JP2009233630A - Separating method for polluted substance and facility therefor - Google Patents

Separating method for polluted substance and facility therefor Download PDF

Info

Publication number
JP2009233630A
JP2009233630A JP2008086165A JP2008086165A JP2009233630A JP 2009233630 A JP2009233630 A JP 2009233630A JP 2008086165 A JP2008086165 A JP 2008086165A JP 2008086165 A JP2008086165 A JP 2008086165A JP 2009233630 A JP2009233630 A JP 2009233630A
Authority
JP
Japan
Prior art keywords
carbon dioxide
heavy metal
solvent
pressure
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008086165A
Other languages
Japanese (ja)
Inventor
Masayuki Masuda
雅之 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2008086165A priority Critical patent/JP2009233630A/en
Publication of JP2009233630A publication Critical patent/JP2009233630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for separating and collecting heavy metal from a polluted substance with high efficiency by using a carbon dioxide dissolved fluid in which carbon dioxide is dissolved at a high concentration and that is maintained under a high pressure as a result of development of the carbon gas dissolved fluid manufacturing device that dissolves the carbon gas at high concentration under high pressure. <P>SOLUTION: The method includes a first step for inputting a substance that is polluted by heavy metal in a pressure container 5, supplying the carbon gas dissolved fluid in which the carbon dioxide is dissolved at high concentration and maintained under a high pressure into the pressure container 5, stirring and mixing it with the heavy metal polluted substance, a second step for dehydrating the heavy metal polluted substance, supplying treatment water to a heavy metal treatment tank 6, removing the carbon gas dissolved fluid in the pressure container 5, and ventilating it to air to supply it to the heavy metal treatment tank 6 under the condition in which a predetermined amount of the carbon gas is discharged, and a third step for separating and collecting the heavy metal by the dehydration treatment after adding a heavy metal coagulant in the heavy metal treatment tank 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高濃度かつ高圧状態に維持された炭酸ガス溶解水を用いて、六価クロム、ヒ素、カドニウム、ホウ素などの重金属を効率的に分離回収したり、揮発性有機ハロゲン化物を分離除去するための方法及びそのための設備に関する。   The present invention efficiently separates and recovers heavy metals such as hexavalent chromium, arsenic, cadmium, and boron, and separates and removes volatile organic halides using carbon dioxide-dissolved water maintained at a high concentration and high pressure. The present invention relates to a method and an installation for the method.

石炭火力発電所から排出される石炭灰や廃棄物を焼却した際の焼却灰中には、六価クロムやヒ素、ホウ素など人体に影響を及ぼす重金属が含有されていることがあり、これが石炭灰の有効利用の促進や処分方法の効率化に当たって大きな問題となっている。   Incineration ash from incineration of coal ash and waste discharged from coal-fired power plants may contain heavy metals that affect the human body, such as hexavalent chromium, arsenic, and boron. It has become a big problem in promoting effective use and improving the efficiency of disposal methods.

また、近年は各種製造工場敷地および隣接地等では、有害重金属類が溶出して地下水に滲出し、大きな環境問題となっている。   In recent years, toxic heavy metals have been eluted and leached into groundwater at various manufacturing plant sites and adjacent sites, which has become a major environmental problem.

重金属で汚染された土壌を浄化する方法は、未だ十分に確立されていない状況にあるが、近年新たな浄化技術として、炭酸水や酸性溶液を用いた方法が提案されている。   Although a method for purifying soil contaminated with heavy metals is not yet well established, a method using carbonated water or an acidic solution has recently been proposed as a new purification technology.

例えば、下記特許文献1では、重金属を含有する土、石炭灰等の粉粒体に対し、炭酸水による洗浄処理を行い、粉粒体中から重金属イオンを除去するようにした粉粒体の無害化方法が提案されている(先行技術1)。   For example, in Patent Document 1 listed below, harmless powder and granular materials such as soil and coal ash containing heavy metals are washed with carbonated water to remove heavy metal ions from the granular materials. Has been proposed (prior art 1).

また、下記特許文献2では、石炭灰等のホウ素含有物質に酸性溶液を添加して処理対象物とするとともに該処理対象物中の前記ホウ素含有物質と前記酸性溶液とを互いに接触させることで前記ホウ素含有物質に含まれているホウ素を前記酸性溶液に溶出させ、次いで、前記処理対象物を前記ホウ素が溶出した処理液と前記ホウ素が分離除去された処理固形物とに固液分離し、前記処理液をさらに固液分離してその固形分を脱水処理して廃棄物処理する一方、前記処理固形物を水ですすぎ洗浄して該処理固形物内に残留する前記酸性溶液及び前記ホウ素を除去し、次いで、すすぎ洗浄後に残った固形分を脱水処理するホウ素の分離除去方法が提案されている(先行技術2)。   In addition, in Patent Document 2 below, an acidic solution is added to a boron-containing substance such as coal ash to obtain a treatment object, and the boron-containing substance and the acidic solution in the treatment object are brought into contact with each other. Boron contained in the boron-containing material is eluted in the acidic solution, and then the treatment object is solid-liquid separated into a treatment liquid from which the boron has been eluted and a treatment solid from which the boron has been separated and removed, The treatment liquid is further separated into solid and liquid, and the solid content is dehydrated and treated as waste. On the other hand, the treatment solid is rinsed with water to remove the acidic solution and boron remaining in the treatment solid. Then, a method for separating and removing boron has been proposed in which the solid content remaining after rinsing is dehydrated (prior art 2).

一方、土壌汚染には重金属以外に、工場などで油類除去等の工業的な洗浄に使用されてきたトリクロロエチレン等の揮発性の有機ハロゲン化物による汚染も問題となっている。この汚染土壌の浄化に対し炭酸水を使用して浄化を図る方法が提案されている。具体的には下記特許文献3において、有機ハロゲン化物により汚染された土壌中に、間隔を隔てて炭酸供給用井戸及び揚水用井戸を掘削により形成し、該炭酸供給用井戸内に炭酸水又は炭酸ガスを注入することにより該土壌中の有機ハロゲン化物を遊離させる工程、一方該揚水用井戸から揚水することにより該遊離有機ハロゲン化物を除去する工程を含む汚染土壌の浄化方法であって、炭酸水を注入する場合、炭酸水として異なった濃度のものを用いて交互に注入し、炭酸ガスを注入する場合は、炭酸ガスを異なった炭酸ガス供給速度で交互に注入する浄化方法が提案されている(先行技術3)。
特開2001−47007号公報 特開2003−320342号公報 特許第3215102号公報
On the other hand, in addition to heavy metals, soil contamination is also a problem caused by volatile organic halides such as trichlorethylene that have been used for industrial cleaning such as oil removal in factories and the like. A method for purifying the contaminated soil using carbonated water has been proposed. Specifically, in Patent Document 3 below, a carbonate supply well and a pumping well are formed by excavation at intervals in soil contaminated with an organic halide, and carbonated water or carbonate is formed in the carbonate supply well. A method for purifying contaminated soil, comprising a step of liberating organic halides in the soil by injecting gas, while a step of removing the free organic halides by pumping water from the pumping well. When injecting carbon dioxide, water having different concentrations is used as carbonated water. When carbon dioxide is injected, a purification method is proposed in which carbon dioxide is alternately injected at different carbon dioxide supply rates. (Prior Art 3).
JP 2001-47007 A JP 2003-320342 A Japanese Patent No. 3215102

しかしながら、上記各先行技術1〜3には下記のような問題があった。
(1)土や石炭灰等の粉粒体は負に帯電しており、特に焼却灰や石炭灰は高pHを示すことからこの傾向が強くなる。そのため、重金属イオンが粉粒体と強く結びついて除去が困難であることに鑑み、上記引用文献1では、低pHの炭酸水を添加することにより、重金属イオンの吸着力を低下させ分離し易い環境を作るというものであるが、高濃度で炭酸ガスを溶解する技術が確立していない状況下では、炭酸水によって大幅なpHの低下は見込めず効率が悪いなどの問題があった。
(2)上記引用文献2では、塩酸等の酸性溶液によって重金属イオンの吸着力を低下させるというものであるが、安全面や環境面に問題が残る。
(3)上記引用文献3は、炭酸水が一般に鉱物で形成されている土壌の砂や土の表面を僅かに浸食する作用(所謂、リンス効果)を示し、これにより揮発性の有機ハロゲン化物の遊離が促進されるというものであるが、高濃度で炭酸ガスを溶解する技術が確立していない状況下では、炭酸水による遊離促進効果が低く効率化が難しいなどの問題があった。
However, the prior arts 1 to 3 have the following problems.
(1) Powders such as soil and coal ash are negatively charged, and incineration ash and coal ash show a high pH, and this tendency becomes stronger. Therefore, in view of the fact that heavy metal ions are strongly bound to the powder and difficult to remove, in the above cited reference 1, by adding carbonated water having a low pH, an environment in which the adsorption power of heavy metal ions is reduced and is easily separated. However, under the circumstance where the technology for dissolving carbon dioxide gas at a high concentration has not been established, there has been a problem that the pH is not lowered significantly by the carbonated water and the efficiency is poor.
(2) In the above cited reference 2, the adsorption power of heavy metal ions is reduced by an acidic solution such as hydrochloric acid, but there remains a problem in terms of safety and environment.
(3) The above cited reference 3 shows an action (so-called rinsing effect) in which the carbonated water is slightly eroded on the sand or the surface of the soil, which is generally formed of minerals. Although liberation is promoted, there has been a problem that under the circumstances where a technique for dissolving carbon dioxide gas at a high concentration has not been established, the liberation promotion effect by carbonated water is low and it is difficult to improve efficiency.

そこで本発明の主たる課題は、高圧状態の下、高濃度で炭酸ガスを溶解させる炭酸ガス溶解水製造装置の開発に伴い、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を使用し、汚染物質から重金属を高効率で分離回収したり、揮発性有機ハロゲン化物を高効率で分離除去する方法及びそのための設備を提案することにある。   Accordingly, the main problem of the present invention is that, along with the development of a carbon dioxide-dissolved water production apparatus that dissolves carbon dioxide gas at a high concentration under a high-pressure state, carbon dioxide gas is dissolved at a high concentration and carbon dioxide that is maintained at a high-pressure state. The object is to propose a method and equipment for separating and recovering heavy metals from pollutants with high efficiency using gas-dissolved water and separating and removing volatile organic halides with high efficiency.

前記課題を解決するために請求項1に係る本発明として、圧力容器内に重金属によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器内に供給し、前記重金属汚染物質と撹拌混合する第1ステップと、
前記重金属汚染物質の脱水処理を行い、処理水を重金属処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンクに供給する第2ステップと、
前記重金属処理タンクにおいて、重金属用凝集剤を添加した後、脱水処理によって重金属を分離回収する第3ステップからなることを特徴とする汚染物の分離方法が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, a substance contaminated with heavy metal is introduced into a pressure vessel so that carbon dioxide is dissolved at a high concentration and carbon dioxide is dissolved in a high pressure state. Supplying water into the pressure vessel and stirring and mixing with the heavy metal contaminant;
A state in which the heavy metal pollutant is dehydrated and treated water is supplied to the heavy metal treatment tank, and the carbon dioxide-dissolved water in the pressure vessel is extracted and released to atmospheric pressure to release a predetermined amount of carbon dioxide. A second step of supplying the heavy metal treatment tank at
In the heavy metal treatment tank, there is provided a method for separating contaminants, comprising a third step of separating and collecting heavy metal by dehydration after adding a heavy metal flocculant.

上記請求項1記載の発明では、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を重金属汚染物質が投入された圧力容器内に供給し、前記重金属汚染物質と撹拌混合する。高圧状態(少なくとも炭酸ガスが液体状態である5.8MPa程度以上)で炭酸ガスを水又は塩水に高濃度(飽和溶解度に近い濃度)で溶解した炭酸ガス溶解水は、図10に示される既往の文献(金属の腐食・防食Q&A 石油産業編 社団法人腐食防食協会編 丸善出版社 p10より)から、少なくともpH2〜3程度になることが予測され、この炭酸ガス溶解水を用いることにより、重金属汚染物質の浄化環境として、重金属イオンの吸着力が低下し分離し易い環境が作られるようになるため、高い効率で重金属を分離回収することが可能となる。   In the first aspect of the invention, carbon dioxide gas is dissolved at a high concentration, and carbon dioxide-dissolved water maintained at a high pressure is supplied into a pressure vessel in which heavy metal contaminants are introduced, and the heavy metal contaminants and Stir and mix. Carbon dioxide-dissolved water obtained by dissolving carbon dioxide in water or salt water at a high concentration (concentration close to saturation solubility) in a high-pressure state (at least about 5.8 MPa in which carbon dioxide is in a liquid state) is shown in FIG. From the literature (Q & A of metal corrosion / corrosion prevention, Petroleum industry edition, Corrosion and corrosion prevention association, Maruzen Publishing Co., Ltd., p10), it is predicted that the pH will be at least about 2-3. As an environment for the purification, an environment in which the adsorption power of heavy metal ions is reduced and separation is facilitated can be made, so that heavy metals can be separated and recovered with high efficiency.

ところで、本方法では、六価クロム、ヒ素、カドニウム、ホウ素などの重金属を分離回収するに当たり、pHが低いほど重金属の回収効率が向上できるとの知見に基づいている。図11は既往の文献(大林組技術研究所報 No.68 石炭灰の酸洗浄によるほう素除去技術の開発(その2))によりホウ素の抽出率とpHとの関係を示したものであるが、pHが低いほどホウ素の抽出率が向上している。図12は既往の文献(環境省 廃棄物処理等科学研究費補助金 次世代廃棄物処理基盤整備事情報告書概要情報検索結果)によりヒ素及びセレンの抽出率とpHとの関係を示したものであるが、同じくpHが低いほどヒ素及びセレンの抽出率が高くなっている。さらに、図13は既往の文献(第35回地盤工学研究発表会(岐阜)p.199〜200)により六価クロムの回収量に与える炭酸ガス有無の影響を示したものであるが、明らかに炭酸ガスを供給した場合の方が、六価クロムの回収率が向上していることが分かる。   By the way, in this method, in separating and recovering heavy metals such as hexavalent chromium, arsenic, cadmium and boron, the recovery efficiency of heavy metals can be improved as the pH is lowered. Figure 11 shows the relationship between boron extraction rate and pH based on previous literature (Obayashi Institute of Technology Report No. 68 Development of Boron Removal Technology by Acid Washing of Coal Ash (Part 2)). The lower the pH, the higher the boron extraction rate. Figure 12 shows the relationship between the extraction rate of arsenic and selenium and pH based on past literature (subsidy for scientific research expenses such as the Ministry of the Environment waste processing, etc., next-generation waste processing infrastructure development situation report summary information search results). However, similarly, the lower the pH, the higher the extraction rate of arsenic and selenium. Furthermore, FIG. 13 shows the influence of the presence or absence of carbon dioxide on the recovered amount of hexavalent chromium according to previous literature (35th Geotechnical Research Presentation (Gifu) p.199-200). It can be seen that the recovery rate of hexavalent chromium is improved when carbon dioxide is supplied.

重金属汚染物質と炭酸ガス溶解水とを混合した後、重金属汚染物質の脱水処理を行い、処理水を重金属処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンクに供給し、前記重金属処理タンクにおいて重金属用凝集剤を添加した後、脱水処理によって重金属を効率的に分離回収することが可能となる。また、高圧状態に維持された炭酸ガス溶解水が大気圧開放されることにより、大気圧相当下での炭酸ガス溶解量となるため、pHを中性とすることができ最終処理水の中和処理も不要となる。   After mixing heavy metal contaminants and carbon dioxide-dissolved water, dehydrate the heavy metal contaminants, supply the treated water to the heavy metal treatment tank, extract the carbon dioxide-dissolved water in the pressure vessel, and open it to atmospheric pressure By supplying the heavy metal treatment tank with a predetermined amount of carbon dioxide gas released, and adding the heavy metal flocculant in the heavy metal treatment tank, the heavy metal can be efficiently separated and recovered by dehydration treatment. It becomes. Moreover, since the carbon dioxide-dissolved water maintained at a high pressure is released to atmospheric pressure, the amount of carbon dioxide dissolved under atmospheric pressure becomes equivalent, so that the pH can be neutralized and the final treated water is neutralized. Processing is also unnecessary.

請求項2に係る本発明として、圧力容器内に揮発性有機ハロゲン化物によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器内に供給し、前記揮発性有機ハロゲン化物汚染物質と撹拌混合する第1ステップと、
前記揮発性有機ハロゲン化物の脱水処理を行い、処理水を揮発性有機ハロゲン化物処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記揮発性有機ハロゲン化物処理タンクに供給する第2ステップと、
前記揮発性有機ハロゲン化物処理タンクにおいて、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する第3ステップからなることを特徴とする汚染物の分離方法が提供される。
As the present invention according to claim 2, a substance contaminated with a volatile organic halide is introduced into a pressure vessel, and the carbon dioxide dissolved water maintained at a high pressure is dissolved in the carbon dioxide at a high concentration. A first step of feeding into a pressure vessel and stirring and mixing with the volatile organic halide contaminant;
The volatile organic halide is dehydrated and treated water is supplied to the volatile organic halide treatment tank, and the carbon dioxide-dissolved water in the pressure vessel is withdrawn and opened to atmospheric pressure to release a predetermined amount of carbonic acid. A second step of supplying gas to the volatile organic halide treatment tank in a released state;
In the volatile organic halide treatment tank, there is provided a method for separating contaminants, comprising a third step of separating and removing volatile organic halides by aeration or adsorption treatment.

上記請求項2記載の発明は、揮発性有機ハロゲン化物汚染物質を対象として本発明を適用したものである。図14は既往の文献(特許3215102号公報)により汚染土壌中のトリクロロエチレン検出量と炭酸濃度との関係を示したものであるが、炭酸濃度が高いほどトリクロロエチレンの検出量が高くなっていることが分かる。従って、本発明に従って、高圧状態(少なくとも炭酸ガスが液体状態である5.8MPa程度以上)で炭酸ガスを水又は塩水に高濃度(飽和溶解度に近い濃度)で溶解した炭酸ガス溶解水を用いることにより、揮発性有機ハロゲン化物を高効率で分離除去することが可能となる。   The invention according to claim 2 applies the present invention to volatile organic halide contaminants. FIG. 14 shows the relationship between the detected amount of trichlorethylene in the contaminated soil and the carbonic acid concentration according to the existing literature (Japanese Patent No. 3215102). The higher the carbonic acid concentration, the higher the detected amount of trichlorethylene. I understand. Therefore, according to the present invention, carbon dioxide-dissolved water in which carbon dioxide is dissolved in water or salt water at a high concentration (concentration close to saturation solubility) in a high-pressure state (at least about 5.8 MPa in which carbon dioxide is in a liquid state) is used. This makes it possible to separate and remove volatile organic halides with high efficiency.

処理手順は、揮発性有機ハロゲン化物汚染物質と、高濃度かつ高圧状態に維持された炭酸ガス溶解水とを圧力容器内で混合した後、揮発性有機ハロゲン化物汚染物質の脱水処理を行い、処理水を処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記処理タンクに供給し、前記処理タンクにおいて、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する。   The treatment procedure consists of mixing volatile organic halide contaminants with carbon dioxide dissolved water maintained at a high concentration and high pressure in a pressure vessel, and then dehydrating the volatile organic halide contaminants. While supplying water to the treatment tank, the carbon dioxide-dissolved water in the pressure vessel is withdrawn and released to atmospheric pressure to supply a predetermined amount of carbon dioxide gas to the treatment tank. The volatile organic halide is separated and removed by aeration or adsorption treatment.

請求項3に係る本発明として、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽とから構成され、前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガス溶解水製造装置と、
重金属汚染物質が投入されるとともに、攪拌機が備えられ、前記炭酸ガス溶解水製造装置によって製造された炭酸ガスが圧力状態を維持したまま供給される1又は複数の圧力容器と、
前記圧力容器から取り出した重金属汚染物質の脱水処理を行う第1脱水処理装置と、
前記脱水処理装置の処理水が供給されるとともに、前記圧力容器から抜き出され、大気圧開放された炭酸ガス溶解水が供給され、重金属用凝集剤が添加される重金属処理タンクと、
前記重金属処理タンクの被処理物を脱水処理し、重金属を分離回収する第2脱水処理装置とからなることを特徴とする請求項1記載の汚染物の分離方法のための設備が提供される。
As the present invention according to claim 3, a carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide and It is composed of one or a plurality of dissolution tanks in which a solvent is injected and the carbon dioxide gas is dissolved in the solvent to form carbon dioxide-dissolved water. A carbon dioxide gas inlet for injecting carbon dioxide gas sent from and a solvent inlet for injecting a solvent sent from the solvent pressure pump are formed, and the carbon dioxide-dissolved water is formed above the container. A carbon dioxide dissolved water production apparatus configured to form a discharge port to be discharged and filled with a granular filler in the container;
One or a plurality of pressure vessels that are charged with heavy metal contaminants and that are equipped with a stirrer and that are supplied with carbon dioxide gas produced by the carbon dioxide-dissolved water production device maintained in a pressure state;
A first dehydration apparatus for dehydrating heavy metal contaminants taken out of the pressure vessel;
A heavy metal treatment tank to which treated water of the dehydration treatment apparatus is supplied, is extracted from the pressure vessel, is supplied with carbon dioxide-dissolved water that has been released to atmospheric pressure, and is added with a flocculant for heavy metals,
2. The facility for separating contaminants according to claim 1, further comprising a second dehydrating apparatus for dehydrating the object to be processed in the heavy metal processing tank and separating and recovering the heavy metal.

請求項4に係る本発明として、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽とから構成され、前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガス溶解水製造装置と、
揮発性有機ハロゲン化物汚染物質が投入されるとともに、攪拌機が備えられ、前記炭酸ガス溶解水製造装置によって製造された炭酸ガスが圧力状態を維持したまま供給される1又は複数の圧力容器と、
前記圧力容器から取り出した揮発性有機ハロゲン化物汚染物質の脱水処理を行う脱水処理装置と、
前記脱水処理装置の処理水が供給されるとともに、前記圧力容器から抜き出され、大気圧開放された炭酸ガス溶解水が供給され、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する揮発性有機ハロゲン化物処理タンクとからなることを特徴とする請求項2記載の汚染物の分離方法のための設備が提供される。
As the present invention according to claim 4, a carbon dioxide compression device that compresses carbon dioxide to a liquid or supercritical state, a pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide and It is composed of one or a plurality of dissolution tanks in which a solvent is injected and the carbon dioxide gas is dissolved in the solvent to form carbon dioxide-dissolved water. A carbon dioxide gas inlet for injecting carbon dioxide gas sent from and a solvent inlet for injecting a solvent sent from the solvent pressure pump are formed, and the carbon dioxide-dissolved water is formed above the container. A carbon dioxide dissolved water production apparatus configured to form a discharge port to be discharged and filled with a granular filler in the container;
Volatile organic halide contaminants are charged, and equipped with a stirrer, and one or more pressure vessels to which carbon dioxide produced by the carbon dioxide-dissolved water production apparatus is supplied while maintaining a pressure state;
A dehydration apparatus for dehydrating volatile organic halide contaminants removed from the pressure vessel;
The volatile organic halide is separated and removed by aeration or adsorption treatment by supplying the treated water of the dehydration apparatus and the carbon dioxide dissolved water extracted from the pressure vessel and released to atmospheric pressure. The facility for separating contaminants according to claim 2, comprising an organic halide treatment tank.

請求項5に係る本発明として、前記炭酸ガス溶解水製造装置に代えて、
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプとを設け、前記溶媒を所定の高流速で流した主流管路の内部に前記炭酸ガスの供給管路を配設するか、前記主流管路を外嵌する前記炭酸ガスの供給管路を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面に細孔を形成し、前記主流管路を流れる溶媒のせん断力によって前記炭酸ガスを細泡化しながら混入させる高圧用炭酸ガス細泡化装置を設置し、前記高圧用炭酸ガス細泡化装置の後段に設置された、密閉された容器の下部に、前記細泡化された炭酸ガスが混入された溶媒の注入口が形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された1又は複数の溶解槽とから構成された炭酸ガス溶解水製造装置を用いる請求項3、4いずれかに記載の汚染物の分離方法のための設備が提供される。
As the present invention according to claim 5, instead of the carbon dioxide dissolved water production apparatus,
A carbon dioxide gas compressing device that compresses carbon dioxide gas to a liquid or supercritical state, and a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and a main flow line that flows the solvent at a predetermined high flow rate. The carbon dioxide gas supply pipe is disposed inside, or the carbon dioxide gas supply pipe that externally fits the main flow pipe is disposed, and pores are formed in the wall surface of the pipe that partitions the solvent and carbon dioxide. A high-pressure carbon dioxide gas foaming device is formed and mixed while the carbon dioxide gas is made fine by the shearing force of the solvent flowing through the main flow line, and is installed at the subsequent stage of the high-pressure carbon dioxide gas foaming device. In addition, an inlet for the solvent mixed with the fine carbon dioxide gas is formed at the bottom of the sealed container, and an outlet for discharging the carbon dioxide-dissolved water is formed at the top of the container. The container is filled with a granular filler. Equipment for the method of separating contaminants according to any one of claims 3 and 4 using the configured one or more dissolution tank and carbonic gas dissolved water generator consists is provided.

以上詳説のとおり本発明によれば、高圧状態の下、高濃度で炭酸ガスを溶解させる炭酸ガス溶解水製造装置の開発に伴い、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を使用することで、汚染物質から重金属を高効率で分離回収したり、揮発性有機ハロゲン化物を高効率で分離除去することが可能となる。   As described above in detail, according to the present invention, with the development of a carbon dioxide-dissolved water production apparatus that dissolves carbon dioxide at a high concentration under a high pressure state, the carbon dioxide gas is dissolved at a high concentration and maintained at a high pressure state. By using the dissolved carbon dioxide water, heavy metals can be separated and recovered from pollutants with high efficiency, and volatile organic halides can be separated and removed with high efficiency.

以下、本発明の実施の形態について図面を参照しながら詳述する。
〔第1形態例〕
図1は本発明の第1形態例に係る汚染物の分離方法のシステム概略図である。 第1形態例では、高濃度かつ高圧状態に維持された炭酸ガス溶解水を用いて、六価クロム、ヒ素、カドニウム、ホウ素などの重金属を効率的に分離回収するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First embodiment]
FIG. 1 is a system schematic diagram of a contaminant separation method according to a first embodiment of the present invention. In the first embodiment, heavy metals such as hexavalent chromium, arsenic, cadmium, and boron are efficiently separated and recovered using carbon dioxide-dissolved water maintained at a high concentration and high pressure.

具体的には、同図1に示されるように、圧力容器5内に重金属によって汚染された物質Mを投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器5内に供給し、前記重金属汚染物質Mと撹拌混合する第1ステップと、
前記重金属汚染物質Mの脱水処理を行い、処理水を重金属処理タンク6に供給するとともに、前記圧力容器5内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンク6に供給する第2ステップと、
前記重金属処理タンク6において、重金属用凝集剤を添加した後、脱水処理によって重金属を分離回収する第3ステップからなるものである。
Specifically, as shown in FIG. 1, a substance M contaminated with heavy metal is introduced into the pressure vessel 5 to dissolve carbon dioxide at a high concentration and to dissolve carbon dioxide maintained at a high pressure. A first step of supplying water into the pressure vessel 5 and stirring and mixing with the heavy metal contaminant M;
The heavy metal contaminant M is dehydrated and treated water is supplied to the heavy metal treatment tank 6, and the carbon dioxide-dissolved water in the pressure vessel 5 is extracted and released to atmospheric pressure to release a predetermined amount of carbon dioxide. A second step of supplying the heavy metal treatment tank 6 in a state in which
In the heavy metal treatment tank 6, after adding the heavy metal flocculant, it comprises a third step of separating and recovering heavy metal by dehydration.

本第1形態例で対象となる重金属汚染物質Mは、主として石炭火力発電所から排出される石炭灰、産業廃棄物を焼却した後に残る焼却灰、重金属の溶出によって汚染された土壌などである。   The heavy metal pollutant M targeted in the first embodiment is mainly coal ash discharged from a coal-fired power plant, incineration ash remaining after incineration of industrial waste, soil contaminated by elution of heavy metals, and the like.

前記圧力容器5は、高圧状態、具体的には少なくとも炭酸ガスが液体状態である5.8MPa程度以上に維持された炭酸ガス溶解水の圧力に十分に耐え得る容器とし、重金属汚染物質Mとの撹拌混合を行うための攪拌機7を備える。設置数は処理容量に応じて任意とする。   The pressure vessel 5 is a vessel that can sufficiently withstand the pressure of carbon dioxide-dissolved water maintained at a high pressure, specifically, at least about 5.8 MPa in which carbon dioxide is in a liquid state. A stirrer 7 for stirring and mixing is provided. The number of installations is arbitrary according to the processing capacity.

後述する炭酸ガス溶解水製造装置1によって、高圧状態で高濃度に炭酸ガスが溶解された炭酸ガス溶解水は、圧力状態を維持したまま前記圧力容器5に供給され、前記攪拌機7によって重金属汚染物質Mと撹拌混合される。   Carbon dioxide-dissolved water in which carbon dioxide is dissolved at a high pressure in a high-pressure state by a carbon dioxide-dissolved water production apparatus 1 to be described later is supplied to the pressure vessel 5 while maintaining the pressure state. Stir and mix with M.

炭酸ガス溶解水と混合された重金属汚染物質Mは、自然沈降させた後、圧力容器5から取り出され、脱水処理に掛けられる。脱水処理装置8としては、フィルタプレス、ベルトプレス、ロールプレスなどの加圧脱水装置、ベルトフィルタ、オリバーフィルタなどの真空脱水装置、スクリューデカンタなどの遠心脱水装置などを公知の脱水装置を使用することができる。脱水処理後のケーキは、石炭灰、焼却灰、土壌粒子から重金属が剥離されているため、重金属の含有量は基準値以下となっている。   The heavy metal contaminant M mixed with the carbon dioxide-dissolved water is naturally settled and then taken out from the pressure vessel 5 and subjected to a dehydration process. As the dehydration processing apparatus 8, a known dehydration apparatus such as a pressure dehydration apparatus such as a filter press, a belt press or a roll press, a vacuum dehydration apparatus such as a belt filter or an oliver filter, a centrifugal dehydration apparatus such as a screw decanter, or the like is used. Can do. In the cake after the dehydration treatment, heavy metals are peeled off from coal ash, incinerated ash, and soil particles, so the heavy metal content is below the standard value.

脱水処理水は、その後重金属処理タンク6に供給されるとともに、前記圧力容器5から炭酸ガス溶解水が抜き出され、大気開放によって圧力を大気圧状態とした後、前記重金属処理タンク6に供給される。なお、大気開放された炭酸ガスは、図示されるように、炭酸ガス溶解水製造装置1にリターンさせて再利用するのが望ましい。   The dehydrated water is then supplied to the heavy metal treatment tank 6, and the carbon dioxide-dissolved water is extracted from the pressure vessel 5. After the pressure is brought to atmospheric pressure by opening to the atmosphere, the water is supplied to the heavy metal treatment tank 6. The In addition, as shown in the drawing, the carbon dioxide released to the atmosphere is preferably returned to the carbon dioxide-dissolved water production apparatus 1 for reuse.

前記重金属処理タンク6では、重金属凝集剤が添加され、重金属がフロックを形成し沈降分離される。前記重金属凝集剤としては、水溶性高分子と多価金属イオンからなる凝集剤、γ−ポリグルタミン酸架橋体及びベントナイトを含有する重金属用凝集剤など公知のものを使用することができる。沈降分離した重金属フロックは脱水処理によって分離回収され、処理水は炭酸ガスが既に大気放散されているため、中和処理を行うことなくそのまま放流処理することが可能である。   In the heavy metal treatment tank 6, a heavy metal flocculant is added, and the heavy metal forms flocs and settles and separates. As the heavy metal flocculant, known ones such as a flocculant composed of a water-soluble polymer and a polyvalent metal ion, a γ-polyglutamic acid crosslinked body, and a heavy metal flocculant containing bentonite can be used. The sedimented and separated heavy metal floc is separated and recovered by dehydration, and the treated water can be discharged as it is without neutralization because carbon dioxide has already been released into the atmosphere.

〔第2形態例〕
次いで、図2に示される第2形態例に係る汚染物質の分離方法は、高濃度かつ高圧状態に維持された炭酸ガス溶解水を用いて、トリクロロエチレンなどの揮発性有機ハロゲン化物を効率的に分離除去するものである。
[Second embodiment]
Next, the pollutant separation method according to the second embodiment shown in FIG. 2 efficiently separates volatile organic halides such as trichlorethylene using carbon dioxide-dissolved water maintained at a high concentration and high pressure. To be removed.

具体的には、同図2に示されるように、圧力容器5内に揮発性有機ハロゲン化物によって汚染された物質Nを投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器5内に供給し、前記揮発性有機ハロゲン化物汚染物質と撹拌混合する第1ステップと、
前記揮発性有機ハロゲン化物の脱水処理を行い、処理水を揮発性有機ハロゲン化物処理タンクに供給するとともに、前記圧力容器5内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記揮発性有機ハロゲン化物処理タンク9に供給する第2ステップと、
前記揮発性有機ハロゲン化物処理タンク9において、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する第3ステップからなるものである。
Specifically, as shown in FIG. 2, the substance N contaminated with the volatile organic halide is introduced into the pressure vessel 5, so that the carbon dioxide gas is dissolved at a high concentration and maintained at a high pressure state. A first step of supplying the carbon dioxide-dissolved water into the pressure vessel 5 and stirring and mixing with the volatile organic halide contaminant;
The volatile organic halide is dehydrated and treated water is supplied to the volatile organic halide treatment tank, and the carbon dioxide-dissolved water in the pressure vessel 5 is withdrawn and released to atmospheric pressure to achieve a predetermined amount. A second step of supplying carbon dioxide gas to the volatile organic halide treatment tank 9 in a released state;
The volatile organic halide treatment tank 9 comprises a third step of separating and removing volatile organic halides by aeration or adsorption treatment.

本第2形態例で対象となる揮発性有機ハロゲン化物汚染物質Nは、主として工場などから排出されたトリクロロエチレン等の揮発性の有機ハロゲン化物によって汚染された土壌が対象となる。   The target volatile organic halide pollutant N in the second embodiment is soil contaminated with volatile organic halides such as trichlorethylene discharged mainly from factories and the like.

前記第1形態例と対比すると、処理タンク9における処理のみが異なり、その他同じであるため、説明は省略し処理タンク9での処理について述べる。   Compared with the first embodiment, only the processing in the processing tank 9 is different and the other processing is the same. Therefore, the description is omitted and the processing in the processing tank 9 will be described.

処理タンク9に供給された脱水処理水及び炭酸ガス溶解水は、曝気又は吸着処理によって揮発性の有機ハロゲン化物が分離除去される。前記曝気処理は、有機ハロゲン化物の揮発を促進させるものであるが時間が掛かるため、好ましくは活性炭を用いて強制的に吸着処理するのが望ましい。   Volatile organic halides are separated and removed from the dehydrated treated water and carbon dioxide-dissolved water supplied to the treatment tank 9 by aeration or adsorption treatment. The aeration treatment promotes volatilization of the organic halide, but takes time. Therefore, it is preferable to forcibly perform adsorption treatment using activated carbon.

〔炭酸ガス溶解水製造装置について〕
本方法で用いられる炭酸ガス溶解水製造装置1について図3〜図9に基づいて詳述する。
[About CO2 dissolved water production equipment]
The carbon dioxide dissolved water production apparatus 1 used in this method will be described in detail with reference to FIGS.

《第1形態に係る炭酸ガス溶解水製造装置1》
本発明に係る炭酸ガス溶解水製造装置1は、飽和濃度レベル付近の高い濃度で溶媒(海水又は水)に溶解させた状態で、前記圧力容器5に供給するためのものである。具体的には、炭酸ガスの溶解量は、所定圧力下での飽和溶解度の80%好ましくは90%以上を目標とする。
<< The carbon dioxide dissolved water manufacturing apparatus 1 which concerns on a 1st form >>
The carbon dioxide-dissolved water production apparatus 1 according to the present invention is for supplying the pressure vessel 5 in a state of being dissolved in a solvent (seawater or water) at a high concentration near the saturation concentration level. Specifically, the amount of carbon dioxide dissolved is targeted to be 80%, preferably 90% or more of the saturation solubility under a predetermined pressure.

また、系内の圧力は、炭酸ガスが液体又は超臨界状態を維持した状態で溶解が行われるようにするとともに、炭酸ガス溶解水を圧力容器5へ圧入するための注入圧力と配管系の圧力損失とを考慮して、6MPa以上の高圧状態を維持するようにする。   The pressure in the system is such that the carbon dioxide is dissolved in a liquid or supercritical state, and the injection pressure for injecting the carbon dioxide-dissolved water into the pressure vessel 5 and the pressure in the piping system are used. Considering the loss, a high pressure state of 6 MPa or more is maintained.

炭酸ガス溶解水製造装置1は、図3に示されるように、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする複数の溶解槽4、4…とから主に構成される。前記溶解槽4は、炭酸ガスの溶解を促進するため複数設置したが、必要に応じて1基としてもよい。   As shown in FIG. 3, the carbon dioxide-dissolved water production apparatus 1 includes a carbon dioxide compressor 2 that compresses carbon dioxide to a liquid or supercritical state, and a pump that compresses and conveys a solvent composed of seawater and / or water. 3 and a plurality of dissolution tanks 4, 4... Into which the compressed carbon dioxide gas and solvent are injected and the carbon dioxide gas is dissolved in the solvent to form carbon dioxide-dissolved water. A plurality of the dissolution tanks 4 are installed in order to promote the dissolution of carbon dioxide gas, but may be one if necessary.

前記溶解槽4は、図4に示されるように、密閉された容器10の下部に、前記炭酸ガス圧縮装置2から送られた炭酸ガスが注入される炭酸ガス注入口11と、前記溶媒圧送ポンプ3から送られた溶媒が注入される溶媒注入口12とが形成されるとともに、前記容器10の上部に前記炭酸ガス溶解水が吐出される吐出口13が形成され、前記容器10内の下方及び上方に夫々、前記容器10内を上下方向に仕切る多孔板14、14がそれぞれ配設され、前記多孔板14、14間に粒状の充填材16が充填されて構成されている。   As shown in FIG. 4, the dissolution tank 4 includes a carbon dioxide gas inlet 11 into which a carbon dioxide gas sent from the carbon dioxide gas compression device 2 is injected into a lower portion of a sealed container 10, and the solvent pressure pump. 3 is formed, and a discharge port 13 for discharging the carbon dioxide-dissolved water is formed in the upper portion of the container 10. The perforated plates 14 and 14 partitioning the inside of the container 10 in the vertical direction are respectively arranged on the upper side, and a granular filler 16 is filled between the perforated plates 14 and 14.

前記充填材16は、溶媒と炭酸ガスとの撹拌を促し、炭酸ガスの溶解を効率化するためのものであり、例えば、砂、砕石、ラシヒリング、サドルの内のいずれか又は組み合わせとすることができる。前記ラシヒリングとは、セラミック、プラスチック、メタル、カーボンなどからなる円筒形状をした、充填塔で使用される充填物で、一般に広く用いられているものを使用することができる。前記サドルとは、セラミックなどからなる馬鞍形状をした、充填塔で使用される充填物で、一般に前記ラシヒリングより圧力損失が小さくなるように形成されている。   The filler 16 is for accelerating the stirring of the solvent and the carbon dioxide gas and improving the efficiency of the dissolution of the carbon dioxide gas. For example, the filler 16 may be any one or a combination of sand, crushed stone, Raschig ring, and saddle. it can. The Raschig ring is a cylinder-shaped packing made of ceramic, plastic, metal, carbon, etc., which is used in packed towers and can be used in general. The saddle is a horseshoe-shaped packing made of ceramic or the like, and is generally formed so that the pressure loss is smaller than that of the Raschig ring.

また、前記充填材16は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定する最適な平均粒径とすることが好ましい。具体的には、充填材の種類ごとに、充填材の平均粒径に対する次の2つの関係を実験的に得た上で、溶解槽において許容される圧力損失(溶解槽の注入口と吐出口の間の圧力差)に対して、最も溶解量が多くなる平均粒径のものを最適な平均粒径として選定する。
(1)所定の炭酸ガス及び溶媒の流量及び溶解槽の形状において、充填材の平均粒径に対する炭酸ガス溶解量の関係。
(2)充填材の平均粒径に対する溶解槽の圧力損失の関係。
Moreover, the said filler 16 is the optimal average determined from the amount of carbon dioxide dissolution determined based on the flow volume of a carbon dioxide gas and a solvent, and the shape of the said dissolution tank, and the pressure loss in the said dissolution tank for every kind of filler. It is preferable to use a particle size. Specifically, for each type of filler, after experimentally obtaining the following two relationships with respect to the average particle diameter of the filler, the pressure loss allowed in the dissolution tank (inlet and outlet of the dissolution tank) For the difference in pressure between the two, an average particle size with the largest amount of dissolution is selected as the optimum average particle size.
(1) The relationship of the amount of carbon dioxide dissolved with respect to the average particle diameter of the filler in the predetermined flow rate of carbon dioxide gas and solvent and the shape of the dissolution tank.
(2) Relationship between dissolution tank pressure loss and average filler particle size.

一般に、前記充填材の平均粒径に対する特性は、(1)炭酸ガス及び溶媒の流量と溶解槽の形状とが与えられれば、充填材の平均粒径を細かくするほど、炭酸ガスの溶解量は増加する。(2)一方、充填材の平均粒径を細かくするほど、溶解槽内の炭酸ガス及び溶媒の流れによる圧力損失が大きくなり、一定の流量を確保するために使用するエネルギーが増加する、という傾向がある。したがって、上記炭酸ガス及び溶媒の流量と溶解槽の形状とを総合的に勘案した上で、充填材の平均粒径を選定する。なお、所要の炭酸ガス溶解量が決定できない場合には、溶解槽の大型化などの対策を採ることも考慮する。   Generally, the properties of the filler with respect to the average particle size are as follows: (1) Given the flow rate of carbon dioxide gas and solvent and the shape of the dissolution tank, the smaller the average particle size of the filler, the more the dissolved amount of carbon dioxide gas. To increase. (2) On the other hand, as the average particle size of the filler becomes finer, the pressure loss due to the flow of carbon dioxide and solvent in the dissolution tank increases, and the energy used to secure a constant flow rate tends to increase. There is. Therefore, the average particle size of the filler is selected after comprehensively considering the flow rates of the carbon dioxide gas and the solvent and the shape of the dissolution tank. In addition, when the required amount of carbon dioxide dissolution cannot be determined, it is also considered to take measures such as increasing the size of the dissolution tank.

上記の最適な平均粒径の充填材16を用いることにより、炭酸ガスの溶解効率に優れるようになる。   By using the filler 16 having the optimum average particle diameter, the carbon dioxide gas is efficiently dissolved.

前記容器10は、図4に示されるように、密閉された縦長の管型とすることが好ましい。これにより、溶解槽4における炭酸ガスと溶媒の滞留時間を確保することが可能になる。滞留時間は、流量にもよるが、流量を10ml/分〜20ml/分とした場合、20〜40分程度とするのがよい。また、系内の前記設定圧力に対して耐圧性を有する構造とすることができるとともに、短時間で連続的かつ安定的な炭酸ガス溶解水の生成が可能となる。   As shown in FIG. 4, the container 10 is preferably a sealed vertically long tube. Thereby, it becomes possible to ensure the residence time of the carbon dioxide gas and the solvent in the dissolution tank 4. Although the residence time depends on the flow rate, when the flow rate is 10 ml / min to 20 ml / min, the residence time is preferably about 20 to 40 minutes. Moreover, it can be set as the structure which has pressure | voltage resistance with respect to the said setting pressure in a system, and the production | generation of a carbon dioxide dissolved water can be continuously and stably in a short time.

ここで、溶解槽4内の流れについて図4に基づいて説明すると、前記炭酸ガス注入口11及び溶媒注入口12から容器10内に圧送された炭酸ガス及び溶媒は、下方ホッパー部17で混合されるとともに、下方側多孔板14から均等に充填材16の充填領域に浸入する。前記充填材16の充填領域においては、充填材16間での流動と相まって溶媒と炭酸ガスとが充分に撹拌されて溶媒に炭酸ガスが溶解されるとともに、上方に流動していく。この作用により、上方側多孔板14に到達したときには、溶媒に炭酸ガスがほぼ溶解された炭酸ガス溶解水が生成され、溶媒の飽和溶解レベルにまで達するようになる。その後、上方側多孔板14から上方ホッパー部18に浸入した炭酸ガス溶解水は、吐出口13から吐出される。   Here, the flow in the dissolution tank 4 will be described with reference to FIG. 4. The carbon dioxide gas and the solvent pumped into the container 10 from the carbon dioxide inlet 11 and the solvent inlet 12 are mixed in the lower hopper 17. And enters the filling region of the filler 16 from the lower perforated plate 14 evenly. In the filling region of the filler 16, the solvent and carbon dioxide are sufficiently stirred together with the flow between the fillers 16 to dissolve the carbon dioxide in the solvent and flow upward. By this action, when the upper porous plate 14 is reached, carbon dioxide-dissolved water in which carbon dioxide is substantially dissolved in the solvent is generated, and reaches the saturated dissolution level of the solvent. Thereafter, the carbon dioxide-dissolved water that has entered the upper hopper 18 from the upper porous plate 14 is discharged from the discharge port 13.

前記溶解槽4においては、前記充填材16の充填領域内に、流路を仕切るように多数の開孔が形成された整流板19を1又は複数設けるようにするのが望ましい。前記整流板19を設けることにより、充填材16による炭酸ガスと溶媒との流れが均一に整えられ、両者の接触機会の増大により、前記溶解槽4における炭酸ガスの溶解が向上するようになる。前記溶解槽4における滞留時間と炭酸ガス溶解量とは、飽和濃度レベルまでは概ね比例的関係にあるため、所定の操業条件の下で、目標溶解量に応じた滞留時間となるように装置規模を設定するのが望ましい。   In the dissolution tank 4, it is desirable to provide one or a plurality of rectifying plates 19 in which a large number of openings are formed so as to partition the flow path in the filling region of the filler 16. By providing the rectifying plate 19, the flow of the carbon dioxide gas and the solvent by the filler 16 is made uniform, and the dissolution of the carbon dioxide gas in the dissolution tank 4 is improved by increasing the chance of contact between them. The residence time in the dissolution tank 4 and the carbon dioxide gas dissolution amount are in a generally proportional relationship up to the saturation concentration level. Therefore, the apparatus scale is set so that the residence time according to the target dissolution amount is obtained under predetermined operating conditions. It is desirable to set.

溶解槽1基当たりの溶媒及び炭酸ガスの各流量は、溶解槽4の容積と炭酸ガス及び溶媒の溶解槽4内の滞留時間によって定めた全体流量に対して、注入する炭酸ガス及び溶媒の重量比(炭酸ガス重量/溶媒重量)から求めることができる。この際、炭酸ガス及び溶媒の重量比は、所望の炭酸ガスの溶解量に基づいて定められる。この炭酸ガス及び溶媒の重量比と炭酸ガスの溶解量との関係については、予め行われる通水試験によって求めておく。   Each flow rate of the solvent and carbon dioxide gas per dissolution tank is the weight of the injected carbon dioxide gas and solvent with respect to the total flow rate determined by the volume of the dissolution tank 4 and the residence time of the carbon dioxide gas and solvent in the dissolution tank 4. It can be determined from the ratio (carbon dioxide weight / solvent weight). At this time, the weight ratio between the carbon dioxide gas and the solvent is determined based on the desired amount of carbon dioxide dissolved. The relationship between the weight ratio of the carbon dioxide gas and the solvent and the dissolved amount of the carbon dioxide gas is determined by a water flow test performed in advance.

後段の実施例で詳述するように、溶解槽4での溶解濃度は、注入される炭酸ガス及び溶媒の重量比(炭酸ガス重量/溶媒重量)に影響する。具体的には、注入される前記重量比が大きくなると、溶解槽4での溶解濃度が大きくなる傾向にあるため、炭酸ガスの溶解を促進させる目的で、炭酸ガス及び溶媒の注入重量比は、前記炭酸ガス溶解濃度の目標値より大きく設定することが好ましい。   As will be described in detail in the following examples, the dissolution concentration in the dissolution tank 4 affects the weight ratio of the injected carbon dioxide gas to the solvent (carbon dioxide weight / solvent weight). Specifically, as the weight ratio to be injected increases, the dissolution concentration in the dissolution tank 4 tends to increase. For the purpose of promoting the dissolution of carbon dioxide, the injection weight ratio of carbon dioxide and solvent is: It is preferable to set it larger than the target value of the carbon dioxide gas dissolution concentration.

《第2形態に係る炭酸ガス溶解水製造装置1A》
次いで、図5に示される第2形態例に係る炭酸ガス溶解水製造装置1Aは、上記第1形態例と対比すると、前記溶解槽4Aの前段に高圧用炭酸ガス細泡化装置7(以下、単に細泡化装置という。)を設置したものである。
<< 1A of carbon dioxide dissolved water manufacturing apparatus which concerns on 2nd form >>
Next, in comparison with the first embodiment, the carbon dioxide dissolved water production apparatus 1A according to the second embodiment shown in FIG. Simply called a fine foaming device).

図6に示される細泡化装置7Aは、海水及び/又は水を溶媒として、これらの溶媒を所定の高流速で流した主流管路30に対して、これを外嵌する炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面、図示例の場合は主流管路30の管路壁面に細孔30a、30a…を形成し、前記主流管路30を流れる溶媒のせん断力によって、液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させるものである。   The fine foaming device 7A shown in FIG. 6 uses a seawater and / or water as a solvent, and a carbon dioxide gas supply pipe that externally fits the mainstream pipe 30 in which these solvents are flowed at a predetermined high flow rate. 31 is formed in the wall surface of the pipe line for partitioning the solvent and carbon dioxide gas, in the illustrated example, the pipe wall face of the main flow pipe line 30, and the pores 30 a, 30 a. The carbon dioxide gas compressed to a liquid or supercritical state is mixed while being made into a fine bubble by the shearing force.

前記細孔30aは、複数配置する場合は、図示されるように、主流管路30の管路壁面に、周方向に均等配置としかつ軸方向に間隔を空けて多段配置で複数設けるのが望ましい。   When a plurality of the pores 30a are arranged, as shown in the figure, it is desirable that the pores 30a are arranged on the wall surface of the mainstream pipe 30 in a uniform manner in the circumferential direction and in a multistage arrangement with an interval in the axial direction. .

前記溶媒の流速、前記細孔30aの孔径は、後述の実施例2−3に従って、下式(1)によって求められるウェーバー数(We)が10以上となるように設定するのが望ましい。但し、細孔からの炭酸ガスの流速は、8×10−2m/s以上であることを条件とする。 The flow rate of the solvent and the pore diameter of the pores 30a are preferably set so that the Weber number (We) obtained by the following formula (1) is 10 or more according to Example 2-3 described later. However, the flow rate of the carbon dioxide gas from the pore is required to be 8 × 10 −2 m / s or more.

Figure 2009233630
なお、前記細泡化された炭酸ガスの径は、概ね0.05〜0.2mm程度で十分であり、特にマイクロレベル(10〜数十μm)までは細泡化する必要はない。
Figure 2009233630
The diameter of the fine carbon dioxide gas is about 0.05 to 0.2 mm, and it is not necessary to make it fine up to the micro level (10 to several tens of μm).

また、図7及び図8に示される細泡化装置7B、7Cは、溶媒を所定の高流速で流した主流管路30の内部に、炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面、図示例の場合は炭酸ガス供給管路31の管路壁面に細孔31a、31a…を形成し、前記主流管路30を流れる溶媒のせん断力によって液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させるものである。   7 and FIG. 8 are provided with a carbon dioxide gas supply line 31 inside a main flow line 30 in which a solvent is allowed to flow at a predetermined high flow rate. .. Are formed in the pipe wall surface for partitioning carbon dioxide gas, in the illustrated example, the pipe wall surface of the carbon dioxide gas supply pipe 31, and the liquid or superfluous is formed by the shear force of the solvent flowing through the main flow pipe 30. Carbon dioxide gas compressed to a critical state is mixed while being made fine.

炭酸ガス溶解水製造装置1Aは、図5に示されるように、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、前記液体又は超臨界状態まで圧縮された炭酸ガスを細泡化して溶媒中に混入させる細泡化装置7,7…と、該細泡化装置7、7…によって細泡化された炭酸ガスが混入された溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする複数の溶解槽4A、4A…とから主に構成される。   As shown in FIG. 5, the carbon dioxide-dissolved water production apparatus 1A includes a carbon dioxide compression apparatus 2 that compresses carbon dioxide to a liquid or supercritical state, and a pump that compresses and conveys a solvent composed of seawater and / or water. 3 and the fine foaming devices 7, 7... For making the liquid or the carbon dioxide gas compressed to the supercritical state into fine bubbles and mixing them in the solvent, and the fine foaming devices 7, 7. A solvent in which carbon dioxide gas is mixed is injected, and is mainly composed of a plurality of dissolution tanks 4A, 4A,.

前記細泡化装置7は、図9に示されるように、各溶解槽4の下部に設置され、溶媒を所定の高流速で流した主流管路30の内部に、炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る炭酸ガス供給管路31の管路壁面に細孔31a、31a…を形成し、前記主流管路30を流れる溶媒のせん断力によって液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させる細泡化装置7が用いられている。   As shown in FIG. 9, the fine foaming device 7 is installed at the lower part of each dissolution tank 4, and a carbon dioxide gas supply line 31 is provided inside a main flow line 30 in which a solvent is flowed at a predetermined high flow rate. Are formed in the wall surface of the carbon dioxide gas supply line 31 that partitions and separates the solvent and the carbon dioxide gas, and is in a liquid or supercritical state by the shearing force of the solvent flowing through the main flow line 30. A fine foaming device 7 is used for mixing carbon dioxide gas compressed to a fine foam.

前記溶解槽4Aは、同図9に示されるように、密閉された容器10の下部に、前記細泡化装置7によって細泡化された炭酸ガスが混入された溶媒が注入される注入口9とが形成されるとともに、前記容器10の上部に前記炭酸ガス溶解水が吐出される吐出口13が形成され、前記容器10内の下方及び上方に夫々、前記容器10内を上下方向に仕切る多孔板14、14がそれぞれ配設され、前記多孔板14、14間に粒状の充填材16が充填されて構成されている。また、前記注入口9にはメッシュ板15が設置されている。   As shown in FIG. 9, the dissolution tank 4 </ b> A has an inlet 9 through which a solvent mixed with carbon dioxide gas that has been made fine by the fine foaming device 7 is injected into the lower part of a sealed container 10. And a discharge port 13 through which the carbon dioxide-dissolved water is discharged is formed in the upper part of the container 10, and a porous partitioning the inside of the container 10 vertically in the lower and upper parts of the container 10, respectively. Plates 14 and 14 are arranged, respectively, and a granular filler 16 is filled between the porous plates 14 and 14. A mesh plate 15 is installed at the inlet 9.

ここで、溶解槽4内の流れについて説明すると、前記注入口9から容器10内に圧送された炭酸ガス及び溶媒は、メッシュ板15から均等に充填材16の充填領域に浸入する。前記充填材16の充填領域においては、充填材16間での流動と相まって溶媒と炭酸ガスとが充分に撹拌されて溶媒に炭酸ガスが溶解されるとともに、上方に流動していく。この作用により、上方側多孔板14に到達したときには、溶媒に炭酸ガスがほぼ溶解された炭酸ガス溶解水が生成され、溶媒の飽和溶解レベルにまで達するようになる。その後、上方側多孔板14から上方ホッパー部18に浸入した炭酸ガス溶解水は、吐出口13から吐出される。   Here, the flow in the dissolution tank 4 will be described. The carbon dioxide gas and the solvent pumped into the container 10 from the injection port 9 enter the filling region of the filler 16 evenly from the mesh plate 15. In the filling region of the filler 16, the solvent and carbon dioxide are sufficiently stirred together with the flow between the fillers 16 to dissolve the carbon dioxide in the solvent and flow upward. By this action, when the upper porous plate 14 is reached, carbon dioxide-dissolved water in which carbon dioxide is substantially dissolved in the solvent is generated, and reaches the saturated dissolution level of the solvent. Thereafter, the carbon dioxide-dissolved water that has entered the upper hopper 18 from the upper porous plate 14 is discharged from the discharge port 13.

前記溶解槽4においては、前記充填材16の充填領域内に、流路を仕切るように多数の開孔が形成された整流板19を1又は複数設けるようにするのが望ましい。前記整流板19を設けることにより、充填材16による炭酸ガスと溶媒との流れが均一に整えられ、両者の接触機会の増大により、前記溶解槽4における炭酸ガスの溶解が向上するようになる。前記溶解槽4における滞留時間と炭酸ガス溶解量とは、飽和濃度レベルまでは概ね比例的関係にあるため、所定の操業条件の下で、目標溶解量に応じた滞留時間となるように装置規模を設定するのが望ましい。   In the dissolution tank 4, it is desirable to provide one or a plurality of rectifying plates 19 in which a large number of openings are formed so as to partition the flow path in the filling region of the filler 16. By providing the rectifying plate 19, the flow of the carbon dioxide gas and the solvent by the filler 16 is made uniform, and the dissolution of the carbon dioxide gas in the dissolution tank 4 is improved by increasing the chance of contact between them. The residence time in the dissolution tank 4 and the carbon dioxide gas dissolution amount are in a generally proportional relationship up to the saturation concentration level. Therefore, the apparatus scale is set so that the residence time according to the target dissolution amount is obtained under predetermined operating conditions. It is desirable to set.

〔他の形態例〕
(1)上記第1形態例及び第2形態例では、重金属汚染物質及び揮発性有機ハロゲン化物汚染物質を対象としたが、本発明法は図15に示されるように、アルカリ性廃液の中和処理のために、炭酸ガス溶解水製造装置で製造された炭酸ガス溶解水を用いることも可能である。
[Other examples]
(1) In the first embodiment and the second embodiment, heavy metal contaminants and volatile organic halide contaminants are targeted. However, as shown in FIG. 15, the method of the present invention neutralizes alkaline waste liquid. Therefore, it is also possible to use carbon dioxide-dissolved water produced by a carbon dioxide-dissolved water production apparatus.

本炭酸ガス溶解水製造装置1による炭酸ガスの溶解状態を実証するため、図16に示される実験装置を用いて炭酸ガスの溶解実験を行った。なお、細泡化装置7は後述の実施例2の細泡化装置有りのケースにおいて設置した。   In order to verify the dissolution state of carbon dioxide gas by the carbon dioxide-dissolved water production apparatus 1, a carbon dioxide dissolution experiment was performed using the experimental apparatus shown in FIG. In addition, the fine foaming apparatus 7 was installed in the case with the fine foaming apparatus of Example 2 mentioned later.

実験装置は、炭酸ガスボンベ30の炭酸ガスを炭酸ガス圧縮装置2によって加圧して溶解槽4に注入するとともに、塩水タンク31の塩水を溶媒圧送ポンプ3によって加圧して溶解槽4に注入し、溶解槽4で炭酸ガスの溶解処理を行い、この炭酸ガス溶解水を分離槽で未溶解炭酸ガスを分離した後の炭酸ガス溶解水をサンプリングする。ここで、溶解槽4の容積は850mlとし、充填材16は、平均粒径が0.18mm(粒度1)、0.63mm(粒度2)、1.32mm(粒度3)の砂状のものを使用した。実験では、温度、圧力、塩水流量、充填材16の粒度及び炭酸ガスと塩水の重量比(炭酸ガス重量/塩水重量)をそれぞれ変化させたとき、サンプリングした炭酸ガス溶解水の炭酸ガス溶解量を測定した。   The experimental apparatus pressurizes the carbon dioxide in the carbon dioxide cylinder 30 by the carbon dioxide compressor 2 and injects it into the dissolution tank 4, and pressurizes the salt water in the salt water tank 31 by the solvent pump 3 and injects it into the dissolution tank 4 for dissolution. Carbon dioxide dissolved in the tank 4 is sampled, and the carbon dioxide dissolved water after the carbon dioxide dissolved water is separated from the undissolved carbon dioxide in the separation tank is sampled. Here, the volume of the dissolution tank 4 was 850 ml, and the filler 16 used was a sand-like material having an average particle size of 0.18 mm (particle size 1), 0.63 mm (particle size 2), and 1.32 mm (particle size 3). In the experiment, when the temperature, pressure, salt water flow rate, particle size of the filler 16 and the weight ratio of carbon dioxide and salt water (carbon dioxide weight / salt water weight) were changed, the amount of carbon dioxide dissolved in the sampled carbon dioxide dissolved water was changed. It was measured.

図17、図18は、各温度における塩水流量及び充填材16の粒度をそれぞれ変化させたときの溶解槽4に注入する炭酸ガス及び塩水の重量比(炭酸ガス重量/塩水重量)と炭酸ガス溶解量との関係を示すグラフである。この結果、温度29℃、33℃のいずれの試験温度においても、炭酸ガスと塩水の重量比を増大させるほど、また充填材16の粒度を小さくするほど炭酸ガス溶解量が大きくなる傾向にある。   17 and 18 show the weight ratio of carbon dioxide and salt water (carbon dioxide weight / salt water weight) and carbon dioxide dissolution when injected into the dissolution tank 4 when the flow rate of salt water at each temperature and the particle size of the filler 16 are changed. It is a graph which shows the relationship with quantity. As a result, at any of the test temperatures of 29 ° C. and 33 ° C., the amount of carbon dioxide dissolved tends to increase as the weight ratio of carbon dioxide to salt water increases and the particle size of the filler 16 decreases.

図19〜図21は、各温度における塩水流量及び圧力をそれぞれ変化させたときの前記重量比と炭酸ガス溶解量との関係を示すグラフである。この結果、前述と同様に、炭酸ガスと塩水の重量比を増大させるほど、炭酸ガス溶解量が増大する傾向にあるが、ある重量比以上では炭酸ガス溶解量がほぼ一定の飽和濃度レベルとなり、本炭酸ガス溶解水製造装置1の有効性が確認された。   19 to 21 are graphs showing the relationship between the weight ratio and the amount of dissolved carbon dioxide gas when the brine flow rate and pressure at each temperature are changed. As a result, as described above, as the weight ratio of carbon dioxide and salt water increases, the amount of dissolved carbon dioxide tends to increase, but at a certain weight ratio or more, the amount of dissolved carbon dioxide becomes a substantially constant saturation concentration level, The effectiveness of the carbon dioxide dissolved water production apparatus 1 was confirmed.

図22は、各圧力における温度と炭酸ガス溶解量との関係を示すグラフである。この結果、25℃〜40℃の範囲の一般的な温度条件においては、炭酸ガス溶解量に大きく影響を及ぼさないことが確認された。   FIG. 22 is a graph showing the relationship between the temperature at each pressure and the amount of carbon dioxide dissolved. As a result, it was confirmed that, under general temperature conditions in the range of 25 ° C. to 40 ° C., the carbon dioxide dissolution amount was not greatly affected.

図23は、塩水と水とで炭酸ガス溶解量の違いを比較したグラフである。試験は、流量を変化させた2ケースについて、塩水と水との各場合について炭酸ガス溶解量を比較した。同図から水を用いた方が炭酸ガスの溶解度が25〜33%程度高いことが判明した。   FIG. 23 is a graph comparing the difference in the amount of carbon dioxide dissolved between salt water and water. In the test, the amount of carbon dioxide dissolved in each case of salt water and water was compared for two cases with different flow rates. From the figure, it was found that the solubility of carbon dioxide gas was higher by about 25 to 33% when water was used.

図24は、各塩水流量における充填材の平均粒径と炭酸ガス溶解量との関係を示すグラフである。この結果、本実施例では、充填材の平均粒径は、平均粒径1.0mm以下とすることにより、炭酸ガスの溶解効率に優れるようになる。   FIG. 24 is a graph showing the relationship between the average particle diameter of the filler and the amount of carbon dioxide dissolved at each brine flow rate. As a result, in this example, the average particle size of the filler is excellent in the dissolution efficiency of carbon dioxide gas by setting the average particle size to 1.0 mm or less.

(実施例2−1)
本実施例2−1では、本炭酸ガス溶解水製造装置1による前記細泡化装置7での溶解効果、前記溶解槽4での溶解効果を定量的に検証するための実験を行った。
(Example 2-1)
In the present Example 2-1, an experiment for quantitatively verifying the dissolution effect in the fine foaming device 7 and the dissolution effect in the dissolution tank 4 by the carbon dioxide dissolved water production device 1 was performed.

実験は、ケース1:溶解槽4の充填材無し及び細泡化装置7無し、ケース2:溶解槽4の充填材無し及び細泡化装置7有り、ケース3:溶解槽4の充填材有り及び細泡化装置7有りの3ケースとし、(1)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約8%、(2)試験圧力:15MPa、試験温度:33℃、(炭酸ガス/塩水)重量比:約8%の2種類について溶解試験を行った。   Experiments were: Case 1: No filler in dissolution tank 4 and no fine foaming device 7, Case 2: No filler in dissolution tank 4 and fine foaming device 7, Case 3: With filler in dissolution tank 4 and (1) Test pressure: 15 MPa, test temperature: 29 ° C., (carbon dioxide / brine water) weight ratio: about 8%, (2) Test pressure: 15 MPa, test temperature: 33 A dissolution test was conducted on two types of C, and (carbon dioxide / salt water) weight ratio: about 8%.

その結果を図25に示す。同図25より、細泡化装置7単独によってもかなり炭酸ガスの溶解が促進されている事、更に細泡化装置7と溶解槽4とを組合せることによって、更に溶解が促進されることが実証できた。   The result is shown in FIG. From FIG. 25, the dissolution of carbon dioxide gas is considerably promoted by the fine foaming device 7 alone, and further, the dissolution is further promoted by combining the fine foaming device 7 and the dissolution tank 4. I was able to prove.

(実施例2−2)
本実施例2−2では、前記細泡化装置7による溶解促進効果の検証実験を行った。
(Example 2-2)
In the present Example 2-2, verification experiment of the melt | dissolution promotion effect by the said bubble reduction apparatus 7 was conducted.

一般に、炭酸ガス溶解量と溶解槽の容器高さZとの間には、下式(2)の関係が成り立つことが判明している。   In general, it has been found that the relationship of the following equation (2) holds between the amount of carbon dioxide dissolved and the container height Z of the dissolution tank.

Figure 2009233630
Figure 2009233630

溶解に要する容器の高さZは、総括容量係数Kaに依存しており、この総括容量係数Kaを溶解効率を表す指標とした。実験は、細泡化装置無しと細泡化装置有りの各ケースについて、(1)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約8%、(2)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約10%、(3)試験圧力:15MPa、試験温度:33℃、(炭酸ガス/塩水)重量比:約8%の3種類について試験を行い、図26〜図28に示されるように、縦軸を総括容量係数Ka(mol/m3s)とし、横軸を水の断面モル流速(mol/(m2・s))とするグラフを得た。同図26〜図28のグラフによれば、水の断面モル流速(mol/(m2・s))の高い領域においては、細泡化装置有りのケースが細泡化装置無しのケースに比べて、総括容量係数Kaが1.5倍以上になることが判明した。 The height Z of the container required for dissolution is dependent on overall capacity coefficient K X a, and the overall capacity coefficient K X a as an index representing the dissolution efficiency. The experiment is for each case without a foaming device and with a foaming device. (1) Test pressure: 15 MPa, Test temperature: 29 ° C, (Carbon dioxide / salt water) Weight ratio: About 8%, (2) Test Pressure: 15 MPa, test temperature: 29 ° C., (carbon dioxide / salt water) weight ratio: about 10%, (3) test pressure: 15 MPa, test temperature: 33 ° C., (carbon dioxide / salt water) weight ratio: about 8% As shown in FIGS. 26 to 28, three types of tests were conducted, and as shown in FIGS. 26 to 28, the vertical axis represents the overall capacity coefficient K x a (mol / m 3 s), and the horizontal axis represents the cross-sectional molar flow velocity of water (mol / (m 2・ The graph of s)) was obtained. According to the graphs of FIGS. 26 to 28, in the region where the cross-sectional molar flow velocity (mol / (m 2 · s)) of water is high, the case with the foaming device is compared with the case without the foaming device. Thus, it has been found that the overall capacity coefficient K x a is 1.5 times or more.

(実施例2−3)
上記実施例2−2の実験結果を下式(1)に示すウェーバー数Weを用いて整理し直して、図29に示されるように、縦軸を総括容量係数比Ka(B)/Ka(NB)[ここに、Ka(B):細泡化装置有りの総括容量係数、Ka(NB):細泡化装置無しの総括容量係数]、横軸をウェーバー係数Weとするグラフを得た。
(Example 2-3)
The experimental results of Example 2-2 were rearranged using the Weber number We shown in the following formula (1), and as shown in FIG. 29, the vertical axis represents the overall capacity coefficient ratio K x a (B) / K x a (NB) [where K x a (B): overall capacity coefficient with a finer, K x a (NB): overall capacity without a finer], the horizontal axis is the Weber coefficient A graph of We was obtained.

同図より、ウェーバー数Weが10以上の領域で細泡化による溶解効率が高いことが判明した。従って、前記細泡化装置7においては、溶媒の流速、細孔30a(31a)の孔径は、ウェーバー数(We)が10以上となるように設定するのが望ましい。但し、細孔からの炭酸ガスの流速は、同実験によれば、8×10−2m/s以上であることを条件とする。 From the figure, it was found that the dissolution efficiency by fine foaming is high in the region where the Weber number We is 10 or more. Therefore, in the fine foaming device 7, the solvent flow rate and the pore diameter of the pores 30a (31a) are preferably set so that the Weber number (We) is 10 or more. However, according to the same experiment, the flow rate of carbon dioxide from the pores is 8 × 10 −2 m / s or more.

本発明の第1形態例に係る汚染物の分離方法のシステム概略図である。It is a system schematic diagram of the separation method of contaminant concerning the 1st example of the present invention. 本発明の第2形態例に係る汚染物の分離方法のシステム概略図である。It is the system schematic of the separation method of the contaminant which concerns on the 2nd form example of this invention. 炭酸ガス溶解水製造装置1を示す概略図である。It is the schematic which shows the carbon dioxide dissolved water manufacturing apparatus. 溶解槽4を示す縦断面図である。2 is a longitudinal sectional view showing a dissolution tank 4. FIG. 炭酸ガス溶解水製造装置1Aを示す概略図である。It is the schematic which shows the carbon dioxide dissolved water manufacturing apparatus 1A. 細泡化装置7Aの縦断面図である。It is a longitudinal cross-sectional view of 7 A of fine foaming apparatuses. 細泡化装置7Bの縦断面図である。It is a longitudinal cross-sectional view of the fine foaming apparatus 7B. 細泡化装置7Cの縦断面図である。It is a longitudinal cross-sectional view of 7 C of fine bubble apparatuses. 溶解槽4Aの縦断面図である。It is a longitudinal cross-sectional view of the dissolution tank 4A. 既往文献によるNacl水溶液のCO分圧と温度・pHとの関係を示すグラフである。Is a graph showing the relationship between the CO 2 partial pressure and the temperature · pH of Nacl aqueous solution by previous literature. 既往文献によるほう素抽出率とpHとの関係を示すグラフである。It is a graph which shows the relationship between the boron extraction rate by past literature, and pH. 既往文献によるヒ素・セレン抽出率とpHとの関係を示すグラフである。It is a graph which shows the relationship between arsenic / selenium extraction rate and pH by past literature. 既往文献による洗浄方法が六価クロムの回収量に与える影響を示すグラフである。It is a graph which shows the influence which the washing | cleaning method by past literature has on the collection amount of hexavalent chromium. 既往文献によるトリクロロエチレン検出量と炭酸水濃度の関係を示すグラフである。It is a graph which shows the relationship between the amount of trichlorethylene detection by previous literature, and carbonated water concentration. 他の形態例に係る高濃度炭酸ガス溶解水の利用方法を示した概略図である。It is the schematic which showed the utilization method of the high concentration carbon dioxide dissolved water based on another form example. 実験装置の概念図である。It is a conceptual diagram of an experimental apparatus. 実施例1における温度29℃における粒度並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio when changing the conditions of the particle size and salt water flow rate in the temperature of 29 degreeC in Example 1, and a carbon dioxide dissolved amount. 実施例1における温度33℃における粒度並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio when changing the conditions of the particle size and salt water flow rate in the temperature of 33 degreeC in Example 1, and a carbon dioxide dissolved amount. 実施例1における温度25℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio when changing the conditions of the pressure in 25 degreeC in Example 1, and the flow rate of salt water, and a carbon dioxide dissolved amount. 実施例1における温度29℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio and the amount of carbon dioxide dissolved when the pressure at a temperature of 29 ° C. and the salt water flow rate in Example 1 are changed. 実施例1における温度33℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio when changing the conditions of the pressure in 33 degreeC in Example 1, and the flow rate of salt water, and a carbon dioxide dissolved amount. 実施例1における温度と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the temperature in Example 1, and a carbon dioxide gas dissolution amount. 実施例1における塩水/水の重量比と炭酸ガス溶解量との関係を示すグラフである。3 is a graph showing the relationship between the salt water / water weight ratio and the amount of carbon dioxide dissolved in Example 1. FIG. 実施例1における充填材の平均粒径と炭酸ガス溶解量との関係を示すグラフである。2 is a graph showing the relationship between the average particle diameter of fillers in Example 1 and the amount of carbon dioxide dissolved. 実施例2ー1における細泡化装置7での溶解効果及び溶解槽4での溶解効果の定量的に検証実験結果を示すグラフである。It is a graph which shows a verification experiment result quantitatively about the melt | dissolution effect in the fine foaming apparatus 7 in Example 2-1, and the melt | dissolution effect in the melt | dissolution tank 4. 実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その1)である。Graph showing the relationship between the overall capacity coefficient K X a water cross section molar flow rate in Example 2-2; FIG. 実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その2)である。Is a graph (part 2) showing the relationship between overall capacity coefficient K X a water cross section molar flow rate in Example 2-2. 実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その3)である。Graph showing the relationship between the overall capacity coefficient K X a water cross section molar flow rate in Example 2-2 is a third. 実施例2−3における総括容量係数比Ka(B)/Ka(NB)とウェーバー数Weとの関係を表すグラフである。Is a graph showing the relationship between the overall capacity coefficient ratio K x a (B) / K x a (NB) and Weber number We in Example 2-3.

符号の説明Explanation of symbols

1…炭酸ガス溶解水製造装置、2…炭酸ガス圧縮装置、3…溶媒圧送ポンプ、4・4A…溶解槽、5…圧力容器、6…重金属処理タンク、7…細泡化装置、8…脱水装置、10…容器、11…炭酸ガス注入口、12…溶媒注入口、13…吐出口、14…多孔板、15…メッシュ板、16…充填材、19…整流板、30…主流管路、31…炭酸ガス供給管路、30a・31a…細孔   DESCRIPTION OF SYMBOLS 1 ... Carbon dioxide dissolved water manufacturing apparatus, 2 ... Carbon dioxide compression apparatus, 3 ... Solvent pressure feed pump, 4 * 4A ... Dissolution tank, 5 ... Pressure vessel, 6 ... Heavy metal processing tank, 7 ... Fine foaming apparatus, 8 ... Dehydration Device: 10 ... Container, 11 ... Carbon dioxide gas inlet, 12 ... Solvent inlet, 13 ... Discharge port, 14 ... Perforated plate, 15 ... Mesh plate, 16 ... Filler, 19 ... Rectifier plate, 30 ... Main flow line, 31 ... Carbon dioxide gas supply line, 30a / 31a ... Fine pore

Claims (5)

圧力容器内に重金属によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器内に供給し、前記重金属汚染物質と撹拌混合する第1ステップと、
前記重金属汚染物質の脱水処理を行い、処理水を重金属処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンクに供給する第2ステップと、
前記重金属処理タンクにおいて、重金属用凝集剤を添加した後、脱水処理によって重金属を分離回収する第3ステップからなることを特徴とする汚染物の分離方法。
A substance contaminated with heavy metal is introduced into the pressure vessel, carbon dioxide gas is dissolved at a high concentration, and carbon dioxide-dissolved water maintained at a high pressure is supplied into the pressure vessel, and the heavy metal contaminant is stirred. A first step of mixing;
A state in which the heavy metal pollutant is dehydrated and treated water is supplied to the heavy metal treatment tank, and the carbon dioxide-dissolved water in the pressure vessel is extracted and released to atmospheric pressure to release a predetermined amount of carbon dioxide. A second step of supplying the heavy metal treatment tank at
In the heavy metal treatment tank, the third step of separating and recovering heavy metal by dehydration after adding a heavy metal flocculant is provided.
圧力容器内に揮発性有機ハロゲン化物によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器内に供給し、前記揮発性有機ハロゲン化物汚染物質と撹拌混合する第1ステップと、
前記揮発性有機ハロゲン化物の脱水処理を行い、処理水を揮発性有機ハロゲン化物処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記揮発性有機ハロゲン化物処理タンクに供給する第2ステップと、
前記揮発性有機ハロゲン化物処理タンクにおいて、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する第3ステップからなることを特徴とする汚染物の分離方法。
A substance contaminated with volatile organic halide is introduced into the pressure vessel, and carbon dioxide gas is dissolved at a high concentration. Carbon dioxide-dissolved water maintained at a high pressure is supplied into the pressure vessel, and the volatilization is performed. A first step of stirring and mixing with the volatile organic halide contaminant;
The volatile organic halide is dehydrated and treated water is supplied to the volatile organic halide treatment tank, and the carbon dioxide-dissolved water in the pressure vessel is withdrawn and opened to atmospheric pressure to release a predetermined amount of carbonic acid. A second step of supplying gas to the volatile organic halide treatment tank in a released state;
A method for separating contaminants, comprising a third step of separating and removing volatile organic halides by aeration or adsorption treatment in the volatile organic halide treatment tank.
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽とから構成され、前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガス溶解水製造装置と、
重金属汚染物質が投入されるとともに、攪拌機が備えられ、前記炭酸ガス溶解水製造装置によって製造された炭酸ガスが圧力状態を維持したまま供給される1又は複数の圧力容器と、
前記圧力容器から取り出した重金属汚染物質の脱水処理を行う第1脱水処理装置と、
前記脱水処理装置の処理水が供給されるとともに、前記圧力容器から抜き出され、大気圧開放された炭酸ガス溶解水が供給され、重金属用凝集剤が添加される重金属処理タンクと、
前記重金属処理タンクの被処理物を脱水処理し、重金属を分離回収する第2脱水処理装置とからなることを特徴とする請求項1記載の汚染物の分離方法のための設備。
A carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide gas and solvent are injected, and the solvent is It is composed of one or a plurality of dissolution tanks that dissolve carbon dioxide to form carbon dioxide-dissolved water, and the dissolution tank is injected with the carbon dioxide gas sent from the carbon dioxide compression device at the bottom of a sealed container. A carbon dioxide gas injection port and a solvent injection port into which the solvent sent from the solvent pressure pump is injected, and a discharge port through which the carbon dioxide dissolved water is discharged at the top of the container are formed, A carbon dioxide-dissolved water production apparatus configured by filling the container with a granular filler;
One or a plurality of pressure vessels that are charged with heavy metal contaminants and that are equipped with a stirrer and that are supplied with carbon dioxide gas produced by the carbon dioxide-dissolved water production device maintained in a pressure state;
A first dehydration apparatus for dehydrating heavy metal contaminants taken out of the pressure vessel;
A heavy metal treatment tank to which treated water of the dehydration treatment apparatus is supplied, is extracted from the pressure vessel, is supplied with carbon dioxide-dissolved water that has been released to atmospheric pressure, and is added with a flocculant for heavy metals,
2. The facility for separating contaminants according to claim 1, further comprising a second dehydrating apparatus for dehydrating the object to be processed in the heavy metal processing tank and separating and collecting the heavy metal.
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽とから構成され、前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガス溶解水製造装置と、
揮発性有機ハロゲン化物汚染物質が投入されるとともに、攪拌機が備えられ、前記炭酸ガス溶解水製造装置によって製造された炭酸ガスが圧力状態を維持したまま供給される1又は複数の圧力容器と、
前記圧力容器から取り出した揮発性有機ハロゲン化物汚染物質の脱水処理を行う脱水処理装置と、
前記脱水処理装置の処理水が供給されるとともに、前記圧力容器から抜き出され、大気圧開放された炭酸ガス溶解水が供給され、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する揮発性有機ハロゲン化物処理タンクとからなることを特徴とする請求項2記載の汚染物の分離方法のための設備。
A carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide gas and solvent are injected, and the solvent is It is composed of one or a plurality of dissolution tanks that dissolve carbon dioxide to form carbon dioxide-dissolved water, and the dissolution tank is injected with the carbon dioxide gas sent from the carbon dioxide compression device at the bottom of a sealed container. A carbon dioxide gas injection port and a solvent injection port into which the solvent sent from the solvent pressure pump is injected, and a discharge port through which the carbon dioxide dissolved water is discharged at the top of the container are formed, A carbon dioxide-dissolved water production apparatus configured by filling the container with a granular filler;
Volatile organic halide contaminants are charged, and equipped with a stirrer, and one or more pressure vessels to which carbon dioxide produced by the carbon dioxide-dissolved water production apparatus is supplied while maintaining a pressure state;
A dehydration apparatus for dehydrating volatile organic halide contaminants removed from the pressure vessel;
The volatile organic halide is separated and removed by aeration or adsorption treatment by supplying the treated water of the dehydration apparatus and the carbon dioxide dissolved water extracted from the pressure vessel and released to atmospheric pressure. 3. The facility for separating contaminants according to claim 2, comprising an organic halide treatment tank.
前記炭酸ガス溶解水製造装置に代えて、
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプとを設け、前記溶媒を所定の高流速で流した主流管路の内部に前記炭酸ガスの供給管路を配設するか、前記主流管路を外嵌する前記炭酸ガスの供給管路を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面に細孔を形成し、前記主流管路を流れる溶媒のせん断力によって前記炭酸ガスを細泡化しながら混入させる高圧用炭酸ガス細泡化装置を設置し、前記高圧用炭酸ガス細泡化装置の後段に設置された、密閉された容器の下部に、前記細泡化された炭酸ガスが混入された溶媒の注入口が形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された1又は複数の溶解槽とから構成された炭酸ガス溶解水製造装置を用いる請求項3、4いずれかに記載の汚染物の分離方法のための設備。
Instead of the carbon dioxide dissolved water production device,
A carbon dioxide gas compressing device that compresses carbon dioxide gas to a liquid or supercritical state, and a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and a main flow line that flows the solvent at a predetermined high flow rate. The carbon dioxide gas supply pipe is disposed inside, or the carbon dioxide gas supply pipe that externally fits the main flow pipe is disposed, and pores are formed in the wall surface of the pipe that partitions the solvent and carbon dioxide. A high-pressure carbon dioxide gas foaming device is formed and mixed while the carbon dioxide gas is made fine by the shearing force of the solvent flowing through the main flow line, and is installed at the subsequent stage of the high-pressure carbon dioxide gas foaming device. In addition, an inlet for the solvent mixed with the fine carbon dioxide gas is formed at the bottom of the sealed container, and an outlet for discharging the carbon dioxide-dissolved water is formed at the top of the container. The container is filled with a granular filler. Equipment for the method of separating contaminants according to any one of claims 3 and 4 using the configured one or more dissolution tank and carbonic gas dissolved water generator consists.
JP2008086165A 2008-03-28 2008-03-28 Separating method for polluted substance and facility therefor Pending JP2009233630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086165A JP2009233630A (en) 2008-03-28 2008-03-28 Separating method for polluted substance and facility therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086165A JP2009233630A (en) 2008-03-28 2008-03-28 Separating method for polluted substance and facility therefor

Publications (1)

Publication Number Publication Date
JP2009233630A true JP2009233630A (en) 2009-10-15

Family

ID=41248274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086165A Pending JP2009233630A (en) 2008-03-28 2008-03-28 Separating method for polluted substance and facility therefor

Country Status (1)

Country Link
JP (1) JP2009233630A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075880A (en) * 2008-09-26 2010-04-08 Nippon Poly-Glu Co Ltd Method for purification of arsenic-containing water to be treated
JP2013257179A (en) * 2012-06-11 2013-12-26 So Innovation Co Ltd Method for processing incineration ash including radioactive material
JP2014046223A (en) * 2012-08-29 2014-03-17 Kumagai Gumi Co Ltd Decontamination method
CN110125156A (en) * 2018-02-08 2019-08-16 天津大学 A kind of method of carbon dioxide filling technique processing heavy metal in soil pollution
CN116556909A (en) * 2023-04-19 2023-08-08 中国石油天然气股份有限公司 Device and method for efficient separation and cyclic reinjection utilization of carbon dioxide flooding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554003A (en) * 1978-10-13 1980-04-21 Hag Ag Extracting treatment method of vegetable and animal material
US5290528A (en) * 1992-02-12 1994-03-01 Texas Romec, Inc. Process for removing arsenic from soil
JPH10128396A (en) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd Treatment of arsenic-containing sludge
EP1029604A2 (en) * 1999-02-11 2000-08-23 Forschungszentrum Karlsruhe GmbH Method for removing heavy metals from soils
JP2002239525A (en) * 2001-02-16 2002-08-27 Mitsui Eng & Shipbuild Co Ltd Removing method of substance in soil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554003A (en) * 1978-10-13 1980-04-21 Hag Ag Extracting treatment method of vegetable and animal material
US5290528A (en) * 1992-02-12 1994-03-01 Texas Romec, Inc. Process for removing arsenic from soil
JPH10128396A (en) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd Treatment of arsenic-containing sludge
EP1029604A2 (en) * 1999-02-11 2000-08-23 Forschungszentrum Karlsruhe GmbH Method for removing heavy metals from soils
JP2002239525A (en) * 2001-02-16 2002-08-27 Mitsui Eng & Shipbuild Co Ltd Removing method of substance in soil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075880A (en) * 2008-09-26 2010-04-08 Nippon Poly-Glu Co Ltd Method for purification of arsenic-containing water to be treated
JP2013257179A (en) * 2012-06-11 2013-12-26 So Innovation Co Ltd Method for processing incineration ash including radioactive material
JP2014046223A (en) * 2012-08-29 2014-03-17 Kumagai Gumi Co Ltd Decontamination method
CN110125156A (en) * 2018-02-08 2019-08-16 天津大学 A kind of method of carbon dioxide filling technique processing heavy metal in soil pollution
CN116556909A (en) * 2023-04-19 2023-08-08 中国石油天然气股份有限公司 Device and method for efficient separation and cyclic reinjection utilization of carbon dioxide flooding
CN116556909B (en) * 2023-04-19 2024-05-28 中国石油天然气股份有限公司 Device and method for efficient separation and cyclic reinjection utilization of carbon dioxide flooding

Similar Documents

Publication Publication Date Title
US11311921B2 (en) Ultrafine bubble cleaning method using ultrafine bubble-containing liquid, apparatus therefor, and dissolved air floatation apparatus
CN101318748B (en) Process for centralized processing of waste liquor of oil-gas field drill
CN109399770A (en) The method of the disposal of industrial wastes
US20140014584A1 (en) Wastewater purification system and method
KR101564853B1 (en) Electro wet separator and treatment method of construction waste by it
CN1323033C (en) Process and apparatus for oil eliminating by pressure dissolved air floatation with nitrogen as gaseous source
JP2009233630A (en) Separating method for polluted substance and facility therefor
JP6284156B2 (en) Pollutant separation and volume reduction system and method
CN101786769A (en) Treatment process for sewage in oil field
CN105236682B (en) Processing method and processing device containing oil-polluted water
KR20120125323A (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
KR20180016436A (en) Method and device for purifying domestic or industrial water
CN109019985A (en) A kind of processing method of oil-containing heavy metal wastewater thereby industry
JP6230243B2 (en) Method and apparatus for removing inorganic fine particles from contaminants containing inorganic fine particles
RU2325330C2 (en) Method of oilfield waters preparation for oilfield layer pressure support system and device for its implementation
KR101961256B1 (en) purification apparatus for contaminated water of shale gas
CN109937191A (en) Method and apparatus for handling the output water from oil field and gas field
CN203991657U (en) Movable leaching treatment device for heavy metal contaminated soil
JP2008173572A (en) Turbid water treatment method
JP6425170B2 (en) Muddy water treatment system and muddy water treatment method
CN208218448U (en) A kind of spraying waste water air-floating processing apparatus
RU2524601C1 (en) Apparatus for reagentless purification and disinfection of water
CN106430707A (en) Skid-mounted system used for treating oily sewage
CN204675944U (en) Mobile skid-mounted advanced sewage treatment system
US20170203236A1 (en) Method of Treating Flowback Fluid from a Well

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424