JP4844906B2 - Method and system for removing contaminants from solid materials - Google Patents

Method and system for removing contaminants from solid materials Download PDF

Info

Publication number
JP4844906B2
JP4844906B2 JP2009291839A JP2009291839A JP4844906B2 JP 4844906 B2 JP4844906 B2 JP 4844906B2 JP 2009291839 A JP2009291839 A JP 2009291839A JP 2009291839 A JP2009291839 A JP 2009291839A JP 4844906 B2 JP4844906 B2 JP 4844906B2
Authority
JP
Japan
Prior art keywords
liquid
solid
solid substance
contaminants
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009291839A
Other languages
Japanese (ja)
Other versions
JP2011131143A (en
Inventor
寛之 天野
榮宣 池野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2009291839A priority Critical patent/JP4844906B2/en
Publication of JP2011131143A publication Critical patent/JP2011131143A/en
Application granted granted Critical
Publication of JP4844906B2 publication Critical patent/JP4844906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、液中に置かれた固形物質中に含まれる汚染物質を迅速に除去する汚染物質除去方法および除去システムに関する。   The present invention relates to a contaminant removal method and a removal system for quickly removing contaminants contained in a solid substance placed in a liquid.

従来、鋳物工場から排出される廃棄物であり、固形物質であるこぼれ砂および集塵ダストを含む廃棄砂は、セメント原料および路盤材原料として再利用されてきた。しかしながら、近年の廃棄砂をはじめとする土壌を含めた環境浄化の規制強化により、環境省告示46号に示される重金属・ハロゲンなどの汚染物質が溶出基準値を超えないようにする必要が生じてきた。
固形物質からの汚染物質の溶出を防止する技術としては、汚染物質を不溶化処理する方法と汚染物質を除去する方法が挙げられる(特許文献1参照)。
Conventionally, waste sand discharged from a foundry and containing solid spilled sand and dust collection dust has been reused as a cement raw material and a roadbed material. However, due to the recent tightening of environmental purification regulations including soil including waste sand, it has become necessary to prevent pollutants such as heavy metals and halogens shown in Ministry of the Environment Notification No. 46 from exceeding the elution standard value. It was.
As a technique for preventing the elution of the pollutant from the solid substance, there are a method for insolubilizing the pollutant and a method for removing the pollutant (see Patent Document 1).

特開2009−039664号公報JP 2009-039664 A

従来、固形物質からの汚染物質の溶出を防止する技術として、特許文献1に示されるように、鉱酸を用いて土壌中の重金属類を溶解し、重金属類を除去する方法が挙げられる。
この処理方法の問題としては、酸を取扱うことから設備の構成を酸に強い高価な部材を用いる必要があり、イニシャルコストが高いことがある。
Conventionally, as a technique for preventing the elution of contaminants from a solid substance, as disclosed in Patent Document 1, there is a method of dissolving heavy metals in soil using mineral acid and removing heavy metals.
As a problem of this processing method, it is necessary to use an expensive member that is resistant to acid in the construction of the equipment because it handles acid, and the initial cost may be high.

また、従来、固形物質からの汚染物質の溶出を防止する技術として、図2に示すように回転ドラム内の水中で粒子同士をぶつけて汚染物質である汚染粒子を剥離し、その後吸着除去する方法がある。
この処理方法の問題点としては、酸を取り扱うことから設備の構造を酸に強い高価な部材にする必要があり、イニシャルコストがかかる。また、回転ドラムを回転するなど大きな動力が必要となる。
Conventionally, as a technique for preventing the elution of contaminants from a solid substance, as shown in FIG. 2, a method is used in which particles are collided with each other in water in a rotating drum to exfoliate contaminant particles, and then adsorb and remove. There is.
As a problem of this processing method, since the acid is handled, it is necessary to make the structure of the equipment an expensive member resistant to the acid, and the initial cost is high. In addition, a large amount of power is required such as rotating the rotating drum.

本発明は、固形物質中に含まれる汚染物質を低コストで除去する汚染物質除去方法および除去システムを提供することを目的とする。
なお、従来、固形物質からの汚染物質の溶出を防止する技術として、汚染物質を不溶化処理する方法があるが、この技術は固形物質から汚染物質を除去するものではなく、固形物質に付着した状態で汚染物質の溶出を防ぐ方法であるので、本発明の課題の対象とはしない。
An object of the present invention is to provide a contaminant removal method and a removal system that remove contaminants contained in a solid substance at a low cost.
Conventionally, there is a method of insolubilizing contaminants as a technique for preventing the elution of contaminants from solid substances. However, this technique does not remove contaminants from solid substances, but is attached to solid substances. Therefore, it is not a subject of the present invention.

上記の目的を達成するために、本発明の固形物質からの汚染物質除去方法は、汚染物質を含んだ固形物質を反応槽に満たされた液体中に浸漬する工程と、前記固形物質が浸漬した前記液体中に気泡を供給する工程と、前記液体中に溶出した汚染物質の固形分を固液濾過により液体より分離する工程と、前記液体中に溶出した汚染物質に含まれるフッ素、ホウ素を液体より分離する工程と、からなることを特徴とする。   In order to achieve the above object, a method for removing contaminants from a solid substance according to the present invention includes a step of immersing a solid substance containing a contaminant in a liquid filled in a reaction tank, and the solid substance is immersed in the process. A step of supplying bubbles into the liquid, a step of separating the solid content of the contaminant eluted in the liquid from the liquid by solid-liquid filtration, and fluorine and boron contained in the contaminant eluted in the liquid And a further separating step.

また、本発明の固形物質からの汚染物質除去方法は、前記気泡がマイクロバブルであることを特徴とする。   Moreover, the pollutant removal method from the solid substance of the present invention is characterized in that the bubbles are microbubbles.

さらに、本発明の固形物質からの汚染物質除去方法は、前記気泡により二酸化炭素を前記液体中に溶解させることを特徴とする。   Furthermore, the contaminant removal method from the solid substance of the present invention is characterized in that carbon dioxide is dissolved in the liquid by the bubbles.

また、本発明の固形物質からの汚染物質除去方法は、前記固液濾過及びフッ素、ホウ素の分離を行なった後の前記液体を再度前記反応槽に戻すことを特徴とする。 Moreover, the contaminant removal method from the solid substance of the present invention is characterized by returning the liquid after the solid-liquid filtration and the separation of fluorine and boron to the reaction tank again.

上記の目的を達成するために、本発明の固形物質からの汚染物質除去システムは、汚染物質を含んだ固形物質を液体中に浸漬することにより前記固形物質から汚染物質を溶出する手段と、溶出した汚染物質を固液濾過により液体より分離する手段と、前記固液濾過を終えた液体よりフッ素、ホウ素を分離する手段と、前記固液濾過及びフッ素、ホウ素の分離を行なった後の液体を再使用する手段からなることを特徴とする。 In order to achieve the above object, a system for removing contaminants from a solid substance according to the present invention includes a means for eluting a contaminant from the solid substance by immersing the solid substance containing the contaminant in a liquid, Means for separating the pollutants from the liquid by solid-liquid filtration, means for separating fluorine and boron from the liquid after the solid-liquid filtration, and liquid after the solid-liquid filtration and separation of fluorine and boron are performed. It is characterized by comprising means for re-use.

本発明によれば、汚染物質を含んだ固形物質を反応槽に満たされた液体中に浸漬し、その液体中に気泡を供給し、前記固形物質から汚染物質を抽出・除去する固形物質から汚染物質を除去する方法において、前記汚染物質を含んだ固形物質を反応槽に満たされた液体中に浸漬する工程と、前記固形物質が浸漬した前記液体中に気泡を供給する工程と、前記液体中に溶出した汚染物質の固形分を固液濾過により液体より分離する工程と、前記液体中に溶出した汚染物質に含まれるフッ素、ホウ素を液体より分離する工程と、からなるため、少ない工程で有害物質の除去処理を行うことができ、必要な装置が少なく、イニシャルコストが小さいこと。また、動力を必要とする箇所が少ないためランニングコストが小さいこと。さらに、汚染物質は固液分離槽、あるいは吸着槽で濃縮されているため廃棄物の容量、重量が小さく、処分費用が少なくてすむこと。また、埋立処分場の延命にもつながること。加えて、洗浄後の鋳物砂には有害物質が除去され砂中に存在しないため、溶出することはないこと。そのため、埋め立て、あるいは再利用する際、安全性が確実であるなどの効果がある。 According to the present invention, a solid substance containing a contaminant is immersed in a liquid filled in a reaction tank, air bubbles are supplied into the liquid, and the contaminant is extracted and removed from the solid substance. In the method for removing a substance, a step of immersing a solid substance containing the contaminant in a liquid filled in a reaction vessel, a step of supplying bubbles into the liquid in which the solid substance is immersed, and a liquid in the liquid Because it consists of a step of separating the solid content of the pollutant eluted from the liquid by solid-liquid filtration and a step of separating fluorine and boron contained in the pollutant eluted in the liquid from the liquid. Material removal processing can be performed, less equipment is required, and initial cost is low. Also, the running cost is low because there are few places that require power. Furthermore, since the pollutants are concentrated in the solid-liquid separation tank or adsorption tank, the volume and weight of the waste are small and the disposal cost is low. In addition, the life of the landfill site can be extended. In addition, toxic substances are removed from the washed casting sand and are not present in the sand. Therefore, there is an effect that safety is ensured when landfilling or reuse.

本発明の汚染物質除去方法の一実施例のフローチャートである。It is a flowchart of one Example of the contaminant removal method of this invention. 従来技術の一実施例のフローチャートである。It is a flowchart of one Example of a prior art.

以下、本発明を実施するための形態を説明する。
本発明は、液中に置かれた固形物質中に含まれる汚染物質を迅速に除去する汚染物質除去方法であり、汚染物質を含んだ固形物質を反応槽に満たされた液体中に浸漬する工程と、前記固形物質が浸漬した前記液体中に気泡を供給する工程と、前記液体中に溶出した汚染物質の固形分を固液濾過により液体より分離する工程と、前記液体中に溶出した汚染物質に含まれるフッ素、ホウ素を液体より分離する工程と、からなる。
Hereinafter, modes for carrying out the present invention will be described.
The present invention is a contaminant removal method for quickly removing contaminants contained in a solid substance placed in a liquid, and a step of immersing a solid substance containing a contaminant in a liquid filled in a reaction vessel Supplying air bubbles into the liquid in which the solid substance is immersed, separating the solid content of the contaminant eluted in the liquid from the liquid by solid-liquid filtration, and the contaminant eluted in the liquid Separating fluorine and boron contained in the liquid from the liquid.

前記固形物質とは、土壌や廃棄物を対象とし、その中でも鋳造工場より発生する廃棄物である廃棄砂、集塵ダスト及びスラグのことをいう。   The solid substance is intended for soil and waste, and among them, waste sand, dust collection dust and slag, which are waste generated from a foundry.

前記汚染物質とは、前記固形物質に含まれるフッ素、ホウ素及び土壌汚染対策法の第2特定有害物質に掲げられる重金属類(砒素、鉛、カドミウム、六価クロム、水銀など)をいう。 The contaminants include fluorine and boron contained in the solid material and heavy metals (arsenic, lead, cadmium, hexavalent chromium, mercury, etc.) listed as the second specified harmful substances in the Soil Contamination Countermeasures Law.

前記反応槽は、前記固形物質中から汚染物質を気泡を用いて溶液中に溶け出させる反応をさせる容器であり、反応槽内に満たされている溶液は通常、水が用いられる。また、前記気泡は、別途設置された発生装置にて製造され、反応槽内に供給される。 The reaction tank is a container that causes a reaction to dissolve contaminants out of the solid substance into the solution using bubbles, and water is usually used as the solution filled in the reaction tank. The bubbles are produced by a separately installed generator and supplied into the reaction vessel.

前記固液濾過は、反応槽で固形物質から溶液中に分離・浮遊した汚染物質を含む微細な異物を溶液中から濾過し、除去することを目的とする。これらの異物を除去しない場合、次工程の吸着除去においては、吸着材間が閉塞し、吸着材性能が小さくなる、吸着材の寿命が短くなる、詰まるなどの問題が起き、また、ポンプの寿命低下につながる。 The purpose of the solid-liquid filtration is to filter and remove fine foreign matters including contaminants separated and suspended from the solid substance in the reaction tank in the reaction tank. If these foreign substances are not removed, the adsorbent removal in the next step may cause problems such as blocking between adsorbents, reducing the adsorbent performance, shortening the adsorbent life, and clogging. Leading to a decline.

前記液体中に溶出した汚染物質に含まれるフッ素、ホウ素を液体より分離する方法は、吸着槽により液体中に存在するフッ素、ホウ素を吸着除去し、フッ素、ホウ素が除去された溶液(水)を地下水環境基準値以下とする。吸着材には、フッ素、ホウ素を選択する吸着樹脂を用い、フッ素の場合はセレン、ジルコニウム系などのフッ素選択吸着樹脂を用いる。また、ホウ素の場合は酸化マグネシウムなどの強塩基性のイオン交換樹脂を用いる。 The method for separating fluorine and boron contained in the contaminants eluted in the liquid from the liquid is to remove the fluorine and boron present in the liquid by an adsorption tank and to remove the solution (water) from which fluorine and boron have been removed. Below groundwater environmental standards. As the adsorbent, an adsorption resin that selects fluorine and boron is used. In the case of fluorine, a fluorine selective adsorption resin such as selenium or zirconium is used. In the case of boron, a strongly basic ion exchange resin such as magnesium oxide is used.

本発明である前記汚染物質除去方法において、鋳物工場の生型造型ラインから発生する生型廃棄砂からの汚染物質であるフッ素を除去する一実施例を以下に示す。
鋳物工場の生型造型ラインから発生するこぼれ砂や使用済みの砂などの生型廃棄砂を収集し、図1に示す工程を通して、前記生型廃棄砂から汚染物質であるフッ素を除去する。
In the pollutant removing method according to the present invention, an embodiment for removing fluorine, which is a pollutant, from green waste sand generated from a green mold line of a foundry is shown below.
Raw waste sand such as spilled sand and used sand generated from the casting molding line of a foundry is collected, and fluorine, which is a pollutant, is removed from the raw waste sand through the process shown in FIG.

まず、前記生型廃棄砂を水(PH=7〜8程度)を満たした反応槽に投入する。水中に別途発生装置にて発生させた気泡を吹き込む。気泡を吹き込むことで、生型廃棄砂と気泡との接触機会が大きくなり、気泡により生型廃棄砂中のフッ素の水中への溶出を促進させることができる。 First, the green waste sand is put into a reaction tank filled with water (PH = about 7-8). Air bubbles generated by a separate generator are blown into the water. By blowing the bubbles, the opportunity for contact between the green waste sand and the bubbles is increased, and elution of fluorine in the green waste sand into water can be promoted by the bubbles.

本実施例においては、供給する気泡として微細気泡であるマイクロバブルを用いる。マイクロバブルとは、直径が50μm以下の気泡で、微細であるがゆえに、水中での滞在時間が長く、気体の溶解能力にも優れている為、水中においてさらに縮小していき、ついには水中で消滅(完全溶解)する特徴を持つ。 In this embodiment, micro bubbles which are fine bubbles are used as the bubbles to be supplied. Microbubbles are bubbles with a diameter of 50 μm or less, and because they are fine, they have a long residence time in water and are excellent in gas dissolving ability. It has the characteristic of disappearing (complete dissolution).

マイクロバブルは上記の特徴より、通常の気泡に比べ単位体積当たりの表面積が大きく生型廃棄砂との接触機会がより大きくなるため、よりフッ素の水中への溶出を促進させることができる。
詳しくは、マイクロバブル発生装置にて発生させたマイクロバブルを水中に吹き込むと、生型廃棄砂中のフッ素化合物はフッ化物イオンとなり水中に移動する。その際、生型廃棄砂の主成分であるけい砂の回りを覆うベントナイト、石炭粉、でんぷんなどの固形物質の一部も生型廃棄砂から剥がれ、水中に分散される(以下、固形異物という)。
Due to the above characteristics, the microbubbles have a larger surface area per unit volume than ordinary bubbles and have a greater chance of contact with the green waste sand, so that the elution of fluorine into water can be further promoted.
Specifically, when the microbubbles generated by the microbubble generator are blown into the water, the fluorine compound in the green waste sand becomes fluoride ions and moves into the water. At that time, some of the solid substances such as bentonite, coal powder, and starch covering the silica sand which is the main component of green waste sand are also peeled off from the green waste sand and dispersed in water (hereinafter referred to as solid foreign matter). ).

次に、反応槽で水中へ溶出したフッ化物イオンと固形異物は、固液分離槽へ送られる。固液分離槽では、該固形異物が水より濾過分離され、除去される。なお、フッ化物イオンは次の吸着槽へと送られる。 Next, fluoride ions and solid foreign matters eluted in water in the reaction tank are sent to the solid-liquid separation tank. In the solid-liquid separation tank, the solid foreign matter is separated by filtration from water and removed. In addition, fluoride ion is sent to the next adsorption tank.

吸着槽の吸着剤にはセレン、ジルコニウム系のフッ化選択吸着樹脂を用いる。これにより水中のフッ化物イオンを選択除去する。
吸着槽を通過した水は水を循環させるポンプにより反応槽へ戻される。吸着槽においてフッ化物イオンは完全に除去できないため、循環された水には微量のフッ化物イオンが含まれているが、反応槽内の溶出速度を小さくすることはない。
本実施例の工程を一定時間経過した後に反応槽から排出された生型廃棄砂のフッ素溶出量は、環境基準値0.8mg/L以下とすることができる。
As the adsorbent in the adsorption tank, selenium or zirconium-based selective fluoride adsorption resin is used. This selectively removes fluoride ions in the water.
The water that has passed through the adsorption tank is returned to the reaction tank by a pump that circulates the water. Since fluoride ions cannot be completely removed in the adsorption tank, the circulated water contains a small amount of fluoride ions, but does not reduce the elution rate in the reaction tank.
The fluorine elution amount of the green waste sand discharged from the reaction tank after a predetermined time has passed through the process of this example can be set to an environmental standard value of 0.8 mg / L or less.

また、マイクロバブルに二酸化炭素を吹き込むことにより、反応槽内の水のPHを小さく、すなわち酸性側に変化させることができる。一般に、酸性条件下において無機元素は高い溶解度を示し、例えば、鉄鋼スラグでは、フッ素の溶出量はPH=7〜8の中性域で最小値を示し、酸性およびアルカリ性が強くなるにつれて急激に溶解度が増加する強いPH依存性が観測される。そのため、反応槽内の水を酸性側に変化させることで、フッ素の水中への溶出をより促進させることができる。 Further, by blowing carbon dioxide into the microbubbles, the pH of water in the reaction vessel can be reduced, that is, changed to the acidic side. In general, inorganic elements exhibit high solubility under acidic conditions. For example, in steel slag, the elution amount of fluorine shows a minimum value in the neutral range of PH = 7 to 8, and the solubility rapidly increases as the acidity and alkalinity increase. A strong PH dependence with increasing is observed. Therefore, elution of fluorine into water can be further promoted by changing the water in the reaction tank to the acidic side.

本実施例は、生型廃棄砂を対象としているが、自硬性型廃棄砂の汚染物質の除去も可能である。 Although this embodiment is intended for green waste sand, it is possible to remove contaminants from self-hardening waste sand.

使用済み鋳物砂から石炭粉・可燃性物質・揮発成分を除去するなど、鋳物砂の再生方法としての利用が可能である。また、粉砕した鉄鋼スラグからのフッ素、ホウ素、その他重金属類の除去方法としても利用可能である。さらに、土壌の重金属類などの有害物質を除去する方法としても利用可能である。 It can be used as a method for reclaiming foundry sand, such as removing coal powder, combustible substances, and volatile components from used foundry sand. It can also be used as a method for removing fluorine, boron and other heavy metals from crushed steel slag. Furthermore, it can be used as a method for removing harmful substances such as heavy metals in the soil.

Claims (4)

汚染物質を含んだ固形物質を反応槽に満たされた液体中に浸漬し、その液体中に気泡を供給し、前記固形物質から汚染物質を抽出・除去する方法において、
前記汚染物質を含んだ固形物質を反応槽に満たされた液体中に浸漬する工程と、
前記固形物質が浸漬した前記液体中に前記気泡として直径が50μm以下のマイクロバブルを供給する工程と、
前記液体中に溶出した汚染物質の固形分を固液濾過により液体より分離する工程と、
前記液体中に溶出した汚染物質に含まれるフッ素、ホウ素を液体より分離する工程と、
前記固液濾過及びフッ素、ホウ素の分離を行なった後の前記液体を再度前記反応槽に戻す工程と、
を有する固形物質からの汚染物質除去方法。
In the method of immersing a solid substance containing contaminants in a liquid filled in a reaction vessel, supplying bubbles into the liquid, and extracting and removing the contaminants from the solid substance,
Immersing the solid substance containing the contaminant in a liquid filled in a reaction vessel;
Supplying microbubbles having a diameter of 50 μm or less as the bubbles in the liquid in which the solid substance is immersed;
Separating the solid content of the contaminants eluted in the liquid from the liquid by solid-liquid filtration;
Separating fluorine and boron contained in contaminants eluted in the liquid from the liquid;
Returning the liquid after the solid-liquid filtration and the separation of fluorine and boron to the reaction tank again;
A method for removing contaminants from a solid substance having
前記反応槽に満たされた液体を酸性側に変化させることを特徴とする請求項1における固形物質からの汚染物質除去方法。 2. The method for removing contaminants from a solid substance according to claim 1, wherein the liquid filled in the reaction tank is changed to the acidic side. 前記気泡により二酸化炭素を前記反応槽に満たされた液体中に溶解させることを特徴とする請求項1または2における固形物質からの汚染物質除去方法。 The method for removing contaminants from a solid substance according to claim 1 or 2, wherein carbon dioxide is dissolved in the liquid filled in the reaction tank by the bubbles. 汚染物質を含んだ固形物質を反応槽に満たされた液体中に浸漬し、その液体中に気泡を供給し、前記固形物質から汚染物質を抽出・除去する汚染物質除去システムにおいて、
前記汚染物質を含んだ固形物質を液体中に浸漬するとともに、前記固形物質が浸漬した前記液体中に前記気泡として直径が50μm以下のマイクロバブルを供給することにより前記固形物質から汚染物質を溶出する手段と、
溶出した汚染物質を固液濾過により液体より分離する手段と、
前記固液濾過を終えた液体よりフッ素、ホウ素を分離する手段と、
前記固液濾過及びフッ素、ホウ素の分離を行なった後の液体を循環する手段と、
を有する固形物質からの汚染物質除去システム。
In a pollutant removal system that immerses a solid substance containing a pollutant in a liquid filled in a reaction tank, supplies bubbles into the liquid, and extracts and removes the pollutant from the solid substance.
The solid substance containing the contaminant is immersed in the liquid, and the contaminant is eluted from the solid substance by supplying microbubbles having a diameter of 50 μm or less as the bubbles in the liquid in which the solid substance is immersed. Means,
Means for separating the eluted contaminants from the liquid by solid-liquid filtration;
Means for separating fluorine and boron from the liquid after the solid-liquid filtration;
Means for circulating the liquid after the solid-liquid filtration and the separation of fluorine and boron;
Contaminant removal system from solid material having
JP2009291839A 2009-12-24 2009-12-24 Method and system for removing contaminants from solid materials Active JP4844906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291839A JP4844906B2 (en) 2009-12-24 2009-12-24 Method and system for removing contaminants from solid materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291839A JP4844906B2 (en) 2009-12-24 2009-12-24 Method and system for removing contaminants from solid materials

Publications (2)

Publication Number Publication Date
JP2011131143A JP2011131143A (en) 2011-07-07
JP4844906B2 true JP4844906B2 (en) 2011-12-28

Family

ID=44344463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291839A Active JP4844906B2 (en) 2009-12-24 2009-12-24 Method and system for removing contaminants from solid materials

Country Status (1)

Country Link
JP (1) JP4844906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364202A (en) * 2012-04-05 2015-02-18 Posco公司 Boron recovery apparatus, boron recovery method, and boron recovery system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170377B2 (en) * 2013-08-29 2017-07-26 鹿島建設株式会社 Method and apparatus for treating construction sludge
JP2016140782A (en) * 2015-01-30 2016-08-08 株式会社Ihi Ash handling system and radioactive waste processing system
JP7076738B2 (en) * 2019-11-15 2022-05-30 伊勢化学工業株式会社 Method for producing an iodine compound-containing aqueous solution

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323321A (en) * 1994-04-22 1996-12-10 Mitsubishi Materials Corp Treatment of fly ash
JPH10216693A (en) * 1997-02-10 1998-08-18 Shimizu Corp Separation of contaminant from contaminated soil and device therefor
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2004195344A (en) * 2002-12-18 2004-07-15 Kajima Corp Cleaning method of soil contaminated with oil
JP4235688B2 (en) * 2004-02-27 2009-03-11 株式会社アステック Purification method for contaminated soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364202A (en) * 2012-04-05 2015-02-18 Posco公司 Boron recovery apparatus, boron recovery method, and boron recovery system
US9790096B2 (en) 2012-04-05 2017-10-17 Posco Boron recovery apparatus, boron recovery method, and boron recovery system

Also Published As

Publication number Publication date
JP2011131143A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP4766719B1 (en) Disposal method of leachate at final disposal site
JP5815285B2 (en) Radioactive water treatment equipment
JP4844906B2 (en) Method and system for removing contaminants from solid materials
KR102504769B1 (en) Method for purification of radioactive contaminated soil
JP2015123393A (en) Method and system for extracting and removing heavy metals in soil
JP2013178221A (en) Decontamination device and decontamination method of solid matter contaminated with radioactive material
JP2013019880A (en) System for treating contaminated soil containing radioactive material
JP6850634B2 (en) How to purify mercury-contaminated soil
JP5276779B2 (en) Purification method for sediment and soil contaminated with dioxins
JP2009233630A (en) Separating method for polluted substance and facility therefor
JP2008230921A (en) Method and apparatus for water granulation of molten slag
JP5175997B1 (en) Method and apparatus for treating radioactive cesium-containing water
JP6444701B2 (en) Method and apparatus for purifying muddy water containing arsenic
JP2018025464A (en) Radioactive substance removal system and radioactive substance removal method
JP2013019905A (en) Method for treating contaminated soil containing radioactive material
JP5175998B1 (en) Manufacturing method of adsorption device
JP6257702B2 (en) Rapid continuous insolubilization and cleaning method for pollutants
KR20040001080A (en) a Process Method for Scatter Ash following burn up Living Wastes
JP2019171304A (en) Waste muddy water volume reduction treatment apparatus and volume reduction treatment method
JP2013096979A (en) Method for decontaminating radioactive material
JP2005238102A (en) Method for cleaning contaminated soil
JP6381102B2 (en) Purification method for contaminated soil
JP5651755B1 (en) Incineration fly ash cleaning method
JP2013044626A (en) Separation and disposal method of minute amount of radioactive material in soil
JP5314213B1 (en) Leachate treatment facility and leachate treatment method at final disposal site

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110407

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110407

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250