JP5340237B2 - Radioactive liquid processing equipment - Google Patents

Radioactive liquid processing equipment Download PDF

Info

Publication number
JP5340237B2
JP5340237B2 JP2010175373A JP2010175373A JP5340237B2 JP 5340237 B2 JP5340237 B2 JP 5340237B2 JP 2010175373 A JP2010175373 A JP 2010175373A JP 2010175373 A JP2010175373 A JP 2010175373A JP 5340237 B2 JP5340237 B2 JP 5340237B2
Authority
JP
Japan
Prior art keywords
tank
backwash water
water receiving
filtration
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010175373A
Other languages
Japanese (ja)
Other versions
JP2012037270A (en
Inventor
武明 武藤
篤 雪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010175373A priority Critical patent/JP5340237B2/en
Publication of JP2012037270A publication Critical patent/JP2012037270A/en
Application granted granted Critical
Publication of JP5340237B2 publication Critical patent/JP5340237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、原子炉の運転に伴って発生する放射性液体廃棄物処理装置に係り、特に、プロセスライン上のLCWろ過装置へのクラッドによる負荷を低減すると共にクラッドをHCW濃縮処理することなく難沈降性不溶解性成分を処理するのに好適な放射性廃液処理装置に関する。   The present invention relates to a radioactive liquid waste treatment apparatus that is generated during the operation of a nuclear reactor, and in particular, reduces the load caused by the clad on the LCW filtration apparatus on the process line and makes it difficult to settle without HCW concentration treatment of the clad. The present invention relates to a radioactive liquid waste treatment apparatus suitable for treating a radioactive insoluble component.

従来の原子力発電所における沈降分離槽廻り処理では、復水ろ過装置の逆洗水はCUW沈降分離槽へ移送され、沈降分離により固形分を沈降させた後、そのデカント水をLCW収集槽へ移送し、LCW廃液処理系で処理される。沈降分離槽にて沈降分離させたクラッド,使用済樹脂は放射能を十分に減衰させた後、沈降分離槽内で上澄み液と均一に混合した後約10wt%スラリー状態で固化系へ移送される。   In the conventional treatment around sedimentation separation tanks at nuclear power plants, the backwash water of the condensate filtration device is transferred to the CUW sedimentation separation tank, and after solids are settled by sedimentation separation, the decant water is transferred to the LCW collection tank. And processed in an LCW waste liquid treatment system. The clad and used resin that have been settled and separated in the sedimentation separation tank are sufficiently attenuated in radioactivity, and then uniformly mixed with the supernatant in the sedimentation separation tank, and then transferred to the solidification system in a slurry state of about 10 wt%. .

ここで、沈降分離槽内の懸濁固形分は、復水ろ過装置の逆洗水中に含まれる発電所の復水系統の機器および配管を構成する鋼材が、復水と接して腐食することにより発生した鉄錆成分が主体であり、その化学形態はFeおよびFeの鉄酸化物、ならびにFeOOHの鉄水酸化物である。原子力発電所の復水は不純物が少なく、その水質は純水に近いものである。従って沈降分離槽の上澄み水も純水に近い水質であり、その導電率は1μS/cmと低く、また、pH値も6付近となる。このような条件では鉄水酸化物であるFeOOHが液中にコロイド状態で分散して重力による沈降が起こりにくくなる。従って、デカント水の鉄濃度は時間をおいても下がらず、デカント水に相当量の微細クラッドが混入する。デカント水はプロセスライン上のLCW収集槽に移送され、後段のLCWろ過装置でろ過されるため、LCWろ過装置がクラッドにより目詰まりを起こし、差圧上昇が早くなる。現状、デカント水中のクラッド濃度は最大500ppm程度であり、LCW系での受入処理の目安である20ppmを大幅に上回っており、LCWろ過装置の差圧上昇の主な原因となっている。このため処理能力回復のための逆洗頻度が多くなりLCW系の運転が成り立たなくなっている。 Here, the suspended solids in the settling tank are caused by corrosion of the steel materials constituting the equipment and piping of the condensate system of the power plant contained in the backwash water of the condensate filtration device in contact with the condensate. The generated iron rust component is the main component, and its chemical form is Fe 3 O 4 and Fe 2 O 3 iron oxide, and FeOOH iron hydroxide. Condensate at nuclear power plants has few impurities, and its water quality is close to that of pure water. Therefore, the supernatant water of the sedimentation tank is also water quality close to that of pure water, its conductivity is as low as 1 μS / cm, and the pH value is around 6. Under such conditions, FeOOH, which is an iron hydroxide, is dispersed in a colloidal state in the liquid and sedimentation due to gravity is less likely to occur. Therefore, the iron concentration of the decant water does not decrease over time, and a considerable amount of fine cladding is mixed in the decant water. The decant water is transferred to the LCW collection tank on the process line and filtered by the subsequent LCW filtration device. Therefore, the LCW filtration device is clogged by the clad and the differential pressure rises quickly. At present, the clad concentration in the decant water is about 500 ppm at the maximum, greatly exceeding 20 ppm which is a standard for the acceptance processing in the LCW system, which is a main cause of the increase in the differential pressure of the LCW filtration device. For this reason, the frequency of backwashing for recovering the processing capacity is increased, and the operation of the LCW system is not realized.

それに対して、沈降分離槽内のpHを調整することによりクラッドの沈降を促進し、LCW系へのクラッド流入量を低減するものが知られている(例えば、特許文献1参照)。   On the other hand, there is known one that promotes sedimentation of the clad by adjusting the pH in the sedimentation separation tank and reduces the amount of clad flowing into the LCW system (see, for example, Patent Document 1).

しかしながら、特許文献1記載の方法では、pH調整により沈降したクラッドは沈降嵩密度が非常に小さく沈降クラッド体積が大きくなるため、沈降分離槽に貯蔵可能な最大スラッジ層高に設計貯蔵年数以前に到達してしまう恐れがあった。そのためスラッジ貯蔵能力確保のためには沈降分離槽を増容量する必要があった。   However, in the method described in Patent Document 1, since the clad settled by adjusting the pH has a very small sediment bulk density and a large sediment clad volume, the maximum sludge layer height that can be stored in the sedimentation tank is reached before the design storage years. There was a fear of doing. Therefore, it was necessary to increase the capacity of the sedimentation tank to ensure the sludge storage capacity.

それに対して、沈降分離槽にろ過器を設け、ろ過器にてろ過したデカント水をプロセスライン上のLCW収集槽に移送するものが知られている(例えば、特許文献2参照)。   On the other hand, there is known one in which a sedimentation tank is provided with a filter and decanted water filtered by the filter is transferred to an LCW collection tank on the process line (see, for example, Patent Document 2).

特開昭62−161096号公報JP-A-62-161096 特開平11−153696号公報Japanese Patent Laid-Open No. 11-153696

しかしながら、特許文献2記載のものでは、沈降分離槽には、復水ろ過装置の逆洗水の他に、CUWろ過脱塩装置の使用済樹脂も移送される。使用済樹脂の放射線量率は高いため、デカント水の放射能濃度も高くなり、放射能を十分に減衰させた後、固化する必要がある。   However, in the thing of patent document 2, the used resin of the CUW filtration desalination apparatus is also transferred to a sedimentation separation tank other than the backwash water of a condensate filtration apparatus. Since the radiation dose rate of the used resin is high, the radioactivity concentration of decant water also becomes high, and it is necessary to solidify after sufficiently reducing the radioactivity.

本発明の目的は、LCWろ過装置へのクラッド負荷を低減するとともに、デカント水の放射能濃度上昇の低減を行い、濃縮廃液ひいては固化体の線量率上昇を低減できる放射性廃液処理装置を提供することにある。   An object of the present invention is to provide a radioactive liquid waste treatment apparatus capable of reducing the clad load on the LCW filtration device, reducing the increase in the radioactive concentration of decant water, and reducing the concentration rate of the concentrated waste liquid and thus the dose rate of the solidified body. It is in.

(1)上記目的を達成するために、本発明は、CUWろ過脱塩装置からの不溶解性成分を沈降分離により液体と分離する沈降分離槽と、該沈降分離槽とは別体に設けられ、復水ろ過装置の逆洗水を受け入れ、難沈降性の懸濁固形分を沈降分離する逆洗水受濃縮タンクと、前記逆洗水受濃縮タンク内の液体をろ過分離するろ過装置とを備え、前記沈降分離槽の上澄み液及び前記ろ過装置のろ過水をLCW収集タンクに戻し、前記ろ過装置の濃縮液を前記逆洗水受濃縮タンクに戻すように構成すると共に、さらに、前記逆洗水受濃縮タンク内の液体を加熱する加熱器を備えるようにしたものである。   (1) In order to achieve the above object, the present invention is provided separately from a sedimentation separation tank for separating an insoluble component from a CUW filtration desalting apparatus from a liquid by sedimentation separation, and the sedimentation separation tank. A backwash water receiving and concentrating tank that accepts backwash water of the condensate filtration device and separates the hard-to-settling suspended solids by sedimentation; and a filtration device that filters and separates the liquid in the backwash water receiving and concentrating tank. The supernatant of the sedimentation tank and the filtrate of the filtration device are returned to the LCW collection tank, and the concentrate of the filtration device is returned to the backwash water receiving and concentration tank, and the backwash is further performed. A heater for heating the liquid in the water receiving and concentrating tank is provided.

かかる構成により、LCWろ過装置へのクラッド負荷を低減するとともに、デカント水の放射能濃度上昇の低減を行い、濃縮廃液ひいては固化体の線量率上昇を低減できるものとなる。   With this configuration, it is possible to reduce the clad load on the LCW filtration device, reduce the increase in the radioactive concentration of decant water, and reduce the increase in the dose rate of the concentrated waste liquid and thus the solidified body.

(2)上記(1)において、好ましくは、前記ろ過装置として、クロスフロー方式のろ過装置を用いるようにしたものである。   (2) In the above (1), preferably, a cross-flow type filtration device is used as the filtration device.

(3)上記(1)において、前記加熱器は、前記逆洗水受濃縮タンクから前記ろ過装置を経て前記逆洗水受濃縮タンクに廃液を戻す循環ラインに、若しくは、前記逆洗水受濃縮タンクの内部、若しくは、前記逆洗水受濃縮タンクの上流側に設置するようにしたものである。   (3) In the above (1), the heater is connected to a circulation line for returning waste liquid from the backwash water receiving and concentrating tank to the backwash water receiving and concentrating tank through the filtration device or backwashing water receiving and concentrating. It is designed to be installed inside the tank or upstream of the backwash water receiving / concentrating tank.

本発明によれば、LCWろ過装置へのクラッド負荷を低減するとともに、デカント水の放射能濃度上昇の低減を行い、濃縮廃液ひいては固化体の線量率上昇を低減できるものとなる。
According to the present invention, it is possible to reduce the cladding load on the LCW filtration device, reduce the increase in the radioactivity concentration of decant water, and reduce the increase in the dose rate of the concentrated waste liquid and thus the solidified body.

本発明の一実施形態による原子力発電所における放射性廃液処理装置の構成を示すシステムフロー図である。It is a system flowchart which shows the structure of the radioactive liquid waste processing apparatus in the nuclear power plant by one Embodiment of this invention. 本発明の一実施形態による原子力発電所における放射性廃液処理装置による沈降速度の説明図である。It is explanatory drawing of the sedimentation speed by the radioactive waste liquid processing apparatus in the nuclear power station by one Embodiment of this invention.

以下、図1及び図2を用いて、本発明の一実施形態による放射性廃液処理装置の構成及び動作について説明する。
図1は、本発明の一実施形態による原子力発電所における放射性廃液処理装置の構成を示すシステムフロー図である。図2は、本発明の一実施形態による原子力発電所における放射性廃液処理装置による沈降速度の説明図である。
Hereinafter, the configuration and operation of the radioactive liquid waste processing apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a system flow diagram showing a configuration of a radioactive liquid waste treatment apparatus in a nuclear power plant according to an embodiment of the present invention. FIG. 2 is an explanatory diagram of the sedimentation speed by the radioactive liquid waste treatment apparatus in the nuclear power plant according to one embodiment of the present invention.

原子炉1で発生した蒸気は、主復水器2により復水される。復水された水は、復水ろ過装置3によりろ過され、復水脱塩装置4により脱塩処理された後、原子炉1に戻される。また、原子炉冷却材ろ過脱塩装置5により、原子炉冷却材のろ過及び脱塩が行われる。   Steam generated in the nuclear reactor 1 is condensed by the main condenser 2. The condensed water is filtered by the condensate filtering device 3, desalted by the condensate desalting device 4, and then returned to the reactor 1. Further, the reactor coolant filtering and desalting apparatus 5 performs filtering and desalting of the reactor coolant.

一方、原子炉系統及びタービン系統等にて発生したLCW系統廃液11は、LCW収集槽12に収集され、LCW収集ポンプ13により、LCWろ過装置(中空糸膜フィルター)14に移送され、LCWろ過装置14にて固形分をろ過分離される。LCWろ過装置14の差圧は、差圧計DPにより測定される。差圧が規定値に達すると、ろ過装置14の内部の中空糸膜面の逆洗を行い、逆洗水は原子炉冷却材浄化系(CUW)沈降分離槽8へ送られる。LCWろ過装置14にて固形分を分離された廃液は、LCW脱塩装置15にてイオン性不純物を除去され、LCWサンプル槽16においてサンプリングした後、LCWサンプルポンプ17により復水貯蔵槽18に移送され、復水移送ポンプ19により移送され、プラント水として再使用される。   On the other hand, the LCW system waste liquid 11 generated in the reactor system, the turbine system, etc. is collected in the LCW collection tank 12 and transferred to the LCW filtration device (hollow fiber membrane filter) 14 by the LCW collection pump 13. At 14 the solids are separated by filtration. The differential pressure of the LCW filtration device 14 is measured by a differential pressure gauge DP. When the differential pressure reaches a specified value, the hollow fiber membrane surface inside the filtration device 14 is backwashed, and the backwash water is sent to the reactor coolant purification system (CUW) sedimentation separation tank 8. The waste liquid from which the solid content has been separated by the LCW filtration device 14 is subjected to removal of ionic impurities by the LCW desalting device 15, sampled in the LCW sample tank 16, and then transferred to the condensate storage tank 18 by the LCW sample pump 17. Then, it is transferred by the condensate transfer pump 19 and reused as plant water.

また、CUWろ過脱塩装置5の使用済樹脂7は、CUW沈降分離槽8へ移送され、沈降分離により固形分を沈降させた後、その沈降分離槽上澄み水(デカント水)9をデカントポンプ21によりLCW収集槽12へ移送し、LCW廃液処理系で処理される。沈降分離槽8にて沈降分離させた使用済樹脂は放射能を十分に減衰させた後、沈降分離槽8内で上澄み液と均一に混合した後、沈降スラッジ22はスラッジ抜き出しポンプ23により、約10wt%スラリー状態で固化系へ移送される。   Further, the spent resin 7 of the CUW filtration desalting apparatus 5 is transferred to the CUW sedimentation separation tank 8, and after the solid content is settled by sedimentation separation, the sedimentation tank supernatant water (decant water) 9 is decanted pump 21. Is transferred to the LCW collection tank 12 and processed in the LCW waste liquid treatment system. The used resin settled and separated in the sedimentation separation tank 8 is sufficiently attenuated in radioactivity and then uniformly mixed with the supernatant liquid in the sedimentation separation tank 8, and then the sedimentation sludge 22 is reduced by the sludge extraction pump 23. It is transferred to a solidification system in a 10 wt% slurry state.

本実施形態では、復水ろ過装置3の逆洗水6は、一旦、CF逆洗水受タンク50にて受入られる。CF逆洗水ポンプ51により、CF逆洗水濃縮タンク52に移送される。   In the present embodiment, the backwash water 6 of the condensate filtration device 3 is once received in the CF backwash water receiving tank 50. It is transferred to a CF backwash water concentration tank 52 by a CF backwash water pump 51.

CF逆洗水濃縮タンク52にてCF逆洗水液8中のクラッドの濃縮を行う。逆洗水受濃縮タンク52には、デカントポンプ10により、ろ過装置24を経て逆洗水受濃縮タンクに廃液を戻す循環ライン25が設けられており、この循環ライン25に、クロスフロー方式のろ過装置24及び廃液加熱器53が設置されている。また、デカントポンプ10により、CF逆洗水はろ過装置24に移送され、デカント水中のクラッドはクロスフローろ過装置24により濃縮される。デカント水からクラッドを分離した後のろ過液26はLCW収集槽12へ移送され、他のLCW系統廃液11と共にLCW収集ポンプ13にてLCWろ過装置14に移送され、懸濁固形分をろ過分離した後、最終的にLCW脱塩装置15にてイオン性不純物を除去された後、清浄な水となってプラント再使用水として回収される。   The clad in the CF backwash water solution 8 is concentrated in the CF backwash water concentration tank 52. The backwash water receiving / concentrating tank 52 is provided with a circulation line 25 for returning the waste liquid to the backwash water receiving / concentrating tank through the filtration device 24 by the decant pump 10. An apparatus 24 and a waste liquid heater 53 are installed. Further, the CF backwash water is transferred to the filtration device 24 by the decant pump 10, and the clad in the decant water is concentrated by the crossflow filtration device 24. The filtrate 26 after separating the clad from the decant water is transferred to the LCW collection tank 12 and transferred to the LCW filtration device 14 together with other LCW system waste liquid 11 by the LCW collection pump 13 to separate and separate the suspended solids. After the ionic impurities are finally removed by the LCW desalinator 15, the water becomes clean water and is recovered as plant reuse water.

ろ過液26は、ろ過装置24によりクラッドを主体とする懸濁固形分が1ppm以下にまで除去されていて、また導電率も1μS/cm程度であることからLCW系統にて容易にかつ安定して処理できる。   The filtrate 26 has the suspended solids mainly composed of the clad removed by the filtration device 24 to 1 ppm or less, and the conductivity is about 1 μS / cm. It can be processed.

一方、ろ過装置24にてろ過分離されたクラッドを主体とした懸濁固形分は再びCF逆洗水濃縮タンク52に回収され、濃縮されることになる。   On the other hand, the suspended solids mainly composed of the clad separated by the filtration device 24 are again collected in the CF backwash water concentration tank 52 and concentrated.

次に、廃液加熱器53について説明する。廃液加熱器53は、デカントポンプ10により、逆洗水受濃縮タンク52からろ過装置24に送液される廃液を所定温度まで加熱する。加熱された廃液は循環ライン25により逆洗水受濃縮タンク52に戻されるため、結果的に、逆洗水受濃縮タンク52の内部の廃液が加熱される。   Next, the waste liquid heater 53 will be described. The waste liquid heater 53 heats the waste liquid sent from the backwash water receiving / concentrating tank 52 to the filtration device 24 to a predetermined temperature by the decant pump 10. Since the heated waste liquid is returned to the backwash water receiving / concentrating tank 52 by the circulation line 25, the waste liquid inside the backwash water receiving / concentrating tank 52 is heated as a result.

廃液加熱器53として、ここでは、熱交換器を用いている。熱交換器の熱源としては、原子炉1で発生した蒸気の一部を使用する。熱交換器により高温蒸気と低温の廃液の間で熱交換し、廃液を加熱する。このように、熱源として、原子炉1で発生した蒸気の一部を使用することで、別途熱源を設ける必要が無くなる。本実施形態では、さらに、温度センサStと制御器54とを備えている。温度センサStは、逆洗水受濃縮タンク52の内部の温度を測定する。制御器54は、温度センサStにより検出された逆洗水受濃縮タンク52の内部の温度が所定温度となるように、廃液加熱器53による加熱を制御する。上述のように廃液加熱器53として、熱交換器を用いた場合、制御器54は、熱交換器に蒸気を供給する配管中に設けられた開度制御弁の開度を制御して、熱交換器に供給する蒸気の量を可変する。逆洗水受濃縮タンク52からろ過装置24に送液される廃液の流速は、例えば、2m/s程度であるため、蒸気により十分に加熱することができる。   Here, a heat exchanger is used as the waste liquid heater 53. As a heat source of the heat exchanger, a part of the steam generated in the nuclear reactor 1 is used. The heat exchanger exchanges heat between the high temperature steam and the low temperature waste liquid to heat the waste liquid. Thus, by using a part of the steam generated in the nuclear reactor 1 as a heat source, it is not necessary to provide a separate heat source. In the present embodiment, a temperature sensor St and a controller 54 are further provided. The temperature sensor St measures the temperature inside the backwash water receiving / concentrating tank 52. The controller 54 controls heating by the waste liquid heater 53 so that the temperature inside the backwash water receiving and concentration tank 52 detected by the temperature sensor St becomes a predetermined temperature. As described above, when a heat exchanger is used as the waste liquid heater 53, the controller 54 controls the opening degree of an opening degree control valve provided in a pipe for supplying steam to the heat exchanger to Vary the amount of steam supplied to the exchanger. Since the flow rate of the waste liquid sent from the backwash water receiving / concentrating tank 52 to the filtration device 24 is, for example, about 2 m / s, it can be sufficiently heated by steam.

なお、廃液加熱器53としては、熱交換器の他に、電気ヒーター等を用いることもできる。   As the waste liquid heater 53, an electric heater or the like can be used in addition to the heat exchanger.

次に、図2を用いて、逆洗水受濃縮タンク52の内部の廃液を加熱したことによる固形分の沈降速度の変化について説明する。図2において、横軸は沈降時間(hr)を示し、縦軸は固形分の濃度(ppm)を示している。   Next, changes in the sedimentation rate of the solid content caused by heating the waste liquid in the backwash water receiving and concentration tank 52 will be described with reference to FIG. In FIG. 2, the horizontal axis indicates the sedimentation time (hr), and the vertical axis indicates the solid content concentration (ppm).

図2において、測定開始時の原液の固形分濃度は約400ppmであった。それに対して、本実施形態の加熱を行わない場合には、図中に一点鎖線で示すように、96時間後に固形分濃度は350ppm程度であり、固形分の濃度が徐々に低下する。このとき、逆洗水受濃縮タンク52の内部の廃液の温度は常温であり、外気温によって変動するが、平均的に25℃程度であった。   In FIG. 2, the solid content concentration of the stock solution at the start of measurement was about 400 ppm. On the other hand, when the heating according to the present embodiment is not performed, the solid content concentration is about 350 ppm after 96 hours as indicated by the alternate long and short dash line in the figure, and the solid content concentration gradually decreases. At this time, the temperature of the waste liquid in the backwash water receiving / concentrating tank 52 was normal temperature, and it fluctuated depending on the outside air temperature.

それに対して、破線は逆洗水受濃縮タンク52の内部の廃液を50℃に加熱した場合の固形分濃度を示している。加熱開始前に約400ppmの濃度であったものが、24時間後に170ppm程度まで減少し、さらに、96時間後には50ppm以下まで減少した。   On the other hand, the broken line indicates the solid content concentration when the waste liquid in the backwash water receiving and concentration tank 52 is heated to 50 ° C. The concentration of about 400 ppm before the start of heating decreased to about 170 ppm after 24 hours, and further decreased to 50 ppm or less after 96 hours.

また、実線は逆洗水受濃縮タンク52の内部の廃液を80℃に加熱した場合の固形分濃度を示している。加熱開始前に約400ppmの濃度であったものが、24時間後に20ppm程度まで減少し、さらに、96時間後には10ppm以下まで減少した。   The solid line indicates the solid content concentration when the waste liquid in the backwash water receiving / concentrating tank 52 is heated to 80 ° C. The concentration of about 400 ppm before the start of heating decreased to about 20 ppm after 24 hours, and further decreased to 10 ppm or less after 96 hours.

以上のように、難沈降性クラッド含有水の廃液温度を常温よりも高い温度に加熱することにより沈降速度が従来の10倍から100倍に向上することが可能となる。すなわち、本実施形態では、難沈降性クラッド含有水の廃液をクロスフローろ過により濃縮し、更に、廃液を加熱することにより難沈降性クラッドの粒径を大きくし、凝集させるものであり、沈降速度を向上させることができる。   As described above, it is possible to improve the sedimentation rate from 10 times to 100 times that of the prior art by heating the waste liquid temperature of the hardly sedimentable clad-containing water to a temperature higher than room temperature. That is, in the present embodiment, the waste liquid of the hard-to-settling clad-containing water is concentrated by cross-flow filtration, and further, the waste liquid is heated to increase the particle size of the hard-to-settling clad and to cause aggregation. Can be improved.

なお、以上の説明では、廃液加熱器53は、デカントポンプ10とろ過装置24の間の循環ライン25に設けているが、ろ過装置24と逆洗水受濃縮タンク52の間の循環ライン25に設けるようにしてもよいものである。   In the above description, the waste liquid heater 53 is provided in the circulation line 25 between the decant pump 10 and the filtration device 24, but in the circulation line 25 between the filtration device 24 and the backwash water receiving and concentration tank 52. It may be provided.

また、廃液加熱器53は、逆洗水受濃縮タンク52の内部に設けることもできる。この場合、廃液加熱器としては、電気ヒーターを用いる。この際、逆洗水受濃縮タンク52の容量は数m程度であり、それほど大容量ではないが内部をできるだけ均一な温度にするためには、逆洗水受濃縮タンク52の内部の廃液を攪拌する攪拌機構を備えることが好ましいものである。 The waste liquid heater 53 can also be provided inside the backwash water receiving / concentrating tank 52. In this case, an electric heater is used as the waste liquid heater. At this time, the capacity of the backwash water receiving / concentrating tank 52 is about several m 3 , and in order to make the inside of the backwash water receiving / concentrating tank 52 as uniform as possible, the waste liquid inside the backwash water receiving / concentrating tank 52 is reduced. It is preferable to provide a stirring mechanism for stirring.

また、廃液加熱器53は、逆洗水受濃縮タンク52の内部の廃液を加熱すればよいものであるため、CF逆洗水タンク50と逆洗水受濃縮タンク52の間の流路中に設けることもできる。この場合には、廃液加熱器として、熱交換器や電気ヒーターを用いることができる。また、CF逆洗水タンク50の内部に廃液加熱器を設けることもできる。   Further, since the waste liquid heater 53 only needs to heat the waste liquid inside the backwash water receiving and concentrating tank 52, the waste liquid heater 53 is disposed in the flow path between the CF backwash water tank 50 and the backwash water receiving and concentrating tank 52. It can also be provided. In this case, a heat exchanger or an electric heater can be used as the waste liquid heater. Further, a waste liquid heater can be provided inside the CF backwash water tank 50.

ろ過装置24は、酸化鉄や水酸化鉄等の比較的ろ過性のよい懸濁固形分であれば1〜10wt%程度まで濃縮可能であるため、クラッド濃度が最大500ppm程度のデカント水であれば20〜200倍程度まで連続的に濃縮できることとなる。沈降分離槽8の上澄み液中の固形分濃度が1〜10wt%まで濃縮できるため、沈降分離槽8内の固形分の沈降性は特に考慮する必要無く、沈降分離槽8内で固形物を貯蔵・保管することも可能となる。   The filtration device 24 can be concentrated to about 1 to 10 wt% if it is a suspended solid content with relatively good filterability, such as iron oxide and iron hydroxide, so that the clad concentration is about 500 ppm at maximum. It can be continuously concentrated up to about 20 to 200 times. Since the solid content concentration in the supernatant of the sedimentation separation tank 8 can be concentrated to 1 to 10 wt%, the solid content in the sedimentation separation tank 8 need not be taken into consideration, and the solid matter is stored in the sedimentation separation tank 8. -It can also be stored.

これにより、沈降分離槽8への難沈降性のクラッドの持込を防止でき、沈降分離槽8の貯蔵容量の小型化が可能となる。   As a result, it is possible to prevent the hard-to-seduce clad from being brought into the sedimentation separation tank 8 and to reduce the storage capacity of the sedimentation separation tank 8.

また、沈降分離槽8の上流側のCF逆洗水受けタンク50からCF逆洗水濃縮タンク52にクロスフロー式のろ過装置24を設けることにより、高線量であるCUWろ過脱塩装置5の使用済樹脂の影響を受ける事がなく、ろ過濃縮処理されクラッドは低線量として取り扱う事ができ、濃縮されたクラッドを直接固化することにより、沈降分離槽8への難沈降性のクラッドの持込を抑制できることから沈降分離槽8のデカント水は清浄であり、効率よくLCW系の処理を行うことができる。   Moreover, the use of the CUW filtration desalination apparatus 5 having a high dose is provided by providing a cross flow type filtration device 24 from the CF backwash water receiving tank 50 upstream of the sedimentation separation tank 8 to the CF backwash water concentration tank 52. The clad can be handled as a low dose without being affected by the spent resin, and the clad can be handled as a low dose. By directly solidifying the concentrated clad, it is possible to bring the hardly settled clad into the sedimentation tank 8. Since it can suppress, the decant water of the sedimentation tank 8 is clean, and can perform the LCW type | system | group process efficiently.

以上のように、デカント水をLCW収集槽12へ移送する前にデカント水中の浮遊クラッドを分離回収しているので、デカント水中のクラッドがLCW収集槽12へ移送されないため、LCWろ過装置14へのクラッド負荷が低減できる。   As described above, since the floating clad in the decant water is separated and recovered before the decant water is transferred to the LCW collection tank 12, the clad in the decant water is not transferred to the LCW collection tank 12. The cladding load can be reduced.

また、デカント水の水質は導電率が低く懸濁固形分が鉄錆を主体とするクラッドであることから、デカント水中のクラッドを回収する方式としてろ過方式を採用することができる。   Further, since the water quality of the decant water is low in conductivity and the suspended solid content is clad mainly composed of iron rust, a filtration method can be adopted as a method for recovering the clad in the decant water.

また、デカント水のろ過方式としてクロスフローろ過方式を採用したことにより以下の効果がある。すなわち、廃液中の懸濁固形分のろ過方式としては例えばLCWろ過装置14として採用しているワンススルーろ過方式の中空糸膜フィルターがあるが、ろ過面における捕捉固形物量に応じて処理能力回復のため逆洗を行う必要があることから、固形分濃度が50ppm以下程度の廃液処理が目安となる。従って、デカント水のように固形物濃度が最大500ppm程度の廃液を処理する場合には頻繁に逆洗を行う必要が生じる。これに比較してクロスフローろ過方式は、固形物濃度が高い場合にも安定した処理が行える。クロスフローろ過方式は、ろ過膜表面に平行に原液を流しつつろ過を行う方式で、懸濁微粒子を除去された清澄なろ液は次工程へ移送され、濃縮液は原液側へ回収される。クロスフローろ過方式では、ろ過膜表面に平行な原液の流れによるせんだん力によってろ過面に堆積するろ過ケークが除去され、ろ過ケークの形成が最小に保たれる。このため、固形分濃度が高い廃液を処理した場合でも、比較的ろ過面の目詰まりが少なく、長期間にわたって高効率のろ過が可能となる。その結果、デカント水中に浮遊クラッドが混入しても、清澄なろ過処理液のみがLCW収集槽12へ移送されることとなり、LCWろ過装置14へのクラッド負荷はなくなり、ろ過面の逆洗頻度の低減、つまり無用な洗浄排水の発生を防ぐことができる。   Moreover, there are the following effects by adopting the cross flow filtration method as the decant water filtration method. That is, as a method for filtering suspended solids in the waste liquid, there is a once-through filtration type hollow fiber membrane filter adopted as the LCW filtration device 14, for example, but the processing capacity is recovered depending on the amount of solids captured on the filtration surface. Therefore, since it is necessary to perform backwashing, waste liquid treatment with a solid content concentration of about 50 ppm or less is a standard. Therefore, when waste liquid with a solid concentration of about 500 ppm at maximum is treated like decant water, it is necessary to frequently perform backwashing. Compared to this, the cross-flow filtration method can perform stable treatment even when the solid concentration is high. The cross-flow filtration method is a method of performing filtration while flowing the stock solution parallel to the surface of the filtration membrane. The clear filtrate from which suspended fine particles have been removed is transferred to the next step, and the concentrated solution is recovered to the stock solution side. In the cross-flow filtration method, the filter cake that accumulates on the filtration surface is removed by the force generated by the flow of the stock solution parallel to the filter membrane surface, and the formation of the filter cake is kept to a minimum. For this reason, even when a waste liquid having a high solid content concentration is treated, the filtration surface is relatively less clogged, and high-efficiency filtration is possible over a long period of time. As a result, even if the floating clad is mixed in the decant water, only the clear filtration treatment liquid is transferred to the LCW collection tank 12, the clad load on the LCW filtration device 14 is eliminated, and the backwash frequency of the filtration surface is reduced. Reduction, that is, generation of useless waste water can be prevented.

沈降分離槽8に、比較的高線量のCUWろ過脱塩装置5の樹脂8と復水ろ過装置3の比較低線量率で難沈降性クラッドが存在しデカント水が両者の混在した場合、比較的高放射能濃度であり、長期間放射能を減衰させる必要があるが、本実施形態では、復水ろ過装置3の比較低線量率のクラッドを沈降分離槽8に入れることなく、CF逆洗水タンク50及びCF逆洗水濃縮タンク52に設置したクロスフロー式ろ過器24により除去濃縮することにより、沈降分離槽8には難沈降性クラッドを持ち込むことなく、デカント水の水質維持の確保が可能となり、且つ、濃縮した高濃度のクラッドは、放射線量率が低い事より長期間の放射能減衰の必要が無く、直接固化処理が可能となる。デカント水をHCW濃縮処理した場合にも微細クラッドが混入されていないことから微細クラッドによるキャリーオーバーの問題も無く、沈降分離槽8を増容量することなくスラッジの貯蔵保管が可能となる。   If the sedimentation tank 8 has a relatively low dose rate of the resin 8 of the CUW filtration desalination apparatus 5 and the condensate filtration apparatus 3 and a low sedimentation rate and a refractory clad is present, Although it has a high radioactivity concentration and it is necessary to attenuate the radioactivity for a long period of time, in this embodiment, the CF backwash water is not put into the sedimentation separation tank 8 without the clad having a comparatively low dose rate of the condensate filtration device 3. By removing and concentrating with the cross-flow filter 24 installed in the tank 50 and the CF backwash water concentration tank 52, it is possible to ensure the quality of the decant water without bringing the sedimentation tank 8 into the sedimentation separation tank 8. In addition, the concentrated high-concentration clad does not require long-term radiation attenuation because the radiation dose rate is low, and can be directly solidified. Even when the decant water is subjected to the HCW concentration treatment, the fine clad is not mixed, so there is no problem of carry-over due to the fine clad, and sludge can be stored and stored without increasing the sedimentation separation tank 8.

また、難沈降性クラッド含有水の廃液温度を常温よりも高い温度に加熱することにより沈降速度を向上できるので、難沈降性クラッド含有水の廃液をクロスフローろ過により濃縮し、更に、廃液を加熱することにより難沈降性クラッドの粒径を大きくし、凝集させて、沈降速度を向上させることができる。
Moreover, since the sedimentation rate can be improved by heating the waste liquid temperature of the hard-to-settling clad-containing water to a temperature higher than room temperature, the waste liquid of the hard-to-seduce clad-containing water is concentrated by cross-flow filtration, and the waste liquid is heated. As a result, the particle size of the hard-to-settling clad can be increased and aggregated to improve the sedimentation rate.

1…原子炉
2…主復水器
3…復水ろ過装置
4…復水脱塩装置
5…原子炉冷却材ろ過脱塩装置
6…復水ろ過装置逆洗水
7…使用済樹脂
8…CUW沈降分離槽
9…沈降分離槽上澄み水(デカント水)
10…デカントポンプ
11…LCW系統廃液
12…LCW収集槽
13…LCW収集ポンプ
14…LCWろ過装置
15…LCW脱塩装置
16…LCWサンプル槽
17…LCWサンプルポンプ
18…復水貯蔵槽
19…復水移送ポンプ
20…LCWろ過装置逆洗水
21…ポンプ
22…沈降スラッジ
23…スラッジ抜出しポンプ
24…クロスフローろ過装置
25…濃縮液
26…ろ過液
50…CF逆洗水タンク
51…CF逆洗水ポンプ
52…CF逆洗水濃縮タンク
53…廃液加熱器
54…制御器
St…温度センサ
DESCRIPTION OF SYMBOLS 1 ... Reactor 2 ... Main condenser 3 ... Condensate filtration apparatus 4 ... Condensate demineralization apparatus 5 ... Reactor coolant filtration demineralization apparatus 6 ... Condensation filtration apparatus backwash water 7 ... Used resin 8 ... CUW Sedimentation separation tank 9 ... Sedimentation separation tank supernatant water (decant water)
DESCRIPTION OF SYMBOLS 10 ... Decant pump 11 ... LCW system waste liquid 12 ... LCW collection tank 13 ... LCW collection pump 14 ... LCW filtration apparatus 15 ... LCW desalination apparatus 16 ... LCW sample tank 17 ... LCW sample pump 18 ... Condensate storage tank 19 ... Condensate Transfer pump 20 ... LCW filter backwash water 21 ... Pump 22 ... Sediment sludge 23 ... Sludge extraction pump 24 ... Cross flow filter 25 ... Concentrate 26 ... Filtrate 50 ... CF backwash water tank 51 ... CF backwash water pump 52 ... CF backwash water concentration tank 53 ... Waste liquid heater 54 ... Controller St ... Temperature sensor

Claims (3)

CUWろ過脱塩装置からの不溶解性成分を沈降分離により液体と分離する沈降分離槽と、
該沈降分離槽とは別体に設けられ、復水ろ過装置の逆洗水を受け入れ、難沈降性の懸濁固形分を沈降分離する逆洗水受濃縮タンクと、
前記逆洗水受濃縮タンク内の液体をろ過分離するろ過装置とを備え、
前記沈降分離槽の上澄み液及び前記ろ過装置のろ過水をLCW収集タンクに戻し、前記ろ過装置の濃縮液を前記逆洗水受濃縮タンクに戻すように構成すると共に、
さらに、前記逆洗水受濃縮タンク内の液体を加熱する加熱器を備えることを特徴とする放射性廃液処理装置。
A sedimentation separation tank for separating insoluble components from the CUW filtration desalination apparatus from the liquid by sedimentation;
A backwash water receiving and concentrating tank that is provided separately from the settling separation tank, receives backwash water of a condensate filtration device, and settles and separates hard-to-settle suspended solids;
A filtration device for filtering and separating the liquid in the backwash water receiving and concentration tank,
The supernatant liquid of the sedimentation tank and the filtrate of the filtration device are returned to the LCW collection tank, and the concentrate of the filtration device is returned to the backwash water receiving and concentration tank,
Furthermore, the radioactive waste liquid processing apparatus provided with the heater which heats the liquid in the said backwash water receiving concentration tank.
請求項1記載の放射性廃液処理装置において、
前記ろ過装置として、クロスフロー方式のろ過装置を用いることを特徴とする放射性廃液処理装置。
In the radioactive liquid waste processing apparatus of Claim 1,
A radioactive waste liquid treatment apparatus using a cross flow filtration apparatus as the filtration apparatus.
請求項1記載の放射性廃液処理装置において、
前記加熱器は、前記逆洗水受濃縮タンクから前記ろ過装置を経て前記逆洗水受濃縮タンクに廃液を戻す循環ラインに、若しくは、前記逆洗水受濃縮タンクの内部、若しくは、前記逆洗水受濃縮タンクの上流側に設置されることを特徴とする放射性廃液処理装置。
In the radioactive liquid waste processing apparatus of Claim 1,
The heater is provided in a circulation line for returning waste liquid from the backwash water receiving / concentrating tank to the backwash water receiving / concentrating tank via the filtration device, in the backwash water receiving / concentrating tank, or in the backwashing. A radioactive liquid waste treatment apparatus installed on the upstream side of a water receiving and concentration tank.
JP2010175373A 2010-08-04 2010-08-04 Radioactive liquid processing equipment Active JP5340237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175373A JP5340237B2 (en) 2010-08-04 2010-08-04 Radioactive liquid processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175373A JP5340237B2 (en) 2010-08-04 2010-08-04 Radioactive liquid processing equipment

Publications (2)

Publication Number Publication Date
JP2012037270A JP2012037270A (en) 2012-02-23
JP5340237B2 true JP5340237B2 (en) 2013-11-13

Family

ID=45849434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175373A Active JP5340237B2 (en) 2010-08-04 2010-08-04 Radioactive liquid processing equipment

Country Status (1)

Country Link
JP (1) JP5340237B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2706535A1 (en) * 2012-09-06 2014-03-12 Siemens Aktiengesellschaft Method for retrofitting a power plant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265600A (en) * 1985-05-20 1986-11-25 株式会社日立製作所 Radioactive waste treating facility
JPS6295500A (en) * 1985-10-23 1987-05-01 株式会社日立製作所 Method of treating decanting water
JPS63273093A (en) * 1987-04-30 1988-11-10 Toshiba Corp Condensate purifier
JPH08327789A (en) * 1995-06-01 1996-12-13 Toshiba Eng Co Ltd Equipment for radioactive waste processing system
JPH11153696A (en) * 1997-11-25 1999-06-08 Hitachi Ltd Radioactive waste liquid processing equipment
JP2000056084A (en) * 1998-08-05 2000-02-25 Toshiba Eng Co Ltd Precipitating/separating tank for liquid waste processing system
JP2001324593A (en) * 2000-05-18 2001-11-22 Japan Organo Co Ltd Radioactive waste treatment system for boiling water type nuclear power plant

Also Published As

Publication number Publication date
JP2012037270A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP6153386B2 (en) Iron / manganese-containing water treatment apparatus and treatment method
JP5569217B2 (en) Oxygen treatment boiler cleaning method and apparatus
JP5340237B2 (en) Radioactive liquid processing equipment
AU2018392216B2 (en) Method for pickling steel sheets
CN206529357U (en) A kind of boiler feed water processing unit of high yield water rate
JP5340224B2 (en) Radioactive liquid processing equipment
JP5350337B2 (en) Radioactive waste treatment method and apparatus
JPS63273093A (en) Condensate purifier
JP2001239138A (en) Device for treating liquid
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JPH11153696A (en) Radioactive waste liquid processing equipment
JP4370470B2 (en) Method and apparatus for treating radioactive liquid waste
JP2001017968A (en) Equipment and process for treating high temperature water
JPH08105995A (en) Condensate filter
JPS61265600A (en) Radioactive waste treating facility
JP2530609B2 (en) Radioactive high conductivity waste liquid treatment facility
JP3852829B2 (en) Filtration device backwash method and apparatus
JPS63274405A (en) Reverse washing treatment method of hollow fiber membrane filter apparatus
JPS63221886A (en) Purifying method and apparatus using hollow yarn membrane filter
JPH07104435B2 (en) Radioactive waste treatment method
Unsworth Control of Intermetallic Particles in Magnesium Alloys by Filtration
JPH07323280A (en) Pure water supply device
JPH06265688A (en) Reactor water silica condensing reduction device
JPH07104095A (en) Reactor coolant purifying device
JPS5939186B2 (en) Method for removing powdered ion exchange resin deposited on granular ion exchange resin layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5340237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150