JPS6295500A - Method of treating decanting water - Google Patents

Method of treating decanting water

Info

Publication number
JPS6295500A
JPS6295500A JP23522085A JP23522085A JPS6295500A JP S6295500 A JPS6295500 A JP S6295500A JP 23522085 A JP23522085 A JP 23522085A JP 23522085 A JP23522085 A JP 23522085A JP S6295500 A JPS6295500 A JP S6295500A
Authority
JP
Japan
Prior art keywords
heat exchanger
water
backwash water
auxiliary
decant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23522085A
Other languages
Japanese (ja)
Inventor
紀昭 武士
愼 玉田
弘行 土屋
水野 広子
菊地 恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Kyowa Engineering Co Ltd
Original Assignee
Hitachi Kyowa Kogyo Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kyowa Kogyo Ltd, Hitachi Ltd filed Critical Hitachi Kyowa Kogyo Ltd
Priority to JP23522085A priority Critical patent/JPS6295500A/en
Publication of JPS6295500A publication Critical patent/JPS6295500A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、沈降性の悪い微少粒径のクラッド及び水酸化
合物のクラッドの沈降性を向上させるのに好適な処理方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a treatment method suitable for improving the settling properties of microparticle-sized cruds with poor settling properties and hydroxide compound cruds.

〔発明の背景〕[Background of the invention]

従来は、濾過器として助剤を用いたフィルターを用いて
、所定値以上の差圧の生じた場合には、助剤も含め貯蔵
タンクへ逆洗した排出し、さらに貯蔵タンク中の上澄水
は、固形分を沈降させてデカントして、処理して来た。
Conventionally, a filter using an auxiliary agent was used as a filter, and when a differential pressure of more than a predetermined value occurred, the auxiliary agent was backwashed and discharged to a storage tank, and the supernatant water in the storage tank was drained. , the solids were settled, decanted, and treated.

これに対し、2次廃棄物発生量低減の観点より、助剤を
用いない非助剤型フィルターが広く用いられる様になっ
て来た。
On the other hand, from the viewpoint of reducing the amount of secondary waste generated, non-auxiliary filters that do not use any additives have come to be widely used.

非助剤型フィルターの逆洗水には、フィルターでトラッ
プされたクラッド等の固形分が同伴しているが、微粒径
ないしは水酸化化合物のものは沈降性が悪く、デカント
処理を適用することができず、タンクの有効利用が計れ
ない。助剤を用いている場合には、沈降性の悪い微粒子
ないしは、水酸化化合物は、助剤には付着しているため
、沈降性不良の問題は生じなかった。
The backwash water of non-auxiliary filters contains solids such as crud trapped by the filter, but those with fine particle size or hydroxide compounds have poor settling properties and must be decanted. It is not possible to measure the effective use of the tank. When an auxiliary agent was used, fine particles or hydroxide compounds with poor sedimentation properties were attached to the auxiliary agent, so that the problem of poor sedimentation did not occur.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、非助剤型フィルターよりの逆洗水の処
理方法において、逆洗水中に金回される。
An object of the present invention is to provide a method for treating backwash water from a non-auxiliary filter, in which gold is recycled into backwash water.

水酸化化合物を、酸化物に変えるとともに、凝集させて
、沈降性を向上させる処理方法及び処理設備を提供する
ことにある。
It is an object of the present invention to provide a treatment method and treatment equipment for converting a hydroxide compound into an oxide and flocculating it to improve sedimentation properties.

(発明の概要〕 原子力発電所等より発生する廃液の処理において、従来
用いられて来た助剤(KCブロック、粉状樹脂等)型に
代わって助剤を用いない非助剤型のフィルターが広く用
いられつつある。これは。
(Summary of the invention) A non-auxiliary type filter that does not use an auxiliary agent is provided to replace the auxiliary agent type (KC block, powdered resin, etc.) that has been conventionally used in the treatment of waste liquid generated from nuclear power plants, etc. This is becoming widely used.

助剤型フィルターでは助剤が2次廃棄物となり廃棄物量
が増大するためである。非助剤型フィルターとしては、
中空子型フィルター、メンブレンフィルターとしては、
中空子型フィルターメンブレンフィルター等が用いられ
ている。
This is because in an auxiliary agent type filter, the auxiliary agent becomes secondary waste and the amount of waste increases. As a non-auxiliary filter,
As hollow cell filters and membrane filters,
Hollow cell filter membrane filters and the like are used.

捕捉される固形物の中には、水酸化鉄の様に沈降性の悪
いコロイド状も物質も含まれている。
The captured solids include colloidal substances that have poor sedimentation properties, such as iron hydroxide.

このため、非助剤型フィルターの逆洗水受タンクへ受入
れた、逆洗水は、沈降性が悪いため上澄水のデカンテー
ションを行なうことが難しく、タンクの有効活用が難し
いという問題点を有している。従来の助剤型フィルター
では、コロイド状の物質は助剤に付着するため、沈降性
を阻害する様な事はなく、大きな問題とはならなかった
For this reason, the backwash water received into the backwash water receiving tank of the non-auxiliary filter has poor sedimentation properties, making it difficult to decant the supernatant water, making it difficult to make effective use of the tank. are doing. In conventional auxiliary type filters, colloidal substances adhere to the auxiliary agent, so they do not interfere with sedimentation and do not pose a major problem.

これに対する対策としては、酸化剤を用いて水酸化物を
、酸化物に変える方法と熱的に変態をおこさせて、酸化
物ないしは、無水物とする方法が有効である。
Effective countermeasures against this problem include a method of converting the hydroxide into an oxide using an oxidizing agent, and a method of thermally transforming the hydroxide into an oxide or anhydride.

これは、水酸化鉄は、酸化剤により容易に酸化され、安
定な水酸鉄となるためである。
This is because iron hydroxide is easily oxidized by an oxidizing agent and becomes stable iron hydroxide.

酸化剤としては、各種酸化剤が適用可能であるが、タン
ク材質の保護等の観点より、過酸化水素(HzOz)が
適する。
Various oxidizing agents can be used as the oxidizing agent, but hydrogen peroxide (HzOz) is suitable from the viewpoint of protecting the tank material.

また、熱的処理方式としては、60’〜100℃の温度
に加熱して、酸化物に変える方法が有効である。
Moreover, as a thermal treatment method, a method of heating to a temperature of 60' to 100° C. to convert it into an oxide is effective.

〔発明の実施例〕[Embodiments of the invention]

〈実施例2〉 非助剤型フィルターの逆洗水は、逆洗水受タンク4に全
量受は入れられ、静置される。固形分は、タンク下部に
沈降するが、水酸化鉄等のコロイド状の物質は、沈降せ
ず、タンク上部に、浮遊する。
<Example 2> All of the backwash water from the non-auxiliary filter is put into the backwash water receiving tank 4 and left standing. Solids settle at the bottom of the tank, but colloidal substances such as iron hydroxide do not settle and float at the top of the tank.

逆洗水受タンクの水面より下に位置するデカントバルブ
を開け、水酸化鉄を含有する上澄水を再生熱交換基2を
通して、熱交換器3で60℃〜100℃まで加熱すると
、水酸化鉄は、無水物ないしは、酸化鉄となる。
When the decant valve located below the water level of the backwash water receiving tank is opened and the supernatant water containing iron hydroxide is passed through the regeneration heat exchanger 2 and heated to 60°C to 100°C in the heat exchanger 3, iron hydroxide is extracted. becomes anhydride or iron oxide.

熱交で加熱された上澄水は、再生熱交換器2で冷却され
て、逆洗水受タンクへ戻される。熱交換器3と再生熱交
換器を用いることにより熱効率の向上がみることができ
る。
The supernatant water heated by the heat exchanger is cooled by the regenerative heat exchanger 2 and returned to the backwash water receiving tank. Thermal efficiency can be improved by using the heat exchanger 3 and the regenerative heat exchanger.

所定時間上記運転を続けて静置した後、上澄水の放射能
濃度が、所定値以上となったら上澄水をデカントライン
よりデカントする。
After the above operation is continued for a predetermined period of time and the radioactivity concentration of the supernatant water reaches a predetermined value or more, the supernatant water is decanted from the decant line.

第2図に水酸化鉄と酸化鉄粒子の沈降速度を示すが、水
酸化鉄は、コロイド状のため沈降性が極めて遅いことが
分る。
Figure 2 shows the sedimentation rates of iron hydroxide and iron oxide particles, and it can be seen that iron hydroxide has an extremely slow sedimentation rate because it is colloidal.

〈実施例2〉 第3図にて実施例を説明する。<Example 2> An example will be explained with reference to FIG.

逆洗水受タンク中の逆洗水を熱交換器3ないしはヒータ
(図示せず)にて加熱して、60℃〜100℃まで加温
して、水酸化鉄を酸化鉄へ変えて沈降性を向上させる。
The backwash water in the backwash water receiving tank is heated with a heat exchanger 3 or a heater (not shown) to a temperature of 60°C to 100°C, converting iron hydroxide to iron oxide and causing sedimentation. improve.

上述温度にて、所定時間保持後、上澄水の固形分濃度が
一定値以上になったらデカントラインよりデカント処理
を行なう。
After maintaining the above-mentioned temperature for a predetermined time, when the solid content concentration of the supernatant water reaches a certain value or more, the supernatant water is decanted from the decant line.

〔発明の効果〕〔Effect of the invention〕

本発明による効果を下記に示す。 The effects of the present invention are shown below.

■水酸化鉄の混入した非助剤フィルターの逆洗水の沈降
分離性能を従来の1/10から1/1000へと約10
0倍向上させることができる。
■ Sedimentation separation performance of backwash water of non-auxiliary filter mixed with iron hydroxide has been reduced from 1/10 to 1/1000 of the conventional one.
It can be improved by 0 times.

■再生熱交換器及び加熱源としての熱交換器を用いるこ
とにより、熱効率を大幅に向上させることができる。
■By using a regenerative heat exchanger and a heat exchanger as a heating source, thermal efficiency can be significantly improved.

【図面の簡単な説明】 第1図は、デカント処理システム概要図、第2図は、水
酸化鉄及び酸化鉄の沈降特性図、第3図は、デカント処
理システム概要図である。 1・・・デカントバルブ、2・・・再生熱交換器、3・
・・熱交換器、4・・・逆洗水受タンク。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a decant treatment system, FIG. 2 is a diagram of sedimentation characteristics of iron hydroxide and iron oxide, and FIG. 3 is a schematic diagram of a decant treatment system. 1... Decant valve, 2... Regeneration heat exchanger, 3...
... Heat exchanger, 4... Backwash water receiving tank.

Claims (1)

【特許請求の範囲】 1、原子力発電所等より発生する、非助剤型フィルター
の逆洗水の処理方法において、逆洗水受タンク中の上澄
水を、60℃〜100℃に加熱する手段を有することを
特徴とするデカント水処理方法。 2、特許請求の範囲第1項において、上澄水を60℃〜
100℃に加熱する手段として、再生型熱交換器と加熱
用熱交換器を有することを特徴とするデカント水処理方
法。
[Claims] 1. In a method for treating backwash water of a non-auxiliary filter generated from a nuclear power plant, etc., means for heating supernatant water in a backwash water receiving tank to 60°C to 100°C. A decant water treatment method comprising: 2. In claim 1, the supernatant water is heated to 60°C or more.
A decant water treatment method comprising a regenerative heat exchanger and a heating heat exchanger as means for heating to 100°C.
JP23522085A 1985-10-23 1985-10-23 Method of treating decanting water Pending JPS6295500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23522085A JPS6295500A (en) 1985-10-23 1985-10-23 Method of treating decanting water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23522085A JPS6295500A (en) 1985-10-23 1985-10-23 Method of treating decanting water

Publications (1)

Publication Number Publication Date
JPS6295500A true JPS6295500A (en) 1987-05-01

Family

ID=16982859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23522085A Pending JPS6295500A (en) 1985-10-23 1985-10-23 Method of treating decanting water

Country Status (1)

Country Link
JP (1) JPS6295500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032155A (en) * 2010-07-28 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Radioactive waste treatment method and apparatus therefor
JP2012037270A (en) * 2010-08-04 2012-02-23 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032155A (en) * 2010-07-28 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Radioactive waste treatment method and apparatus therefor
JP2012037270A (en) * 2010-08-04 2012-02-23 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid processor

Similar Documents

Publication Publication Date Title
CN103151088A (en) Composite flocculating agent for processing radioactive elements iron, cobalt, manganese and silver in nuclear waste water and processing method
EP0307144B1 (en) Method for decreasing colloidal corrosion product deposition rate
EP0198717A2 (en) Radioactive waste treatment method
JPS6295500A (en) Method of treating decanting water
JP2925413B2 (en) Treatment of radioactive liquid waste
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JPH08327789A (en) Equipment for radioactive waste processing system
JPS599598A (en) Method of making bulk sludge
JPS61265600A (en) Radioactive waste treating facility
JPS61188864A (en) Purifying device for cooling water of fuel cell
US3137634A (en) Nuclear reactor operation
JPS60260000A (en) Radioactive nuclide and heavy-metal capture material
JPS5952576A (en) Mixed-bed desalinator for condensed water
JPS6159794B2 (en)
GB2073478A (en) Treating radioactive effluent
JPS62110195A (en) Method of processing radioactive concentrated waste liquor
JPS61165696A (en) Method of treating radioactive waste
JPS6117994A (en) Agglomerating sedimenting treating method of radioactive waste liquor
JPS62185200A (en) Radioactive high-conductivity waste-liquor processing facility
Lacy et al. INDUSTRIAL WASTES—Physical Chemical Properties of Nuclear Power Reactor Waste Solutions
BG60490B1 (en) Method for treatment of primary cooling device of reactors with water pressure
Canfield et al. Mother nature as sludge thickener
JPS60194397A (en) Filtering desalting device
JPS6076696A (en) Condensate and feedwater system purifying method of nuclear power plant
JPS6189594A (en) Method of purifying reactor water