JPS61265600A - Radioactive waste treating facility - Google Patents

Radioactive waste treating facility

Info

Publication number
JPS61265600A
JPS61265600A JP10725285A JP10725285A JPS61265600A JP S61265600 A JPS61265600 A JP S61265600A JP 10725285 A JP10725285 A JP 10725285A JP 10725285 A JP10725285 A JP 10725285A JP S61265600 A JPS61265600 A JP S61265600A
Authority
JP
Japan
Prior art keywords
waste liquid
backwash
concentration
condensate
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10725285A
Other languages
Japanese (ja)
Inventor
門田 啓志
武士 清隆
涼三 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10725285A priority Critical patent/JPS61265600A/en
Publication of JPS61265600A publication Critical patent/JPS61265600A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力発電所の放射性廃棄物処理設備に係わ
シ、特に復水浄化系非助材型−過装置から発生する逆洗
廃液の処理に好適な放射性廃棄物処理設備に関する0 〔発明の背景〕 従来の沸騰水型原子力発電所においては、復水浄化系に
は、粒状イオン交換樹脂を装荷した復水脱塩器、または
、粉末イオン交換樹脂等の濾過助材によるプリコート型
濾過装置と脱塩器を組み合わせた浄化方式が採用されて
いる。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to radioactive waste treatment equipment of nuclear power plants, and in particular to the treatment of backwash waste generated from non-auxiliary filtration equipment for condensate purification systems. [Background of the Invention] In conventional boiling water nuclear power plants, the condensate purification system includes a condensate demineralizer loaded with granular ion exchange resin, or a powder demineralizer. A purification system that combines a precoat type filtration device using a filter aid such as ion exchange resin and a demineralizer is used.

従来の復水浄化系濾過装置から発生する放射性廃棄物の
処理は第4図に示す処理設備によりて下記の様に処理さ
れてきた。すなわち、復水浄化系粉末樹脂プリコート型
−過装置4は運転差圧によシ管理されておシ、規定差圧
に到達すると、自動的に逆洗が行われ、粉末イオン交換
樹脂等の濾過助材を含んだ逆洗廃液が発生する。酸化鉄
を中心とするテ過装置の捕捉したクラッド成分は、粉末
イオン交換樹脂に付着し、逆洗時にイオン交換樹脂と共
に濾過装置から排出される。
Radioactive waste generated from conventional condensate purification system filtration equipment has been treated as follows using the treatment equipment shown in FIG. In other words, the condensate purification system powder resin precoat type filtration device 4 is controlled by the operating differential pressure, and when the specified differential pressure is reached, backwashing is automatically performed and the filtration of powdered ion exchange resin, etc. Backwash waste liquid containing auxiliary materials is generated. Crud components, mainly iron oxide, captured by the filtration device adhere to the powdered ion exchange resin, and are discharged from the filtration device together with the ion exchange resin during backwashing.

このようにして発生した逆洗廃液は、復水浄化系濾過装
置4の下部に設置された逆洗水受タンク6に一旦受は入
れ、更に沈降分離タンク7へ移送される。この沈降分離
タンク7は、粉末イオン交換樹脂と樹脂に付着したクラ
、ド等の固形分を逆洗水から沈降分離させると共に、粉
末イオン交換樹脂、クラ、ド等の固形分を一定期間貯蔵
させ放射能を減衰させる機能を有している。
The backwash waste liquid generated in this way is once received in a backwash water receiving tank 6 installed at the bottom of the condensate purification system filtration device 4, and then transferred to a sedimentation separation tank 7. This sedimentation separation tank 7 sediments and separates the powdered ion exchange resin and solid contents such as chlorine and chlorine adhering to the resin from the backwash water, and also stores the solid contents such as the powdered ion exchange resin and chlorine and chlorine for a certain period of time. It has the function of attenuating radioactivity.

とζろで、沈降分離タンク7にて固形分を沈降分離後上
澄水はデカントし、液体廃棄物処理設備9へ移送され、
機器ドレン等と同様の処理後復水貯蔵タンクへ回収され
発電所内で再使用される。
After the solid content is sedimented and separated in a sedimentation separation tank 7 using a ζ filter, the supernatant water is decanted and transferred to a liquid waste treatment facility 9.
After being treated in the same way as equipment drain, etc., it is collected into a condensate storage tank and reused within the power plant.

一方沈降分離した固形分は一定期間貯蔵減衰後、固化設
備8へ移送されドラム缶につめて固化処理される。以上
が、従来方式にょる復水浄化系濾過装置逆洗廃液の処理
方法である。
On the other hand, the solid content that has been sedimented and separated is stored for a certain period of time and attenuated, then transferred to the solidification equipment 8, packed in drums, and solidified. The above is a conventional method for treating backwash waste liquid from a condensate purification system filtration system.

しかし、近年廃棄物発生量の低減ひいては、設備コスト
の低減の要求にこたえるべく、復水浄化系に非助材型濾
過装置を設置する計画があり、非助材型中空糸膜濾過装
置等の開発が鋭意進められている。
However, in recent years, there have been plans to install non-auxiliary material type filtration devices in condensate purification systems in order to meet the demand for reducing waste generation and, by extension, equipment costs. Development is progressing diligently.

上記非助材型濾過装置は、粉末イオン交換樹脂等のテ過
助材を使用しないため、2次廃棄物が発生せず、従来必
要であった大容量の沈降分離タンクが不要になる等のメ
リットがある。しかしながら、非助材型濾過装置から生
ずる逆洗廃液の処理方法は未確定であシ下記の如き問題
点が有る。
The non-auxiliary type filtration device mentioned above does not use filtering aids such as powdered ion exchange resin, so it does not generate secondary waste and eliminates the need for large-capacity sedimentation tanks that were previously required. There are benefits. However, the method for treating backwash waste generated from a non-auxiliary type filtration device has not yet been determined, and there are problems as described below.

従来の粉末樹脂プリコートタイプの濾過装置では、逆洗
廃液中にクラッドと粉末イオン交換樹脂が混在し、クラ
ッドが樹脂に付着等する為、廃液中の固形分は比較的沈
降分離されやすいものであった。しかるに、非助材型濾
過装置ではイオン交換樹脂等の濾過助材を使用しない上
、特に中空糸膜量濾過装置はその性能上、ミクロンオー
ダーの微小クラッドの捕捉が可能であるという利点をも
つ反面この非助材型濾過装置から発生する逆洗廃液は、
イオン交換樹脂等の濾過助材が存在せず、また沈降が困
難なミクロンオーダーの超微小クラ、ドが多数存在して
−るため、従来の逆洗廃液の沈降分離処理方式は、非現
実的でオシ、非助材型濾過装置からの逆洗廃液の処理方
法の未確立が、非助材型濾過装置の設置実現への大きな
障害となっている。
In conventional powder resin pre-coat type filtration equipment, the backwash waste liquid contains crud and powdered ion exchange resin, and the crud adheres to the resin, making it relatively easy for the solid content in the waste liquid to settle and separate. Ta. However, non-aid type filtration devices do not use filtration aids such as ion exchange resins, and hollow fiber membrane filtration devices in particular have the advantage of being able to capture minute crud on the micron order due to their performance. The backwash waste liquid generated from this non-auxiliary material type filtration device is
Because there are no filter aids such as ion-exchange resins, and there are many ultra-fine particles on the micron order that are difficult to settle, the conventional sedimentation separation treatment method for backwash waste liquid is impractical. However, the lack of a well-established treatment method for backwash waste from non-auxiliary filtration devices is a major obstacle to the installation of non-auxiliary filtration devices.

第5図に、復水浄化系に非助材型(中空糸膜型)フィル
タを採用した場合の逆洗廃液の沈降分離特性を示す。こ
の図から理解されるように鉄濃度百分率[wt%〕が2
0%以下では殆んど沈降が生じない。
FIG. 5 shows the sedimentation separation characteristics of backwash waste liquid when a non-auxiliary type (hollow fiber membrane type) filter is used in the condensate purification system. As can be understood from this figure, the iron concentration percentage [wt%] is 2.
At 0% or less, almost no sedimentation occurs.

第6図に上記の逆洗廃液を24時間沈降分離した後の、
上澄水中の固形分粒径分布を示す。
Figure 6 shows the backwashing waste liquid after 24 hours of sedimentation separation.
The solid content particle size distribution in supernatant water is shown.

従来の復水浄化系濾過装置は、前述の通シ助材屋のため
、その逆洗廃液の処理方法として沈降分離タンクにおけ
る固形分の沈降分離処理が合理的であった。しかし、廃
棄物発生量低減、設備運転費低減の観点から復水浄化系
に中空糸膜型等の非助材型濾過装置を採用する方向にあ
る。
Since the conventional condensate purification system filtration device is used as the above-mentioned auxiliary material, the rational method for treating the backwash waste liquid is to perform sedimentation separation treatment of the solid content in a sedimentation separation tank. However, from the viewpoint of reducing waste generation and equipment operating costs, there is a trend toward adopting non-auxiliary material type filtration devices such as hollow fiber membrane type in condensate purification systems.

しかるに中空糸膜型濾過装置は第6図にも示されるよう
にその性能上ミクロンオーダー以下のクラ、ドの捕捉が
可能であシ、その逆洗廃液の処理に際しては、超微小ク
ラッドの沈降分離が困難である。つまシ、従来の沈降分
離タンクにおける沈降分離処理は、非助材型濾過装置の
逆洗廃液の処理には不適であると言える。
However, as shown in Figure 6, the hollow fiber membrane type filtration device is capable of capturing cracks and cracks on the order of microns or less due to its performance. Difficult to separate. However, it can be said that the sedimentation separation process in the conventional sedimentation separation tank is not suitable for the treatment of backwash waste liquid of a non-auxiliary type filtration device.

実際に粒径0.1ミクロンの鉄クラツド(Fe203)
の沈降速度をストークスの定理によシ計算すると下記の
如くなる。
Actually, iron cladding (Fe203) with a particle size of 0.1 micron
Calculating the sedimentation rate using Stokes' theorem is as follows.

計算式:Ut=g(ρ、−ρf)D2/18μUt:沈
降終末速度〔鋸/sec ) g:重力加速度980 ccm/ s@a2)ρ3:粒
子(Fe203)の密度5.2 Cg/as’ ]ρf
:流体(水)の密度1 (g/cm’ :)D:粒子の
粒径0.1〔μ)=10−5(:個〕μ:流体(水)の
粘度I X 10−2g/cn・sec (at C)
、にょシUtを算出すると約8X10−’IyfI/h
となる。
Calculation formula: Ut=g(ρ, -ρf)D2/18μUt: Terminal sedimentation velocity [saws/sec) g: Gravitational acceleration 980 ccm/s@a2)ρ3: Density of particles (Fe203) 5.2 Cg/as' ]ρf
: Density of fluid (water) 1 (g/cm' :) D: Particle size 0.1 [μ) = 10-5 (: particles] μ: Viscosity of fluid (water) I x 10-2 g/cn・sec (at C)
, calculating Nyoshi Ut is approximately 8X10-'IyfI/h
becomes.

すなわち0.1ミクロンの鉄クラツドを1m沈降させる
ためには、12500時間を要する訳であシ、本計算か
らも、非助材に濾過装置の逆洗廃液の沈降分離処理は非
現実的と言える。
In other words, it takes 12,500 hours to settle 1 meter of 0.1 micron iron cladding, and from this calculation, it can be said that it is unrealistic to perform sedimentation separation treatment for backwash waste liquid from a filtration device as a non-auxiliary material. .

そこで、沈降分離を行うにあたり、凝集剤を使用し固形
分の凝集沈殿を促進させることが考えられるが、かかる
凝集剤を投入する為、廃棄物の発生量が増加する結果と
なシ、放射性廃棄物の処理としては好ましくない。
Therefore, when carrying out sedimentation separation, it is possible to use a flocculant to promote coagulation and sedimentation of solids, but since such a flocculant is used, the amount of waste generated increases. Not suitable for processing objects.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、放射性液体廃棄物処理設備に於いて、
復水浄化系濾過装置の非助材化(合理化)を実現すべく
、非助材聾ろ過装置から発生する逆洗廃液の処理にあた
シ、固形分を沈降分離させることなく処理するシステム
を提供することにある。
The purpose of the present invention is to provide a radioactive liquid waste treatment facility that:
In order to realize the use of non-auxiliary materials (rationalization) in condensate purification system filtration equipment, we developed a system that processes backwash waste generated from non-auxiliary filtration equipment without sedimentation and separation of solid content. It is about providing.

〔発明の概要〕[Summary of the invention]

木兄EAは、前述した背景のもとに上記目的を達成すべ
くまされたものであって、復水浄化系に非助材m濾過装
置を使用する原子力発電設備において、非助材m濾過装
置の逆洗廃液を、タンクにおける沈降分離、固形分の減
衰過程を経ずに濃縮処理装置に通水して濃縮し、固形分
が高濃度となった濃縮廃液のみを固化設備で固化処理す
ることによシ前述の問題点を解決したものである。
Kinei EA was developed to achieve the above objective based on the background described above, and is used in nuclear power generation equipment that uses a non-auxiliary m-filtration device in the condensate purification system. The backwash waste liquid is passed through a concentration processing device to be concentrated without undergoing sedimentation separation in a tank and solid content attenuation process, and only the concentrated waste liquid with a high solid content is solidified in a solidification equipment. This solves the above-mentioned problems.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図ないし第3図を参照して、本発明を具体的
に説明する。
The present invention will be specifically described below with reference to FIGS. 1 to 3.

第1図において復水浄化系非助材型フィルタ10から発
生する逆洗廃液は、一旦逆洗水受タンク6に受入れ、ク
ラッド分の濃度が高いときはクラッド分を沈降分離をさ
せないまま、固化設備8へ移送しドラム缶に固化処理す
るものである。
In Fig. 1, the backwash waste generated from the non-auxiliary filter 10 of the condensate purification system is once received in the backwash water receiving tank 6, and when the concentration of crud is high, the crud is solidified without being sedimented and separated. It is transferred to equipment 8 and solidified into drums.

また、クラッド分の濃度が比較的低いときは逆洗水を濃
縮し、廃液を減少させることにより、固化設備8への負
荷を低減させることも可能である。
Moreover, when the concentration of crud content is relatively low, it is also possible to reduce the load on the solidification equipment 8 by concentrating the backwash water and reducing waste liquid.

具体的には、逆洗水をポーラスチューブフィルタ等の平
行流炉材濾過装置−又は蒸発式濃縮装置等の濃縮処理装
置11に通水し100倍〜200倍程度に濃縮し、固形
物が高濃度となった濃縮廃液のみ固化設備8に移送し、
固化処理するものである。
Specifically, the backwash water is passed through a parallel flow furnace material filtration device such as a porous tube filter or a concentration processing device 11 such as an evaporative concentration device, and is concentrated to about 100 to 200 times, so that the solid matter is high. Only the concentrated waste liquid that has become concentrated is transferred to the solidification equipment 8,
This is a solidification process.

濃縮処理装置11の透過水(処理水)又は蒸留水は、液
体廃棄物処理設備9へ移送し、そこでもう一度濾過及び
脱塩処理を行い、導電率を規定値以下に低下させた後、
原則としてプラント内で再使用するものとする。つまシ
、濃縮処理装置11にて、逆洗廃液中のクラッド分を濃
縮し、クラッド濃度が充分に低下した透過水(処理水)
又は蒸留水を脱塩処理し、再使用水とするものである。
The permeated water (treated water) or distilled water from the concentration treatment device 11 is transferred to the liquid waste treatment facility 9, where it is once again subjected to filtration and desalination treatment to reduce the electrical conductivity to a specified value or less.
In principle, it shall be reused within the plant. In the concentration processing device 11, the crud content in the backwash waste liquid is concentrated, and the permeate water (treated water) in which the crud concentration has been sufficiently reduced is obtained.
Alternatively, distilled water can be desalinated and used as reused water.

なお、ポーラスチューブフィルタのボア径は、平均0.
2ミクロンであシ、かつ、平行流ろ過の為、逆洗廃液中
の固形分がフィルタ透過水側へ混入する恐れはない。
The average bore diameter of the porous tube filter is 0.
Since it is 2 microns thick and uses parallel flow filtration, there is no risk of solid content in the backwash waste liquid entering the filter permeate side.

以上要するに第1図に示す処理設備では微小クラ、ドを
含有した逆洗廃液を沈降分離処理しないで、逆洗廃液中
の固形分濃度が高い場合は、該廃液を直接に、また固形
分濃度が低い場合は該廃液を濃縮処理装置中に通水して
濃縮した後に固化設備へ移送するこ−とによシ、復水浄
化系非助材型フィルタを採用することを実現するもので
ある。
In summary, in the treatment equipment shown in Figure 1, the backwash waste liquid containing minute cracks and cracks is not subjected to sedimentation separation treatment, and when the solid content concentration in the backwash waste liquid is high, the waste liquid is directly processed or If the waste liquid is low, the waste liquid is passed through a concentration treatment device, concentrated, and then transferred to a solidification facility, thereby making it possible to use a non-auxiliary filter for condensate purification. .

本発明による、毘放射性液体廃棄物処理設備の基本実施
例を第2図に示す。同図において、原子炉冷却材は原子
炉1にて蒸発せられ、タービン2を駆動した後、復水器
3にて復水となシ中空糸膜型復水フィルタ12及び復水
脱塩装置5を経る過程で浄化され、原子炉1へ戻される
。この復水浄化系設備において、復水脱塩装置5につい
ては、混床式脱塩器を使用し、その使用済樹脂にっ込て
は、従来同様一時貯蔵後固化処理するがこの処理は、本
発明に直接関係しないのでここでの詳細は説明は割愛す
る。
A basic embodiment of a radioactive liquid waste treatment facility according to the present invention is shown in FIG. In the figure, reactor coolant is evaporated in a reactor 1, drives a turbine 2, and then becomes condensed in a condenser 3.A hollow fiber membrane type condensate filter 12 and a condensate desalination device are used. 5, it is purified and returned to the reactor 1. In this condensate purification system equipment, the condensate desalination device 5 uses a mixed bed demineralizer, and the used resin is temporarily stored and then solidified as in the conventional method. Since it is not directly related to the present invention, detailed explanation will be omitted here.

本実施例では復水濾過装置に非助材形である中空糸膜を
使用している為、従来の粉末樹脂グリコートを復水フィ
ヤタから発生していた使用済粉末樹脂が発生せず、クラ
ッドを含んだ逆洗廃液が、廃棄物処理設備での対象廃棄
物となる。この逆洗廃液を、液体廃棄物処理設備の平行
流炉材濾過装置たるポーラスチューブフィルタ14を有
スる低電導度廃液系又は、高電導度廃液系で直接処理す
ることが本実施例の大きな特徴である。
In this example, since the condensate filtration device uses a hollow fiber membrane that does not have an auxiliary material, the used powdered resin that was generated from the condensate filter is not generated and the cladding is removed. The contained backwash waste liquid becomes the target waste in the waste treatment facility. A major feature of this embodiment is that this backwash waste liquid is directly treated with a low conductivity waste liquid system or a high conductivity waste liquid system that has a porous tube filter 14, which is a parallel flow furnace material filtration device of a liquid waste treatment facility. It is a characteristic.

即ち、復水フィルタの逆洗廃液を低電導度廃液系で処理
する場合は、以下の処理手順を踏むことになる。中空糸
膜型復水フィルタエ2から発生する逆洗廃液は、これを
一旦復水フィルタ逆洗受タンク6で受けた後、低電導度
廃液系収集タンク13へ移送する。なお、ここで復水フ
ィルタから収集タンク13まで直接移送ができれば、逆
洗受タンク6の設置を省略することも可能である。低電
導度廃液系では、ポーラスチューブフィルタ14による
一過処理後、透過水(処理水)は脱塩装置15によシ脱
塩処理され、原則として復水貯蔵タンク17へ回収され
る。逆洗廃液は、他の低電導度廃液と一緒にして、ポー
ラス・チューブ・フィルタ14によシ廃液中のクラ、ド
等固形分の濃縮されたものとなる。
That is, when treating the backwash waste liquid of the condensate filter with a low conductivity waste liquid system, the following processing steps are taken. The backwash waste generated from the hollow fiber membrane type condensate filter 2 is once received in the condensate filter backwash receiving tank 6 and then transferred to the low conductivity waste liquid collection tank 13. Note that if the condensate can be directly transferred from the condensate filter to the collection tank 13, the installation of the backwash receiving tank 6 can be omitted. In the low conductivity waste liquid system, after being subjected to temporary treatment by the porous tube filter 14, the permeated water (treated water) is desalted by the demineralizer 15, and is basically recovered to the condensate storage tank 17. The backwash waste liquid is combined with other low-conductivity waste liquids and passed through the porous tube filter 14 to concentrate solid contents such as chlorine and carbon in the waste liquid.

上記デーラス・チューブ・フィルタ14においては、廃
液がチューブ状のF材中を循環しながら清澄水を透過し
ていき、徐々に循環液中の固形分濃度を上昇させて廃液
を濃縮していくこととなる。
In the Delus tube filter 14, the waste liquid circulates through the tube-shaped F material and passes through clear water, gradually increasing the concentration of solids in the circulating liquid and concentrating the waste liquid. becomes.

ここで、ポーラス・チューブ・フィルタ14のボア径は
、平均0.2ミクロンであシ、前述した様に透過水側へ
逆洗廃液中のクラッドが混入する可能性は殆んどないと
いりてよい。
Here, the bore diameter of the porous tube filter 14 is 0.2 microns on average, and as mentioned above, there is almost no possibility that crud in the backwash waste liquid will enter the permeate side. good.

以上のようにして、固形分濃度の高くなりた濃縮廃液は
、′濃縮廃液タンク23へ移送され、一時貯麓後固化設
備8へ移送され同化処理されるものである。
As described above, the concentrated waste liquid with a high solid content concentration is transferred to the concentrated waste liquid tank 23, where it is temporarily stored and then transferred to the solidification equipment 8 where it is assimilated.

一方、中空糸膜聾復水フィルタ12の逆洗廃液を高電導
度廃液系で処理する場合は、以下の手順を踏むことにな
る。中空糸模型フィルタ12から発生する逆洗廃液が、
高電導度廃液系収集タンク18へ移送される過程は、前
述の低電導度廃液系収集タンク13へ移送する場合と同
様である。高電導度廃液系では、蒸発式濃縮装置19に
よる濃縮蒸留処理後、蒸留水は脱塩装置20によシ脱塩
処理され、復水貯薦タンク17へ回収されるか、または
、放水口22から系外へ放出される。逆洗廃液は、他の
高電導度廃液と一緒にして蒸発式濃縮装置19によシ濃
縮蒸留され、濃縮廃液は前述のポーラスチューブフィル
タ14の濃縮液と同様の処理が行われる。
On the other hand, when the backwash waste liquid from the hollow fiber membrane deaf condensate filter 12 is treated with a high conductivity waste liquid system, the following steps are taken. The backwash waste liquid generated from the hollow fiber model filter 12 is
The process of transferring to the high conductivity waste liquid collection tank 18 is the same as the case of transferring to the low conductivity waste liquid collection tank 13 described above. In the high-conductivity waste liquid system, after the concentrated distillation process by the evaporative concentrator 19, the distilled water is desalted by the demineralizer 20, and then collected into the condensate storage tank 17, or the water is discharged from the water outlet 22. released from the system. The backwash waste liquid is concentrated and distilled together with other high conductivity waste liquids in an evaporative concentrator 19, and the concentrated waste liquid is processed in the same manner as the concentrated liquid of the porous tube filter 14 described above.

中空糸膜型復水フィルタ12からの逆洗廃液の発生頻度
は1回/年・塔程度であることが予想され、発生量も約
10m/パ、デと小さいため、低電導度廃液系、高電導
度廃液系のいずれで処理する場合も、系統及び設備容量
的に問題はない。
The frequency of occurrence of backwash waste liquid from the hollow fiber membrane type condensate filter 12 is expected to be about once per year per tower, and the amount generated is small at about 10 m/pa, de, so low conductivity waste liquid system, No matter which high conductivity waste liquid system is used for treatment, there is no problem in terms of system and equipment capacity.

本実施例によれば、非助材型復水フィルタの逆洗廃液を
処理する為に、専用の処理装置を設置することなく、既
存の液体廃棄物処理設備で処理することが可能であシ経
済的なメリットがあること、固化設備に直接、復水フィ
ルタの逆洗廃液を移送せず、濃縮処理装置によシ、濃縮
後移送するため、固化設備への負荷を小さくすることが
できること、等の効果が得られる。
According to this embodiment, it is possible to treat backwash waste liquid from a non-auxiliary condensate filter using existing liquid waste treatment equipment without installing a dedicated treatment device. There is an economical advantage, and the load on the solidification equipment can be reduced because the backwash waste liquid from the condensate filter is not transferred directly to the solidification equipment, but is transferred to the concentration processing equipment after concentration. Effects such as this can be obtained.

本発明の応用実施例として、前述の他に第3図に示す様
な処理方式が考えられる。本応用実施例では復水脱塩装
置5を非再生態とすることによシ再生廃液が発生しない
ことを前提とし、低電導度廃液と高電導度廃液をp過及
び脱塩処理し、更に、−過装置26に中空糸膜蛮を採用
しているのが大きな特徴である。
As an applied embodiment of the present invention, in addition to the processing described above, a processing method as shown in FIG. 3 can be considered. In this application example, it is assumed that the condensate desalination device 5 is non-regenerating so that recycled waste liquid is not generated, and low conductivity waste liquid and high conductivity waste liquid are subjected to p-filtration and desalination treatment, and A major feature is that a hollow fiber membrane is used for the filtering device 26.

この為、中空糸膜型復水フィルタ12から発生する逆洗
廃液を、液体廃棄物処理設備で処理したとしても、逆洗
廃液中のクラッドは再び液体廃棄物処理系の中空糸膜塵
ν過装置26に捕捉され、今度は、液体廃棄物処理設備
の中空糸膜型濾過装置の逆洗廃液の処理が問題となる。
Therefore, even if the backwash waste generated from the hollow fiber membrane type condensate filter 12 is treated in the liquid waste treatment equipment, the crud in the backwash waste will be returned to the hollow fiber membrane dust v filter of the liquid waste treatment system. The problem now arises in the treatment of the backwash waste liquid of the hollow fiber membrane filtration device of the liquid waste treatment facility.

そこで本応用実施例では、中空糸膜型復水フィルタ12
からの逆洗廃液を液体廃棄物処理系へ移送せず、直接固
化設備8へ移送するものである。
Therefore, in this application example, the hollow fiber membrane type condensate filter 12
The backwash waste liquid is not transferred to the liquid waste treatment system, but directly transferred to the solidification equipment 8.

但し、固化設備への負荷低減のため、逆洗廃液処理専用
の小容量濃縮処理装置24(ポーラスチューブフィルタ
又は蒸発式濃縮装置等)を設置し、逆洗廃液を濃縮し濃
縮液を固化設備8へ移送する方法も考えられる。なお濃
縮処理装置24の透過水(処理水)又は蒸留水は、液体
廃棄物処理系の収集タンク25へ移送され、濾過+脱塩
処理される。また、液体廃棄物処理系の中空糸膜型濾過
装置26から発生する逆洗廃液についても復水フィルタ
12からの逆洗廃液と同様の処理を行うものである。
However, in order to reduce the load on the solidification equipment, a small-capacity concentration processing device 24 (porous tube filter or evaporative concentration device, etc.) dedicated to backwash waste liquid treatment is installed, and the backwash waste liquid is concentrated and the concentrated liquid is solidified using the solidification equipment 8. Another option is to transfer the data to The permeated water (treated water) or distilled water from the concentration treatment device 24 is transferred to a collection tank 25 of the liquid waste treatment system, where it is subjected to filtration and desalination treatment. Further, the backwash waste liquid generated from the hollow fiber membrane type filtration device 26 of the liquid waste treatment system is also treated in the same manner as the backwash waste liquid from the condensate filter 12.

以上本応用実施例によれば、低電導度廃液系と高電導度
廃液系の一括処理によシ、液体廃棄物処理設備の簡素化
することが可能であること、及び逆洗廃液専用の小容量
濃縮処理装置を設置することによシ、固化設備への負荷
を低減することが可能であること等の効果が得られる。
As described above, according to this application example, it is possible to simplify the liquid waste treatment equipment by collectively processing the low conductivity waste liquid system and the high conductivity waste liquid system, and a small By installing a volumetric concentration processing device, effects such as being able to reduce the load on the solidification equipment can be obtained.

基本実施例、応用実施例いずれの場合も、逆洗廃液を濃
縮処理した場合、固化対象となる濃縮液の容積は、逆洗
廃液に比較し小さくなる為、固化処理する前に、濃縮液
を貯麓タンクによシ一時貯麓することが可能となる。一
時貯薦するととKよシ、放射能減衰の効果が得られる。
In both the basic example and the applied example, when the backwash waste liquid is concentrated, the volume of the concentrated liquid to be solidified will be smaller than that of the backwash waste liquid. It becomes possible to temporarily store it in the storage tank at the foot of the foot. If you save it for a while, you can get the effect of attenuating radioactivity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果が得られる。 According to the present invention, the following effects can be obtained.

■ 復水フィルタの逆洗廃液処理の為に、大容量の沈降
分離層の設置が不要となるので、建屋容積の削減、経済
性向上の効果がある。
■ It is not necessary to install a large-capacity sedimentation separation layer for backwashing waste liquid treatment of condensate filters, which has the effect of reducing building volume and improving economic efficiency.

■ クラッド含有逆洗廃液を凝集剤等の使用による凝縮
沈殿法によシ処理しない為、廃棄物(固形分)の発生増
加を防止する効果がある。
■ Since crud-containing backwash waste liquid is not treated by the condensation sedimentation method using coagulants, etc., it is effective in preventing an increase in the generation of waste (solid content).

■ 微小クラ、ドを含む逆洗廃液の処理が可能となシ、
復水浄化系に非助材盟フィルタを設置することによシ、
廃棄物(使用済粉末樹脂)の発生量低減が可能となる。
■ It is possible to treat backwash waste liquid containing minute particles and particles.
By installing a non-auxiliary filter in the condensate purification system,
It is possible to reduce the amount of waste (used powder resin) generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放射性廃棄物処理設備を示す概略系統
図、第2図は本発明の基本実施例を示す概略系統図、第
3図は本発明の応用実施例を示す概略系統図、第4図は
従来の放射性廃棄物処理設備を示す概略系統図、第5図
は非助材盟復水フィルタの逆洗廃液の沈降分離特性図、
第6図は非助材型復水フィルタの逆洗廃液を24時間沈
降分離後、上澄水中の固形分粒径分布図である。 1・・・原子炉      2・・・タービン3・・・
復水器 4・・・粉末樹脂プリコート型復水フィルタ5・・・復
水脱塩装置 6・・・復水′フィルタ逆洗受タンク 7・・・沈降分離タンク  8・・・固化設備9・・・
液体廃棄物処理設備 10・・・非助材型復水フィルタ 11・・・逆洗廃液濃縮処理装置 12・・・中空糸膜型復水フィルタ 13・・・低電導度廃液系収集タンク 14・・・ポーラス・チューブ・フィルタ15・・・低
電導度廃液系脱塩装置 16・・・低電導度廃液系サンプルタンク17・・・復
水貯薦タンク 18・・・高電導度廃液系収集タンク 19・・・蒸発式濃縮装置 20・・・高電導度廃液系脱塩装置 21・・・高電導度廃液系サンプルタンク22・・・放
水口     23・・・濃縮廃液タンク24・・・小
容量濃縮処理装置 25・・・液体廃棄物処理系収集タンク26・・・液体
廃棄物処理系中空糸Mフィルタ27・・・液体廃棄物処
理系脱塩装置 28・・・液体廃棄物処理系サンプルタンクl:原、4
−丈Ps       乙:、11&フlルヅ逆j丸受
タンクス一タービン     6:r!7AL設備、5
:a米S    倭液林廐飯特急理級備、5:a*、1
ltJJ+j%l   10:n#uK’1LtUW、
)nb571:逆3先膚し良5良罐列J!設備 第2図 第3図 第4図 第5図 沈降時間(Hr)
FIG. 1 is a schematic system diagram showing a radioactive waste treatment facility of the present invention, FIG. 2 is a schematic system diagram showing a basic embodiment of the present invention, and FIG. 3 is a schematic system diagram showing an applied example of the present invention. Figure 4 is a schematic system diagram showing conventional radioactive waste treatment equipment, Figure 5 is a sedimentation separation characteristic diagram of backwash waste liquid from a non-auxiliary condensate filter,
FIG. 6 is a solid content particle size distribution diagram in supernatant water after 24 hours of sedimentation and separation of backwash waste liquid from a non-auxiliary type condensate filter. 1... Nuclear reactor 2... Turbine 3...
Condenser 4... Powder resin pre-coated condensate filter 5... Condensate desalination device 6... Condensate filter backwash tank 7... Sedimentation separation tank 8... Solidification equipment 9.・・・
Liquid waste treatment equipment 10...Non-auxiliary material type condensate filter 11...Backwash waste liquid concentration processing device 12...Hollow fiber membrane type condensate filter 13...Low conductivity waste liquid system collection tank 14. ... Porous tube filter 15 ... Low conductivity waste liquid system desalination device 16 ... Low conductivity waste liquid system sample tank 17 ... Condensate storage tank 18 ... High conductivity waste liquid system collection tank 19...Evaporative concentration device 20...High conductivity waste liquid system desalination device 21...High conductivity waste liquid system sample tank 22...Water outlet 23...Concentrated waste liquid tank 24...Small capacity Concentration processing device 25...Liquid waste treatment system collection tank 26...Liquid waste treatment system hollow fiber M filter 27...Liquid waste treatment system desalination device 28...Liquid waste treatment system sample tank l: Hara, 4
-Length Ps Otsu:, 11&Furuzu reverse j Maruuke Tanks - Turbine 6:r! 7AL equipment, 5
:a rice S Wazurin Meishi Limited Express Rikibi, 5:a*, 1
ltJJ+j%l 10:n#uK'1LtUW,
) nb571: Reverse 3 first, good 5 good can row J! Equipment Figure 2 Figure 3 Figure 4 Figure 5 Settling time (Hr)

Claims (1)

【特許請求の範囲】 1、復水浄化系に非助材型ろ過装置を使用する原子力発
電設備において、非助材型ろ過装置から発生する逆洗廃
液を、その固形分濃度の高いときは直接に、また固形分
濃度の低いときは濃縮処理装置に通水して濃縮を行つた
後に固化処理設備へ移送して固化処理を行うようにした
ことを特徴とする放射性廃棄物処理設備。 2、前記濃縮処理装置は、ポーラス・チューブ・フィル
タを用いた平行流ろ材ろ過装置であることを特徴とする
特許請求の範囲第1項に記載の放射性廃棄物処理設備。 3、前記濃縮処理装置は、蒸発式濃縮装置であることを
特徴とする特許請求の範囲第1項に記載の放射性廃棄物
処理設備。
[Claims] 1. In nuclear power generation equipment that uses a non-auxiliary filtration device in the condensate purification system, backwash waste generated from the non-auxiliary filtration device is directly treated when the solid content concentration is high. Furthermore, when the solid content concentration is low, the radioactive waste treatment equipment is characterized in that water is passed through the concentration treatment equipment to perform concentration, and then transferred to the solidification treatment equipment for solidification treatment. 2. The radioactive waste treatment facility according to claim 1, wherein the concentration processing device is a parallel flow filter media filtration device using a porous tube filter. 3. The radioactive waste treatment facility according to claim 1, wherein the concentration processing device is an evaporative concentration device.
JP10725285A 1985-05-20 1985-05-20 Radioactive waste treating facility Pending JPS61265600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10725285A JPS61265600A (en) 1985-05-20 1985-05-20 Radioactive waste treating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10725285A JPS61265600A (en) 1985-05-20 1985-05-20 Radioactive waste treating facility

Publications (1)

Publication Number Publication Date
JPS61265600A true JPS61265600A (en) 1986-11-25

Family

ID=14454335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10725285A Pending JPS61265600A (en) 1985-05-20 1985-05-20 Radioactive waste treating facility

Country Status (1)

Country Link
JP (1) JPS61265600A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350799A (en) * 1986-08-21 1988-03-03 株式会社荏原製作所 Method of processing backwash waste liquor of hollow yarn membrane filter
JP2011257231A (en) * 2010-06-08 2011-12-22 Hitachi-Ge Nuclear Energy Ltd Radioactive liquid waste treating apparatus
JP2012032155A (en) * 2010-07-28 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Radioactive waste treatment method and apparatus therefor
JP2012037270A (en) * 2010-08-04 2012-02-23 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid processor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350799A (en) * 1986-08-21 1988-03-03 株式会社荏原製作所 Method of processing backwash waste liquor of hollow yarn membrane filter
JP2011257231A (en) * 2010-06-08 2011-12-22 Hitachi-Ge Nuclear Energy Ltd Radioactive liquid waste treating apparatus
JP2012032155A (en) * 2010-07-28 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Radioactive waste treatment method and apparatus therefor
JP2012037270A (en) * 2010-08-04 2012-02-23 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid processor

Similar Documents

Publication Publication Date Title
JP5849342B2 (en) Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater
JP6173396B2 (en) Method and apparatus for treating radioactive liquid waste generated during a major nuclear accident
JPS61265600A (en) Radioactive waste treating facility
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
US4415457A (en) Process for treating liquid waste containing solid fine particles
JP2001239138A (en) Device for treating liquid
JP2530609B2 (en) Radioactive high conductivity waste liquid treatment facility
RU2675251C1 (en) Method for processing liquid radioactive wastes
JP2000056084A (en) Precipitating/separating tank for liquid waste processing system
JP5350337B2 (en) Radioactive waste treatment method and apparatus
JP5340237B2 (en) Radioactive liquid processing equipment
RU2724925C1 (en) Method of purifying liquid radioactive wastes, contaminated with oil products, corrosion products and slurries
RU2675787C1 (en) Method for processing liquid radioactive wastes
JP2892811B2 (en) Ion exchange resin, condensate desalination tower and condensate purification device using this resin
JPH11153696A (en) Radioactive waste liquid processing equipment
JP5340224B2 (en) Radioactive liquid processing equipment
JP2543892B2 (en) Hollow fiber membrane filter backwash water treatment method
JPH07104435B2 (en) Radioactive waste treatment method
JPH0214114B2 (en)
JPS6051679B2 (en) Boiling water reactor power plant waste liquid treatment method
JP5766638B2 (en) Solid-liquid separation device and solid-liquid separation method
Canfield et al. Mother nature as sludge thickener
JPS59138992A (en) Condensed water clean-up device
JPS58184589A (en) Method of desalting condensed water
JPS61120998A (en) Boiling water type nuclear power plant