JP5849342B2 - Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater - Google Patents
Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater Download PDFInfo
- Publication number
- JP5849342B2 JP5849342B2 JP2011098498A JP2011098498A JP5849342B2 JP 5849342 B2 JP5849342 B2 JP 5849342B2 JP 2011098498 A JP2011098498 A JP 2011098498A JP 2011098498 A JP2011098498 A JP 2011098498A JP 5849342 B2 JP5849342 B2 JP 5849342B2
- Authority
- JP
- Japan
- Prior art keywords
- radioactive
- activated carbon
- contaminated water
- seawater
- decontamination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
Description
本発明は、海水が混入した放射性汚染水からの放射性物質の除染装置及び除染方法に関する。 The present invention relates to a decontamination apparatus and a decontamination method for radioactive substances from radioactively contaminated water mixed with seawater.
非特許文献1には、オキシン(8-Hydroxyquinoline)を担持した活性炭を用いて放射性汚染水中の放射性のCP、FP、TRUを除去する方法が記載されている。
Non-Patent
特許文献1には、リンモリブデン酸アンモニウム(AMP)を担持した多孔性無機物担体、例えばアルミナやシリカを用いて放射性汚染水中の放射性のCsを除去する方法が記載されている。
特許文献2には、Br3を担持した活性炭を用いてヨウ素(Iodine)を除去する方法が記載されている。
特許文献3には、水に不溶とした放射性物質を活性炭、ゼオライト、濾過砂、炭素繊維系材料、セルロース系材料あるいはガラス繊維系材料にトラップすることが記載されている。 Patent Document 3 describes that a radioactive substance insoluble in water is trapped in activated carbon, zeolite, filtered sand, carbon fiber-based material, cellulose-based material, or glass fiber-based material.
海水が混入している放射性汚染水は、一般的なイオン交換樹脂による浄化は困難であると予想される。従って、イオン交換樹脂に代替えする除染剤が求められることになる。 Radioactive contaminated water sea water is mixed, the purification according to a general ion exchange resins are expected to be difficult. Therefore, a decontamination agent that replaces the ion exchange resin is required.
本発明は、一般的なイオン交換樹脂を用いることをしないで、流出している放射性汚染水が海水を混入している場合にあっても機能的、効果的に放射性物質を除染して浄化し、低レベルの放射性汚染水とすることのできる除染装置及び除染方法を提供することを目的とする。 The present invention decontaminates and purifies radioactive substances functionally and effectively even when the outflowing radioactive polluted water contains seawater without using a general ion exchange resin. It is an object of the present invention to provide a decontamination apparatus and a decontamination method that can provide low-level radioactive contamination water.
本発明は、海水が混入した放射性汚染水に、オキシン(8-Hydroxyquinoline)、リンモリブデン酸アンモニウム(AMP)、Br3をそれぞれ担持させた細粒の活性炭を投入し、放射性のCP(放射性腐食生成物)、FP(放射性核分裂生成物)、TRU(ウランを含む超ウラン元素類:U、Pu、Am、Cm)、Cs(セシウム)、Iodine(ヨウ素)を捕捉し、ロジゾン酸の粉末あるいは溶液を添加して放射性Sr(ストロンチウム)、Ba(バリウム)とキレート化し、それらを沈殿剤で凝集沈殿させる1次浄化処理系、さらに1次浄化処理系で処理した放射性汚染水についてオキシン(8-Hydroxyquinoline)、リンモリブデン酸アンモニウム(AMP)、Br3をそれぞれ担持した粗粒の活性炭を充填した浄化塔へ通液する2次浄化処理系からなることを特徴とする、海水が混入した放射性汚染水からの放射性物質の除去装置を提供する。 The present invention relates to radioactive contaminated water sea water is mixed, oxine (8-hydroxyquinoline), ammonium phosphomolybdate (AMP), was charged with activated carbon granules for the Br 3 was supported respectively, radioactive CP (radioactive corrosion Products), FP (radioactive fission products), TRU (transuranic elements including uranium: U, Pu, Am, Cm), Cs (cesium), Iodine (iodine), and powder or solution of rhodizonate Is added to chelate radioactive Sr (strontium) and Ba (barium), coagulating and precipitating them with a precipitating agent, and radioactive polluted water treated with the primary purification treatment system to oxine (8-Hydroxyquinoline ), ammonium phosphomolybdate (AMP), to characterized in that it consists of secondary purification treatment system for passing liquid Br 3 to purifying tower filled with loaded with coarse activated carbon, respectively Provides an apparatus for removing radioactive material from radioactive contaminated water sea water is mixed.
本発明は、海水が混入した放射性汚染水を導入する導入口及び浄化された水を導出する導出口を備えた放射性汚染水浄化塔に、オキシン(8-Hydroxyquinoline)を担持した活性炭で形成したオキシン担持活性炭層と、リンモリブデン酸アンモニウム(AMP)を担持した活性炭で形成したAMP担持活性炭層と、Br3を担持した活性炭で形成したBr3担持活性炭層との3種類の機能性活性炭層を組み合わせて積層構成した活性炭除染剤層を設けたことを特徴とする海水が混入した放射性汚染水からの放射性物質の除染装置を提供する。 The present invention relates to radioactive contaminated water purification tower having a conductive outlet to derive inlet and purified water introducing radioactive contaminated water sea water is mixed, formed activated carbon carrying oxine (8-hydroxyquinoline) and oxine-supporting activated carbon layer, and AMP-supporting activated carbon layer formed in the activated carbon carrying ammonium phosphomolybdate (AMP), the three functions of the activated carbon layer between Br 3 on activated charcoal layer formed in the activated carbon carrying Br 3 combinations sea water, characterized in that a charcoal decontaminant layer laminated configured to provide a decontamination apparatus radioactive substances from radioactive contaminated water which is mixed.
本発明は、また、前記3種類の機能性活性炭層を組み合わせて積層構成した活性炭除染剤層の上流側あるいは/及び下流側に活性炭層を設けて活性炭除染剤層を構成したことを特徴とする海水が混入した放射性汚染水からの放射性物質の除染装置を提供する。 The present invention also characterized in that provided an activated carbon layer is made of activated carbon decontaminant layer on the upstream side or / and downstream of the activated carbon decontaminant layer laminated structure by combining the three types of functional active carbon layer providing decontamination apparatus radioactive substances from radioactive contaminated water sea water is mixed to.
本発明は、海水が混入した放射性汚染水を導入する導入口及び浄化された水を導出する導出口を備えた放射性汚染水浄化塔に、オキシン(8-Hydroxyquinoline)を担持したオキシン担持活性炭と、リンモリブデン酸アンモニウムを担持したAMP担持活性炭と、Br3を添着し、担持させたBr3担持活性炭との3種類の機能性活性炭を組み合わせ、混合することで構成した活性炭除染混床層を設けたことを特徴とする海水が混入した放射性汚染水からの放射性物質の除染装置を提供する。 The present invention relates to radioactive contaminated water purification tower having a conductive outlet to derive inlet and purified water introducing radioactive contaminated water sea water is mixed, and oxine-supporting activated carbon carrying oxine (8-hydroxyquinoline) , and AMP-supporting activated carbon carrying ammonium phosphomolybdate, a Br 3 impregnated combines three functions activated carbon with Br 3 supported activated carbon was supported, activated carbon decontamination mixed bed layer constituted by mixing sea water, characterized in that provided to provide a decontamination apparatus radioactive substances from radioactive contaminated water which is mixed.
本発明は、また、上述した放射性物質の除染装置が用いられて、海水が混入した放射性汚染水から、オキシン担持活性炭で、放射性のCP(放射性腐食生成物)、FP(放射性核分裂生成物)、TRU(ウランを含む超ウラン元素類:U、Pu、Am、Cm)を除去し、AMP担持活性炭で、放射性のCsを除去し、Br3担持活性炭で、放射性のヨウ素を除去することを特徴とする海水が混入した放射性汚染水からの放射性物質の除染方法を提供する。 The present invention is also used decontamination apparatus of radioactive material described above, from a radioactive contaminated water sea water is mixed, with oxine-supporting activated carbon, radioactive CP (radioactive corrosion products), FP (radioactive fission products ), TRU (transuranic elements including uranium compounds: U, Pu, Am, to remove the Cm), with AMP-supporting activated carbon, to remove Cs radioactive, with Br 3 on charcoal, to remove the radioactive iodine Provided is a method for decontaminating radioactive substances from radioactive water contaminated with characteristic seawater.
本発明は、海水が混入した放射性汚染水に、オキシン(8-Hydroxyquinoline)、リンモリブデン酸アンモニウム(AMP)、Br3をそれぞれ添着し、担持させた細粒の活性炭を投入し、放射性のCP(放射性腐食生成物)、FP(放射性核分裂生成物)、TRU(ウランを含む超ウラン元素類:U、Pu、Am、Cm)、Cs(セシウム)、Iodine(ヨウ素)を捕捉し、ロジゾン酸(RHOD)の粉末あるいは溶液を添加して放射性Sr(ストロンチウム)、Ba(バリウム)とキレート化し、それらを沈殿剤で凝集沈殿させて1次浄化処理し、さらに1次浄化処理した放射性汚染水についてオキシン(8-Hydroxyquinoline)、リンモリブデン酸アンモニウム(AMP)、Br3をそれぞれ担持した粗粒の活性炭を充填した浄化塔へ通液する2次浄化処理することからなることを特徴とする、海水が混入した放射性汚染水からの放射性物質の除去方法を提供する。 The present invention relates to radioactive contaminated water sea water is mixed, oxine (8-hydroxyquinoline), ammonium phosphomolybdate (AMP), impregnated with Br 3, respectively, was charged with fine activated carbon having supported thereon, radioactive CP (Radioactive corrosion products), FP (radioactive fission products), TRU (transuranic elements including uranium: U, Pu, Am, Cm), Cs (cesium), Iodine (iodine) are captured and rhodizonate ( RHOD) powder or solution is added to chelate with radioactive Sr (strontium) and Ba (barium), and they are coagulated and precipitated with a precipitating agent, followed by primary purification treatment, and further, the primary contaminated radioactive contaminated water is oxidized. (8-hydroxyquinoline), ammonium phosphomolybdate (AMP), since the secondary purification process for passing liquid Br 3 to purifying tower filled with loaded with coarse activated carbon, respectively Characterized Rukoto provides method of removing radioactive materials from radioactive contaminated water sea water is mixed.
本発明は、上述したように、一般的なイオン交換樹脂を用いることなく、3種類の機能性活性炭を組み合わせることで構成した活性炭除染剤を使い、オキシン担持活性炭で、海水などの塩類が混入した放射性汚染水から、放射性のCP(放射性腐食生成物)、FP(放射性核分裂生成物)、TRU(ウランを含む超ウラン元素類:U、Pu、Am、Cm)を除去し、AMP担持活性炭で、放射性のCsを除去し、Br3担持活性炭で、放射性のヨウ素(Iodine)を除去することができるので、海水が混入した高レベル放射性汚染水を機能的に、効果的に低レベル放射性汚染水とすることができる。 As described above, the present invention uses an activated carbon decontaminating agent constituted by combining three types of functional activated carbon without using a general ion exchange resin, and oxine-supported activated carbon is mixed with salts such as seawater. Removed radioactive CP (radioactive corrosion product), FP (radioactive fission product), TRU (uranium-containing transuranic elements: U, Pu, Am, Cm) to remove Cs radioactive, with Br 3 on charcoal, it is possible to remove the radioactive iodine (iodine), the high level radioactive contaminated water sea water is mixed functionally effectively low-level radioactive contamination Can be water.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は、本発明の実施例である海水が混入した放射性汚染水からの放射性物質の除去装置(以下、放射性物質の除去装置という。)の構成を示す図である。 Figure 1 is a device for removing radioactive material from radioactive contaminated water sea water is mixed to an embodiment of the present invention (hereinafter. Referred removing apparatus of radioactive material) is a diagram showing a configuration of.
図1において、放射性物質の除去装置100は、RO膜(逆浸透膜)を備えたRO脱塩システム11で構成される前処理系1、凝集沈殿分離槽12を有して凝集沈殿分離を行うことで構成される1次処理系(1次処理浄化系)2及び放射性汚水浄化塔13で構成される2次処理系(2次処理浄化系)3を備えて構成される。2次処理系3の下流側に低レベル汚染水を貯蔵する貯槽5が接続される。
In FIG. 1, a radioactive
前処理系1は、1st−stepとして構成され、放射性汚染水の真水である脱塩水9と放射性物質を含む放射性汚染水20との分離(真水化を放射性物質の分離)を行う。
The
1次処理系2と2次処理系3は、2nd−stepとして構成され、分離放射性汚染水の低レベル化を行う。
The
RO脱塩システム11は、RO膜を備えて構成される。図1には、多段化されたRO脱塩システムが図示されており、初段のRO脱塩塔11Aの下部には、放射性汚染水が導入され、上部からは分離放射性汚染水が導出される。
The RO desalination system 11 includes an RO membrane. FIG. 1 shows a multi-stage RO desalination system, in which radioactive contaminated water is introduced into the lower part of the first stage
海水が混入した放射性汚染水4は、濾過装置6に導入され、放射性汚染水7と高レベルの放射性物質である濾過分離物質8とに分離される。
Radioactive contaminated water 4 sea water is mixed is introduced into the
初段のRO脱塩塔11Aで分離された脱塩水は上部側から次段のRO脱塩塔11Bに導入され、更に脱塩処理される。脱塩処理された脱塩水は、真水である脱塩水9とされて導出され、放射性物質が残留する放射性汚染水は再度初段のRO脱塩塔11Aに導入される。
The demineralized water separated in the first-stage
このようにして、海水が混入した放射性汚染水はRO膜でその一部が真水化され、他の部分が分離放射性汚染水20とされる。分離放射性汚染水20は、分離した放射性物質と海水成分を含む放射性汚染水である。この放射性汚染水は、1次処理系2及び2次処理系3で処理され浄化される。1次処理系2で凝集沈殿処理を行い、2次処理系3でイオン吸着処理を行う。
In this way, the radioactive contaminated water mixed with seawater is partly desalinated by the RO membrane, and the other part is the separated radioactive contaminated water 20. The separated radioactive contaminated water 20 is radioactive contaminated water containing separated radioactive substances and seawater components. This radioactively contaminated water is treated and purified by the
1次処理系2を構成する凝集沈殿分離槽12は、撹拌機21を備え、導入された分離放射性汚染水20を撹拌することができる。
The coagulation
凝集沈殿分離槽12には、オキシン(8-Hydroxyquinoline)を添着し、担持させた細粒の活性炭であるオキシン担持活性炭(KMAC)、リンモリブデン酸アンモニウム(AMP)を添着し、担持させた細粒の活性炭であるAMP担持活性炭(AMP/AC)、Br3を添着し、担持させた細粒の活性炭であるBr3担持活性炭(KBAC)及び吸着剤としてのロジゾン酸(RHOD)の粉末あるいは溶液を順次投入処理する。この順次投入の後に、凝集沈殿剤を投入する。
In the coagulation
このように、上述したKMAC、AMP/AC、KBAC及びRHODを順次投入処理すると共に、凝集剤を投入して、撹拌機21で撹拌する撹拌処理を行う。これらの処理によって放射性物質の凝集沈殿分離処理を行う。
In this manner, the above-described KMAC, AMP / AC, KBAC, and RHOD are sequentially charged, and the flocculant is charged and the stirring process of stirring with the
以上のように、海水が混入した放射性汚染水に、オキシン(8-Hydroxyquinoline)、リンモリブデン酸アンモニウム(AMP)、Br3をそれぞれ添着し、担持させた細粒の活性炭を投入し、放射性のCP(放射性腐食生成物)、FP(放射性核分裂生成物)、TRU(ウランを含む超ウラン元素類:U、Pu、Am、Cm)、Cs(セシウム)、Iodine(ヨウ素)を捕捉し、ロジゾン酸の粉末あるいは溶液を添加して放射性Sr(ストロンチウム)、Ba(バリウム)とキレート化し、それらを沈殿剤で凝集沈殿させる1次浄化処理を行う系統が形成される。 As described above, the radioactive contaminated water sea water is mixed, oxine (8-hydroxyquinoline), ammonium phosphomolybdate (AMP), impregnated with Br 3, respectively, was charged with fine activated carbon having supported thereon, of radioactive CP (radioactive corrosion product), FP (radioactive fission product), TRU (transuranic elements including uranium: U, Pu, Am, Cm), Cs (cesium), Iodine (iodine) are captured and rhodizonic acid A system is formed in which a primary purification treatment is performed by adding a powder or solution of the above and chelating with radioactive Sr (strontium) and Ba (barium) and aggregating them with a precipitating agent.
また、海水が混入した放射性汚染水に、オキシン(8-Hydroxyquinoline)、リンモリブデン酸アンモニウム(AMP)、Br3をそれぞれ添着し、担持させた細粒の活性炭を投入し、放射性のCP(放射性腐食生成物)、FP(放射性核分裂生成物)、TRU(ウランを含む超ウラン元素類:U、Pu、Am、Cm)、Cs(セシウム)、Iodine(ヨウ素)を捕捉し、ロジゾン酸(RHOD)の粉末あるいは溶液を添加して放射性Sr(ストロンチウム)、Ba(バリウム)とキレート化し、それらを沈殿剤で凝集沈殿させて1次浄化処理し、さらに1次浄化処理した放射性汚染水についてオキシン(8-Hydroxyquinoline)、リンモリブデン酸アンモニウム(AMP)、Br3をそれぞれ担持した粗粒の活性炭を充填した浄化塔へ通液する2次浄化処理することからなる海水が混入した放射性汚染水からの放射性物質の除去方法が形成される。 Further, the radioactive contaminated water sea water is mixed, oxine (8-hydroxyquinoline), ammonium phosphomolybdate (AMP), impregnated with Br 3, respectively, the activated carbon granules obtained by carrying charged, radioactive CP (radioactive Corrosion products), FP (Radiofission products), TRU (Transuranic elements including uranium: U, Pu, Am, Cm), Cs (cesium), Iodine (iodine) are captured, and rhodizonate (RHOD) Oxygen (8) is added to the radioactive contaminated water after adding the powder or solution of the above and chelating with radioactive Sr (strontium) and Ba (barium), coagulating and precipitating them with a precipitating agent, and further performing the primary purification treatment. -Hydroxyquinoline), ammonium phosphomolybdate (AMP), consists of secondary purification process for passing liquid Br 3 to purifying tower filled with loaded with coarse activated carbon, respectively Method of removing radioactive materials from radioactive contaminated water water is mixed is formed.
凝集沈殿分離槽12の下流側には2つの濾布あるいは遠心分離機22、23が設けられる。
Two filter cloths or
凝集沈殿分離槽12の下部からは、凝集沈殿物が導出され、濾布あるいは遠心分離機22に導入されて、一方の高レベルAC24として取り出されると共に、分離された液は凝集沈殿分離槽12に戻される。
From the lower part of the coagulation
凝集沈殿分離槽12の上澄み液は中レベルの汚染水26であり、この上澄み液は上部側から他の濾布あるいは遠心分離機23に導入される。濾布あるいは遠心分離機23に導入された中レベル汚染水26からは、他の高レベルAC24が分離され、他の高レベルAC24が分離された放射性汚染水27は2次処理系3へと送られる。
The supernatant liquid of the coagulation
上述したKMAC、AMP/AC、KBACの各機能炭及び活性炭(AC)の機能については、2次処理系3の説明の際に行う。 The functions of the above-described KMAC, AMP / AC, and KBAC functional charcoal and activated carbon (AC) will be described when the secondary processing system 3 is described.
このように、1次処理系2で放射性Sr.Baを含む放射性物質の全般の1次除染がなされ、2次処理系3で残留する放射性物質の除去を行う。 As described above, radioactive Sr. The primary radioactive decontamination of the radioactive substance including Ba is performed, and the radioactive substance remaining in the secondary treatment system 3 is removed.
2次処理系3は、放射性汚染水浄化塔13によって構成される。
The secondary treatment system 3 includes a radioactive polluted
本例の場合、放射性汚染水浄化塔13は並列した4つの放射性汚染水浄化塔13A−13Dから構成されている。各放射性汚染浄化塔13A−13Dは同一構成とされ、放射性汚染水27が上方から導入される。
In the case of this example, the radioactive polluted
本実施例は、以上述べた浄化系である放射性物質の除去装置100は、図9に図示した各種の元素に適用されて、各種の放射性物質を除去することができる。
In the present embodiment, the radioactive
図2に、1つの放射性汚染浄化塔13を示す。この放射性汚染浄化塔13は、機能性活性炭充填放射性汚染水浄化塔として構成され、放射性物質が吸着し蓄積するためその周囲は放射線の外部漏出を防止するため遮蔽される。
FIG. 2 shows one radioactive
放射性汚染水27に混入が予想される放射性物質には、I−131、Cs−134、Cs−137、CP、FP、TRUがある。予め、放射性Sr、Baなどは1次処理系で用いたロジゾン酸(RHOD)によって分離してある。
Examples of radioactive substances expected to be mixed in the radioactively contaminated
このように、図2は、放射性汚染水浄化塔13を備えた本発明の実施例である海水が混入した放射性汚染水からの放射性物質の除染装置(以下、除染装置という。)を示す。
Thus, FIG. 2, the decontamination apparatus of radioactive material from radioactive contaminated
放射性物質の除染装置200は、上述したように、本体となる放射性汚染水浄化塔13(以下、浄化塔という。)を備える。
As described above, the radioactive
浄化塔13は、筒状に形成され、上部に導入口32、そして下部に導出口33を備える。導入口32には、海水が混入した中レベル放射性汚染水27が導入され、導出口33からは、浄化された水が低レベル放射性汚染水45として導出される。
The
浄化塔13の内部には、オキシン(8-Hydroxyquinoline)を添着し、担持させた活性炭で形成したオキシン担持活性炭層41、リンモリブデン酸アンモニウム(AMP)を添着し、担持させた活性炭で形成したAMP担持活性炭層42及びBr3を添着し、担持させた活性炭で形成したBr3担持活性炭層43との3種類の機能性活性炭を組み合わせて構成した活性炭除染剤層40が設けてある。組み合わせ方は任意のものが採用可能である。
Inside the
オキシン担持活性炭層41は、海水が混入した放射性汚染水27から、放射性のCP、FP、TRUを機能的に、効果的に除去する。そのため、ここではこの層を1ST機能炭〔KMAC〕と呼ぶ。
Oxine-supporting activated
AMPを添付して担持したAMP担持活性炭層42は、海水が混入した放射性汚染水であって、1ST機能炭を通過した放射性汚染水から放射性のCsを除去する。そのため、ここではこの層を2nd機能炭〔AMP/AC〕と呼ぶ。
AMP on activated
Br3担持活性炭層43は、海水が混入した放射性汚染水であって、1ST及び2nd機能炭を通過した放射性汚染水から放射性のヨウ素(Iodine)を除去する。そのため、ここではこの層を3rd機能炭〔KBAC〕と呼ぶ。
Br 3 on activated
特許文献及び非特許文献に記載してあるように、個々の放射性物質をそれぞれ除染剤で除染することは公知であるが、3種類の機能炭を組み合わせて活性炭除染剤層40とすることで、はじめて海水が混入した放射性汚染水の除染用装置として実用的となる。今までに海水が混入した放射性汚染水から放射性物質を除染することについての報告はなされていない。 As described in patent documents and non-patent documents, it is known to decontaminate individual radioactive substances with a decontamination agent, but the activated carbon decontamination agent layer 40 is formed by combining three types of functional charcoal. it is, become practical as the first for decontamination of radioactive contaminated water sea water is mixed device. Report about what decontaminating radioactive materials from a radioactive contaminated water sea water is mixed so far has not been made.
これらの機能炭単独あるいは2種の組み合わせのみでは海水が混入した放射性汚染水の除染用装置として有効ではない。上述した3種類の機能炭を組み合わせて活性炭除染剤層を構成することが重要であり、この組み合わせは海水が混入した放射性汚染水の処理方法として注目されなければならない。 These functions coal alone or with only two combinations are not effective for the decontamination of radioactive contaminated water sea water is mixed device. A combination of three functions charcoal described above it is important to configure the activated carbon decontaminant layer, this combination must be noted as a method for treating a radioactive contaminated water sea water is mixed.
3種類の組み合わせになるこの活性炭除染剤層40を用いることで一次処理された高レベル放射性汚染水27の放射能を1/100〜1/1000程度に低減することが可能になり、除染剤層40の量や厚み、ならびに処理流量を制御することで、除染効率をさらに向上できる。
By using this activated carbon decontaminating agent layer 40 which is a combination of three kinds, it becomes possible to reduce the radioactivity of the high-level radioactive contaminated
浄化塔13の内部には、3rd機能炭の下流側に活性炭層44を設けて、各機能炭をバックアップするようにしている。ここでは、4th活性炭〔AC〕と呼ぶ。このバックアップ層を設けることで4層の活性炭除染層が構成されることになる。このバックアップ用に設けた活性炭層によって海水が混入した他の放射性物質、例えば放射性テクネチウム(Tc−99)などを吸着、除去することが可能になる。活性炭層44は、1st機能炭41の上流側に設けてもよい。
Inside the
放射性物質の除染装置200の仕様例を示せば次のようになる。
〔仕様例〕
An example of the specification of the radioactive
[Specification example]
・浄化能力は機能活性炭の使い方や浄化塔サイズあるいは通液条件で変わる。
・浄化剤カートリッジ内蔵遠隔システムにより、汚染水貯蓄槽の中でも効率的除染が可能となる。
・ Purification capacity varies depending on how the activated carbon is used, the size of the purification tower, and the flow conditions.
-A remote system with a built-in purifier cartridge enables efficient decontamination even in a contaminated water storage tank.
以下、各機能炭について説明する。
図3は、オキシン炭の公知の基本反応式を示す。
本実施例は、オキシン炭〔KMAC〕を、海水が混入した放射性汚染水中のCP、FP、TRUを効果的に除染するのに用いることにした。
Hereinafter, each functional charcoal will be described.
FIG. 3 shows a known basic reaction formula of oxine charcoal.
This embodiment, oxine charcoal [KMAC], CP radioactive contamination water sea water is mixed, it was decided to use to effectively decontaminate FP, the TRU.
図4は、AMPの公知の基本構造式を示す。
AMPは、Csに対する高い選択的吸着性を有し、そのアルミナ・シリカ担持体はCs分配比が2000〜6000と高い。本実施例は、AMPを添着し、坦持させた活性炭を、海水が混入した放射性汚染水中のCsを効果的に除去するのに用いることにした。
FIG. 4 shows a known basic structural formula of AMP.
AMP has a high selective adsorptivity to Cs, and its alumina / silica support has a high Cs distribution ratio of 2000 to 6000. This embodiment is impregnated with AMP, activated carbon obtained by carrying sea water has to be used to effectively remove Cs radioactive contamination water mixed.
図5、図6は、Br3担持活性炭〔KBAC〕の公知の機能を示す。
図5において、放射性ヨウ素の酸化除去反応は次のように示される。
〔放射性ヨウ素(*I)酸化除去反応〕
*I−+Br3−AC → *IBr2−AC+Br−
CH3−*I+Br3−AC → *IBr2−AC+CH3−Br
5 and 6 show the known functions of Br 3 -supported activated carbon [KBAC].
In FIG. 5, the oxidation removal reaction of radioactive iodine is shown as follows.
[Radioactive iodine ( * I) oxidation removal reaction]
* I - + Br 3 -AC → * IBr 2 -AC + Br -
CH 3 − * I + Br 3 −AC → * IBr 2 −AC + CH 3 −Br
図6はBr3を担持したBr3担持活性炭の廃液処理効率を示す。
本実施例で、Br3を担持したBr3担持活性炭〔KBAC〕は、海水が混入した放射性汚染水中のヨウ素を効果的に除去するのに用いることとした。
Figure 6 shows a wastewater treatment efficiency Br 3 on activated charcoal carrying Br 3.
In this example, Br 3 on activated charcoal carrying Br 3 [KBAC] was set using a radioactive contamination of water iodine sea water is mixed to effectively remove.
本実施例の3種類の機能炭を組み合わせて構成された活性炭除染剤層40(除染剤)の性能確認について説明する。 The performance confirmation of the activated carbon decontaminant layer 40 (decontamination agent) configured by combining the three types of functional charcoal of this example will be described.
図7は、活性炭除染剤の性能確認のために用いられた装置の概要を示す。
浄化塔13には、図2に示すと同様にして、上流側の上方から活性炭層〔AC〕、オキシン担持活性炭層〔KMAC〕、AMP担持活性炭層〔AMP/AC〕及びBr3担持活性炭層〔KBAC〕が形成されて活性炭除染剤層が構成され、更に活性炭層〔AC〕が付加され、4層からなる除染剤が構成された。
FIG. 7 shows an outline of an apparatus used for confirming the performance of the activated carbon decontaminating agent.
2, the activated carbon layer [AC], the oxine-supported activated carbon layer [KMAC], the AMP-supported activated carbon layer [AMP / AC], and the Br 3- supported activated carbon layer [ KBAC] was formed to form an activated carbon decontamination layer, and an activated carbon layer [AC] was further added to form a decontamination agent consisting of four layers.
サンプル
原子力発電所事故の現場に近い地区から採取した運搬設備等の洗浄水(洗剤混入)を用いた。
〔含有放射能:採取日時換算〕多数サンプル採取
l−131:min.5,800〜max.22,000Bq/L
総Cs(Cs−134,136,137):min.280〜max.750Bq/L
Washing water ( contained with detergent) collected from the area close to the site of the sample nuclear power plant accident was used.
[Contained radioactivity: Conversion date and time conversion] Multiple sample collection 1-131: min. 5,800-max. 22,000 Bq / L
Total Cs (Cs-134, 136, 137): min. 280-max. 750 Bq / L
除染試験
1)試験サンプル
試験用に上記サンプル複数を混合し、海水10%混入試料も作製
i)試料500ml
ii)試料450ml+実海水50ml(海水10%混合)
2)カラム試験(図7に示す通り)
カラムサイズ:内径20mmΦ、300mm(長)
充填除染剤:上から〔KMAC+AMP/AC+KBAC+AC〕の順に充填
充填高さ21cm、充填容積66cc
全SV:5h−1
〔試験結果〕
Decontamination test 1) Test sample A plurality of the above samples are mixed for testing, and a sample containing 10% seawater is also prepared. I)
ii) 450 ml of sample + 50 ml of actual seawater (mixed with 10% seawater)
2) Column test (as shown in FIG. 7)
Column size: Inner diameter 20mmΦ, 300mm (long)
Filling decontamination agent: Filling in order of [KMAC + AMP / AC + KBAC + AC] from above Filling height 21cm, filling volume 66cc
All SVs: 5h -1
〔Test results〕
図8は、活性炭除染剤としての活性炭除染剤層による除染の効果を示す。そして、図8は、廃水サンプル(+海水10%混入)についての計測された除染処理前後のγ線スペクトルを示す。
FIG. 8 shows the effect of decontamination by the activated carbon decontaminant layer as the activated carbon decontaminant. And FIG. 8 shows the gamma-ray spectrum before and after the measured decontamination process about a wastewater sample (+
上述した機能的活性炭の組み合わせによって構成した活性炭除染剤によれば、除染カラム通液前後で図8に示すようなγ線スペクトルが得られ、除染が機能的に効果的になされることが判る。除染効果は次のようである。
・放射性ヨウ素99%以上除去
・放射性セシウム97〜99%除去
・オキシン担持活性炭の使用によってCP、FP、TRUを機能的、効果的に除去
According to the activated carbon decontamination agent constituted by the combination of the functional activated carbon described above, a γ-ray spectrum as shown in FIG. I understand. The decontamination effect is as follows.
・ Removal of 99% or more of radioactive iodine ・ Removal of 97% to 99% of radioactive cesium ・ Functional and effective removal of CP, FP and TRU by using activated carbon with oxine
上述した例にあっては、図2に示すように、浄化塔13の内部に、オキシン担持活性炭層41、AMP担持炭層42、Br3担持活性炭層43の順に配列配設しているが、この配列配設はこの順でなくて任意の配列配設としても同様の結果が期待できる。また、浄化塔1は、各機能炭を収納した独立の3つの浄化塔部を接続することで構成されてもよい。
In the example described above, as shown in FIG. 2, the oxine-supporting activated
また、この例にあっては、3種類の機能炭を層として形成し、これらを組み合わせることで活性炭除染剤層としているが、3種類の機能炭を混合することで混床を形成し、もって活性炭除染剤層を形成して用いることによっても同様の効果が期待できる。 Moreover, in this example, three types of functional charcoal are formed as a layer, and an activated carbon decontaminant layer is formed by combining these, but a mixed bed is formed by mixing three types of functional charcoal, Thus, the same effect can be expected by forming and using an activated carbon decontaminant layer.
そして、この構成によれば、海水が混入した放射性汚染水を導入する導入口32及び浄化された水を導出する導出口33を備えた放射性汚染水浄化塔13に、オキシン(8-Hydroxyquinoline)を担持した活性炭と、リンモリブデン酸アンモニウムを担持した活性炭と、Br3を担持した活性炭との3種類の機能性活性炭を組み合わせ、混合することで構成した活性炭除染層40としての活性炭除染混床層を設けた海水が混入した放射性汚染水からの放射性物質の除染装置200が構成される。
Then, according to this arrangement, the radioactive contaminated
本実施例は、放射性汚染水に混入する放射能物質の種類や放射能量に応じて、上述の凝集沈殿法である1次処理を行うこと無く、2次系処理であるオキシン(8-Hydroxyquinoline)、リンモリブデン酸アンモニウム(AMP)、Br3をそれぞれ添着し、担持させた粗粒の活性炭を充填した浄化塔へ通液することで、海水が混入した放射性汚染水からの放射性物質を効果的に除去する放射性物質除去装置を提供することができる。 In this example, depending on the type of radioactive substance mixed in the radioactively contaminated water and the amount of radioactivity, oxine (8-Hydroxyquinoline), which is a secondary treatment, is performed without performing the primary treatment that is the coagulation sedimentation method described above. , ammonium phosphomolybdate (AMP), the Br 3 respectively impregnated, by passing liquid coarse activated carbon having supported thereon to fill the purification column, effectively radioactive substances from radioactive contaminated water sea water is mixed It is possible to provide a radioactive substance removing apparatus that removes the radioactive rays.
本実施例は、また、上述した3種類の機能性活性炭を組み合わせて構成した活性炭除染剤層の上流側あるいは/ならびに下流側に各種の活性炭層を設けて活性炭除染剤層を構成したことを特徴とする海水が混入した放射性汚染水からの放射性物質の除染装置を提供する。 In this example, the activated carbon decontaminant layer was formed by providing various activated carbon layers on the upstream side and / or downstream side of the activated carbon decontaminant layer formed by combining the above-mentioned three types of functional activated carbon. providing decontamination apparatus radioactive substances from radioactive contaminated water sea water is mixed, characterized in.
図1において、濾布あるいは遠心分離機22、23及び放射性浄化塔13から導出された低レベル汚染水45は低レベル汚染水として貯槽5に貯蔵される。このようにして除染された低レベル汚染水は、汚染チェックして放水48、あるいは更なる高度浄化処理47がなされる。
In FIG. 1, low-level contaminated water 45 led out from the filter cloth or
図9は、凝集沈殿法と機能性活性炭を適用して、分離除去が可能な元素を示す。
図9から明らかなように、本実施例は、海水成分が共存していても各種の放射性核種を除去することができる。KMAC、AMP/AC、KBAC、RHOD及びTR/ACの適用元素については図9が参照されるものとする。
FIG. 9 shows elements that can be separated and removed by applying the coagulation precipitation method and functional activated carbon.
As is clear from FIG. 9, this example can remove various radionuclides even when seawater components coexist. Refer to FIG. 9 for applicable elements of KMAC, AMP / AC, KBAC, RHOD, and TR / AC.
1…前処理系、2…1次処理系(1次浄化処理)、3…2次処理系(2次浄化処理系)、4…放射性汚染水、5…貯槽、12…凝集沈殿分離槽、13…放射性汚染水浄化槽(浄化塔)、26…中レベル汚染水、27…放射性汚染水、32…導入口、33…導出口、40…活性炭除染層(除染剤)、41…オキシン担持活性炭層(1st機能炭〔KMAC〕)、42…AMP担持活性炭層(2nd機能炭〔AMP/AC〕)、43…Br3担持活性炭層(3rd機能炭〔KBAC〕)、44…活性炭層(4th活性炭〔AC〕)、100…放射性物質の除去装置、200…放射性物質の除染装置。
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011098498A JP5849342B2 (en) | 2011-04-26 | 2011-04-26 | Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011098498A JP5849342B2 (en) | 2011-04-26 | 2011-04-26 | Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012229998A JP2012229998A (en) | 2012-11-22 |
JP5849342B2 true JP5849342B2 (en) | 2016-01-27 |
Family
ID=47431660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011098498A Expired - Fee Related JP5849342B2 (en) | 2011-04-26 | 2011-04-26 | Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5849342B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6058370B2 (en) * | 2012-12-06 | 2017-01-11 | 株式会社東芝 | Alpha nuclide separation method and separation system from sodium chloride-containing waste liquid |
JP2014119417A (en) * | 2012-12-19 | 2014-06-30 | Hitachi-Ge Nuclear Energy Ltd | Method for treating radioactive waste liquid |
JP2014228502A (en) * | 2013-05-27 | 2014-12-08 | 太平洋セメント株式会社 | Radioactive cesium-contaminated object treatment method |
CN104215999A (en) * | 2013-05-30 | 2014-12-17 | 核工业北京地质研究院 | Seawater radionuclide analysis pretreatment method |
WO2015025681A1 (en) * | 2013-08-23 | 2015-02-26 | 日立Geニュークリア・エナジー株式会社 | Radioactive waste liquid treatment method and radioactive waste liquid treatment device |
JP6335455B2 (en) * | 2013-09-06 | 2018-05-30 | 株式会社荏原製作所 | Waste water decontamination apparatus and method including radioactive cesium and salts |
RU2577512C1 (en) * | 2014-12-29 | 2016-03-20 | Общество с ограниченной ответственностью "Научно-Производственное предприятие "Эксорб" | Method of processing liquid radioactive wastes and recycling thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023863B2 (en) * | 1977-10-25 | 1985-06-10 | 財団法人電力中央研究所 | Method for producing cesium selective separator |
FR2524458A1 (en) * | 1982-04-01 | 1983-10-07 | Raffinage Cie Francaise | PROCESS FOR THE PREPARATION OF ZEOLITE ZK 5, ZEOLITE ZK 5 OBTAINED BY THIS PROCESS AND APPLICATIONS OF SAID ZEOLITE |
JPS6439600A (en) * | 1987-08-06 | 1989-02-09 | Ebara Corp | Treatment of radioactive waste liquid containing salts at high concentration |
JPH01240898A (en) * | 1988-03-23 | 1989-09-26 | Power Reactor & Nuclear Fuel Dev Corp | Treatment of salt coexistent radioactive waste by oxine added activated charcoal |
JPH0450800A (en) * | 1990-06-20 | 1992-02-19 | Ebara Corp | Treatment of waste radioactive washing liquid |
JPH0747359A (en) * | 1993-08-06 | 1995-02-21 | Babcock Hitachi Kk | Water washable flaw detection waste liquid filter |
JP3020158B1 (en) * | 1998-09-09 | 2000-03-15 | 工業技術院長 | Cesium separation / recovery agent and method for producing the same |
JP2000239190A (en) * | 1999-02-19 | 2000-09-05 | Chiyoda Technol Corp | Organic halogen compound trap and waste liquid treatment |
JP4585393B2 (en) * | 2005-07-05 | 2010-11-24 | 株式会社東芝 | Waste liquid treatment method and apparatus |
-
2011
- 2011-04-26 JP JP2011098498A patent/JP5849342B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012229998A (en) | 2012-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5849342B2 (en) | Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater | |
Rana et al. | Radioactive decontamination of water by membrane processes—a review | |
CN104900286B (en) | By Spent Radioactive water process to the horizontal system of natural background radioactivity and application | |
KR102058277B1 (en) | Liquid radioactive waste treatment and recovery method thereof | |
US10480045B2 (en) | Selective regeneration of isotope-specific media resins in systems for separation of radioactive isotopes from liquid waste materials | |
JP5880851B2 (en) | Radionuclide decontamination system and radionuclide decontamination method | |
JP6326299B2 (en) | Organic radioactive waste treatment system and treatment method | |
RU2467419C1 (en) | Method of cleaning still residues of liquid radioactive wastes from radioactive cobalt and caesium | |
Huang et al. | Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool | |
CN110349689A (en) | Nuclear power station Spent Radioactive liquid processing device | |
KR100675769B1 (en) | Process of Radioactive Liquid Waste | |
JP5175997B1 (en) | Method and apparatus for treating radioactive cesium-containing water | |
RU2686074C1 (en) | Method of processing liquid radioactive wastes | |
JP2004045371A (en) | Processing method and device for liquid including radionuclide | |
JP2014016210A (en) | System and process for decontaminating radioactive contaminated water | |
JP5175998B1 (en) | Manufacturing method of adsorption device | |
JP5668048B2 (en) | Exchange method of adsorption tower of water containing radioactive cesium | |
KR101725258B1 (en) | High efficiency electrokinetic treatment method for uranium contaminated soil using the ion-exchange resins | |
JP2001239138A (en) | Device for treating liquid | |
JP2014119417A (en) | Method for treating radioactive waste liquid | |
RU2675251C1 (en) | Method for processing liquid radioactive wastes | |
WO2015005392A1 (en) | Method for removing radioactive substance contaminating water from water | |
JP2001324593A (en) | Radioactive waste treatment system for boiling water type nuclear power plant | |
JP6058370B2 (en) | Alpha nuclide separation method and separation system from sodium chloride-containing waste liquid | |
RU2273066C1 (en) | Method for recovering liquid radioactive wastes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150324 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5849342 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |