JPH08327789A - Equipment for radioactive waste processing system - Google Patents

Equipment for radioactive waste processing system

Info

Publication number
JPH08327789A
JPH08327789A JP7134961A JP13496195A JPH08327789A JP H08327789 A JPH08327789 A JP H08327789A JP 7134961 A JP7134961 A JP 7134961A JP 13496195 A JP13496195 A JP 13496195A JP H08327789 A JPH08327789 A JP H08327789A
Authority
JP
Japan
Prior art keywords
backwash water
tank
separation tank
condensate
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7134961A
Other languages
Japanese (ja)
Inventor
Taketoshi Sato
武俊 佐藤
Koichi Kinoshita
浩一 木下
Katsumi Nagasawa
克己 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP7134961A priority Critical patent/JPH08327789A/en
Publication of JPH08327789A publication Critical patent/JPH08327789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE: To prevent crud transportation to a low conductivity waste liquid system or a high conductivity waste liquid system by facilitating the deposition of crud in a deposition separation tank. CONSTITUTION: In a backwash water receiver tank 7 for receiving backwash water of a condensate filtering device 4, a heating heater 14, a sparger 15 for gas bubbling and a stirrer 17 are provided. In a deposition separation tank 8 for receiving backwash water of a condensate demineralizing device 5, a sparger 15 for babbling is provided. To the backwash water receiver tank 7 and the deposition separation tank 8, an oxidizer (aggregation agent) injection device 16 is connected. To the sparger 15 for babbling, the pipe of compressor air system for instrumentation (JA) or site compressor air system (SA) is connected. The backwash water processed in the backwash water receiver tank 7 is sent into the deposition separation tank 8. Oxidizer or aggregation agent is injected into the backwash water receiver tank 7 or the deposition separation tank 8 to forcibly deposit the crud by babbling and to prevent the transportation of the crud.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力発電所の放射性廃
棄物処理系に設置されている復水ろ過装置および復水脱
塩装置の処理液中のクラッドを沈降し易く構成した放射
性廃棄物処理(以下、R/Wと記す)系設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of radioactive waste in which the clad in the treatment liquid of the condensate filter and condensate demineralizer installed in the radioactive waste treatment system of a nuclear power plant is easily settled. (Hereinafter, referred to as R / W) system equipment.

【0002】[0002]

【従来の技術】沸騰水型原子力発電所では図3に示した
ように原子炉圧力容器1内で発生した蒸発をタービン2
へ送って発電機を駆動し、タービン2で仕事を終えた蒸
気を復水器3で凝縮して復水し、復水を浄化して給水と
し原子炉圧力容器1に戻している。
2. Description of the Related Art In a boiling water nuclear power plant, as shown in FIG.
The steam that has been sent to the turbine 2 to drive the generator is condensed in the condenser 3 to condense the steam, and the condensed water is purified and supplied to the reactor pressure vessel 1 as water.

【0003】この際、復水ろ過装置(以下、CFと記
す)4、復水脱塩装置(以下、CDと記す)5、原子炉
冷却材浄化系(以下、CUW(F/D)と記す)6、燃
料プール浄化系(以下、FPC(F/D)(図示せず)
と記す)およびR/W系の低電導度廃液系ろ過器(以
下、LCW−HFFと記す)10等の水処理設備から発生
するクラッドおよびイオン交換樹脂を沈降分離槽8に移
送し、静置することによりクラッド等を沈降させたのち
上澄み液(デカント)を低電導度廃液系収集タンク9ま
たは高電導度廃液系収集タンク11に移送している。
At this time, a condensate filter (hereinafter referred to as CF) 4, a condensate demineralizer (hereinafter referred to as CD) 5, a reactor coolant purification system (hereinafter referred to as CUW (F / D)) ) 6, fuel pool purification system (hereinafter, FPC (F / D) (not shown))
And R / W type low conductivity waste liquid type filter (hereinafter referred to as LCW-HFF) 10 and other water treatment equipment clad and ion exchange resin are transferred to a settling separation tank 8 and allowed to stand. After the clad or the like is settled by doing so, the supernatant liquid (decant) is transferred to the low-conductivity waste liquid system collection tank 9 or the high-conductivity waste liquid system collection tank 11.

【0004】図3により従来のR/W系設備を更に詳し
く説明する。図3において、原子炉圧力容器1内で発生
した蒸気はタービン2に送られてタービン2を回転し、
タービン2で仕事をした蒸気はホットウェル(復水器)
3で凝縮されて復水となる。復水はCF4およびCD5
で浄化された後、再び原子炉圧力容器1へと供給され
る。
The conventional R / W system equipment will be described in more detail with reference to FIG. In FIG. 3, the steam generated in the reactor pressure vessel 1 is sent to the turbine 2 to rotate the turbine 2,
The steam that worked in the turbine 2 is a hot well (condenser)
It is condensed in 3 and becomes condensed water. Condensate is CF4 and CD5
After being purified in (1), it is supplied to the reactor pressure vessel 1 again.

【0005】また、原子炉圧力容器1からはCUW(F
/D)6へと接続するラインが設けてあり、原子炉圧力
容器1内の水は一部原子炉冷却材浄化系ろ過脱塩装置に
導かれ浄化された後、再び原子炉格納容器1内へと戻さ
れる。CF4は逆洗水受タンク7に接続し、逆洗水受タ
ンク7は沈降分離槽8に接続している。CD5,CUW
(F/D)6およびR/W系のLCW−HFF10は沈降
分離槽8へと接続されている。
From the reactor pressure vessel 1, CUW (F
/ D) 6 is connected to the reactor pressure vessel 1 and the water in the reactor pressure vessel 1 is partially introduced into the reactor coolant purification system filter desalting device to be purified, and then again in the reactor containment vessel 1. Returned to. The CF4 is connected to the backwash water receiving tank 7, and the backwash water receiving tank 7 is connected to the sedimentation separation tank 8. CD5, CUW
The (F / D) 6 and the R / W system LCW-HFF 10 are connected to the sedimentation separation tank 8.

【0006】CF4の逆洗水は一旦逆洗水受タンク7に
移送された後、沈降分離槽8へと移送される。他の水処
理設備の逆洗水は直接沈降分離槽8に移送される。ただ
し、プラントによりCF4以外の水処理設備にも逆洗水
受タンクが設置されている場合もある。
The backwash water of CF4 is once transferred to the backwash water receiving tank 7 and then to the sedimentation separation tank 8. Backwash water of other water treatment equipment is directly transferred to the sedimentation separation tank 8. However, depending on the plant, the backwash water receiving tank may be installed in water treatment equipment other than CF4.

【0007】沈降分離槽8では各水処理設備から発生す
るクラッドおよびイオン交換樹脂を逆洗水とともに受け
入れ、静置することによりクラッド等を沈降させ、その
のち上澄み液をR/Wタンク(低電導度廃液系収集タン
ク9または高電導度廃液収集タンク11)に移送してい
る。
In the settling / separation tank 8, the clad and ion-exchange resin generated from each water treatment facility are received together with the backwash water, and the clad and the like are allowed to settle by allowing them to stand, after which the supernatant liquid is stored in an R / W tank (low conductivity). Waste liquid collection tank 9 or high conductivity waste liquid collection tank 11).

【0008】低電導度廃液系では低電導度廃液系タンク
9からLCW−HFF10に配管が接続されており、低電
導度廃液系収集タンク9内の廃液はLCW−HFF10に
よりろ過処理される。低電導度廃液はその後図示してな
い脱塩装置で脱塩処理された後、復水貯蔵タンクへと送
られプラント内で利用される。
In the low-conductivity waste liquid system, a pipe is connected from the low-conductivity waste liquid system tank 9 to the LCW-HFF10, and the waste liquid in the low-conductivity waste liquid collection tank 9 is filtered by the LCW-HFF10. After that, the low-conductivity waste liquid is desalted by a desalting device (not shown) and then sent to a condensate storage tank for use in the plant.

【0009】高電導度廃液系では高電導度廃液収集タン
ク11から濃縮器12に配管が接続されており、高電導度廃
液系収集タンク11内の廃液は濃縮器12により蒸留処理さ
れる。処理水中のクラッド等の不溶物は濃縮器12により
濃縮され、最終的に固化系13へと送られプラスチック固
化処理される。
In the high-conductivity waste liquid system, a pipe is connected from the high-conductivity waste liquid collecting tank 11 to the concentrator 12, and the waste liquid in the high-conductivity waste liquid collecting tank 11 is distilled by the concentrator 12. Insoluble matter such as clad in the treated water is concentrated by the concentrator 12, and finally sent to the solidification system 13 for plastic solidification treatment.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
R/W系設備においては、浮遊しやすいクラッドは沈降
分離槽8で沈降せずに低電導度廃液系収集タンク9や、
高電導度廃液系収集タンク11へと移送されてしまう。処
理水はその後、脱塩処理等を施され復水貯蔵タンクへと
送られるプラント内で使用されるか、または放水口から
プラント外へと放出される。
However, in the conventional R / W system equipment, the clad that tends to float is not settled in the settling separation tank 8 and the low conductivity waste liquid collection tank 9 or
It is transferred to the high conductivity waste liquid system collection tank 11. The treated water is then subjected to desalting treatment or the like and used in a plant that is sent to a condensate storage tank, or is discharged from the plant through a water outlet.

【0011】沈降分離槽8のデカント水(上澄み液)を
低電導度廃液系で処理する際に問題となるのは、イオン
交換樹脂およびクラッド等が沈降分離槽8へ移送されて
から、数10時間静置しても沈降せずに浮遊し続けるクラ
ッド等が低電導度廃液系タンク9への移送時に処理水と
一緒に移送されてしまう。
A problem when treating the decanted water (supernatant liquid) in the sedimentation separation tank 8 with the low-conductivity waste liquid system is that a few tens of minutes after the ion-exchange resin and the clad are transferred to the sedimentation separation tank 8. A clad or the like that continues to float without settling even when left standing for a long time is transferred together with the treated water when being transferred to the low-conductivity waste liquid system tank 9.

【0012】そして、低電導度処理系のろ過器への負荷
が上昇すること、およびろ過器の逆洗水が沈降分離槽8
に移送され、再びクラッドが沈降分離槽8に戻ってきて
しまう事象を繰り返す(クラッドリサイクルと云う)こ
とである。また、高電導度廃液系で処理する場合には、
濃縮器12への負荷上昇およびその後のプラスチック固化
時の機器への負荷上昇、固化体の放射能上昇が課題とな
る。
Then, the load on the filter of the low-conductivity treatment system is increased, and the backwash water of the filter is settling and separating tank 8
Is repeated and the clad is returned to the settling separation tank 8 again (called clad recycling). When treating with a high conductivity waste liquid system,
An increase in the load on the concentrator 12, an increase in the load on the equipment at the time of solidifying the plastic thereafter, and an increase in the radioactivity of the solidified body become problems.

【0013】本発明は上記課題を解決するためになされ
たもので、原子力発電所のR/W系に配置している逆洗
水受タンク7および沈降分離槽8内に浮遊し易い小粒径
クラッドを酸化、凝縮させて強制的に沈降させるように
構成したR/W系設備を提供することにある。
The present invention has been made to solve the above problems, and has a small particle size that easily floats in the backwash water receiving tank 7 and the settling separation tank 8 arranged in the R / W system of a nuclear power plant. An object of the present invention is to provide R / W system equipment configured to oxidize and condense the clad and forcibly settle it.

【0014】[0014]

【課題を解決するための手段】本発明は原子炉圧力容器
からの蒸気をタービン復水器で復水とし、その復水を復
水ろ過装置および復水脱塩装置で浄化し原子炉圧力容器
へ供給する系統と前記原子炉圧力容器に接続した原子炉
冷却材浄化系とを有し、前記復水ろ過装置を逆洗水受タ
ンクを経由し沈降分離槽へ接続し、この沈降分離槽に前
記復水脱塩装置および低電導度廃液系ろ過装置を接続
し、前記復水ろ過装置の逆洗水を前記逆洗水受タンクに
移送した後前記沈降分離槽に移送し前記復水脱塩装置の
逆洗水を前記沈降分離槽に移送するように配管接続して
なる放射性廃棄物処理系設備において、前記逆洗水受タ
ンクおよび沈降分離槽に酸化剤または凝集剤注入装置を
接続してなることを特徴とする。
According to the present invention, steam from a reactor pressure vessel is condensed into a condensate by a turbine condenser, and the condensate is purified by a condensate filtering device and a condensate demineralizer, and then the reactor pressure vessel. And a reactor coolant purification system connected to the reactor pressure vessel, the condensate filter is connected to a settling separation tank via a backwash water receiving tank, The condensate desalination device and the low-conductivity waste liquid system filtration device are connected to each other, and the backwash water of the condensate filtration device is transferred to the backwash water receiving tank and then to the sedimentation separation tank to transfer the condensate demineralization. In a radioactive waste treatment system facility which is connected by piping so as to transfer the backwash water of the apparatus to the sedimentation separation tank, an oxidizer or coagulant injection device is connected to the backwash water receiving tank and the sedimentation separation tank. It is characterized by

【0015】[0015]

【作用】本発明は、沈降分離槽内で浮遊し易い小粒径ク
ラッドを酸化、凝縮させ、沈降分離槽内で沈降し易くし
て、低電導度廃液系または高電導度廃液系に小粒子クラ
ッドが移送されることを防止する。
The present invention oxidizes and condenses a small particle size clad that easily floats in the sedimentation separation tank, facilitates sedimentation in the sedimentation separation tank, and reduces small particles in the low-conductivity waste liquid system or the high-conductivity waste liquid system. Prevents the clad from being transferred.

【0016】すなわち、逆洗水受タンクおよび沈降分離
槽に小粒径クラッドを酸化、凝縮する酸化剤(凝集剤)
注入装置を設けることにより、酸化剤等(例えば過酸化
水素水)を注入し小粒径クラッドを酸化、または凝縮さ
せることにより沈降分離槽内で沈降し易い成分として、
低電導度廃液系または高電導度廃液系へのクラッドの持
ち込みを防止する。
That is, an oxidizer (coagulant) for oxidizing and condensing the small particle size clad in the backwash water receiving tank and the sedimentation separation tank.
By installing an injection device, an oxidizing agent (for example, hydrogen peroxide solution) is injected to oxidize or condense the small particle size clad, and as a component that easily sediments in the sedimentation separation tank,
Prevents the clad from being brought into a low-conductivity waste liquid system or a high-conductivity waste liquid system.

【0017】酸化処理により非晶鉄等の小粒径クラッド
をマグネタイト(Fe3 4 )等の比較的大きな結晶を
つくる形態に変化させることで沈降を促すことができ
る。また可溶性の2価の鉄イオンを酸化し3価の鉄の水
酸化物として沈殿させることもできる。凝縮剤を加えた
場合は、凝集剤により粒子表面の荷電の中和と粒子のフ
ロック化により粒子の凝縮・沈殿が生じる。
Sedimentation can be promoted by changing the small particle size clad such as amorphous iron into a form that produces relatively large crystals such as magnetite (Fe 3 O 4 ) by the oxidation treatment. It is also possible to oxidize soluble divalent iron ions and precipitate them as hydroxides of trivalent iron. When a condensing agent is added, the coagulant neutralizes the electric charge on the surface of the particles and causes the particles to flocculate, so that the particles are condensed / precipitated.

【0018】本発明により、逆洗水受タンクおよび沈降
分離槽内に浮遊し易い小粒径クラッドが移送された場
合、逆洗水受タンクおよび沈降分離槽内でクラッドを酸
化・凝縮することにより、沈降分離槽でクラッドを効率
的に沈殿させることができ、低電導度廃液系または高電
導度廃液系に余分なクラッドを移送せず液体のみを移送
することができる。
According to the present invention, when the small particle size clad which is easily floated is transferred into the backwash water receiving tank and the sedimentation separation tank, the cladding is oxidized and condensed in the backwash water receiving tank and the sedimentation separation tank. The clad can be efficiently precipitated in the sedimentation separation tank, and only the liquid can be transferred to the low-conductivity waste liquid system or the high-conductivity waste liquid system without transferring the extra clad.

【0019】[0019]

【実施例】図1および図2により本発明に係るR/W系
設備の一実施例を説明する。なお、図1中図3と同一部
分には同一符号を付して重複する部分の説明は省略す
る。
EXAMPLE An example of the R / W system equipment according to the present invention will be described with reference to FIGS. 1 and 2. In FIG. 1, the same parts as those in FIG. 3 are designated by the same reference numerals, and the description of the overlapping parts will be omitted.

【0020】本発明の実施例が従来例と異なる点は図1
に示したように逆洗水受タンク7の外周部位に加熱ヒー
タ14を設けるとともに内部にガスバブリング用スパージ
ャ15を設け、さらに酸化剤(凝集剤)注入装置16からの
配管を接続したことにある。また、沈降分離槽8にも同
様にガスバブリング用スパージャ15と酸化剤(凝集剤)
注入装置16からの配管を接続したことにある。
The difference between the embodiment of the present invention and the conventional example is shown in FIG.
As shown in FIG. 3, the heater 14 is provided on the outer peripheral portion of the backwash water receiving tank 7, the gas bubbling sparger 15 is provided inside, and the pipe from the oxidant (coagulant) injection device 16 is connected. . Also, in the settling separation tank 8, the gas bubbling sparger 15 and the oxidizing agent (aggregating agent) are similarly added.
This is because the pipe from the injection device 16 was connected.

【0021】ガスバブリング用スパージャ15は所内用圧
縮空気系(SA)または計装用圧縮空気系(IA)から
空気を供給する配管が接続されて空気バブリング装置を
構成している。エアバブリングはSAまたはIAから空
気をスパージャ15に流し逆洗水受タンク7または沈降分
離槽8内の逆洗水中に気泡を発生させることで、スパー
ジャ15としては多孔分散管または噴霧器が使用される。
The gas bubbling sparger 15 is connected to a pipe for supplying air from the in-house compressed air system (SA) or the instrumentation compressed air system (IA) to form an air bubbling device. In air bubbling, air is flown from the SA or IA to the sparger 15 to generate bubbles in the backwash water in the backwash water receiving tank 7 or the settling separation tank 8. A porous dispersion pipe or a sprayer is used as the sparger 15. .

【0022】酸化剤としては過酸化水素等が使用され、
酸化剤により逆洗水中のクラッドが酸化して形態(結晶
構造等)を変化させるもので、例えば、非晶鉄がFe3
4結晶となり、粒子が大きくなり易くなる。また、逆
洗水中の水に溶けるFe(OH)2 は酸化してFe(O
H)3 となって水に溶けない形態となる。一方、凝集剤
には硫酸バン土等が使用され、小さいクラッド粒子をい
くつか結合させて大きくする作用を有する。
Hydrogen peroxide or the like is used as the oxidizing agent,
The oxidizer oxidizes the cladding in the backwash water to change the morphology (crystal structure, etc.). For example, amorphous iron is Fe 3
O 4 crystals are formed, and the particles are likely to become large. In addition, Fe (OH) 2 dissolved in water in the backwash water is oxidized to produce Fe (O).
H) 3 and becomes a form insoluble in water. On the other hand, vanadium sulfate or the like is used as the coagulant, and has an action of binding some small clad particles to increase the size.

【0023】図1において、沈降分離槽8には、LCW
ろ過器10で捕獲したクラッドが逆洗水により沈降分離槽
8に移送される。また、CF5の逆洗水は一旦逆洗水受
タンク7に移送され、その後沈降分離槽8に移送され
る。
In FIG. 1, the settling / separating tank 8 has an LCW.
The clad captured by the filter 10 is transferred to the sedimentation separation tank 8 by backwashing water. The backwash water of CF5 is once transferred to the backwash water receiving tank 7 and then to the sedimentation separation tank 8.

【0024】逆洗水受タンク7には、CF4からの逆洗
完了により酸化剤(凝集剤)注入装置16で酸化剤または
凝集剤が自動または手動で注入される。同時に、加温ヒ
ータ14により逆洗水受タンク7が加温され、所内用圧縮
空気系(SA)、または計装用圧縮空気系(IA)から
空気が注入されて逆洗水受タンク7の逆洗水中へのバブ
リングが行われる。
Oxidizing agent or aggregating agent is automatically or manually injected into the backwashing water receiving tank 7 by the oxidant (aggregating agent) injecting device 16 after the backwashing from CF4 is completed. At the same time, the backwash water receiving tank 7 is heated by the heating heater 14, and air is injected from the internal compressed air system (SA) or the instrumentation compressed air system (IA) to reverse the backwash water receiving tank 7. Bubbling into the wash water is performed.

【0025】以上の工程を経て逆洗水受タンク7内の処
理水は、沈降分離槽8に移送される。沈降分離槽8が一
定のレベル(デカント可能レベル)まで達した後、沈降
分離槽酸化剤(凝集剤)注入装置16により酸化剤を注入
し、同時にSAまたはIAからバブリング用スパージャ
15により、数時間攪拌し、数時間静置後上澄み液のデカ
ント移送を収集タンク9に行う。
Through the above steps, the treated water in the backwash water receiving tank 7 is transferred to the sedimentation separation tank 8. After the settling / separation tank 8 reaches a certain level (decantable level), the settling / separating tank oxidant (coagulant) injection device 16 injects the oxidant, and at the same time, SA or IA bubbling sparger.
At 15, the mixture is stirred for several hours, left standing for several hours, and then the supernatant is decanted and transferred to the collection tank 9.

【0026】逆洗水タンク7において、酸化剤(凝集
剤)注入と加温またはバブリングがなされることで小粒
径クラッド(浮遊し易いクラッド)は、酸化、凝縮反応
を起こし沈降し易くなる。
In the backwash water tank 7, injection of an oxidant (coagulant) and heating or bubbling facilitates the small particle size clad (the clad that easily floats) to undergo an oxidation and condensation reaction to easily settle.

【0027】さらに、沈降分離槽8内においても、所内
用圧縮空気バブリングと酸化剤注入により、逆洗水受タ
ンク内で、酸化、凝縮しなかった小粒径クラッド等を沈
降させる。
Further, also in the settling / separating tank 8, small-sized clad particles which have not been oxidized or condensed are settled in the backwash water receiving tank by bubbling internal compressed air and injecting an oxidant.

【0028】図2は本発明の他の実施例における沈降分
離槽8の概略図を示したものである。すなわち、図2に
示したように、沈降分離装置8内に大型磁石18を設置す
る。これによりクラッド(鉄:Fe)を下部に引き寄せ
クラッドの浮遊を迎えることもできる。
FIG. 2 is a schematic view of a settling separation tank 8 according to another embodiment of the present invention. That is, as shown in FIG. 2, the large magnet 18 is installed in the sedimentation separation device 8. As a result, the clad (iron: Fe) can be drawn to the lower part and the clad can float.

【0029】[0029]

【発明の効果】本発明によれば、沈降分離槽内で浮遊し
ている小粒径クラッド等を酸化、凝縮することが可能と
なり、沈降分離槽からのデカント水による低電導度廃液
系収集タンクまたは高電導度廃液収集タンクへのクラッ
ド持ち込みを防止することができる。
According to the present invention, it becomes possible to oxidize and condense small particle size clads and the like floating in the sedimentation separation tank, and a low conductivity waste liquid system collection tank by decant water from the sedimentation separation tank. Alternatively, it is possible to prevent the clad from being brought into the high-conductivity waste liquid collection tank.

【0030】この結果、低電導度廃液系収集タンクの廃
液処理時に低電導度ろ過器に対する負荷が軽減できるた
め、ろ過器の逆洗操作の回数を抑えられると共に、沈降
分離槽のデカント移送後の低電導度廃液系収集タンクの
放射能の上昇を抑えることができるため、被ばく低減に
もなる。
As a result, since the load on the low-conductivity filter can be reduced during the waste liquid treatment of the low-conductivity waste liquid system collection tank, the number of backwashing operations of the filter can be suppressed and the decanting of the sedimentation separation tank can be performed. Since the increase in radioactivity of the low conductivity waste liquid collection tank can be suppressed, the exposure can be reduced.

【0031】また、高電導度廃液系収集タンクにおいて
も、高濃度クラッドが濃縮器により濃縮され、その後濃
縮廃液系を介してプラスチック固化を行う際に生じる各
種問題(廃液性状により機器の過負荷トリップまたは固
化時の高放射線による被ばく等)が解消される。
Also in the high-conductivity waste liquid system collection tank, various problems that occur when the high-concentration clad is concentrated by the concentrator and then the plastic is solidified through the concentrated waste liquid system (device overload trip due to waste liquid property) Or, exposure to high radiation during solidification) is eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る放射性廃棄物処理設備用逆洗水受
タンクまたは沈降分離槽の一実施例が設置された状態を
示す系統図。
FIG. 1 is a system diagram showing a state in which an embodiment of a backwash water receiving tank or sedimentation separation tank for radioactive waste treatment equipment according to the present invention is installed.

【図2】図1における強制沈降分離槽内に磁石を設けた
例を概略的に示す縦断面図。
2 is a longitudinal sectional view schematically showing an example in which a magnet is provided in the forced sedimentation separation tank in FIG.

【図3】従来の放射性廃棄物処理設備を示す系統図。FIG. 3 is a system diagram showing a conventional radioactive waste treatment facility.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…タービン、3…ホットウェル
(復水器)、4…復水ろ過装置、5…復水脱塩装置、6
…原子炉冷却材浄化系ろ過脱塩装置(CUW(F/
D))、7…逆洗水受タンク、8…沈降分離槽、9…低
電導度廃液系収集タンク、10…低電導度廃液系ろ過器、
11…高電導度廃液系収集タンク、12…濃縮器、13…固化
系、14…加温ヒータ、15…バブリング用スパージャ、16
…酸化剤(凝集剤)注入装置、17…攪拌機、18…磁石。
1 ... Reactor pressure vessel, 2 ... Turbine, 3 ... Hot well (condenser), 4 ... Condensate filter, 5 ... Condensate desalination unit, 6
... Reactor coolant purification system filter desalination unit (CUW (F /
D)), 7 ... Backwash water receiving tank, 8 ... Sedimentation separation tank, 9 ... Low-conductivity waste liquid-based collection tank, 10 ... Low-conductivity waste liquid-based filter,
11 ... High-conductivity waste liquid collection tank, 12 ... Concentrator, 13 ... Solidification system, 14 ... Heater, 15 ... Bubbling sparger, 16
… Oxidizing agent (coagulant) injection device, 17… Stirrer, 18… Magnet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長沢 克己 神奈川県川崎市幸区堀川町66番2 東芝エ ンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Nagasawa 66-2 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Engineering Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器からの蒸気をタービン復
水器で復水とし、その復水を復水ろ過装置および復水脱
塩装置で浄化し原子炉圧力容器へ給水する系統と前記原
子炉圧力容器に接続した原子炉冷却材浄化系とを有し、
前記復水ろ過装置を逆洗水受タンクを経由し沈降分離槽
へ接続し、この沈降分離槽に前記復水脱塩装置および低
電導度廃液系ろ過装置を接続し、前記復水ろ過装置の逆
洗水を前記逆洗水受タンクに移送した後前記沈降分離槽
に移送し前記復水脱塩装置の逆洗水を前記沈降分離槽に
移送するように配管接続してなる放射性廃棄物処理系設
備において、前記逆洗水受タンクおよび沈降分離槽に酸
化剤または凝集剤注入装置を接続してなることを特徴と
する放射性廃棄物処理系設備。
1. A system for converting steam from a reactor pressure vessel into condensate by a turbine condenser, purifying the condensate with a condensate filter and a condensate demineralizer, and supplying the water to the reactor pressure vessel, and the atom. Having a reactor coolant purification system connected to the reactor pressure vessel,
The condensate filter is connected to a settling separation tank via a backwash water receiving tank, and the condensate demineralizer and the low-conductivity waste liquid system filter are connected to this settling separation tank, Radioactive waste treatment in which pipes are connected so that the backwash water is transferred to the backwash water receiving tank and then to the sedimentation separation tank, and the backwash water of the condensate demineralizer is transferred to the sedimentation separation tank In the system equipment, a radioactive waste treatment system equipment characterized in that an oxidant or coagulant injection device is connected to the backwash water receiving tank and the sedimentation separation tank.
【請求項2】 前記逆洗水受タンクおよび沈降分離槽
に、空気バブリング装置を設けてなることを特徴とする
請求項1記載の放射性廃棄物処理系設備。
2. The radioactive waste treatment system facility according to claim 1, wherein the backwash water receiving tank and the sedimentation separation tank are provided with an air bubbling device.
【請求項3】 前記逆洗水受タンクおよび沈降分離槽
に、加熱ヒータを設けてなることを特徴とする請求項1
記載の放射性廃棄物処理系設備。
3. A heater is provided in the backwash water receiving tank and the sedimentation separation tank.
The listed radioactive waste treatment system equipment.
【請求項4】 前記逆洗水受タンクおよび沈降分離槽
に、磁石を設けてなることを特徴とする請求項1記載の
放射性廃棄物処理系設備。
4. The radioactive waste treatment system facility according to claim 1, wherein the backwash water receiving tank and the sedimentation tank are provided with magnets.
【請求項5】 前記空気バブリング装置は所内用圧縮空
気系または計装用圧縮空気系とガスバブリング用スパー
ジャからなることを特徴とする請求項2記載の放射性廃
棄物処理系設備。
5. The radioactive waste treatment system facility according to claim 2, wherein the air bubbling device comprises a compressed air system for a facility or a compressed air system for instrumentation and a sparger for gas bubbling.
JP7134961A 1995-06-01 1995-06-01 Equipment for radioactive waste processing system Pending JPH08327789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7134961A JPH08327789A (en) 1995-06-01 1995-06-01 Equipment for radioactive waste processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7134961A JPH08327789A (en) 1995-06-01 1995-06-01 Equipment for radioactive waste processing system

Publications (1)

Publication Number Publication Date
JPH08327789A true JPH08327789A (en) 1996-12-13

Family

ID=15140637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7134961A Pending JPH08327789A (en) 1995-06-01 1995-06-01 Equipment for radioactive waste processing system

Country Status (1)

Country Link
JP (1) JPH08327789A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121785A (en) * 1998-10-16 2000-04-28 Hitachi Ltd Reactor power plant and its operation method
JP2001324593A (en) * 2000-05-18 2001-11-22 Japan Organo Co Ltd Radioactive waste treatment system for boiling water type nuclear power plant
JP2007199023A (en) * 2006-01-30 2007-08-09 Toshiba Corp Ion-exchange resin processing method, ion-exchange resin pulverizing system, decontamination apparatus, nuclear power station, decontamination apparatus modifying method and nuclear power station modifying method
JP2011512531A (en) * 2008-02-18 2011-04-21 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ The process of decontaminating radioactive liquid effluent to one or more radioactive chemical elements by solid-liquid extraction using a recycling loop
JP2012032155A (en) * 2010-07-28 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Radioactive waste treatment method and apparatus therefor
JP2012037270A (en) * 2010-08-04 2012-02-23 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid processor
JP2018179834A (en) * 2017-04-17 2018-11-15 日立Geニュークリア・エナジー株式会社 System and method for removing radioactive particles in fluid
CN109300565A (en) * 2018-10-20 2019-02-01 中广核研究院有限公司 Radioactive substance removes system and method in a kind of coolant
CN109849238A (en) * 2019-03-28 2019-06-07 江苏核电有限公司 A kind of radioactive spent resin grinding system with redundant apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121785A (en) * 1998-10-16 2000-04-28 Hitachi Ltd Reactor power plant and its operation method
JP2001324593A (en) * 2000-05-18 2001-11-22 Japan Organo Co Ltd Radioactive waste treatment system for boiling water type nuclear power plant
JP2007199023A (en) * 2006-01-30 2007-08-09 Toshiba Corp Ion-exchange resin processing method, ion-exchange resin pulverizing system, decontamination apparatus, nuclear power station, decontamination apparatus modifying method and nuclear power station modifying method
JP4679377B2 (en) * 2006-01-30 2011-04-27 株式会社東芝 Ion exchange resin treatment method, ion exchange resin atomization system, decontamination equipment, nuclear power plant, decontamination equipment modification method, and nuclear power plant modification method
JP2011512531A (en) * 2008-02-18 2011-04-21 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ The process of decontaminating radioactive liquid effluent to one or more radioactive chemical elements by solid-liquid extraction using a recycling loop
JP2012032155A (en) * 2010-07-28 2012-02-16 Hitachi-Ge Nuclear Energy Ltd Radioactive waste treatment method and apparatus therefor
JP2012037270A (en) * 2010-08-04 2012-02-23 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid processor
JP2018179834A (en) * 2017-04-17 2018-11-15 日立Geニュークリア・エナジー株式会社 System and method for removing radioactive particles in fluid
CN109300565A (en) * 2018-10-20 2019-02-01 中广核研究院有限公司 Radioactive substance removes system and method in a kind of coolant
CN109300565B (en) * 2018-10-20 2024-01-19 中广核研究院有限公司 System and method for removing radioactive substances in coolant
CN109849238A (en) * 2019-03-28 2019-06-07 江苏核电有限公司 A kind of radioactive spent resin grinding system with redundant apparatus
CN109849238B (en) * 2019-03-28 2024-05-10 江苏核电有限公司 Radioactive waste resin grinding system with redundant device

Similar Documents

Publication Publication Date Title
CA2633011A1 (en) Method and system for treating radioactive waste water
JPH08327789A (en) Equipment for radioactive waste processing system
CN106746057A (en) The boiler feedwater processing method and its device of a kind of high yield water rate
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JP2925413B2 (en) Treatment of radioactive liquid waste
JP4380875B2 (en) Liquid processing equipment
JP3119538B2 (en) Decontamination method for radioactive waste resin
JP2001324593A (en) Radioactive waste treatment system for boiling water type nuclear power plant
JP2001174587A (en) Decontamination method for liquid radioactive waste
JPH11153696A (en) Radioactive waste liquid processing equipment
Fletcher et al. New performance standards for demineralization set by Recoflo {reg_sign} technology
CN217933191U (en) Advanced purification treatment system for radioactive organic waste liquid
JP5340237B2 (en) Radioactive liquid processing equipment
JP5350337B2 (en) Radioactive waste treatment method and apparatus
JPS62211593A (en) Washing waste water disposal plant for hollow yarn membrane type condensate filter
Fazzolare et al. Combined system concept for power generation and wastewater renovation
JPS61265600A (en) Radioactive waste treating facility
Brenman et al. How to treat chemical-cleaning wastes from your power plant
Dalrymple Electrocoagulation of industrial wastewaters
JPH03232536A (en) Heat resistant ion exchange resin
Davies Troubleshoot ion-exchange equipment
Canfield et al. Mother nature as sludge thickener
CN115385492A (en) Process for treating uranium-containing fluorine-containing wastewater by combination of pretreatment and deep uranium removal
Collie Industrial water treatment chemicals and processes. Developments since 1978
JP5340224B2 (en) Radioactive liquid processing equipment