JPH03232536A - Heat resistant ion exchange resin - Google Patents

Heat resistant ion exchange resin

Info

Publication number
JPH03232536A
JPH03232536A JP2028484A JP2848490A JPH03232536A JP H03232536 A JPH03232536 A JP H03232536A JP 2028484 A JP2028484 A JP 2028484A JP 2848490 A JP2848490 A JP 2848490A JP H03232536 A JPH03232536 A JP H03232536A
Authority
JP
Japan
Prior art keywords
ion exchange
arom
polyether ketone
exchange resin
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2028484A
Other languages
Japanese (ja)
Inventor
Akira Horie
明 堀江
Shunichi Suzuki
俊一 鈴木
Shinji Yamamoto
山本 晋児
Toshihiko Kubokawa
久保川 俊彦
Sakae Takagi
高木 栄
Makoto Yokozawa
横澤 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2028484A priority Critical patent/JPH03232536A/en
Publication of JPH03232536A publication Critical patent/JPH03232536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Abstract

PURPOSE:To synthesize a heat resistant ion exchange resin capable of desalting heated waste fluid without cooling the fluid by modifying an arom. polyether ketone as a matrix with sulfonic acid groups. CONSTITUTION:Sulfuric acid is added to a mixture of an arom. polyether ketone with acetic anhydride under stirring and this mixture is brought into a sulfonation reaction under heating in a steam bath. The resulting product is poured into iced water, the residual ether is separated and an aq. sodium hydroxide soln. is added to precipitate and separate a sulfonated arom. polyether ketone as sodium salt. This sulfonated arom. polyether ketone is formed into a sheet with a roll, etc., to obtain an ion exchange membrane. When this membrane is applied to facilities for disposal of radioactive waste matter, ionic components can hb removed from radioactive waste fluid at 200 deg.C without hindrance.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電解質溶液が高温でもイオン交換することが
できる耐熱性イオン交換樹脂に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a heat-resistant ion exchange resin capable of ion-exchanging an electrolyte solution even at high temperatures.

(従来の技術) 原子カプラントで発生する種々の放射性廃液は、放射能
を帯びたクラッド(原子カプラントに設置される機器を
構成する鉄の酸化物、Fe  Oα−F e 20 s
等(粒径はサブミク3 4ゝ ロンないし数μm)を主に含む)の他に、Ca2+Mg
2+、CI  などのイオン成分を含む。すなわち、こ
のような放射性廃液は一種の電解質溶液である。そして
、この放射性廃液を再使用する場合は、これらクラッド
やイオン成分を第1図に示す放射性廃棄物処理システム
で除去する。
(Prior art) Various radioactive waste liquids generated in atomic couplants are composed of radioactive cladding (iron oxide, FeOα-F e 20 s, which constitutes the equipment installed in atomic couplants).
(mainly contains particles with particle sizes ranging from submicron 3 to several μm), as well as Ca2+Mg
Contains ionic components such as 2+ and CI. In other words, such radioactive waste liquid is a kind of electrolyte solution. When this radioactive waste liquid is to be reused, these cladding and ionic components are removed by the radioactive waste treatment system shown in FIG.

すなわち、原子カプラント1の原子力発電所2は、原子
炉系3とタービン系4から構成され、原子炉系3の原子
炉格納容器5に収められた原子炉圧力容器6からは、冷
却材が加熱されて生じた蒸気7が排出される。蒸気7は
タービン系4にあるタービン8に導かれ、タービン8で
仕事をして隣接する発電機9を稼働させる。蒸気7は、
その後冷却水10を通した主復水器11で復水され、低
圧復水ポンプ12で送り出されて復水濾過装置13、次
いで復水脱塩装置14を通過し、濾過・脱塩される。濾
過・脱塩を終えて清浄になった復水は、高圧復水ポンプ
15、その後給水ポンプ16を経て原子炉圧力容器6へ
還流される。
That is, the nuclear power plant 2 of the nuclear reactor plant 1 is composed of a reactor system 3 and a turbine system 4, and coolant is heated from the reactor pressure vessel 6 housed in the reactor containment vessel 5 of the reactor system 3. The steam 7 produced by this process is discharged. The steam 7 is guided to a turbine 8 in the turbine system 4, and the turbine 8 performs work to operate an adjacent generator 9. Steam 7 is
Thereafter, the water is condensed in the main condenser 11 through which the cooling water 10 is passed, sent out by the low-pressure condensate pump 12, passed through the condensate filtration device 13, and then the condensate desalination device 14, where it is filtered and desalted. The condensate that has been purified after filtration and desalination is returned to the reactor pressure vessel 6 via a high-pressure condensate pump 15 and then a water supply pump 16.

また、原子炉格納容器5内には再循環ポンプ17が設置
され、原子炉圧力容器6内に流入した冷部材を一旦取り
出して再度原子炉圧力容器6内へ強制的に再循環させる
が、この再循環ポンプ17で取り出された冷却材は、一
部原子炉冷却材浄化装置18を経由して、濾過・脱塩さ
れる。
In addition, a recirculation pump 17 is installed inside the reactor containment vessel 5, which takes out the cold parts that have flowed into the reactor pressure vessel 6 and forcibly recirculates them into the reactor pressure vessel 6 again. A portion of the coolant taken out by the recirculation pump 17 is filtered and desalted via the reactor coolant purification device 18.

さらに、原子炉系2には、使用済み燃料を一時貯蔵して
おく燃料プール19が設けられるが、この燃料プール1
9の貯水は燃料プール浄化装置20に送られて浄化され
、その後再び燃料プール19に還流される。
Furthermore, the reactor system 2 is provided with a fuel pool 19 for temporarily storing spent fuel;
The stored water 9 is sent to the fuel pool purification device 20 and purified, and then returned to the fuel pool 19 again.

このような原子炉系2においては、主に復水脱塩装置1
4から化学廃液21が取り出される。また、設置された
種々の機器からは機器ドレン22、これらの機器を納め
る原子力発電所1建屋の床からは床ドレン23が回収さ
れる。さらに、復水濾過装置13、復水脱塩装置14、
原子炉冷却材浄化装置18および燃料プール浄化装置2
0からは、それぞれ濾過・脱塩等の浄化に用いられた使
用済の樹脂類24が回収される。そして、これらの化学
廃液21、機器ドレン22、床ドレン23および樹脂類
24は原子炉圧力容器5で使用される冷却材または燃料
集合体に接して放射能を帯びているため、放射性廃液と
して放射性廃棄物処理施設25に送られ、廃棄または再
使用のための処理が行われる。
In such a reactor system 2, the condensate desalination equipment 1 is mainly used.
A chemical waste liquid 21 is taken out from 4. Additionally, equipment drains 22 are collected from the various installed equipment, and floor drains 23 are collected from the floor of the nuclear power plant building 1 housing these equipments. Furthermore, a condensate filtration device 13, a condensate desalination device 14,
Reactor coolant purification device 18 and fuel pool purification device 2
0, used resins 24 used for purification such as filtration and desalination are collected. These chemical waste liquids 21, equipment drains 22, floor drains 23, and resins 24 are radioactive as they come into contact with the coolant or fuel assembly used in the reactor pressure vessel 5, so they are radioactive as radioactive waste liquids. The waste is sent to a waste treatment facility 25 and processed for disposal or reuse.

放射性廃棄物処理施設25は、低電導度廃液系26、高
電導度廃液系27、廃スラツジ系28、減容固化系29
およびその他の系統30からなる。
The radioactive waste treatment facility 25 includes a low conductivity waste liquid system 26, a high conductivity waste liquid system 27, a waste sludge system 28, and a volume reduction solidification system 29.
and 30 other strains.

低電導度廃液系26は、放射能濃度は比較的高いが、電
導度が低い廃液を浄化する系統である。これに対して、
高電導度廃液系27は、放射能濃度は比較的低いが、電
導度が高い廃液を浄化する系統である。また廃スラツジ
系28は、使用済樹脂類24を液体分と固体分に分離す
る系統である。
The low conductivity waste liquid system 26 is a system for purifying waste liquid that has a relatively high radioactivity concentration but low conductivity. On the contrary,
The high conductivity waste liquid system 27 is a system for purifying waste liquid having a relatively low radioactivity concentration but high conductivity. The waste sludge system 28 is a system that separates the used resins 24 into liquid and solid components.

なお、樹脂類24は、廃スラツジ系28において、沈降
分離槽31によって沈降成分32と上澄液33に分離さ
れ、上澄液33は機器ドレン22とまとめて取り扱われ
る。この場合、上澄液33には、主にNa2SO4が含
まれる。
In the waste sludge system 28 , the resins 24 are separated into a sediment component 32 and a supernatant liquid 33 by a sedimentation separation tank 31 , and the supernatant liquid 33 is handled together with the equipment drain 22 . In this case, the supernatant liquid 33 mainly contains Na2SO4.

ここで、機器ドレン22は放射能濃度は比較的高いが、
電導度が低い廃液である。そこで、この機器トレン22
は低電導度廃液系26において、収集タンク34、濾過
器35、タンク36、脱塩器37およびサンプルタンク
38の順に通過して浄化される。機器ドレン22は、脱
塩器37を通す前に中空糸膜フィルタやクラッドセパレ
ータを配した濾過器35てクラッドを濾過・分離され、
脱塩器37における脱塩効率の低下を防ぐ。
Here, although the equipment drain 22 has a relatively high radioactivity concentration,
It is a waste liquid with low conductivity. Therefore, this equipment train 22
is purified in the low conductivity waste liquid system 26 by passing through a collection tank 34, a filter 35, a tank 36, a demineralizer 37, and a sample tank 38 in this order. Before the equipment drain 22 passes through a demineralizer 37, the cladding is filtered and separated by a filter 35 equipped with a hollow fiber membrane filter or a cladding separator.
This prevents demineralization efficiency in the demineralizer 37 from decreasing.

他方、化学廃液21と床ドルン23は、放射能濃度は比
較的高いが、電導度が低い廃液である。
On the other hand, the chemical waste liquid 21 and the bed droon 23 are waste liquids that have a relatively high radioactivity concentration but a low electrical conductivity.

そこで、これら化学廃液21と床ドレン23は、高電導
度廃液系27において、まず収集タンク39および蒸発
濃縮器40を経て、主にクラッドを含む残留分と蒸留分
に分離される。残留分は、次いで濃縮廃液貯蔵タンク4
1に送られるが、蒸留分はその後、復水器42、タンク
43、脱塩器44およびサンプルタンク45の順に通過
する。したがって、蒸留分にイオン成分が含まれていて
も、それは脱塩器44において除去される。
Therefore, in the high conductivity waste liquid system 27, the chemical waste liquid 21 and the bed drain 23 first pass through a collection tank 39 and an evaporative concentrator 40, and are separated into a residual content mainly containing crud and a distilled content. The remaining amount is then transferred to the concentrated waste liquid storage tank 4.
The distilled portion then passes through a condenser 42, a tank 43, a demineralizer 44, and a sample tank 45 in this order. Therefore, even if the distillate contains ionic components, they are removed in the desalter 44.

そして、低電導度廃液系26のサンプルタンク38と高
電導度廃液系27のサンプルタンク45に集められた復
水は、復水貯蔵タンク46を経て主復水器11に戻され
再使用される。
The condensate collected in the sample tank 38 of the low conductivity waste liquid system 26 and the sample tank 45 of the high conductivity waste liquid system 27 is returned to the main condenser 11 via the condensate storage tank 46 and is reused. .

一方、高電導度廃液系27の濃縮廃液貯蔵タンク41に
集められた濃縮廃液は、廃スラツジ系28の沈降分離槽
29に堆積した沈降成分32とともに、減容固化系29
へ送られ、減容・固化された後、その他の系統30から
の廃棄物とともにドラム缶貯蔵庫47に貯蔵される。
On the other hand, the concentrated waste liquid collected in the concentrated waste liquid storage tank 41 of the high conductivity waste liquid system 27 is collected in the volume reduction solidification system 29 along with the sedimented components 32 deposited in the sedimentation separation tank 29 of the waste sludge system 28.
After being reduced in volume and solidified, it is stored in a drum can storage 47 along with other waste from the system 30.

ところで、上述の低電導度廃液系26と高電導度廃液系
27において、廃液のイオン成分は脱塩器37と44で
除去するが、これらの脱塩器37゜44には、イオン交
換樹脂、イオン交換膜、逆浸透膜、限外濾過膜等さまざ
まな有機高分子でできたイオン分離手段が用いられる。
By the way, in the above-mentioned low conductivity waste liquid system 26 and high conductivity waste liquid system 27, the ionic components of the waste liquid are removed by the desalters 37 and 44, but these desalters 37 and 44 contain ion exchange resin, Ion separation means made of various organic polymers are used, such as ion exchange membranes, reverse osmosis membranes, and ultrafiltration membranes.

例えばイオン交換樹脂(膜)の場合は、陽イオン交換樹
脂(膜)として、スチルベンゼンとジビニルベンゼン(
DVB)の共重合体の母材をスルホン酸基で修飾した架
橋樹脂、−CH2SO3−をイオン交換基とするフェノ
ール系樹脂、−8O3または−C00−をイオン交換基
とするグラファイト系樹脂、−PO32−をイオン交換
基とするポリスチレン系樹脂、−COO−をイオン交換
基とするポリアクリル酸またはポリメタクリル酸系樹脂
などが用いられる。これらの樹脂は全てのpH領域で使
用でき、また選択透過性が高いという利点がある。
For example, in the case of ion exchange resin (membrane), stilbenzene and divinylbenzene (
DVB) copolymer base material modified with sulfonic acid groups, phenolic resins with -CH2SO3- as ion exchange groups, graphite resins with -8O3 or -C00- as ion exchange groups, -PO32 Polystyrene resins having - as an ion exchange group, polyacrylic acid or polymethacrylic acid resins having -COO- as an ion exchange group, and the like are used. These resins can be used in all pH ranges and have the advantage of high permselectivity.

(発明が解決しようとする課題) ところが、脱塩器への導入前に廃液が加熱しであると、
上述の有機高分子を用いるイオン分離手段は分離効率が
著しく低下する。例えば上述の陽イオン交換樹脂(膜)
は、いずれも最高操作温度が100〜150℃である。
(Problem to be solved by the invention) However, if the waste liquid is heated before being introduced into the demineralizer,
The ion separation means using the above-mentioned organic polymer has a significantly reduced separation efficiency. For example, the above-mentioned cation exchange resin (membrane)
All have a maximum operating temperature of 100 to 150°C.

したがって、濃縮のため300℃前後に加熱した廃液は
、脱塩器への導入前にイオン分離に適する温度(50〜
60°C)に冷却しなければならない。このため、脱塩
に係る時間が長引き、かつ−旦加熱した廃液を冷却する
というエネルギー効率の悪い処理プロセスとなっていた
Therefore, the waste liquid heated to around 300°C for concentration should be heated to a temperature suitable for ion separation (50°C to
60°C). For this reason, the time required for desalination is prolonged, and the treatment process has poor energy efficiency, as the waste liquid must be cooled once it has been heated.

本発明は上記事情に鑑みてなされたもので、電解質溶液
が高温でも支障なくイオン交換することができる耐熱性
イオン交換樹脂を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat-resistant ion exchange resin that can perform ion exchange without any problem even when an electrolyte solution is at a high temperature.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記課題を解決するために、芳香族ポリエーテ
ルケトンの母材をスルホン酸基で修飾した耐熱性イオン
交換樹脂を提供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a heat-resistant ion exchange resin in which an aromatic polyetherketone base material is modified with a sulfonic acid group.

(作用) 本発明によるイオン交換樹脂は、母材に260℃でも連
続的な使用が可能な耐熱性の芳香族ポリエーテルケトン
を用い、しかもイオン交換基にも熱安定性のあるスルホ
ン酸基を導入するため、従来のイオン交換樹脂に比べ格
段に耐熱性に優れた陽イオン交換樹脂となる。よって、
本発明のイオン交換樹脂を用いれば、−旦加熱した廃液
でも冷却せずに脱塩することができ、脱塩に係る手間・
時間が省かれる。
(Function) The ion exchange resin according to the present invention uses a heat-resistant aromatic polyether ketone that can be used continuously even at 260°C as a base material, and also has a heat-stable sulfonic acid group in the ion exchange group. As a result of this introduction, the resulting cation exchange resin has much better heat resistance than conventional ion exchange resins. Therefore,
By using the ion exchange resin of the present invention, even heated waste liquid can be desalted without cooling, reducing the time and effort involved in desalting.
Saves time.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

特開昭60−72923号と同60−10119に記載
された方法(ジフェニルエーテル類とホスゲンとをルイ
ス酸の存在下で非プロトン性有機溶媒中で反応させる)
に倣って芳香族ポリエーテルケトン181gを生成した
。この芳香族ポリエテルケトンは、赤外分光分析によっ
て芳香族エチルと芳香族ケトンの吸収スペクトルが確認
された。
Methods described in JP-A-60-72923 and JP-A-60-10119 (reacting diphenyl ethers and phosgene in an aprotic organic solvent in the presence of a Lewis acid)
181 g of aromatic polyetherketone was produced according to the same procedure. This aromatic polyetherketone was confirmed to have an absorption spectrum of aromatic ethyl and aromatic ketone by infrared spectroscopy.

なお、芳香族ポリエーテルケトンを生成する方法には、
脱塩重縮合反応による方法(特公昭60(J!−Co−
S−C2H5を縮合させる方法(特開昭58−1711
8)、その他(特開昭58−101113、同58−1
67622、同58173127)があるが、どのよう
な方法によって生成しても構わない。
Note that the method for producing aromatic polyetherketone includes:
Method using desalting polycondensation reaction
Method for condensing S-C2H5 (JP-A-58-1711
8), Others (JP-A-58-101113, JP-A No. 58-1
67622, 58173127), but it may be generated by any method.

次に、この芳香族ポリエーテルケトンと無水酢酸100
m1の混合物に95%硫酸69m1を攪拌しながら添加
した後、この混合物を蒸気浴中で1時間加熱しながら反
応させた(スルホン化)。この後反応生成物を11の氷
水に注ぎ、残留するエーテル分を分離する。最後に水酸
化ナトリウム80gを水250 mlに溶解して加え、
芳香族ポリエテルケトンのスルホン化物をナトリウム塩
として沈殿させ、単離した。
Next, this aromatic polyether ketone and acetic anhydride 100
After adding 69 ml of 95% sulfuric acid to the mixture of ml with stirring, the mixture was reacted with heating in a steam bath for 1 hour (sulfonation). After this, the reaction product was poured into ice water in step 11, and the remaining ether was separated. Finally, add 80 g of sodium hydroxide dissolved in 250 ml of water.
The sulfonated product of aromatic polyetherketone was precipitated and isolated as the sodium salt.

なお、上述のスルホン化は直接的に行ったが、この直接
スルホン化は発煙硫酸(H2S04・503)でも行う
ことができる。またクロロスルホン酸を用いてクロロス
ルホン化した後、加水分解してスルホン酸塩を生成する
方法もある。
Although the above sulfonation was carried out directly, this direct sulfonation can also be carried out using fuming sulfuric acid (H2S04.503). There is also a method in which chlorosulfonation is performed using chlorosulfonic acid, followed by hydrolysis to produce a sulfonate.

得られたスルホン化芳香族ポリエーテルケトンは、ロー
ルを用いて厚さ0.15anのシートに成型した。この
イオン交換膜は、総イオン交換量1゜0ミリ当量/ml
で従来のイオン交換膜のそれと変わらないが、第1図に
示した放射性廃棄物処理設備に適用して200℃の放射
性廃液に用いても支障なくイオン成分を除去をすること
ができた。
The obtained sulfonated aromatic polyether ketone was molded into a sheet with a thickness of 0.15 ann using a roll. This ion exchange membrane has a total ion exchange amount of 1゜0 meq/ml.
This is no different from that of conventional ion exchange membranes, but even when applied to the radioactive waste treatment equipment shown in Figure 1 and used for radioactive waste liquid at 200°C, it was possible to remove ionic components without any problems.

なお、膜の生成には、塗布法、切削法、平板法など種々
の方法がある。
Note that there are various methods for producing the film, such as a coating method, a cutting method, and a flat plate method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のイオン交換樹脂は従来の
イオン交換手段の操作温度(150℃程度)越える耐熱
性を有するため、適用範囲が広がり、加熱濃縮される放
射性廃液でも冷却せずに脱塩することができ、脱塩に係
る手間・時間が省かれる。
As explained above, the ion exchange resin of the present invention has heat resistance that exceeds the operating temperature of conventional ion exchange means (approximately 150°C), so it can be used in a wide range of applications, and even radioactive waste liquid that is heated and concentrated can be desorbed without cooling. Salt can be removed, saving the effort and time associated with desalting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子カプラントにおける放射性廃棄物処理シス
テムの模式図である。
FIG. 1 is a schematic diagram of a radioactive waste treatment system in an atomic couplant.

Claims (1)

【特許請求の範囲】[Claims] 芳香族ポリエーテルケトンの母材をスルホン酸基で修飾
した耐熱性イオン交換樹脂。
A heat-resistant ion exchange resin with an aromatic polyetherketone base material modified with sulfonic acid groups.
JP2028484A 1990-02-09 1990-02-09 Heat resistant ion exchange resin Pending JPH03232536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2028484A JPH03232536A (en) 1990-02-09 1990-02-09 Heat resistant ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2028484A JPH03232536A (en) 1990-02-09 1990-02-09 Heat resistant ion exchange resin

Publications (1)

Publication Number Publication Date
JPH03232536A true JPH03232536A (en) 1991-10-16

Family

ID=12249940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2028484A Pending JPH03232536A (en) 1990-02-09 1990-02-09 Heat resistant ion exchange resin

Country Status (1)

Country Link
JP (1) JPH03232536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027513A3 (en) * 1998-11-09 2000-08-31 Axiva Gmbh Polymer composition, membrane containing said composition, method for the production and use thereof
JP2007143546A (en) * 2005-10-26 2007-06-14 Microbial Chem Res Found Method for separating/removing sulfonic acid group, and method for treating ion-exchanging resin
JP2016193407A (en) * 2015-03-31 2016-11-17 株式会社Ihi Ion exchange membrane for radioactive substance concentrator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027513A3 (en) * 1998-11-09 2000-08-31 Axiva Gmbh Polymer composition, membrane containing said composition, method for the production and use thereof
US6632847B1 (en) 1998-11-09 2003-10-14 Celanese Ventures Gmbh Polymer composition, membrane containing said composition, method for the production and uses thereof
EP2014349A1 (en) * 1998-11-09 2009-01-14 BASF Fuel Cell GmbH Membranes made of sulphonated aromatic polyether ketone and polybenzimidazole, and their use
JP2007143546A (en) * 2005-10-26 2007-06-14 Microbial Chem Res Found Method for separating/removing sulfonic acid group, and method for treating ion-exchanging resin
JP2016193407A (en) * 2015-03-31 2016-11-17 株式会社Ihi Ion exchange membrane for radioactive substance concentrator

Similar Documents

Publication Publication Date Title
JP3518112B2 (en) Fuel cell water treatment equipment
US4770783A (en) Method of processing waste from a nuclear power plant, said waste comprising ion-exchange resin containing radioactive metals
JP4085987B2 (en) Recycle processing method of photoresist development waste liquid
CN107768760B (en) A kind of lithium resource and salt alkali reclaiming method
JPH03232536A (en) Heat resistant ion exchange resin
JP3270244B2 (en) Waste liquid treatment method and waste liquid treatment device
US5520813A (en) Processing of nuclear waste solutions by membrane separation
US3681212A (en) Recovery of electro-chemical plating solutions
JPH08327789A (en) Equipment for radioactive waste processing system
Ravanchi et al. New advances in membrane technology
JP2003305475A (en) Electrodialysis apparatus
KR100423749B1 (en) Purification apparatus and method for primary cooling water of nuclear power plant using electrodeioniztion process
JP2509654B2 (en) Chemical decontamination waste liquid treatment method
JP2008191084A (en) Cylindrical desalter
US4769152A (en) Process for removing electrolyte
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JP3231520B2 (en) Treatment of wastewater containing phenol
CN110902886A (en) Method for directly curing cutting waste liquid
Thampy et al. Concentration of sodium sulfate from pickle liquor of tannery effluent by electrodialysis
CN105731682A (en) System and method for treating acetic acid-containing wastewater
JP2008039631A (en) Reactor coolant purifying device
CN114455771B (en) Waste acid treatment system and method
JP2947849B2 (en) Method for removing ionic components from electrolyte solution
JPH11128691A (en) Apparatus for regenerating and recovering photoresist developer
JP2919900B2 (en) Suppression pool water purification system