JP6335455B2 - Waste water decontamination apparatus and method including radioactive cesium and salts - Google Patents
Waste water decontamination apparatus and method including radioactive cesium and salts Download PDFInfo
- Publication number
- JP6335455B2 JP6335455B2 JP2013185400A JP2013185400A JP6335455B2 JP 6335455 B2 JP6335455 B2 JP 6335455B2 JP 2013185400 A JP2013185400 A JP 2013185400A JP 2013185400 A JP2013185400 A JP 2013185400A JP 6335455 B2 JP6335455 B2 JP 6335455B2
- Authority
- JP
- Japan
- Prior art keywords
- radioactive cesium
- water
- activated carbon
- molten slag
- decontamination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052792 caesium Inorganic materials 0.000 title claims description 167
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 title claims description 167
- 230000002285 radioactive effect Effects 0.000 title claims description 154
- 239000002351 wastewater Substances 0.000 title claims description 51
- 238000005202 decontamination Methods 0.000 title claims description 49
- 230000003588 decontaminative effect Effects 0.000 title claims description 24
- 150000003839 salts Chemical class 0.000 title claims description 15
- 238000000034 method Methods 0.000 title description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 123
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 118
- 239000002893 slag Substances 0.000 claims description 88
- 238000001179 sorption measurement Methods 0.000 claims description 86
- 239000003463 adsorbent Substances 0.000 claims description 40
- 238000000926 separation method Methods 0.000 claims description 31
- 239000000498 cooling water Substances 0.000 claims description 29
- 239000002699 waste material Substances 0.000 claims description 27
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 17
- 238000001914 filtration Methods 0.000 claims description 11
- 239000010457 zeolite Substances 0.000 claims description 11
- 229910021536 Zeolite Inorganic materials 0.000 claims description 10
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 10
- 239000003002 pH adjusting agent Substances 0.000 claims description 8
- 238000009287 sand filtration Methods 0.000 claims description 8
- 238000004062 sedimentation Methods 0.000 claims description 8
- 239000006228 supernatant Substances 0.000 claims description 8
- 230000001112 coagulating effect Effects 0.000 claims description 6
- 238000005345 coagulation Methods 0.000 claims description 6
- 230000015271 coagulation Effects 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 239000000706 filtrate Substances 0.000 claims description 5
- 230000001376 precipitating effect Effects 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 238000004043 dyeing Methods 0.000 claims description 2
- 239000002956 ash Substances 0.000 description 18
- 239000003814 drug Substances 0.000 description 17
- 229940079593 drug Drugs 0.000 description 17
- 229910052680 mordenite Inorganic materials 0.000 description 17
- 238000004065 wastewater treatment Methods 0.000 description 15
- 230000002378 acidificating effect Effects 0.000 description 11
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 8
- 239000003513 alkali Substances 0.000 description 8
- 238000010828 elution Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000010881 fly ash Substances 0.000 description 6
- 239000010805 inorganic waste Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000011001 backwashing Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010808 liquid waste Substances 0.000 description 3
- 238000010979 pH adjustment Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000004056 waste incineration Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000941 radioactive substance Substances 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、廃棄物処理施設のプラント水処理に係り、廃棄物を焼却・溶融処理することによって発生する例えば、ごみピット汚水、プラント内の清掃排水、焼却灰洗浄水、排ガス洗浄水、溶融スラグ冷却水、無機系排水、再利用水等の排水に含まれる放射性セシウムを除染する装置及び方法に関する。 The present invention relates to plant water treatment in a waste treatment facility, and is generated by incineration / melting of waste, for example, waste pit sewage, cleaning wastewater in plant, incineration ash washing water, exhaust gas washing water, molten slag The present invention relates to an apparatus and method for decontaminating radioactive cesium contained in drainage water such as cooling water, inorganic wastewater, and reused water.
都市ごみ、下水汚泥、あるいはその他の廃棄物を廃棄物焼却施設で焼却して焼却灰や焼却飛灰にすることがなされている。この焼却灰や飛灰の減容化処理方法として、灰溶融設備などの溶融炉に灰を投入し溶融する方法があり、全国に普及している。これらの廃棄物処理過程では、たとえばごみピット汚水、プラント内の清掃排水、焼却灰洗浄水、排ガス洗浄水、無機系排水、再利用水等の排水が発生する。従来、これらの水は、凝集沈殿と砂ろ過と活性炭とによる汚染物除去処理後に再利用水として利用できていた。従来処理フロー図を図11に示す。 Municipal waste, sewage sludge, or other waste is incinerated at a waste incineration facility to produce incineration ash or incineration fly ash. As a method for reducing the volume of incinerated ash and fly ash, there is a method in which ash is introduced into a melting furnace such as an ash melting facility and melted, and is widely used nationwide. In these waste treatment processes, wastewater such as waste pit sewage, cleaning wastewater in the plant, incineration ash washing water, exhaust gas washing water, inorganic wastewater, and reused water is generated. Conventionally, these waters could be used as reused water after the contaminant removal treatment by coagulation sedimentation, sand filtration and activated carbon. A conventional processing flowchart is shown in FIG.
しかし、東日本大震災による福島第一原子力発電所の事故の影響で、その周辺地域および東日本に位置する地域は少なからず、放射能に汚染され、廃棄物も同様に汚染された。このため、上記廃棄物処理過程で発生するごみピット汚水、プラント内の清掃排水、焼却灰洗浄水、排ガス洗浄水、無機系排水、再利用水等が、放射性セシウムに汚染される可能性がある。また、焼却灰や飛灰を減容化処理する灰溶融設備で、溶融スラグを水冷するためのスラグ冷却水が、放射性セシウムに汚染される可能性がある。このため、投入される廃棄物の放射能汚染に伴い、これらの水も放射能除去をしないと再利用、もしくは外部環境へ放流できなくなった。しかし、プラント水に溶解した放射性セシウムはほぼ全量が溶解性であるため、従来の凝集沈殿と砂ろ過と活性炭とによる処理では、ほとんど除染できない。特に溶融スラグ冷却水は、塩類濃度と放射性セシウム濃度の両者が高いため、処理が困難となっている。このような廃棄物および放射性物質で汚染された水を除去する技術はこれまでになかった。 However, as a result of the Fukushima Daiichi nuclear power plant accident caused by the Great East Japan Earthquake, not only the surrounding area and areas located in eastern Japan were contaminated with radioactivity, but waste was also polluted. For this reason, waste pit sewage generated in the above waste treatment process, cleaning wastewater in the plant, incineration ash cleaning water, exhaust gas cleaning water, inorganic wastewater, reused water, etc. may be contaminated by radioactive cesium. . In addition, slag cooling water for water-cooling molten slag in an ash melting facility that reduces the volume of incinerated ash and fly ash may be contaminated with radioactive cesium. For this reason, along with the radioactive contamination of the input waste, these waters could not be reused or discharged to the external environment without removing the radioactivity. However, almost all of the radioactive cesium dissolved in the plant water is soluble, so that it cannot be almost decontaminated by conventional coagulation sedimentation, sand filtration and activated carbon treatment. In particular, molten slag cooling water is difficult to treat because both the salt concentration and the radioactive cesium concentration are high. There has never been a technique for removing such waste and water contaminated with radioactive substances.
たとえば、原子力発電所又は原子力施設から排出される放射性廃液の処理方法として、放射性廃液にCOD成分を吸着する活性炭及び放射性物質吸着活性炭を添加して、COD成分及び放射性物質を吸着させた固形物を分離する処理方法が提案されている(特許文献1)。特許文献1に開示されている方法は、放射性廃液タンクへ活性炭スラリを投入して吸着させた後、活性炭を固液分離するため、固液分離装置が必要になるという問題がある。また、特許文献1では60Coの計測値のみ開示されていて、Csの除去率は開示されていない。後述するように、特許文献1の方法では、放射性セシウムの除去率が低いことを本発明者らは確認している。 For example, as a method of treating radioactive liquid waste discharged from nuclear power plants or nuclear facilities, activated carbon that adsorbs COD components and radioactive substance-adsorbed activated carbon is added to the radioactive liquid waste, and solids that adsorb COD components and radioactive substances are removed. A separation method has been proposed (Patent Document 1). The method disclosed in Patent Document 1 has a problem that a solid-liquid separation device is required to separate the activated carbon into solid-liquid separation after the activated carbon slurry is charged and adsorbed to the radioactive liquid waste tank. Further, in Patent Document 1, only a measurement value of 60 Co is disclosed, and a Cs removal rate is not disclosed. As will be described later, the present inventors have confirmed that the method of Patent Document 1 has a low removal rate of radioactive cesium.
従来は存在しなかった放射性セシウムを含む廃棄物処理施設からの排水を除染する装置及び方法を提供することを目的とする。特に、放射性セシウムと塩類とを含有する廃棄物処理施設からの排水の除染装置及び方法を提供することを目的とする。 An object of the present invention is to provide an apparatus and a method for decontaminating wastewater from a waste treatment facility containing radioactive cesium that has not existed before. In particular, an object of the present invention is to provide a decontamination apparatus and method for waste water from a waste treatment facility containing radioactive cesium and salts.
本発明によれば、以下の放射性セシウムと塩類とを含む排水を除染するための装置及び除染方法が提供される。
[1]廃棄物処理施設からの放射性セシウムと塩類とを含む排水の流入管及び処理後の流出水を排出する流出管が接続されている容器内に、排水の流入側から、放射性セシウム吸着剤を充填して成る放射性セシウム吸着層と、活性炭を充填して成る活性炭層と、が積層して設けられていることを特徴とする放射性セシウム吸着塔。
[2]前記放射性セシウム吸着剤は、紺青担持活性炭及びゼオライトから選択される、[1]に記載の放射性セシウム吸着塔。
[3]前記流出水のpHを計測するpH計と、
前記容器に流入する前の排水にpH調整剤を添加するpH調整剤添加手段と、
前記流出水のpHを制御する流出水pH制御手段と、
をさらに具備し、
当該流出水pH制御手段は、当該pH計の出力に基づいて流出水のpHが所定範囲となるように当該pH調整剤添加手段を制御して前記容器に流入する前の排水に対するpH調整剤の添加量を調節する、[1]又は[2]に記載の放射性セシウム吸着塔。
[4]前記放射性セシウム吸着塔への排水の流入管にフィルタが設けられている、[1]〜[3]のいずれかに記載の放射性セシウム吸着塔。
[5][1]〜[4]のいずれかに記載の放射性セシウム吸着塔を有する除染装置であって、
前記流入管は、焼却残さを溶融することにより発生する溶融スラグを冷却しながら分離する溶融スラグ分離槽に接続され、当該溶融スラグと分離されたスラグ冷却水を除染対象の排水として前記放射性セシウム吸着塔に流入するように構成されている除染装置。
[6]前記放射性セシウム吸着塔の流出管は前記溶融スラグ分離槽に接続され、前記放射性セシウム吸着塔と前記溶融スラグ分離槽との間に形成された循環路をさらに具備する、[5]に記載の除染装置。
[7]前記放射性セシウム吸着塔で処理された流出水を含む排水を無機系排水槽に貯留し、
当該無機系排水槽からの排水を凝集沈殿処理する凝集沈殿槽と、
当該凝集沈殿槽からの上澄み液をろ過する砂ろ過槽と、
をさらに具備する、[5]又は[6]に記載の除染装置。
[8]前記砂ろ過槽の下流に、[1]〜[4]のいずれかに記載の放射性セシウム吸着塔を第2の放射性セシウム吸着塔としてさらに設けた、[7]に記載の除染装置。
[9]廃棄物処理施設からの放射性セシウムと塩類とを含む排水を、放射性セシウム吸着剤と接触させて放射性セシウムを吸着除去した後に、活性炭と接触させることを特徴とする除染方法。
[10]前記放射性セシウム吸着剤は、紺青担持活性炭及びゼオライトから選択される、[9]に記載の除染方法。
[11]放射性セシウム及び色度成分を吸着除去した後の流出水のpHを計測し、
計測したpH値に基づいて、前記排水にpH調整剤を添加し、流入する排水のpHを所定範囲に調整することをさらに含む、[9]又は[10]に記載の除染方法。
[12]前記pH範囲は、5〜9の範囲である、[11]に記載の除染方法。
[13]前記排水は、焼却残さを溶融することにより発生する溶融スラグを冷却し、溶融スラグと分離して発生するスラグ冷却水を含む、[9]〜[12]のいずれか1項に記載の除染方法。
[14]前記スラグ冷却水を含む排水から放射性セシウムを吸着除去した後の流出水を用いて、前記溶融スラグを冷却する、[13]に記載の除染方法。
[15]前記放射性セシウムを吸着除去した後の流出水を凝集沈殿させ、上澄み液をろ過することをさらに含む、[9]〜[14]のいずれか1項に記載の除染方法。
[16]前記上澄み液をろ過したろ液を、放射性セシウム吸着剤と接触させて放射性セシ
ウムを吸着除去した後に、活性炭を接触させる第2の除染工程を更に含む、[15]に記載の除染方法。
[17]前記排水を前記放射性セシウム吸着剤と接触させる前に、フィルタに通水することを更に含む、[9]〜[16]のいずれか1項に記載の除染方法。
According to this invention, the apparatus and decontamination method for decontaminating the waste_water | drain containing the following radioactive cesium and salts are provided.
[1] A radioactive cesium adsorbent from the inflow side of wastewater into a container to which an inflow pipe for wastewater containing radioactive cesium and salts from a waste treatment facility and an outflow pipe for discharging the treated effluent are connected. A radioactive cesium adsorption tower characterized by being provided by laminating a radioactive cesium adsorption layer formed by packing and an activated carbon layer formed by filling activated carbon.
[2] The radioactive cesium adsorption tower according to [1], wherein the radioactive cesium adsorbent is selected from bitumen-supported activated carbon and zeolite.
[3] a pH meter for measuring the pH of the effluent water;
PH adjusting agent adding means for adding a pH adjusting agent to the waste water before flowing into the container;
An effluent pH control means for controlling the pH of the effluent;
Further comprising
The effluent pH control means controls the pH adjuster addition means so that the pH of the effluent falls within a predetermined range based on the output of the pH meter, and adjusts the pH adjuster with respect to the drainage before flowing into the container. The radioactive cesium adsorption tower according to [1] or [2], wherein the addition amount is adjusted.
[4] The radioactive cesium adsorption tower according to any one of [1] to [3], wherein a filter is provided in an inflow pipe of drainage to the radioactive cesium adsorption tower.
[5] A decontamination apparatus having the radioactive cesium adsorption tower according to any one of [1] to [4],
The inflow pipe is connected to a molten slag separation tank that separates the molten slag generated by melting the incineration residue while cooling, and the radioactive cesium is used as waste water to be decontaminated from the molten slag and separated slag cooling water. A decontamination device configured to flow into the adsorption tower.
[6] The outflow pipe of the radioactive cesium adsorption tower further includes a circulation path connected to the molten slag separation tank and formed between the radioactive cesium adsorption tower and the molten slag separation tank. Decontamination apparatus as described.
[7] The waste water containing the effluent treated in the radioactive cesium adsorption tower is stored in an inorganic drainage tank,
A coagulating sedimentation tank for coagulating and precipitating waste water from the inorganic drainage tank;
A sand filtration tank for filtering the supernatant from the coagulation sedimentation tank;
The decontamination apparatus according to [5] or [6], further comprising:
[8] The decontamination apparatus according to [7], wherein the radioactive cesium adsorption tower according to any one of [1] to [4] is further provided as a second radioactive cesium adsorption tower downstream of the sand filtration tank. .
[9] A decontamination method characterized in that waste water containing radioactive cesium and salts from a waste treatment facility is contacted with activated carbon after contacting the radioactive cesium adsorbent to remove the radioactive cesium.
[10] The decontamination method according to [9], wherein the radioactive cesium adsorbent is selected from bitumen-supported activated carbon and zeolite.
[11] Measure the pH of the effluent after adsorbing and removing radioactive cesium and chromaticity components,
The decontamination method according to [9] or [10], further comprising adding a pH adjuster to the wastewater based on the measured pH value and adjusting the pH of the influent wastewater to a predetermined range.
[12] The decontamination method according to [11], wherein the pH range is a range of 5 to 9.
[13] The drainage includes any one of [9] to [12], including slag cooling water generated by cooling the molten slag generated by melting the incineration residue and separating from the molten slag. Decontamination method.
[14] The decontamination method according to [13], wherein the molten slag is cooled using the outflow water after the radioactive cesium is adsorbed and removed from the waste water containing the slag cooling water.
[15] The decontamination method according to any one of [9] to [14], further comprising coagulating and precipitating the effluent after the radioactive cesium is adsorbed and removed, and filtering the supernatant.
[16] The removal according to [15], further comprising a second decontamination step in which the filtrate obtained by filtering the supernatant is brought into contact with a radioactive cesium adsorbent to adsorb and remove radioactive cesium and then contacted with activated carbon. Dyeing method.
[17] The decontamination method according to any one of [9] to [16], further comprising passing water through a filter before the waste water is brought into contact with the radioactive cesium adsorbent.
本発明では、相互に混合することなく積層して充填されている放射性セシウム吸着層と活性炭層とを同一の塔内に含む一体型の放射性セシウム吸着塔を用いることにより、塩類濃度が高い廃棄物処理施設の放射性セシウム含有水の放射性セシウム除去性能を高く保持することができ、色度成分やダイオキシン類等の微量成分を低減することができる。さらに、シアン等の有害物質の流出を抑制することができる。したがって、本発明によれば、放射性セシウムで汚染された廃棄物処理施設からの排水を除染して、再利用又は放流することが可能となる。 In the present invention, waste having a high salt concentration is obtained by using an integrated radioactive cesium adsorption tower including a radioactive cesium adsorption layer and an activated carbon layer that are stacked and packed without being mixed with each other in the same tower. The radioactive cesium removal performance of the radioactive cesium containing water of a processing facility can be kept high, and trace components, such as a chromaticity component and dioxins, can be reduced. Furthermore, the outflow of harmful substances such as cyan can be suppressed. Therefore, according to the present invention, waste water from a waste treatment facility contaminated with radioactive cesium can be decontaminated and reused or discharged.
添付図面を参照しながら、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
図11に廃棄物焼却炉に灰溶融炉が併設されている従来の廃棄物処理施設のフローを示す。焼却灰100や焼却飛灰200(これらを総称して「焼却残渣」という)は灰ホッパ1に貯留され、炉内温度が1,200〜1,800℃程度の灰溶融炉2にて溶融され、スラグ分離コンベヤ3にてスラグ冷却水で急冷されつつ溶融スラグ(粒状水冷スラグ)とスラグ排水とに分離される。スラグ冷却水はスラグ分離コンベヤ3から冷却装置を経て減温され、スラグ冷却水槽4に貯留された後、スラグ冷却水ポンプを経てスラグ分離コンベヤ3に送られて循環し、所定の温度で一定量保持される。また、スラグ冷却水は塩濃度を所定値以下にするため、スラグ分離コンベヤ3から一定量抜き出し、スラグ排水槽5に送られる。スラグ冷却水の塩類濃度は通常3,000〜10,000ppm程度である。スラグ排水は、スラグ排水槽5に集められた後、床排水等の他の排水と共に無機系排水槽6に集められ、排水処理に供される。スラグ排水槽5には近傍で発生した無機系排水が供給されることもある。スラグ排水を含む無機系排水は、凝集沈殿槽8で有害金属が処理され、上澄み液がろ過原水槽7に貯留される。ろ過原水槽7に貯留された排水は砂ろ過槽9にてSS分をろ過された後、ろ液は処理水槽10に貯留される。ろ液の塩類濃度は通常1,000〜5,000ppm程度であり、スラグ冷却水の塩類濃度よりも低濃度になる。処理水槽10から再利用水槽11に送られ、廃棄物処理施設内で再利用される。再利用水槽11には補給水が補給される。再利用水12として非常時や排水処理設備のメンテナンス時には処理水槽10から活性炭吸着塔に通水後、放流するなど場外に排出する場合もある。 FIG. 11 shows a flow of a conventional waste treatment facility in which an ash melting furnace is added to the waste incinerator. The incineration ash 100 and the incineration fly ash 200 (collectively referred to as “incineration residue”) are stored in the ash hopper 1 and melted in the ash melting furnace 2 having a furnace temperature of about 1,200 to 1,800 ° C. The slag separation conveyor 3 is separated into molten slag (granular water-cooled slag) and slag drainage while being rapidly cooled with slag cooling water. The slag cooling water is cooled from the slag separation conveyor 3 through the cooling device, stored in the slag cooling water tank 4, and then sent to the slag separation conveyor 3 through the slag cooling water pump and circulated, and a predetermined amount at a predetermined temperature. Retained. In addition, the slag cooling water is extracted from the slag separation conveyor 3 and sent to the slag drain tank 5 in order to make the salt concentration below a predetermined value. The salt concentration of slag cooling water is usually about 3,000 to 10,000 ppm. After the slag drainage is collected in the slag drainage tank 5, it is collected in the inorganic drainage tank 6 together with other drainage such as floor drainage and used for drainage treatment. The slag drainage tank 5 may be supplied with inorganic wastewater generated in the vicinity. Inorganic wastewater including slag wastewater is treated with harmful metals in the coagulation sedimentation tank 8, and the supernatant liquid is stored in the filtration raw water tank 7. The wastewater stored in the raw filtration water tank 7 is filtered for SS by the sand filtration tank 9, and then the filtrate is stored in the treated water tank 10. The salt concentration of the filtrate is usually about 1,000 to 5,000 ppm, which is lower than the salt concentration of slag cooling water. It is sent from the treatment water tank 10 to the reuse water tank 11 and reused in the waste treatment facility. The reuse water tank 11 is replenished with makeup water. In the case of emergency or maintenance of wastewater treatment facilities, the reused water 12 may be discharged out of the field, such as being discharged after being passed from the treated water tank 10 to the activated carbon adsorption tower.
放射性セシウムを含む廃棄物を焼却処理する場合には、放射性セシウムは焼却灰100及び焼却飛灰200に移行する。これら焼却残渣を溶融処理する場合には、スラグ冷却水が放射性セシウムに汚染される。スラグ冷却水は高濃度の放射性セシウムと塩素イオンを含んでいる。 When the waste containing radioactive cesium is incinerated, the radioactive cesium is transferred to the incineration ash 100 and the incineration fly ash 200. When these incineration residues are melted, slag cooling water is contaminated with radioactive cesium. Slag cooling water contains a high concentration of radioactive cesium and chloride ions.
図1及び図2に、本発明の吸着塔を具備する除染処理フローのブロック図を示す。本処理フローは、基本的には図11と同様の溶融スラグ分離工程(A)と無機排水処理工程(B)とに大別することができる。本処理フローにおいて、本発明の放射性セシウム吸着塔を溶融スラグ分離工程(A)と無機排水処理工程(B)の双方に設置しているが、少なくとも溶融スラグ分離工程(A)に設置していればよい。図1は、図11と同様の溶融スラグ分離工程の循環ラインに放射性セシウム吸着塔を設ける場合の処理フローであり、図2は、溶融スラグ分離工程から無機排水処理工程に向かうラインに放射性セシウム吸着塔を設置する場合の処理フローである。図1及び図2に示す本発明の除染処理フローでは、溶融スラグ分離工程(A)として、焼却施設に併設された灰溶融施設を示したが、これに限定されるものではなく、灰溶融単独の施設、ガス化溶融施設等にも適用可能である。また、それら施設の処理対象物が放射性セシウムに汚染されたごみ、焼却残渣、下水汚泥等でも同様であり、本発明の除染装置及び方法で除染が可能である。 1 and 2 show block diagrams of a decontamination process flow including the adsorption tower of the present invention. This processing flow can be roughly divided into a molten slag separation step (A) and an inorganic wastewater treatment step (B) similar to those in FIG. In this treatment flow, the radioactive cesium adsorption tower of the present invention is installed in both the molten slag separation step (A) and the inorganic wastewater treatment step (B), but at least in the molten slag separation step (A). That's fine. FIG. 1 is a processing flow when a radioactive cesium adsorption tower is provided in the circulation line of the molten slag separation process similar to FIG. 11, and FIG. 2 shows the radioactive cesium adsorption on the line from the molten slag separation process to the inorganic wastewater treatment process. It is a processing flow in the case of installing a tower. In the decontamination process flow of the present invention shown in FIG. 1 and FIG. 2, the ash melting facility attached to the incineration facility is shown as the molten slag separation step (A), but the present invention is not limited to this. It can be applied to single facilities and gasification and melting facilities. The same applies to wastes, incineration residues, sewage sludge, etc., where the treatment objects of these facilities are contaminated with radioactive cesium, and can be decontaminated by the decontamination apparatus and method of the present invention.
図1の溶融スラグ分離工程(A)においては、放射性セシウムを含有するスラグ分離コンベヤ3のスラグ冷却水は、フィルタ21(例えばストレーナ等)にてろ過された後、放射性セシウム吸着塔22にて放射性セシウムが吸着除去され、除染されてスラグ冷却水槽4に戻され、再びスラグ冷却水として使用される。放射性セシウム吸着塔22の流出側配管にはpH計23が設けられており、流出水のpHを計測する。制御装置26は当該流出水のpH制御を行う。流出水のpHが所定範囲を越える場合には、制御装置26にて、pH計23からのpH値の出力信号を受け取り、その信号に基づき所定の範囲内のpHになるようにアルカリ供給ポンプ24及び酸供給ポンプ25にpH調整用の薬剤の吐出流量を制御する信号が送られる。pH調整用の薬剤としてアルカリ性薬剤又は酸性薬剤がアルカリ性薬剤槽40又は酸性薬剤槽41に貯留されている。pH調整のためにアルカリ性薬剤又は酸性薬剤が、アルカリ供給ポンプ24及び酸供給ポンプ25からそれぞれスラグ分離コンベヤ3に投入されpH制御が行われる。なお、スラグ分離コンベヤ3とスラグ冷却水槽4は一体型のスラグ分離槽であってもよい。スラグ冷却水循環系で放射性セシウムを除去することにより、スラグ冷却水中の放射性セシウム濃度は大幅に低減されるが、外部環境へ放流する場合には、後述する無機排水処理工程(B)において、重金属処理とともに放射性セシウム除去処理が必須となる。 In the molten slag separation step (A) in FIG. 1, the slag cooling water of the slag separation conveyor 3 containing radioactive cesium is filtered by a filter 21 (for example, a strainer), and then radioactive by a radioactive cesium adsorption tower 22. Cesium is adsorbed and removed, decontaminated, returned to the slag cooling water tank 4, and used again as slag cooling water. A pH meter 23 is provided on the outflow side piping of the radioactive cesium adsorption tower 22 to measure the pH of the outflow water. The control device 26 controls the pH of the effluent water. When the pH of the effluent water exceeds a predetermined range, the control device 26 receives an output signal of a pH value from the pH meter 23, and the alkali supply pump 24 adjusts to a pH within the predetermined range based on the signal. And the signal which controls the discharge flow volume of the chemical | medical agent for pH adjustment to the acid supply pump 25 is sent. An alkaline drug or an acidic drug is stored in the alkaline drug tank 40 or the acidic drug tank 41 as a drug for adjusting the pH. In order to adjust the pH, an alkaline agent or an acidic agent is introduced into the slag separation conveyor 3 from the alkali supply pump 24 and the acid supply pump 25, respectively, and pH control is performed. The slag separation conveyor 3 and the slag cooling water tank 4 may be an integrated slag separation tank. By removing radioactive cesium in the slag cooling water circulation system, the concentration of radioactive cesium in the slag cooling water is greatly reduced. However, when discharged to the external environment, heavy metal treatment is performed in the inorganic wastewater treatment process (B) described later. At the same time, radioactive cesium removal treatment is essential.
一方、図2に示すように、溶融スラグ分離工程(A)から無機排水処理工程(B)に向かうラインに放射性セシウム吸着塔22を設置する場合には、スラグ分離槽(スラグ分離コンベアベルト3及びスラグ冷却水槽4)からのスラグ排水を放射性セシウム吸着塔22に通水し、除染処理した後の流出水は、無機系排水槽6に送られる。放射性セシウム吸着塔22の構成及び排水の処理フローは、図1と同様であり、流出水のpH値に基づき、スラグ分離槽にpH調整剤が添加される。図1と同様、放射性セシウム吸着塔22の前段にフィルタ21(ストレーナ等)を設けて、ろ過した後のスラグ排水を通水してもよい。図2に示す態様では、放射性セシウム吸着塔22からの流出水は循環されないため、排水であるスラグ冷却水中の放射性セシウムは除去される。したがって、無機排水処理工程(B)における放射性セシウム除染処理は通常不要であるが、異常時の安全対策用に設けてもよい。
尚、図2に示すフローの場合には、放射性セシウムを含む無機系排水をスラグ排水槽5に供給して、スラグ排水とともに放射性セシウムの除染を行うのが好ましい。
On the other hand, as shown in FIG. 2, when the radioactive cesium adsorption tower 22 is installed in the line from the molten slag separation step (A) to the inorganic waste water treatment step (B), the slag separation tank (slag separation conveyor belt 3 and The slag drainage from the slag cooling water tank 4) is passed through the radioactive cesium adsorption tower 22 and the effluent after decontamination is sent to the inorganic drainage tank 6. The configuration of the radioactive cesium adsorption tower 22 and the wastewater treatment flow are the same as in FIG. 1, and a pH adjuster is added to the slag separation tank based on the pH value of the effluent water. Similarly to FIG. 1, a filter 21 (strainer or the like) may be provided in the front stage of the radioactive cesium adsorption tower 22 and the slag drainage after filtration may be passed through. In the embodiment shown in FIG. 2, since the effluent water from the radioactive cesium adsorption tower 22 is not circulated, the radioactive cesium in the slag cooling water that is drainage is removed. Therefore, the radioactive cesium decontamination treatment in the inorganic waste water treatment step (B) is usually unnecessary, but may be provided for safety measures in the event of an abnormality.
In the case of the flow shown in FIG. 2, it is preferable to supply inorganic sewage containing radioactive cesium to the slag drain 5 and decontaminate the radioactive cesium together with the slag drain.
図1及び図2において、溶融スラグ分離工程(A)において除染された排水は、床排水等の他の無機系排水と共に無機系排水槽6に集められ、無機排水処理工程(B)に送られる。スラグ排水を含む無機系排水は、凝集沈殿槽8で有害金属が処理され、上澄み液がろ過原水槽7に貯留される。ろ過原水槽7に貯留された排水は砂ろ過槽9にてSS分をろ過された後、ろ液は処理水槽10に貯留される。処理水槽10から処理水を抜き出してフィルタ31及び放射性セシウム吸着塔32を備える除染工程に送る。処理水は、フィルタ31にてろ過された後、放射性セシウム吸着塔32にて放射性セシウムが吸着除去され除染された後、再利用水槽11に送水され、再利用水として場内で使用される。また、非常時や排水処理設備のメンテナンス時には除染された処理水を放流するなど場外に排出することもある。放射性セシウム吸着塔32の流出側配管にはpH計33が設けられており、流出水のpHを計測する。制御装置26は当該流出水のpH制御を行う。流出水のpHが所定範囲を越える場合には、制御装置36にて、pH計33からのpH値の出力信号を受け取り、その信号に基づき、所定の範囲内のpHになるようにアルカリ供給ポンプ34及び酸供給ポンプ35にpH調整用の薬剤の吐出流量を制御する信号が送られる。pH調整用の薬剤としてアルカリ性薬剤又は酸性薬剤がアルカリ性薬剤槽50又は酸性薬剤槽51に貯留されている。pH調整のためにアルカリ性薬剤又は酸性薬剤が、アルカリ供給ポンプ34及び酸供給ポンプ35からそれぞれ処理水槽10に投入されpH制御が行われる。 1 and 2, the waste water decontaminated in the molten slag separation step (A) is collected in the inorganic waste water tank 6 together with other inorganic waste water such as floor waste water and sent to the inorganic waste water treatment step (B). It is done. Inorganic wastewater including slag wastewater is treated with harmful metals in the coagulation sedimentation tank 8, and the supernatant liquid is stored in the filtration raw water tank 7. The wastewater stored in the raw filtration water tank 7 is filtered for SS by the sand filtration tank 9, and then the filtrate is stored in the treated water tank 10. The treated water is extracted from the treated water tank 10 and sent to a decontamination process including a filter 31 and a radioactive cesium adsorption tower 32. After the treated water is filtered by the filter 31, the radioactive cesium adsorption tower 32 adsorbs and removes the radioactive cesium and decontaminates it, then feeds it into the reuse water tank 11 and uses it as reused water in the field. In the event of an emergency or wastewater treatment facility maintenance, the decontaminated treated water may be discharged out of the field. A pH meter 33 is provided on the outflow side piping of the radioactive cesium adsorption tower 32 to measure the pH of the outflow water. The control device 26 controls the pH of the effluent water. When the pH of the effluent water exceeds the predetermined range, the control device 36 receives an output signal of the pH value from the pH meter 33, and based on the signal, the alkali supply pump so that the pH is within the predetermined range. 34 and the acid supply pump 35 are sent with a signal for controlling the discharge flow rate of the drug for pH adjustment. An alkaline drug or an acidic drug is stored in the alkaline drug tank 50 or the acidic drug tank 51 as a drug for adjusting the pH. In order to adjust the pH, an alkaline agent or an acidic agent is introduced into the treatment water tank 10 from the alkali supply pump 34 and the acid supply pump 35, respectively, and pH control is performed.
図3に本発明の放射性セシウム吸着塔の構成を示す。溶融スラグ分離工程(A)で使用する放射性セシウム吸着塔22と無機排水処理工程(B)で使用する放射性セシウム吸着塔32は同一の構成であるため、図3においては、便宜上、被処理水(原水)が排水処理工程処理水の場合の放射性セシウム吸着塔32とし、その他の関連機器も排水処理工程のもので代表している。 FIG. 3 shows the configuration of the radioactive cesium adsorption tower of the present invention. Since the radioactive cesium adsorption tower 22 used in the molten slag separation step (A) and the radioactive cesium adsorption tower 32 used in the inorganic waste water treatment step (B) have the same configuration, in FIG. The raw water) is the radioactive cesium adsorption tower 32 in the case of the wastewater treatment process treated water, and other related equipment is also represented by the wastewater treatment process.
放射性セシウム吸着塔32には、処理水槽10からの処理水流入側から、放射性セシウム吸着剤を充填して成る放射性セシウム吸着層32a、及び活性炭を充填して成る活性炭層32bが積層して設けられている。放射性セシウム吸着層32aと活性炭層32bとは混じり合わないように設ける方が好ましい。なぜなら、これらが混じり合うと被処理水との接触効率が低下するため、放射性セシウム除去性能が低下するためである。 In the radioactive cesium adsorption tower 32, a radioactive cesium adsorption layer 32a filled with a radioactive cesium adsorbent and an activated carbon layer 32b filled with activated carbon are stacked from the treated water inflow side from the treated water tank 10. ing. It is preferable to provide the radioactive cesium adsorption layer 32a and the activated carbon layer 32b so as not to mix with each other. This is because, when they are mixed, the contact efficiency with the water to be treated is lowered, so that the performance of removing radioactive cesium is lowered.
放射性セシウム吸着層32aを流入側に設けることで、放射性セシウムを分散させることなく、ほぼ全量を吸着剤に吸着させることができる。活性炭層32bは、放射性セシウム吸着層32aを通過することにより排出される色度成分、処理水中のCOD成分、ダイオキシン類、水銀等の微量元素を吸着除去する。活性炭層32の下流には、支持層としての砂利層を設けてもよいまた、最下層の活性炭層や砂利層は図示しない目皿等によって支持されている。 By providing the radioactive cesium adsorption layer 32a on the inflow side, almost the entire amount can be adsorbed on the adsorbent without dispersing the radioactive cesium. The activated carbon layer 32b adsorbs and removes chrominance components discharged by passing through the radioactive cesium adsorption layer 32a, COD components in the treated water, dioxins, mercury and other trace elements. A gravel layer as a support layer may be provided downstream of the activated carbon layer 32. The lowermost activated carbon layer or gravel layer is supported by a not-shown eye plate or the like.
また、放射性セシウム吸着層32aの上流側に追加の活性炭層を設けて予め微量元素や微細な固形物を除去してもよい。 Further, an additional activated carbon layer may be provided upstream of the radioactive cesium adsorption layer 32a to remove trace elements and fine solids in advance.
放射性セシウム吸着層32aには放射性セシウム吸着剤として、モルデナイト、クリノブチライトなどの天然ゼオライト、合成ゼオライト、人工ゼオライト等の各種ゼオライトや、紺青担持活性炭などを用いることが好適であり、単独でも2種以上を積層してもよい。紺青担持活性炭とは、フェロシアン化物を活性炭に担持させたもので、スラグ排水等の含有塩濃度が高い排水の除染には、紺青担持活性炭が特に好ましい。 For the radioactive cesium adsorption layer 32a, it is preferable to use natural zeolite such as mordenite and clinobutyrite, various zeolites such as synthetic zeolite and artificial zeolite, and bitumen-supported activated carbon as the radioactive cesium adsorbent. The above may be laminated. Bitumen-supported activated carbon is obtained by supporting ferrocyanide on activated carbon. Bitumen-supported activated carbon is particularly preferable for decontamination of wastewater having a high salt concentration such as slag wastewater.
活性炭としては、排水処理において通常用いられる活性炭、たとえばヤシガラ活性炭、石炭系活性炭、石油系活性炭、植物系活性炭を用いることができる。 As the activated carbon, activated carbon usually used in wastewater treatment, such as coconut husk activated carbon, coal-based activated carbon, petroleum-based activated carbon, and plant-based activated carbon can be used.
放射性セシウム吸着剤と活性炭との比率は、被処理水の性状や処理条件等により任意に
設定が可能である。実施例では放射性セシウム吸着剤に対する活性炭の容積割合は5〜90%であった。
The ratio between the radioactive cesium adsorbent and the activated carbon can be arbitrarily set according to the properties of the water to be treated, treatment conditions, and the like. In the examples, the volume ratio of the activated carbon to the radioactive cesium adsorbent was 5 to 90%.
放射性セシウム吸着塔22,32における処理水のpHは、4〜10の範囲、特に5〜9の範囲に調整することが好ましい。pH範囲を調整しない場合、放射性セシウム吸着剤としてゼオライトを用いると酸性側にシフトし、紺青担持活性炭を用いるとアルカリ側にシフトする。紺青担持活性炭はシアン化物を含み、pH4〜10の範囲外では、シアン化物が溶出する。本発明の処理方法は、処理後の排水を再利用もしくは環境中へ放流するため、シアン化物や金属イオンを含むことは望ましくなく、環境基準を満たすためにも強酸性もしくは強アルカリ性にシフトすることも好ましくない。 The pH of the treated water in the radioactive cesium adsorption towers 22 and 32 is preferably adjusted to a range of 4 to 10, particularly 5 to 9. When the pH range is not adjusted, if zeolite is used as the radioactive cesium adsorbent, it shifts to the acidic side, and if bitumen-supported activated carbon is used, it shifts to the alkali side. Bitumen-supported activated carbon contains cyanide, and the cyanide is eluted outside the pH range of 4-10. In the treatment method of the present invention, wastewater after treatment is reused or discharged into the environment. Therefore, it is not desirable to contain cyanide or metal ions, and in order to meet the environmental standards, it is shifted to strongly acidic or strongly alkaline. Is also not preferred.
また、未洗浄のゼオライトは、上水にて事前洗浄をしたゼオライトと比較して処理水のpHの低下は大きいが、逆に放射性セシウムの吸着能が高いため、吸着剤としては未洗浄のゼオライトを使用するのが好ましい。 In addition, unwashed zeolite has a large decrease in the pH of treated water compared to zeolite that has been pre-washed with clean water, but on the contrary, the adsorption capacity of radioactive cesium is high, so that unwashed zeolite is used as an adsorbent. Is preferably used.
放射性セシウム吸着塔32の流出側配管には、pH計33を設け、流出水のpHを計測する。制御装置36は上記と同様に当該流出水のpH制御を行う。流出水のpHが所定範囲を越える場合には、制御装置36にて、pH計33からのpH値の出力信号を受け取り、その信号に基づき、所定の範囲内のpHになるようにアルカリ供給ポンプ34及び酸供給ポンプ35にpH調整用の薬剤の吐出流量を制御する信号が送られる。pH調整用の薬剤としてアルカリ性薬剤又は酸性薬剤がアルカリ性薬剤槽50又は酸性薬剤槽51に貯留されている。pH調整のためにアルカリ性薬剤又は酸性薬剤が、アルカリ供給ポンプ34及び酸供給ポンプ35からそれぞれ処理水槽10に投入されpH制御が行われる。処理水のpHを調整するために添加するpH調整剤としては、放射性セシウム吸着剤の放射性セシウムの吸着能を低下させないことが好ましく、たとえば水酸化ナトリウム、塩酸などを用いることができる。 A pH meter 33 is provided on the outflow side piping of the radioactive cesium adsorption tower 32 to measure the pH of the outflow water. The controller 36 controls the pH of the effluent water as described above. When the pH of the effluent water exceeds the predetermined range, the control device 36 receives an output signal of the pH value from the pH meter 33, and based on the signal, the alkali supply pump so that the pH is within the predetermined range. 34 and the acid supply pump 35 are sent with a signal for controlling the discharge flow rate of the drug for pH adjustment. An alkaline drug or an acidic drug is stored in the alkaline drug tank 50 or the acidic drug tank 51 as a drug for adjusting the pH. In order to adjust the pH, an alkaline agent or an acidic agent is introduced into the treatment water tank 10 from the alkali supply pump 34 and the acid supply pump 35, respectively, and pH control is performed. As a pH adjuster to be added for adjusting the pH of the treated water, it is preferable not to lower the radioactive cesium adsorption capacity of the radioactive cesium adsorbent, and for example, sodium hydroxide, hydrochloric acid and the like can be used.
以下、実施例により本発明を具体的に説明する。
[実施例1]
(1)モルデナイトによる放射性セシウムの除染結果
ストーカ式焼却炉を有するごみ焼却施設で処理した焼却灰と焼却飛灰の混合灰を、当該ごみ焼却施設に併設され、炉内温度1300〜1400℃で溶融処理するプラズマ式溶融炉を有する灰溶融施設において、図11の処理水槽10の水(原水)を図3に示す放射性セシウム吸着塔に通水して、本発明の除染工程を実施した。実験条件を表1に示す。原水のpH調整は行わなかった。
Hereinafter, the present invention will be described specifically by way of examples.
[Example 1]
(1) Results of decontamination of radioactive cesium by mordenite The mixed ash of incineration ash and incineration fly ash treated in a waste incineration facility having a stoker-type incinerator is attached to the waste incineration facility at an in-furnace temperature of 1300 to 1400 ° C. In an ash melting facility having a plasma melting furnace for melting treatment, water (raw water) in the treated water tank 10 of FIG. 11 was passed through a radioactive cesium adsorption tower shown in FIG. 3 to carry out the decontamination process of the present invention. Table 1 shows the experimental conditions. The pH of the raw water was not adjusted.
吸着剤として、未洗浄の愛子産モルデナイト及び上水で洗浄した愛子産モルデナイトの
2種類についてそれぞれ、放射性セシウム濃度(Cs−134とCs−137との合計)約700Bq/Lの原水を放射性セシウム吸着塔に1.5m3/hの通水速度で連続通水し、放射性セシウム吸着塔流出水の放射性セシウム濃度を測定した。結果を図4に示す。
As the adsorbent, unwashed Aiko mordenite and Aiko mordenite washed with clean water each adsorbed about 700 Bq / L of raw water with radioactive cesium concentration (total of Cs-134 and Cs-137). Water was continuously passed through the tower at a flow rate of 1.5 m 3 / h, and the concentration of radioactive cesium in the cesium adsorption tower effluent was measured. The results are shown in FIG.
図4から、未洗浄の吸着剤を用いる場合にはほぼ100時間後の通水量150m3まで5Bq/L以下程度まで除染でき、通水量170m3で吸着能が劣化し始めるが、通水量230m3でも放射性セシウムの規制値(Cs−134について60Bq/L、Cs−137について90Bq/L)を下回り、十分な除染効果が認められたことがわかる。一方、上水にて撹拌洗浄後、1日間、上水に浸漬して洗浄した吸着剤を用いる場合には、通水量50〜60m3までは処理水の放射性セシウム濃度が規制値を下回ったが、その後、規制値を上回り、吸着能の劣化が早いことがわかる。 From FIG. 4, when an unwashed adsorbent is used, it can be decontaminated to about 5 Bq / L or less up to a flow rate of 150 m 3 after about 100 hours, and the adsorption capacity starts to deteriorate at a flow rate of 170 m 3 , but the flow rate is 230 m. 3 is below the regulation value of radioactive cesium (60 Bq / L for Cs-134, 90 Bq / L for Cs-137), indicating that a sufficient decontamination effect was observed. On the other hand, when using an adsorbent that has been washed by immersing in clean water for 1 day after washing with clean water, the concentration of radioactive cesium in the treated water was below the regulation value for a water flow rate of 50 to 60 m 3. Thereafter, it exceeds the regulation value, and it can be seen that the deterioration of the adsorption capacity is rapid.
(2)処理水pHの変化
図11の処理水槽10の水を原水として用い、図3に示す放射性セシウム吸着塔において、表2に示す条件で実験を行った。
(2) Change in treated water pH The water in the treated water tank 10 of FIG. 11 was used as raw water, and an experiment was conducted in the radioactive cesium adsorption tower shown in FIG. 3 under the conditions shown in Table 2.
吸着剤として、未洗浄の愛子産モルデナイトと、上水で洗浄した愛子産モルデナイトの2種類を用いた。(ア)未洗浄の放射性セシウム吸着層32aの下に活性炭層32b(60L)を設けた場合、(イ)未洗浄の放射性セシウム吸着層32aの下に活性炭層32b(90L)及び砂利層(260L)を設けた場合、(ウ)洗浄した放射性セシウム吸着層32aの下に活性炭層32b(120L)及び砂利層(260L)を設け、更に放射性セシウム吸着層32aの上に追加の活性炭層(30L)を設けた場合の3態様について、処理水のpH変化を測定した。結果を図5に示す。 Two types of adsorbents were used: unwashed Aiko mordenite and Aiko mordenite washed with clean water. (A) When the activated carbon layer 32b (60L) is provided under the unwashed radioactive cesium adsorption layer 32a, (a) the activated carbon layer 32b (90L) and the gravel layer (260L) under the unwashed radioactive cesium adsorption layer 32a. ), (Iii) an activated carbon layer 32b (120L) and a gravel layer (260L) are provided below the washed radioactive cesium adsorption layer 32a, and an additional activated carbon layer (30L) is further provided on the radioactive cesium adsorption layer 32a. The pH change of the treated water was measured for the three modes when provided. The results are shown in FIG.
図5から、未洗浄のモルデナイトを使用した(ア)及び(イ)では、洗浄したモルデナイトを使用した(ウ)よりも通水初期に処理水pHが低下しやすかった。よって未洗浄のモルデナイトを吸着剤として使用する場合、後述のシアンの溶出が生じるpHにならないように原水のpH調整をする必要があることがわかる。ただし、セシウムの吸着能力としては実施例1(1)の結果で述べたように未洗浄の吸着剤が優れている。 From FIG. 5, in (a) and (b) using unwashed mordenite, the treated water pH was more likely to be lowered at the beginning of water flow than in (c) using washed mordenite. Therefore, it is understood that when unwashed mordenite is used as the adsorbent, it is necessary to adjust the pH of the raw water so as not to reach the pH at which cyan elution described later occurs. However, as described in the results of Example 1 (1), the unwashed adsorbent is excellent as the cesium adsorption capacity.
[実施例2]吸着剤直接投入との比較
図11に示す従来の処理フローにおいて、スラグ冷却水の放射性セシウムを除去処理していない処理水槽10に10.8m3の処理水(原水)を貯留し、144kgの未洗浄の愛子産モルデナイトを直接投入し、撹拌後、約半日経過後に放射性セシウム濃度を測定した場合(比較例)と、図3に示す本発明の除染工程において、826kgの未洗浄の愛子産モルデナイトを放射性セシウム吸着剤として吸着塔に充填し、処理水槽10の水(原水)を271.2m3通水した場合(実施例2)とで放射性セシウムの除去率を比較した。実験条件を表3に、試験結果を表4に示す。ただし、原水のpH調整は行わなかった。
[Example 2] Comparison with adsorbent direct input In the conventional treatment flow shown in FIG. 11, 10.8 m 3 of treated water (raw water) is stored in the treated water tank 10 in which radioactive cesium of the slag cooling water is not removed. 144 kg of unwashed Aiko mordenite was directly added, and after stirring, the concentration of radioactive cesium was measured after about half a day (Comparative Example), and in the decontamination process of the present invention shown in FIG. The removal rate of radioactive cesium was compared with the case (Example 2) in which 271.2 m 3 of water (raw water) in the treated water tank 10 was filled in the adsorption tower using washed Aiko mordenite as a radioactive cesium adsorbent. Table 3 shows the experimental conditions and Table 4 shows the test results. However, the pH of the raw water was not adjusted.
表4に示すように、本発明の処理方法(実施例2)における放射性セシウムの除去率はほぼ90%であるのに対して、処理水槽に直接投入した場合(比較例)では除去率は40%弱と低かった。 As shown in Table 4, the removal rate of radioactive cesium in the treatment method of the present invention (Example 2) is approximately 90%, whereas when removed directly into the treated water tank (Comparative Example), the removal rate is 40. It was a little less than%.
[実施例3]スラグ排水の除染
図3に示す本発明の除染工程において、2種の放射性セシウム吸着剤(未洗浄の愛子産モルデナイト及び紺青担持活性炭(株式会社化研の紺青担持活性炭FoCC))20mLをそれぞれ充填した小規模カラム試験装置(吸着層高10cm)に、スラグ排水(原水)を通水して、本発明の除染工程を実施した。実験条件を表5に示す。原水のpH調整は行わなかった。
[Example 3] Decontamination of slag drainage In the decontamination process of the present invention shown in FIG. 3, two types of radioactive cesium adsorbents (unwashed Aiko mordenite and bitumen-supported activated carbon (Chemical Corporation's bitumen-supported activated carbon FoCC )) The decontamination process of the present invention was carried out by passing slag drainage (raw water) through small-scale column test apparatuses (adsorption layer height 10 cm) each filled with 20 mL. Table 5 shows the experimental conditions. The pH of the raw water was not adjusted.
試験結果を図6に示す。図6から、放射性セシウム吸着剤として未洗浄の愛子産モルデナイトを用いた場合は100BV(Bed Volume:通水量の吸着剤容量に対する倍率(通水量/吸着剤容量)で、吸着剤容量の何倍の通水が可能であるかを示す指標)程度、紺青担持活性炭を用いた場合は200BV程度の通水までは、流出水中の放射性セシウム濃度が100Bq/L以下であり、処理対象物のセシウム濃度に応じて、吸着剤層高及び流量等を調整することにより、十分な除染が可能であることが確認できた。 The test results are shown in FIG. From FIG. 6, when unwashed Aiko mordenite is used as the radioactive cesium adsorbent, it is 100 BV (Bed Volume: the ratio of the water flow rate to the adsorbent volume (water flow rate / adsorbent volume), and how many times the adsorbent volume. When using bitumen-supported activated carbon, the concentration of radioactive cesium in the effluent is 100 Bq / L or less up to about 200 BV. Accordingly, it was confirmed that sufficient decontamination was possible by adjusting the adsorbent layer height and flow rate.
[実施例4]複数吸着層(積層)による除染
非放射性セシウムを含む模擬排水を原水として用いて、複数の吸着剤20mLを層状に積層させて充填した小規模カラム試験装置(吸着層高10cm)に通水して、本発明の除染工程を実施した。実験条件を表6に示す。模擬排水のpH調整は行わなかった。
[Example 4] Decontamination by a plurality of adsorbing layers (lamination) Using a simulated waste water containing non-radioactive cesium as raw water, a small-scale column test apparatus (adsorbing layer height 10 cm) filled with 20 mL of a plurality of adsorbents stacked in layers. The decontamination process of the present invention was carried out. Table 6 shows the experimental conditions. The pH of the simulated waste water was not adjusted.
吸着層は、(1)未洗浄の愛子産モルデナイトのみ(2)紺青担持活性炭のみ(3)紺青担持活性炭:未洗浄の愛子産モルデナイト=1:4(体積比)積層の3種類とした。
通水試験結果からセシウム吸着量を算出し、(1)愛子産モルデナイト単独の場合の吸着量を基準として相対評価を行った。(3)紺青担持活性炭と愛子産モルデナイトとの積層の場合については、それぞれ単独の(1)と(2)の相対評価から理論値も求めた。結果を表7に示す。
The adsorbing layer was composed of (1) unwashed Aiko mordenite only (2) bitumen-supported activated carbon only (3) bitumen-supported activated carbon: unwashed Aiko mordenite = 1: 4 (volume ratio) laminate.
The amount of cesium adsorbed was calculated from the results of the water flow test, and (1) relative evaluation was performed with reference to the amount of adsorbed mordenite alone. (3) In the case of lamination of bitumen-supported activated carbon and Aiko mordenite, theoretical values were also obtained from the relative evaluations of (1) and (2), respectively. The results are shown in Table 7.
複数の吸着剤を用いる場合のセシウム吸着量は、それぞれ単独で用いる場合の吸着量と
配合比とから計算により求めた値とほぼ一致していることが確認できた。したがって、原水中のセシウム濃度と原水処理量とに基づいて、最適な吸着剤の種類と配合比を計算により算出することができる。つまり、異なる種類の吸着材を任意の割合で積層することが可能である。
It was confirmed that the cesium adsorption amount in the case of using a plurality of adsorbents almost coincided with the value obtained by calculation from the adsorption amount and the blending ratio in the case of using each adsorbent alone. Therefore, based on the cesium concentration in the raw water and the raw water treatment amount, the optimum adsorbent type and blending ratio can be calculated. That is, different types of adsorbents can be stacked at any ratio.
[実施例5]処理水pHの除染への影響
紺青活性炭へのセシウムの吸着量及び紺青活性炭からのシアンの溶出に及ぼすpHの影響を検討した。非放射性セシウムを含む模擬排水を原水として用いて、紺青担持活性炭20mLを内径16mmφのカラムに充填した小規模カラム試験装置に通水して、本発明の除染工程を実施し、カラム入口水と出口水中のセシウム濃度をICP−MS分析器を用いて測定してセシウム吸着量を算出し、出口水中の全シアン濃度をJIS K 0102 38.1.2及び38.3吸光光度法により測定した。原水のpHをHCl又はNaOHを用いて調整した。実験条件を表8に、全シアン濃度のpH依存性を図7に、セシウム吸着量のpH依存性を図8に示す。セシウム吸着量についてはセシウム濃度が1ppmの原水をSV=10の条件で紺青担持活性炭が破過するまで通水し、吸着量を算出した。セシウム吸着量はpH6〜8におけるセシウム吸着量を1.0として相対量で表示した。
[Example 5] Effect of pH of treated water on decontamination The effect of pH on the amount of cesium adsorbed on bituminous activated carbon and the elution of cyanide from bituminous activated carbon was examined. Using simulated waste water containing non-radioactive cesium as raw water, water was passed through a small-scale column test apparatus in which 20 mL of bitumen-supported activated carbon was packed in a column having an inner diameter of 16 mmφ, and the decontamination process of the present invention was performed. The cesium concentration in the outlet water was measured using an ICP-MS analyzer to calculate the cesium adsorption amount, and the total cyan concentration in the outlet water was measured by JIS K 0102 38.1.2 and 38.3 spectrophotometry. The pH of the raw water was adjusted using HCl or NaOH. Table 8 shows the experimental conditions, FIG. 7 shows the pH dependence of the total cyan concentration, and FIG. 8 shows the pH dependence of the cesium adsorption amount. Regarding the cesium adsorption amount, raw water having a cesium concentration of 1 ppm was passed through under the condition of SV = 10 until the bitumen-supported activated carbon broke through, and the adsorption amount was calculated. The amount of cesium adsorption was expressed as a relative amount with the cesium adsorption amount at pH 6 to 8 being 1.0.
図7からpH4〜10の範囲ではシアンの溶出は検出限界未満(<0.1mg/L)であり、図8からpH2〜11の範囲でセシウム吸着量に変化がなかったことがわかる。したがって、紺青担持活性炭を吸着剤として用いる場合は、放射性セシウム吸着塔への流入水のpHを少なくとも4〜10の範囲とすることで、シアンを溶出させずに、セシウムを吸着できることがわかる。 As can be seen from FIG. 7, the elution of cyanide is less than the detection limit (<0.1 mg / L) in the pH range of 4 to 10, and FIG. 8 shows that the cesium adsorption amount did not change in the pH range of 2 to 11. Therefore, when bitumen-supported activated carbon is used as an adsorbent, it can be seen that cesium can be adsorbed without eluting cyan by setting the pH of the inflow water to the radioactive cesium adsorption tower to be in the range of at least 4 to 10.
[実施例6]紺青活性炭による除染
図3に示す放射性セシウム吸着塔を用いて、スラグ冷却水の放射性セシウムを除去処理していない図11に示す処理水槽10の水を原水として、処理試験を行った。放射性セシウム吸着塔は、放射性セシウム吸着層32a(層高314mm)の下流に活性炭層(層高518mm)を設け、更に下流に砂利層(層高400mm)を設け、放射性セシウム吸着層32aの上流に追加の活性炭層(層高283mm)を設けてなる構成とした。(ア)HClを用いて連続的にpH制御を行った場合と、(イ)pHを監視して30時間後、55時間後および90時間後に逆洗を行い、70時間後には処理水槽10にHClを投入してpHの上昇を抑制した場合について、放射性セシウム吸着塔の流出水のpH挙動を経時的に測定し、10時間経過ごとに全シアンの溶出量を測定した。実験条件を表9、pHの経時変化を図9、処理水の放射性セシウム濃度を図10、全シアン溶出量を表10に示す。
[Example 6] Decontamination by bituminous activated carbon Using the radioactive cesium adsorption tower shown in FIG. 3, the treatment test was conducted using the water in the treated water tank 10 shown in FIG. went. The radioactive cesium adsorption tower is provided with an activated carbon layer (layer height 518 mm) downstream of the radioactive cesium adsorption layer 32a (layer height 314 mm), further provided with a gravel layer (layer height 400 mm), and upstream of the radioactive cesium adsorption layer 32a. An additional activated carbon layer (layer height 283 mm) was provided. (A) When pH is continuously controlled using HCl, and (b) After pH is monitored, backwashing is performed after 30 hours, 55 hours and 90 hours, and after 70 hours, the treated water tank 10 is filled. In the case where the increase in pH was suppressed by adding HCl, the pH behavior of the effluent of the radioactive cesium adsorption tower was measured over time, and the elution amount of all cyan was measured every 10 hours. Table 9 shows the experimental conditions, FIG. 9 shows the change over time in pH, FIG. 10 shows the radioactive cesium concentration of the treated water, and Table 10 shows the total cyan elution amount.
図9に示すように、(イ)では、通水後50時間経過時までは徐々に処理水のpHが上
昇したことから、3回繰り返し逆洗(通水速度300L/minで15分間)を実施した。それでもpH上昇傾向が改善されなかったため、70時間経過後に処理水槽にHClを投入したところ、pHは6まで低下したが、その後、経時的にアルカリ側にシフトする傾向が認められた。一方、(ア)では逆洗を行わず、pHの制御装置によりpH制御を行ったため、pHがシフトすることなく一定に維持された。
また、表10から、(イ)では経過時間が20〜30時間の間のpHが9に近い状況では、全シアン溶出が検出限界を超える値が検出されたが、放流基準値である0.5mg/Lを大幅に下回っていた。一方、(ア)では全シアン溶出が検出限界を超える値は検出されなかった。これらのことから、pHを5〜9に調整することで、放射性セシウム吸着能を低下させずに、全シアン溶出を阻止することができるといえる。
また、図10に示すように、(イ)逆洗を行うことによりセシウム吸着層と活性炭層が混合されるため、(ア)逆洗なしで連続的にpH制御を行い、セシウム吸着層と活性炭層の積層が混合しないで静置された場合に比べて、流出水の放射性セシウム濃度が若干上昇し、除去率の低下がみられた。
As shown in FIG. 9, in (i), since the pH of the treated water gradually increased until 50 hours had passed after passing water, backwashing was repeated three times (15 minutes at a water flow rate of 300 L / min). Carried out. Even so, the tendency to increase the pH was not improved, and when HCl was added to the treated water tank after 70 hours, the pH decreased to 6, but thereafter, a tendency to shift to the alkali side over time was observed. On the other hand, in (A), since backwashing was not performed and pH control was performed by a pH control device, the pH was kept constant without shifting.
Further, from Table 10, in (i), in the situation where the pH during the elapsed time of 20 to 30 hours is close to 9, a value in which total cyanide elution exceeds the detection limit was detected, but the discharge reference value of 0. It was significantly lower than 5 mg / L. On the other hand, in (a), a value where the total cyanide elution exceeded the detection limit was not detected. From these facts, it can be said that by adjusting the pH to 5 to 9, elution of all cyanide can be prevented without reducing the radioactive cesium adsorption ability.
In addition, as shown in FIG. 10, (a) since the cesium adsorption layer and the activated carbon layer are mixed by backwashing, (a) the pH is continuously controlled without backwashing, the cesium adsorption layer and the activated carbon. Compared with the case where the layer stack was left unmixed, the concentration of radioactive cesium in the effluent water slightly increased and the removal rate decreased.
Claims (9)
前記流入管は、焼却残さを溶融することにより発生する溶融スラグを冷却しながら分離する溶融スラグ分離槽に接続され、当該溶融スラグと分離されたスラグ冷却水を除染対象の排水として前記放射性セシウム吸着塔に流入するように構成されている除染装置。 The molten slag generated by melting the incineration residue is cooled and separated, and the wastewater inflow pipe containing radioactive cesium and salts from the waste treatment facility containing the molten slag and separated slag cooling water and the outflow after treatment A radioactive cesium adsorption layer filled with a radioactive cesium adsorbent and an activated carbon layer filled with activated carbon are laminated from the inflow side of the waste water into a container to which an outflow pipe for discharging water is connected. A decontamination apparatus having a radioactive cesium adsorption tower characterized by being provided ,
The inflow pipe is connected to a molten slag separation tank that separates the molten slag generated by melting the incineration residue while cooling, and the radioactive cesium is used as waste water to be decontaminated from the molten slag and separated slag cooling water. A decontamination device configured to flow into the adsorption tower.
当該無機系排水槽からの排水を凝集沈殿処理する凝集沈殿槽と、
当該凝集沈殿槽からの上澄み液をろ過する砂ろ過槽と、
をさらに具備する、請求項1又は2に記載の除染装置。 The wastewater containing the effluent treated in the radioactive cesium adsorption tower is stored in an inorganic drainage tank,
A coagulating sedimentation tank for coagulating and precipitating waste water from the inorganic drainage tank;
A sand filtration tank for filtering the supernatant from the coagulation sedimentation tank;
The decontamination apparatus according to claim 1 or 2 , further comprising:
活性炭を充填して成る活性炭層と、が積層して設けられていることを特徴とする放射性セシウム吸着塔を第2の放射性セシウム吸着塔としてさらに設けた、請求項3に記載の除染装置。 The wastewater containing radioactive cesium and salts from the waste treatment facility including the molten slag and the separated slag cooling water, cooled and separated from the molten slag generated by melting the incineration residue downstream of the sand filtration tank A radioactive cesium adsorption layer formed by filling a radioactive cesium adsorbent from the inflow side of the waste water into the container to which the inflow pipe and the outflow pipe for discharging the treated effluent are connected,
The decontamination apparatus according to claim 3 , further comprising a radioactive cesium adsorption tower provided as a second radioactive cesium adsorption tower , wherein an activated carbon layer formed by filling activated carbon is provided.
放射性セシウムを吸着除去した後の流出水のpHを計測し、
計測したpH値に基づいて、前記排水にpH調整剤を添加し、流入する排水のpHを5〜9の範囲に調整すること、及び
前記スラグ冷却水を含む排水から放射性セシウムを吸着除去した後の流出水を用いて、前記溶融スラグを冷却することを含む除染方法。 The molten slag generated by melting the incineration residue is cooled and separated, and the wastewater containing radioactive cesium and salts from the waste treatment facility containing the molten slag and separated slag cooling water is contacted with the radioactive cesium adsorbent. After desorbing and removing radioactive cesium, it is a decontamination method characterized by contacting with activated carbon ,
Measure the pH of the effluent after adsorbing and removing radioactive cesium,
Based on the measured pH value, adding a pH adjuster to the wastewater, adjusting the pH of the influent wastewater to a range of 5-9, and
A decontamination method comprising cooling the molten slag using effluent water after adsorbing and removing radioactive cesium from waste water containing the slag cooling water .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013185400A JP6335455B2 (en) | 2013-09-06 | 2013-09-06 | Waste water decontamination apparatus and method including radioactive cesium and salts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013185400A JP6335455B2 (en) | 2013-09-06 | 2013-09-06 | Waste water decontamination apparatus and method including radioactive cesium and salts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015052522A JP2015052522A (en) | 2015-03-19 |
JP6335455B2 true JP6335455B2 (en) | 2018-05-30 |
Family
ID=52701654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013185400A Expired - Fee Related JP6335455B2 (en) | 2013-09-06 | 2013-09-06 | Waste water decontamination apparatus and method including radioactive cesium and salts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6335455B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6090095B2 (en) * | 2013-10-03 | 2017-03-08 | Jfeエンジニアリング株式会社 | Fly ash cleaning device and fly ash cleaning method |
JP7312709B2 (en) * | 2020-01-31 | 2023-07-21 | 日立Geニュークリア・エナジー株式会社 | Radioactive waste liquid treatment system and radioactive waste liquid treatment method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4448711A (en) * | 1979-12-06 | 1984-05-15 | Hitachi, Ltd. | Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent |
EP0243557A1 (en) * | 1986-04-30 | 1987-11-04 | Westinghouse Electric Corporation | Apparatus and method for removing strontium and/or cesium ions from an aqueous solution containing chemical hardness |
JPS63205189A (en) * | 1987-02-19 | 1988-08-24 | Daido Steel Co Ltd | Method for solidifying molten slag |
JP5849342B2 (en) * | 2011-04-26 | 2016-01-27 | 株式会社化研 | Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater |
JP2013075245A (en) * | 2011-09-29 | 2013-04-25 | Hitachi Ltd | Water purification treatment system, and control method therefor |
JP5925016B2 (en) * | 2011-10-21 | 2016-05-25 | 日立造船株式会社 | Decontamination method for removing radioactive cesium from combustible materials with radioactive cesium attached |
JP5816526B2 (en) * | 2011-11-07 | 2015-11-18 | 株式会社神鋼環境ソリューション | Radioactive substance immobilization method and immobilization equipment |
JP5956745B2 (en) * | 2011-12-02 | 2016-07-27 | 日立造船株式会社 | Method for removing radioactive cesium from an aqueous solution containing radioactive cesium |
JP2013150973A (en) * | 2011-12-27 | 2013-08-08 | Shikoku Res Inst Inc | Cesium adsorbing agent, method for producing the same, and method for removing cesium |
-
2013
- 2013-09-06 JP JP2013185400A patent/JP6335455B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015052522A (en) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5874924B2 (en) | Incineration plant wastewater treatment method and treatment equipment | |
JP4766719B1 (en) | Disposal method of leachate at final disposal site | |
JP6974602B2 (en) | Methods for water treatment and / or purification and water purification plants for implementing those methods | |
JP6242761B2 (en) | Waste water treatment apparatus and treatment method | |
JP2012247212A (en) | Radioactive contaminated water processing device | |
JP6335455B2 (en) | Waste water decontamination apparatus and method including radioactive cesium and salts | |
JP6689435B2 (en) | Wastewater treatment system and wastewater treatment method | |
JP2012229998A (en) | Radioactive substance decontamination device and decontamination method, from radioactively contaminated water incorporating salt such as seawater | |
JP2007014870A (en) | Dioxins removing method and removing agent | |
JP5175997B1 (en) | Method and apparatus for treating radioactive cesium-containing water | |
WO2019195543A1 (en) | Contaminant removal system | |
JP2008230921A (en) | Method and apparatus for water granulation of molten slag | |
JP4844906B2 (en) | Method and system for removing contaminants from solid materials | |
JP5175998B1 (en) | Manufacturing method of adsorption device | |
KR20180138427A (en) | CSOs and nonpoint pollution source treatment system capable of simultaneous removal of suspended substances, phosphorus and heavy | |
JP6092076B2 (en) | Method and system for processing contaminated fly ash | |
JP5913026B2 (en) | Method and apparatus for detoxifying incinerated ash containing radioactive cesium | |
JP5956745B2 (en) | Method for removing radioactive cesium from an aqueous solution containing radioactive cesium | |
JP2002210451A (en) | Method for treating harmful material and system therefor | |
Joyce et al. | Treatment of municipal wastewater by packed activated carbon beds | |
US20100213134A1 (en) | Ion exchange apparatus having increased efficiency | |
JP5715992B2 (en) | Radioactive cesium-containing water treatment method, fly ash treatment method, radioactive cesium-containing water treatment device, and fly ash treatment device | |
JP5915231B2 (en) | Processing method and processing equipment | |
JP5314213B1 (en) | Leachate treatment facility and leachate treatment method at final disposal site | |
WO2013021475A1 (en) | Method for preventing calcium scale |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180501 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6335455 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |