: 0.3 wt% or less, N: It is steel for warm work characterized by containing 0.3 wt% or less, and the remainder is substantially Fe and inevitable impurities. Moreover, this steel for warm working is further Mo: 5.0 wt% or less, W: 5.0 wt% or less, V: 5.0 wt% or less, Ti: 3.0 wt% or less, Nb: 1.0 wt% Hereinafter, it contains 1 type or 2 or more types selected from the group consisting of Ta: 1.0 wt% or less, or Ni: 9.0 wt% or less, Cu: 2.0 wt% or less Can be considered. The reasons for limiting the component structure of steel in the present invention will be described below.

C:Cは炭化物粒子を形成し、強度増加に最も有効な成分であるが、0.70wt%を超えると靱性劣化を招くことから、含有量を0.70wt%以下とした。強度増加を充分に期待するためには、好ましくは、0.08wt%以上、より好ましくは0.15wt%以上を含有させる。 C: C forms carbide particles and is the most effective component for increasing the strength. However, if it exceeds 0.70 wt%, the toughness is deteriorated, so the content is set to 0.70 wt% or less. In order to sufficiently expect an increase in strength, it is preferable to contain 0.08 wt% or more, more preferably 0.15 wt% or more.

Si:Siは脱酸およびフェライト中に固溶して鋼の強度を高めるとともにセメンタイトを微細に分散させるのに有効な元素である。従って、脱酸材として添加したもので鋼中に残るものも含め、含有量を0.05wt%以上とする。高強度化を図る上で上限は特に制限しないが、鋼材の加工性を考慮すれば、2.5wt%以下とすることが好ましい。 Si: Si is an element effective for deoxidizing and dissolving in ferrite to increase the strength of steel and finely disperse cementite. Therefore, the content of 0.05 wt% or more including those added as a deoxidizer and remaining in the steel is used. The upper limit is not particularly limited for increasing the strength, but it is preferably 2.5 wt% or less in consideration of the workability of the steel material.

Mn:Mnはオーステナイト化温度を低下させオーステナイトの微細化に有効であるとともに、焼入れ性ならびにセメンタイト中に固溶してセメンタイトの粗大化を抑制するのに有効な元素である。0.05wt%未満では所望の効果が得られないため、0.05wt%以上と定めた。より好ましくは0.2wt%以上を含有させる。高強度化を図る上で上限は特に制限しないが、得られる鋼材の靭性を考慮すれば、3.0wt%以下とすることが好ましい。 Mn: Mn is an element effective in lowering the austenitizing temperature and effective in refining austenite, and also in hardenability and solid solution in cementite to suppress cementite coarsening. If the amount is less than 0.05 wt%, the desired effect cannot be obtained. More preferably, 0.2 wt% or more is contained. The upper limit is not particularly limited for increasing the strength, but considering the toughness of the obtained steel material, it is preferably 3.0 wt% or less.

Cr:Crは焼入れ性向上に有効な元素であるとともにセメンタイト中に固溶してセメンタイトの成長を遅滞させる作用が強い元素である。また、比較的多く添加することでセメンタイトよりも熱的に安定な高Cr炭化物を形成したり、耐食性を向上させる、本発明では重要な元素のひとつでもある。従って、少なくとも0.01wt%以上含有させる必要がある。好ましくは0.1wt%以上であって、より好ましくは0.8wt%以上を含有させる。 Cr: Cr is an element effective for improving hardenability and is an element having a strong effect of delaying the growth of cementite by being dissolved in cementite. In addition, it is also one of the important elements in the present invention that, by adding a relatively large amount, forms a high Cr carbide that is more thermally stable than cementite and improves corrosion resistance. Therefore, it is necessary to contain at least 0.01 wt% or more. Preferably it is 0.1 wt% or more, More preferably, 0.8 wt% or more is contained.

Al:Alは脱酸およびNiなどの元素と金属間化合物を形成して鋼の強度を高めるのに有効な元素である。ただし過剰な添加は靱性を低下させるため、0.5wt%以下とした。なお、Alと他の元素の金属間化合物やAlの窒化物や酸化物などを第2相分散粒子として利用しない場合は、0.02wt%以下、さらに限定的には0.01wt%以下とすることが好ましい。 Al: Al is an element effective for deoxidizing and forming an intermetallic compound with an element such as Ni to increase the strength of the steel. However, excessive addition reduces toughness, so it was made 0.5 wt% or less. In the case where an intermetallic compound of Al and another element, Al nitride, oxide, or the like is not used as the second phase dispersed particles, it is 0.02 wt% or less, and more specifically 0.01 wt% or less. It is preferable.

O:O(酸素)は酸化物として微細で均一に分散させることができれば、介在物ではなく、粒成長抑制や分散強化粒子として有効に作用する。ただし、過剰に含有させると靱性を低下させるので0.3wt%以下とした。酸化物を第2相分散粒子として利用しない場合は、0.01wt%以下とすることが好ましい。 If O: O (oxygen) can be finely and uniformly dispersed as an oxide, it effectively acts not as inclusions but as grain growth suppression and dispersion strengthening particles. However, if excessively contained, the toughness is lowered, so the content was made 0.3 wt% or less. When the oxide is not used as the second phase dispersed particles, the content is preferably 0.01 wt% or less.

N:N(窒素)は窒化物として微細で均一に分散させることができれば、粒成長抑制粒子や分散強化粒子として有効に作用する。ただし、過剰に含有させると靱性を低下させるので0.3wt%以下とした。窒化物を第2相分散粒子として利用しない場合は、0.01wt%以下とすることが好ましい。 If N: N (nitrogen) can be finely and uniformly dispersed as a nitride, it effectively acts as a grain growth inhibiting particle or dispersion strengthening particle. However, if excessively contained, the toughness is lowered, so the content was made 0.3 wt% or less. When the nitride is not used as the second phase dispersed particles, the content is preferably 0.01 wt% or less.

Mo:Moは本発明において鋼の高強度化に有効な元素であり、鋼の焼入れ性向上を向上させるだけでなく、セメンタイト中にも少量固溶してセメンタイトを熱的に安定にする。とくにセメンタイトとはまったく別個に基地相中に新しく転位上に合金炭化物を核生成(separate nucleation)することで2次硬化を起こして鋼を強化する。しかも形成された合金炭化物は微細粒化に有効であると共に水素の置換にも有効である。したがって、好ましくは0.1wt%以上、より好ましくは0.5wt%以上を含有させるが、高価な元素であるとともに過剰な添加は粗大な未固溶炭化物または金属間化合物を形成して靱性を劣化させるため、添加量の上限を5wt%に定めた。経済性の観点からは、2wt%以下、若しくは含有しないことが好ましい。 Mo: Mo is an element effective for increasing the strength of steel in the present invention, and not only improves the hardenability of the steel, but also solidifies a small amount in cementite to make the cementite thermally stable. In particular, the steel is strengthened by causing secondary hardening by separate nucleation of alloy carbides on dislocations in the matrix phase completely separate from cementite. Moreover, the formed alloy carbide is effective for atomization and also for hydrogen replacement. Therefore, preferably 0.1 wt% or more, more preferably 0.5 wt% or more is contained, but it is an expensive element and excessive addition forms coarse undissolved carbides or intermetallic compounds to deteriorate toughness. Therefore, the upper limit of the addition amount is set to 5 wt%. From the viewpoint of economy, it is preferable that it is 2 wt% or less or not contained.

なお、W、V、Ti、NbならびにTaについてもMoと同様な効果を示し、それぞれ前記上限の添加量を定めた。さらにこれらの元素の複合添加は、分散強化粒子を微細に分散する上で有効である。   W, V, Ti, Nb and Ta also showed the same effect as Mo, and the upper limit addition amount was determined for each. Furthermore, the combined addition of these elements is effective in finely dispersing the dispersion strengthening particles.

Ni:Niは焼き入れ性の向上に有効であるとともに、オーステナイト化温度を低下させオーステナイトの微細化や靱性の向上、耐食性の向上に有効な元素である。また、適量を含有させればTiやAlと金属間化合物を形成して鋼を析出強化させるのにも有効な元素である。0.01wt%未満では所望の効果が得られないため、0.01wt%以上と定めた。より好ましくは0.2wt%以上を含有させる。上限については特に制限は無いが、高価な元素であるため、9wt%以下若しくは含有しないことが好ましい。 Ni: Ni is an element that is effective for improving hardenability and is effective for reducing the austenitizing temperature and reducing the austenite, improving toughness, and improving corrosion resistance. Moreover, if it contains an appropriate amount, it is an element that is effective in forming an intermetallic compound with Ti or Al to strengthen precipitation of steel. If less than 0.01 wt%, the desired effect cannot be obtained. More preferably, 0.2 wt% or more is contained. Although there is no restriction | limiting in particular about an upper limit, Since it is an expensive element, it is preferable that it is 9 wt% or less or does not contain.

Cu:Cuは熱間脆性を引き起こす有害な元素である反面、適量を添加すれば500℃〜600℃で微細なCu粒子の析出をもたらし、鋼を強化する。多量に添加すると熱間脆性を引き起こすので、フェライト中へのほぼ最大固溶量である2wt%以下とした。 Cu: Cu is a harmful element that causes hot brittleness, but if an appropriate amount is added, it causes precipitation of fine Cu particles at 500 ° C. to 600 ° C. and strengthens the steel. When added in a large amount, hot brittleness is caused, so the amount was set to 2 wt% or less, which is the almost maximum solid solution amount in ferrite.

なお、微細な金属間化合物の析出による高強度化を意図する場合には、Co:15wt%以下を含有することも有効である。   In addition, when increasing strength by precipitation of fine intermetallic compounds, it is effective to contain Co: 15 wt% or less.

P:P(燐)は、0.03wt%以下であると、焼き入れ特性を改善する効果は認められないが、下記実施例のようにこれを超える量を含有させると、焼入性を大幅に向上することができた。
しかし 0.1wt%未満、好ましくは0.08wt%以下より好ましくは0.07wt%以下、さらに好ましくは0.06以下とする。
この上限を超えると粒界強度を低下させ、素材の作り込中に脆化を招くこととなる。
When P: P (phosphorus) is 0.03 wt% or less, the effect of improving the quenching characteristics is not recognized. However, when the amount exceeds this as in the following examples, the hardenability is greatly increased. Could be improved.
However, it is less than 0.1 wt%, preferably 0.08 wt% or less, more preferably 0.07 wt% or less, and further preferably 0.06 or less.
When this upper limit is exceeded, the grain boundary strength is lowered, and embrittlement is caused during the formation of the material.

S:S(硫黄)については特に規定されないが、Sは粒界強度を低下させるため極力取り除きたい元素であり、0.03wt%以下とすることが好ましい。 S: S (sulfur) is not particularly defined, but S is an element to be removed as much as possible in order to reduce the grain boundary strength, and is preferably 0.03 wt% or less.

なお、上記以外の元素についても、本発明の効果を下げない範囲で各種の元素が含有されることが許容される。   In addition, it is permissible for elements other than those described above to be contained in various elements as long as the effects of the present invention are not reduced.

(c)温間加工用鋼の調製
なお、以上のような温間加工用鋼の作製方法は、たとえば、JIS規格のマルテンサイト組織やベイナイト組織の製造方法等に準じて、多種多様なものを考慮することができる。
(C) Preparation of steel for warm working Note that the method for producing the steel for warm working as described above is based on, for example, a variety of JIS standard martensite structure and bainite structure manufacturing method. Can be considered.

(d)温間加工
本発明の温間加工方法は、上記いずれかの温間加工用鋼に対し、350℃以上Ac1点−20℃以下の温度域で、0.7以上のひずみを与える温間加工を施すことを特徴としている。温間加工を施した後、350℃以上Ac1点以下の温度域で時効、焼なまし処理を施すことも考慮される。
(D) Warm working The warm working method of the present invention is a temperature that gives a strain of 0.7 or more to any one of the above-mentioned steels for warm working in a temperature range of 350 ° C or higher and Ac1 point -20 ° C or lower. It is characterized by inter-processing. It is also considered to perform aging and annealing treatment in a temperature range of 350 ° C. or higher and Ac1 point or lower after the warm working.

このような加工温度について、より具体的には、例えば、一般機械構造用鋼として用いられている中炭素低合金鋼でマルテンサイト組織を基地とする場合では、セメンタイトが析出する焼戻第3段階にほぼ相当する350℃温度以上とすることができる。特に、合金炭化物、金属間化合物やCuなどを第2相分散粒子として有効に利用するには、これらの第2相分散粒子の析出温度である500℃から650℃の温度域で加工することが望ましい。   More specifically, with respect to such a processing temperature, for example, in the case of a medium carbon low alloy steel used as a general machine structural steel and based on a martensite structure, a tempering third stage in which cementite precipitates. It is possible to set the temperature to 350 ° C. or higher that substantially corresponds to In particular, in order to effectively use alloy carbides, intermetallic compounds, Cu, and the like as the second phase dispersed particles, it is necessary to process in a temperature range of 500 ° C. to 650 ° C., which is the precipitation temperature of these second phase dispersed particles. desirable.

一方、加工中にオーステナイト変態した部分では冷却過程でパーライト変態やマルテンサイト変態などの相変態を起こし、その結果、割れ発生の原因となるような不均一な組織が形成される可能性が高い。また、加工発熱による温度上昇も考慮して、加工の上限温度はAc1点−20℃とした。ただし、素材の加工温度と時間の組み合わせとしては、焼戻パラメーターλで硬さを整理した場合、無加工のままで素材に焼鈍、焼戻し、時効処理のいずれかを施した場合に室温におけるビッカース硬さがHV3.7×10以下にならない組み合わせが温間加工後に1.2GPa以上の強度を得るために好ましい。とくに高温域での加工では、素材の軟化抵抗性と加熱時間を考慮に入れて加工に要する時間を短くする必要がある。 On the other hand, in the portion that has undergone austenite transformation during processing, phase transformation such as pearlite transformation or martensite transformation occurs in the cooling process, and as a result, there is a high possibility that a non-uniform structure that causes cracking is formed. Moreover, the upper limit temperature of processing was made into Ac1 point-20 degreeC also considering the temperature rise by process heat_generation | fever. However, as a combination of the processing temperature and time of the material, when the hardness is arranged by the tempering parameter λ, Vickers hardness at room temperature when the material is annealed, tempered, or aging treated without processing. A combination that does not become HV 3.7 × 10 2 or less is preferable in order to obtain a strength of 1.2 GPa or more after warm working. Particularly in processing at high temperatures, it is necessary to shorten the time required for processing in consideration of the softening resistance of the material and the heating time.

組織の発達の度合いは、前加工組織、加工温度とひずみ量に依存する。つまり、前加工組織や加工温度によって必要なひずみ量も変わるためここでひずみ量を厳密に規定はできないが、材料内部に繊維状組織を形成させようとする場合には、0.7以上、より好ましくは1以上のひずみを付与することが好ましい。あらかじめオーステナイトの未再結晶温度域で加工を加えるなどして旧オーステナイト結晶粒を微細な繊維状に伸長させたマルテンサイトやベイナイト組織を有する温間加工用鋼に対しては、1より小さなひずみ量の付与で微細な繊維組織を均一に生成させることができる。しかしながら、おおよその場合において、ひずみ量は好ましくは1以上、さら好適には1.5以上とするのが望ましい。   The degree of tissue development depends on the pre-processed structure, processing temperature and strain. In other words, the amount of strain required varies depending on the pre-processed structure and processing temperature, so the amount of strain cannot be strictly defined here, but when trying to form a fibrous structure inside the material, 0.7 or more, more It is preferable to apply one or more strains. Less than 1 strain amount for warm work steels with martensite and bainite structure in which prior austenite grains are elongated into fine fibers by processing in advance in the non-recrystallization temperature range of austenite A fine fiber structure can be uniformly generated by the application of. However, in an approximate case, the amount of strain is preferably 1 or more, more preferably 1.5 or more.

このとき、付与するひずみは1回の加工に限らず、複数回の加工に分けて導入しても良い。また、加工の方向は常に同じ方向に限定されない。さらに、パス間の時間も特に限定するものではない。さらに、被加工材の全域でなく、特定の領域(たとえば、高強度化が必要な表層や部品のR部など)に所定のひずみを付与することも含まれる。ただし、実際のひずみ量は被加工材の材料特性、ロール(鍛造であれば金型)と被加工材の摩擦条件(たとえば、潤滑剤の種類や有無など)、ロール(鍛造であれば金型)の変形、圧延(鍛造)速度、圧延(鍛造)温度などを考慮してはじめて理解できるものである。特に、鍛造によって部品成型を行う場合には、不均一なひずみが導入されていることは必須である。よって、ひずみの量を精度の高い数値解析技術によって予測することが望ましいが、一般的に平面ひずみ状態を前提とした板圧延の場合累積圧下率は45%以上、棒線圧延の場合累積減面率45%以上であれば、ひずみ0.7以上は被加工材の全域に導入されていると考えられる。なお、累積圧下率または累積減面率が58%以上であればひずみ1以上が被加工材の全域に導入されていると考えられる。ただし、たとえば、圧下率(減面率)45%未満であっても摩擦などの影響で0.7以上のひずみが被加工材の全域あるいは特定の領域に導入されることもあるので、その場合には数値解析によって導入されたひずみの量を定量的に検討することが必要である。   At this time, the strain to be applied is not limited to a single process, and may be introduced in a plurality of processes. Further, the processing direction is not always limited to the same direction. Furthermore, the time between passes is not particularly limited. Furthermore, it includes applying a predetermined strain to a specific region (for example, a surface layer that requires high strength, an R portion of a part, or the like) instead of the entire area of the workpiece. However, the actual amount of strain depends on the material properties of the workpiece, the conditions of the roll (mold if it is forged) and the workpiece (such as the type and presence of lubricant), and the roll (the mold if forged). ), The rolling (forging) speed, the rolling (forging) temperature, etc., can only be understood. In particular, when parts are formed by forging, it is essential that non-uniform strain is introduced. Therefore, it is desirable to predict the amount of strain by a highly accurate numerical analysis technique, but generally the rolling reduction is 45% or more in the case of sheet rolling on the premise of a plane strain state, and the cumulative surface reduction in the case of bar rolling. If the rate is 45% or more, it is considered that a strain of 0.7 or more is introduced in the entire area of the workpiece. If the cumulative rolling reduction or cumulative area reduction is 58% or more, it is considered that a strain of 1 or more is introduced throughout the workpiece. However, for example, even if the rolling reduction (area reduction) is less than 45%, a strain of 0.7 or more may be introduced into the entire area of the workpiece or a specific region due to the influence of friction or the like. It is necessary to quantitatively study the amount of strain introduced by numerical analysis.

(e)鋼材
本発明の鋼材は、上記のとおりに温間加工用鋼を温間加工して得られる鋼であって、短軸の平均粒径が3μm以下の繊維状結晶からなる基地組織を有し、第2相分散粒子が室温において7×10−3以上の体積率で基地組織内に微細に分散し、室温におけるビッカース硬さがHV3.7×10以上であることを特徴としている。なお、本発明の鋼材における基地組織は、伸展度(アスペクト比)が2を超え、代表的にはアスペクト比5以上の繊維状フェライト結晶からなり、これに第2相分散粒子が微細に分散されているものと理解することができる。
(E) Steel material The steel material of the present invention is a steel obtained by warm-working the steel for warm working as described above, and has a base structure composed of fibrous crystals having a minor axis average particle size of 3 μm or less. And the second phase dispersed particles are finely dispersed in the matrix structure at a volume ratio of 7 × 10 −3 or more at room temperature, and the Vickers hardness at room temperature is HV3.7 × 10 2 or more. . The base structure in the steel material of the present invention has a degree of extension (aspect ratio) exceeding 2 and is typically composed of fibrous ferrite crystals having an aspect ratio of 5 or more, and the second phase dispersed particles are finely dispersed therein. Can be understood.

鋼の機械的特性に及ぼす結晶粒微細化の効果は、数μm以下の結晶粒領域において顕著になることが知られており、本発明では繊維状結晶からなる基地組織の平均間隔(すなわち短軸平均粒径)の上限を3μmとしている。なお、ここで結晶粒とは、15°以上の結晶方位差の粒界で囲まれた基地の結晶粒である。一方、分散粒子の長軸の平均粒径が0.3μmより大きい場合では、粒子分散強化がほとんど望めないうえに、1.2GPa以上の鋼では靭性を著しく劣化される可能性が高い。よって、長軸の平均粒径が0.3μm以下であることが望ましい。   The effect of grain refinement on the mechanical properties of steel is known to be noticeable in the grain region of several μm or less. In the present invention, the average interval between the base structures composed of fibrous crystals (that is, the minor axis) The upper limit of (average particle diameter) is 3 μm. Here, the crystal grain is a base crystal grain surrounded by a grain boundary having a crystal orientation difference of 15 ° or more. On the other hand, when the average particle size of the long axis of the dispersed particles is larger than 0.3 μm, the particle dispersion strengthening can hardly be expected, and the steel having 1.2 GPa or more is highly likely to significantly deteriorate the toughness. Therefore, it is desirable that the average particle diameter of the major axis is 0.3 μm or less.

とくに結晶粒微細化の効果は平均結晶粒径が1μm以下、Orowan機構による粒子分散強化は、平均粒子径が0.1μm以下の領域でとくに顕著になる。よって、結晶繊維状化による強化と粒子分散強化を重畳して有効に利用するには、さらに繊維状結晶の短軸平均粒径を1μm以下、さらには0.5μm以下とすることが有効である。そして、第2相分散粒子の長軸の平均粒子径も、基地組織の微細化に応じて0.1μm以下、さらには0.05μm以下とするのがより好ましい。   In particular, the effect of crystal grain refinement is particularly remarkable in the region where the average grain size is 1 μm or less and the particle dispersion strengthening by the Orowan mechanism is in the region where the average grain size is 0.1 μm or less. Therefore, in order to effectively utilize the strengthening by crystal fiber formation and the particle dispersion strengthening, it is effective to further reduce the minor axis average particle diameter of the fibrous crystal to 1 μm or less, further 0.5 μm or less. . The average particle diameter of the major axis of the second phase dispersed particles is also preferably 0.1 μm or less, more preferably 0.05 μm or less, depending on the refinement of the matrix structure.

このような温間加工鋼材では、上記強化機構の他に固溶強化ならびに転位強化などの強化機構も加えることができるものであり、これらの強化機構が重畳する効果によって上記強化機構の単純な加算では予測できないような高機能性の材料が得られるに至っている。   In such warm-worked steel materials, strengthening mechanisms such as solid solution strengthening and dislocation strengthening can be added in addition to the strengthening mechanism described above, and a simple addition of the strengthening mechanism due to the effect of superimposing these strengthening mechanisms. In this way, highly functional materials that cannot be predicted have been obtained.

このように微細な繊維組織は、板材を始めとし、棒線材、ボルトのネジ部等の温間成形によって形成することができる。とくに累積ひずみ量が小さい場合でも、局所的に強変形を被った表層部などに繊維組織を形成させることができ、各種の部品および所望の部分の特性を大幅に向上させることができる。   Such a fine fiber structure can be formed by warm forming of a plate material, a rod wire, a bolt thread portion, and the like. In particular, even when the amount of accumulated strain is small, a fiber structure can be formed in a surface layer portion or the like that has undergone local strong deformation, and the characteristics of various parts and desired portions can be greatly improved.

以下、添付した図面に沿って実施例を示し、この出願の発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

表1に、本発明範囲の鋼成分(A)と範囲外の鋼成分(B)を示す。なお、鋼の基本成分はJIS−SCM440鋼の成分に準じる。AおよびB鋼で第2相分散粒子として分散し得るセメンタイトの体積率は、炭素量0.4wt%とセメンタイトの密度7.68Mg/m、基地フェライト鉄の密度7.86Mg/mから60×10−3と求めることができる。よって、A鋼とB鋼での大きな違いはP量のみである。 Table 1 shows the steel component (A) within the scope of the present invention and the steel component (B) outside the range. In addition, the basic component of steel is based on the component of JIS-SCM440 steel. The volume fraction of cementite that can be dispersed as second phase dispersed particles in A and B steels is as follows: carbon content 0.4 wt%, cementite density 7.68 Mg / m 3 , base ferrite iron density 7.86 Mg / m 3 to 60 It can be determined as x10-3 . Therefore, the only major difference between steel A and steel B is the amount of P.

まず、熱延鋼板または鍛造材から切り出した4cm角×長さ12cmの角材を断面積10cm、長さ19cmの角棒材に熱間圧延した後空冷した。角棒材は920℃で0.5時間のオーステナイト化後焼入れして、ほぼ100体積%に近いマルテンサイト単一組織を得た。なお、ここで重要なことはA材では空冷でもほぼ100%のマルテンサイト組織が得られるのに対し、B材では氷食塩水で水冷しないとマルテンサイト組織が得られないことである。すなわち、Pの添加によって鋼材の焼き入れ性を高めることができた。ついで角材は500℃まで0.5時間で加熱して1時間の焼戻しを施した後、溝ロールを用いて77%の減面率まで温間圧延加工を施してひずみを付与し、空冷した。温間加工材はさらに550℃で1時間焼なまし処理を行った(TF材)。また、比較のために温間加工材の一部を880℃から焼準処理したのち920℃で0.5時間のオーステナイト化処理後焼入れ、550℃で1時間焼戻しして前記温間加工材と同じ硬さの材料を用意した(QT材)。 First, a 4 cm square × 12 cm long square bar cut out from a hot-rolled steel plate or a forged material was hot-rolled into a square bar material having a cross-sectional area of 10 cm 2 and a length of 19 cm, and then air-cooled. The square bar material was quenched after being austenitized at 920 ° C. for 0.5 hour to obtain a martensite single structure close to approximately 100% by volume. Here, what is important is that the A material can obtain a nearly 100% martensite structure even with air cooling, whereas the B material cannot obtain a martensitic structure unless it is cooled with ice brine. That is, the hardenability of the steel material could be improved by adding P. Next, the square was heated to 500 ° C. for 0.5 hour and tempered for 1 hour, and then subjected to warm rolling using a grooved roll to a reduction in area of 77% to give strain and air-cooled. The warm processed material was further annealed at 550 ° C. for 1 hour (TF material). For comparison, a part of the warm processed material is subjected to a normalizing treatment from 880 ° C., and then quenched after annealing at 920 ° C. for 0.5 hour and tempered at 550 ° C. for 1 hour. A material with the same hardness was prepared (QT material).

得られた鋼材の組織を、FE−SEMおよびEBSP分析装置を用い、圧延加工(RD)方向に平行な断面を研磨仕上げして観察した。繊維組織における伸長粒の短軸は、EBSP解析によって、15°以上の結晶方位差を有する伸長結晶粒の短軸の平均切片長さを切断法で測定した。   The structure of the obtained steel material was observed by polishing a cross section parallel to the rolling process (RD) direction using an FE-SEM and an EBSP analyzer. For the minor axis of the elongated grains in the fiber structure, the average section length of the minor axes of the elongated grains having a crystal orientation difference of 15 ° or more was measured by a cutting method by EBSP analysis.

得られた鋼材の硬さは、JIS Z 2244で規定されている試験方法に準じて、ビッカース硬さ試験機を用いて、荷重20kg、保持時間15sで測定した。   The hardness of the obtained steel material was measured at a load of 20 kg and a holding time of 15 s using a Vickers hardness tester in accordance with a test method defined in JIS Z 2244.

引張試験は、JIS Z 2241で規定されている試験方法に準じて、1)平行部直径6mm、長さ42mm、評点間距離30mmのJIS14号A比例試験片について常温で行った。クロスヘッドスピードは、0.5mm/minであり、伸びは、島津ビデオ式非接触伸び計(DVE−201)で測定した。   The tensile test was performed at room temperature on a JIS No. 14A proportional test piece having a parallel part diameter of 6 mm, a length of 42 mm, and a distance between scores of 30 mm in accordance with the test method defined in JIS Z 2241. The crosshead speed was 0.5 mm / min, and the elongation was measured with a Shimadzu video non-contact extensometer (DVE-201).

衝撃試験は、JIS Z 2242で規定されている試験方法に準じて、鋼材から切削加工で作製した長さ55mm、高さと幅が10mmのVノッチ試験片ついて行った。   The impact test was carried out on a V-notch test piece having a length of 55 mm and a height and width of 10 mm produced from a steel material by cutting in accordance with a test method specified in JIS Z 2242.

図1は、T(logt+20)=λと無加工のままの焼戻マルテンサイト鋼の硬さの関係を示したものである。   FIG. 1 shows the relationship between T (logt + 20) = λ and the hardness of tempered martensitic steel as it is.

A鋼、B鋼のいずれもセメンタイトの体積率が60×10−3であり、λ=1.4×10以上の焼戻処理では、硬さは図中に破線で示したH=(5.2−1.2×10−4λ)以上となり、350℃以上の温間加工によってHV3.7×10を達成できる。 In both steel A and steel B, the volume fraction of cementite is 60 × 10 −3 , and in the tempering treatment of λ = 1.4 × 10 4 or more, the hardness is H = (5 becomes .2-1.2 × 10 -4 λ) above, can be achieved HV3.7 × 10 2 by warm working above 350 ° C..

図2は、温間溝ロール加工して得られたA材の組織を解析した例を示す。Bcc相のEBSP解析図からわかるように、圧延方向に伸長した超微細繊維組織が得られている。15°以上の結晶方位差を有する結晶粒の短軸の平均粒径を切断法で測定した結果、伸長した結晶粒の短軸の平均粒径は、A−TF材、B−TF材でいずれも0.4μmであった。   FIG. 2 shows an example in which the structure of the A material obtained by warm groove rolling is analyzed. As can be seen from the EBSP analysis diagram of the Bcc phase, an ultrafine fiber structure elongated in the rolling direction is obtained. As a result of measuring the average grain size of the minor axis of the crystal grains having a crystal orientation difference of 15 ° or more by the cutting method, the average grain size of the minor axis of the elongated crystal grains is either A-TF material or B-TF material. Was 0.4 μm.

圧延方向(RD)に関する逆極点図から、<011>//RD集合組織が発達した繊維組織であることがわかる。なお、他の開発鋼についても同様の集合組織が形成されていた。Bcc鉄のへき開面は{100}であるため、このような<011>繊維組織の形成は繊維軸方向の引張変形や繊維方向に沿って曲げモーメントを受ける曲げ変形等による破壊には極めて有効であると考える。   From the inverse pole figure regarding the rolling direction (RD), it can be seen that the <011> // RD texture is a developed fiber structure. Similar textures were formed for other developed steels. Since the cleavage plane of Bcc iron is {100}, the formation of such <011> fiber structure is extremely effective for fracture due to tensile deformation in the fiber axis direction or bending deformation that receives a bending moment along the fiber direction. I think there is.

表2に、引張試験の結果をまとめる。   Table 2 summarizes the results of the tensile test.

図3に、吸収エネルギーとP量の関係を示した。QT材ではPの添加により靭性が著しく低下している。これに対して、温間加工材(粒子分散型繊維組織鋼(TF))ではP添加によっても靭性があまり低下しないことが確認できた。   FIG. 3 shows the relationship between absorbed energy and P content. In the QT material, the toughness is remarkably lowered by the addition of P. On the other hand, it was confirmed that the toughness of the warm processed material (particle-dispersed fiber structure steel (TF)) does not deteriorate so much even when P is added.

本発明は、以上詳しく説明したとおり、
これまで不純物として精錬で取り除かれていたPを焼入れ性を高める元素として有効に使用して少量の第2相分散粒子の微細分散によって複相化を図った高強度鋼、とりわけ軟質化が困難で難成形の超高強度鋼に対しても、変形抵抗が低下してかつ材料中に割れが生じない温度域で所定の変形を与えて所定の形状(薄板、厚板、棒線、部品)に成形することで、従来の球状化焼きなましや部品成型後の焼入れおよび焼戻し処理を省略すると同時に超微細複相組織を繊維状に発達させて高強度とトレードオフバランスの関係にある靱性を大幅に向上させた高強度鋼および部材を提供する。
As described above in detail, the present invention
High-strength steels that have been made use of P, which has been removed by refining as impurities, effectively as an element that enhances hardenability and are made into a multiphase by fine dispersion of a small amount of second-phase dispersed particles, especially softening is difficult. Even for difficult-to-form ultra-high-strength steels, given deformation (thin plate, thick plate, bar wire, parts) in a temperature range where deformation resistance decreases and cracks do not occur in the material By molding, conventional spheroidizing annealing and quenching and tempering after molding of the parts are omitted, and at the same time, the ultrafine multiphase structure is developed into a fiber shape, greatly improving the toughness that has a relationship between high strength and trade-off balance. Provided are high strength steel and members.

これらは、各種の構造物や自動車の部品等に加工して使用される鋼、もしくは部材として有用なものである。   These are useful as steels or members that are processed into various structures and parts of automobiles.

Claims (2)

350℃以上Ac1点以下の所定の温度域において温間加工により粒子分散型繊維組織が生成する温間加工用鋼であって、そのPの含有量が0.03wt%超、0.1wt%未満であることを特徴とする温間加工用鋼。   A steel for warm working in which a particle-dispersed fiber structure is produced by warm working in a predetermined temperature range of 350 ° C. or more and Ac1 point or less, and its P content is more than 0.03 wt% and less than 0.1 wt% It is a steel for warm working characterized by being. 請求項1に記載の温間加工用鋼において、基地組織の80体積%以上がマルテンサイトとベイナイトのいずれか単独組織、あるいはこれらの混合組織となっており、前記温度域において下記式(1)で表される焼戻しパラメーターλ
λ=T(logt+20)(T;温度(K)、t;時間(hr))・・・(1)
が1.4×10以上となる条件で無加工のままで焼戻し処理を施すことにより、ビッカース硬さ(HV)が下記式(2)の硬さH以上となる焼戻軟化抵抗を有し、前記焼戻し処理を施すことにより、室温における第2相分散粒子の総量が体積率として7×10−3以上12×10−2以下となるように、前記第2相分散粒子を析出、分散させる合金元素を含有していることを特徴とする温間加工用鋼。
H=(5.2−1.2×10−4λ)×10・・・(2)
In the warm-working steel according to claim 1, 80% by volume or more of the base structure is a single structure of martensite and bainite, or a mixed structure thereof. In the temperature range, the following formula (1) Tempering parameter λ expressed by
λ = T (logt + 20) (T; temperature (K), t; time (hr)) (1)
Has a temper softening resistance in which the Vickers hardness (HV) is equal to or higher than the hardness H of the following formula (2) by performing a tempering process without processing under a condition that becomes 1.4 × 10 4 or more. By applying the tempering treatment, the second phase dispersed particles are precipitated and dispersed so that the total amount of the second phase dispersed particles at room temperature is 7 × 10 −3 or more and 12 × 10 −2 or less as a volume ratio. A steel for warm working characterized by containing an alloying element.
H = (5.2-1.2 × 10 −4 λ) × 10 2 (2)
JP2009239122A 2009-10-16 2009-10-16 Warm working steel Expired - Fee Related JP5747243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239122A JP5747243B2 (en) 2009-10-16 2009-10-16 Warm working steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239122A JP5747243B2 (en) 2009-10-16 2009-10-16 Warm working steel

Publications (2)

Publication Number Publication Date
JP2011084784A true JP2011084784A (en) 2011-04-28
JP5747243B2 JP5747243B2 (en) 2015-07-08

Family

ID=44077948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239122A Expired - Fee Related JP5747243B2 (en) 2009-10-16 2009-10-16 Warm working steel

Country Status (1)

Country Link
JP (1) JP5747243B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029993A1 (en) * 2013-08-27 2015-03-05 株式会社神戸製鋼所 High-strength steel, and crankshaft manufactured using said high-strength steel
WO2016031528A1 (en) * 2014-08-29 2016-03-03 日産自動車株式会社 Steel for high-strength bolt, and high-strength bolt
WO2023080029A1 (en) * 2021-11-08 2023-05-11 日本製鉄株式会社 Steel material for sliding components and production method for steel material for sliding components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194548A (en) * 2003-12-26 2005-07-21 National Institute For Materials Science P-containing ultrafine-grained steel and manufacturing method therefor
JP5344454B2 (en) * 2005-11-21 2013-11-20 独立行政法人物質・材料研究機構 Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194548A (en) * 2003-12-26 2005-07-21 National Institute For Materials Science P-containing ultrafine-grained steel and manufacturing method therefor
JP5344454B2 (en) * 2005-11-21 2013-11-20 独立行政法人物質・材料研究機構 Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029993A1 (en) * 2013-08-27 2015-03-05 株式会社神戸製鋼所 High-strength steel, and crankshaft manufactured using said high-strength steel
JP2015045049A (en) * 2013-08-27 2015-03-12 株式会社神戸製鋼所 High strength steel and crank shaft for diesel engine of marine vessel or electric generator
CN105473754A (en) * 2013-08-27 2016-04-06 株式会社神户制钢所 High-strength steel, and crankshaft manufactured using said high-strength steel
WO2016031528A1 (en) * 2014-08-29 2016-03-03 日産自動車株式会社 Steel for high-strength bolt, and high-strength bolt
JP2016050329A (en) * 2014-08-29 2016-04-11 日産自動車株式会社 Steel for high strength bolt and high strength bolt
WO2023080029A1 (en) * 2021-11-08 2023-05-11 日本製鉄株式会社 Steel material for sliding components and production method for steel material for sliding components

Also Published As

Publication number Publication date
JP5747243B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5344454B2 (en) Steel for warm working, warm working method using the steel, and steel and steel parts obtained thereby
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
JP6163197B2 (en) High-strength cold-rolled steel sheet and method for producing such a steel sheet
TWI412609B (en) High strength steel sheet and method for manufacturing the same
TWI412605B (en) High strength steel sheet and method for manufacturing the same
JP4268079B2 (en) Ultra-high strength steel sheet having excellent elongation and hydrogen embrittlement resistance, method for producing the same, and method for producing ultra-high strength press-formed parts using the ultra-high strength steel sheet
US8926768B2 (en) High-strength and high-ductility steel for spring, method for producing same, and spring
KR102021216B1 (en) Wire rods for bolts with excellent delayed fracture resistance after pickling and quenching tempering, and bolts
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
KR20140064929A (en) Steel wire for bolt, bolt, and manufacturing processes therefor
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP2005336526A (en) High strength steel sheet having excellent workability and its production method
JP4109619B2 (en) High strength steel plate with excellent elongation and stretch flangeability
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
WO2018061101A1 (en) Steel
JP2010180443A (en) Method for heat-treating high-carbon pearlitic rail
JP5747243B2 (en) Warm working steel
JP2015166495A (en) Case hardening steel excellent in cold forgeability and crystal grain coarsening suppression performance
JP4757744B2 (en) Surface fine-grained steel parts and manufacturing method thereof
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP2017071859A (en) Non-heat-treated steel and method for producing the same
JP4515315B2 (en) High strength and high ductility steel plate with excellent weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5747243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees