JP3270244B2 - Waste liquid treatment method and waste liquid treatment device - Google Patents
Waste liquid treatment method and waste liquid treatment deviceInfo
- Publication number
- JP3270244B2 JP3270244B2 JP09975794A JP9975794A JP3270244B2 JP 3270244 B2 JP3270244 B2 JP 3270244B2 JP 09975794 A JP09975794 A JP 09975794A JP 9975794 A JP9975794 A JP 9975794A JP 3270244 B2 JP3270244 B2 JP 3270244B2
- Authority
- JP
- Japan
- Prior art keywords
- waste liquid
- ions
- treatment apparatus
- liquid treatment
- nitrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、硝酸アンモニウムを含
有する産業廃液から硝酸とアンモニアガスとを回収する
廃液処理方法及び廃液処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste liquid treatment method and a waste liquid treatment apparatus for recovering nitric acid and ammonia gas from industrial waste liquid containing ammonium nitrate.
【0002】[0002]
【従来の技術】従来、硝酸アンモニウムを含む排水には
放流規制がなく、したがってそのまま放流しても差し支
えがなかった。ところが近年、排水に含まれる窒素成分
による内陸湖沼・閉鎖系湾岸等の冨栄養化の問題に対処
するために、アンモニウムイオン、硝酸イオン等の窒素
含有イオン濃度に規制値を設ける動きが本格化してき
た。そこで、硝酸アンモニウム含有廃液についても窒素
成分を除去する(以下適宜脱窒素という)べく、廃液処
理技術の見直しをする必要が生じている。2. Description of the Related Art Heretofore, wastewater containing ammonium nitrate has not been regulated for discharge, and it has been no problem to discharge the wastewater as it is. However, in recent years, in order to deal with the problem of eutrophication in inland lakes and marshes and closed bays due to nitrogen components contained in wastewater, the movement to set regulation values for the concentration of nitrogen-containing ions such as ammonium ion and nitrate ion has been in full swing. Was. Therefore, it is necessary to review the waste liquid treatment technology in order to remove the nitrogen component from the ammonium nitrate-containing waste liquid (hereinafter, appropriately referred to as denitrification).
【0003】一般に、廃液に対し脱窒素を行う廃液処理
技術としては、(1)窒素成分の処理だけを行うもの
と、(2)処理に伴って分離される成分の精製・回収ま
で行うもの、の2通りがある。 (1)窒素成分の処理だけを行うもの この処理方法の例としては、例えば電気透析法がある。
この方法は、電圧を印加する陽極と陰極との間に複数の
カチオン交換膜とアニオン交換膜とを設けるものであ
る。すなわち、陽極・カチオン交換膜・アニオン交換膜
・カチオン交換膜・……・アニオン交換膜・カチオン交
換膜・アニオン交換膜・陰極の順に配列する多室構成と
し、アニオン交換膜とカチオン交換膜との間に1室おき
に廃液を分流して供給するとともに陽極・陰極に電圧を
印加する。このときカチオン交換膜はカチオン(陽イオ
ン)のみが透過でき、アニオン交換膜はアニオン(陰イ
オン)のみが透過できるので、廃液が供給されない室に
は、片側のアニオン交換膜を介し陰イオンが流入してく
る一方、反対側のカチオン交換膜を介し陽イオンが流入
してこれらが混合される。すなわち廃液が脱塩されると
ともに、廃液中に含まれる成分のうちこの陽イオン・陰
イオン成分のみが濃縮され、濃厚な塩が生成される。[0003] In general, waste liquid treatment techniques for denitrification of waste liquid include (1) those that only process nitrogen components, (2) those that purify and recover components separated by the treatment, There are two ways. (1) A method that only performs processing of a nitrogen component An example of this processing method is, for example, an electrodialysis method.
In this method, a plurality of cation exchange membranes and an anion exchange membrane are provided between an anode to which a voltage is applied and a cathode. That is, a multi-chamber configuration is arranged in the order of anode / cation exchange membrane / anion exchange membrane / cation exchange membrane ... anion exchange membrane / cation exchange membrane / anion exchange membrane / cathode. In the meantime, the waste liquid is divided and supplied every other room, and a voltage is applied to the anode and the cathode. At this time, the cation exchange membrane allows only cations (cations) to permeate, and the anion exchange membrane allows only anions (anions) to permeate, so that anions flow into the chamber to which no waste liquid is supplied through one anion exchange membrane. Meanwhile, cations flow through the opposite cation exchange membrane and are mixed. That is, the waste liquid is desalted, and only the cation / anion components among the components contained in the waste liquid are concentrated to generate a thick salt.
【0004】この電気透析法による廃液処理の公知技術
としては、例えば以下のものがある。 特開平5−200388号公報(図4) この公知技術は、アンモニア水を含む廃液を、電気透析
法でpH調整を行った後に膜蒸留装置に供給することに
より、酸・アルカリ水溶液を特に準備することなくpH
を調整してアンモニアの揮発を防止するものである。[0004] Known techniques of waste liquid treatment by the electrodialysis method include, for example, the following. JP-A-5-200388 (FIG. 4) In this known technique, an aqueous acid / alkali solution is particularly prepared by supplying a waste liquid containing aqueous ammonia to a membrane distillation apparatus after pH adjustment by an electrodialysis method. PH without
Is adjusted to prevent the volatilization of ammonia.
【0005】特開昭61−192312号公報(図
2) この公知技術は、電気透析法で脱塩された希釈液の一部
を蒸留することにより、希釈液の高純度化・大容量化を
図るものである。[0005] Japanese Patent Application Laid-Open No. 61-192212 (FIG. 2) discloses a known technique for increasing the purity and capacity of a diluent by distilling a part of the diluent desalted by electrodialysis. It is intended.
【0006】なお、電気透析法の他、下水・一般排水等
のように比較的低濃度(数十ppm程度)の窒素成分が
含まれる廃液に対し行われる処理方法として、微生物に
よる硝化脱窒素処理法・アンモニアストリッピング法・
ゼオライト吸着法・逆浸透圧法等がある。[0006] In addition to the electrodialysis method, a nitrification denitrification treatment using microorganisms is used as a treatment method for wastewater containing a nitrogen component having a relatively low concentration (about several tens ppm) such as sewage and general wastewater. Method, ammonia stripping method,
There are zeolite adsorption method and reverse osmosis method.
【0007】(2)分離成分の精製・回収を行うもの この処理方法の例としては、例えば電解透析法がある。
この方法は、電気透析法と同様、陽極と陰極との間にカ
チオン交換膜とアニオン交換膜とを設けるものである
が、カチオン交換膜・アニオン交換膜を1枚ずつ設ける
ものである。すなわち、陽極・アニオン交換膜・カチオ
ン交換膜・陰極の順に配列する3室構成とし、中央にあ
たるカチオン交換膜とアニオン交換膜との間に電解質を
含む廃液を供給するとともに陽極・陰極に電圧を印加す
るものである。廃液中の陽イオンはカチオン交換膜を透
過してカチオン交換膜と陰極との間の陰極室に流入し、
また陰イオンはアニオン交換膜を透過してアニオン交換
膜と陽極との間の陽極室に流入する。すなわち廃液が脱
塩されるとともに、陽イオン・陰イオンのそれぞれが廃
液から分離される。そして一般にこのように分離された
陰イオン・陽イオンを精製して酸・アルカリを得られる
ことが多く、結果として廃液から酸とアルカリとを個別
に回収できる。(2) Purification and recovery of separated components An example of this treatment method is, for example, an electrodialysis method.
In this method, a cation exchange membrane and an anion exchange membrane are provided between an anode and a cathode similarly to the electrodialysis method, but one cation exchange membrane and one anion exchange membrane are provided. That is, a three-chamber configuration in which an anode, an anion exchange membrane, a cation exchange membrane, and a cathode are arranged in this order, a waste liquid containing an electrolyte is supplied between the cation exchange membrane and the anion exchange membrane at the center, and a voltage is applied to the anode and the cathode. Is what you do. Cations in the waste liquid permeate the cation exchange membrane and flow into the cathode compartment between the cation exchange membrane and the cathode,
The anions permeate the anion exchange membrane and flow into the anode chamber between the anion exchange membrane and the anode. That is, the waste liquid is desalted, and both cations and anions are separated from the waste liquid. In general, the thus separated anions and cations can often be purified to obtain acids and alkalis. As a result, acids and alkalis can be individually recovered from the waste liquid.
【0008】この電解透析法による廃液処理の公知技術
としては、例えば以下のものがある。 特開平3−265513号公報 この公知技術は、アンモニア塩とアンモニアを含有する
廃液を電解透析装置の陽極室に供給する一方、陰極室に
リン酸二水素アンモニウムを供給することにより、陽極
室から陰極室に移動するNH4 +でリン酸二水素アンモニ
ウムをリン酸水素二アンモニウムに転換後、これを蒸留
塔で蒸留してアンモニア水を回収するものである。[0008] As a known technique of the waste liquid treatment by the electrolytic dialysis method, for example, there is the following. JP-A-3-265513 discloses a known technique in which a waste liquid containing an ammonium salt and ammonia is supplied to an anode chamber of an electrodialysis apparatus, while ammonium dihydrogen phosphate is supplied to a cathode chamber. After converting ammonium dihydrogen phosphate to diammonium hydrogen phosphate with NH 4 + moving to the chamber, this is distilled in a distillation column to recover ammonia water.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上記従
来技術を硝酸アンモニウム含有廃液の処理に適用した場
合には、以下の課題が存在する。However, when the above-mentioned prior art is applied to the treatment of waste liquid containing ammonium nitrate, the following problems exist.
【0010】すなわち、従来の電気透析法・電解透析法
により廃液の処理を行う場合、脱塩が進むに従って廃液
中の電解質濃度(すなわちNO3 -,NH4 +濃度)が低下
していくことになる。これに伴い、(a)濃度が低下する
ほど抵抗が高くなるので、一定の電流を流すためには電
圧を大きくしなければならずランニングコストが高くな
る、よって脱塩効率を向上するのが困難であるという課
題がある。この意味で、原液濃度を下げることなく供給
できてこのような課題を生じていない。現在工業的に実
用化されている海水の電気透析による食塩製造方法や、
硫酸・苛性ソ-ダの各廃液から電解透析により高純度の
硫酸・苛性ソ-ダを得る方法(火力原子力発電 Vol.
30 No4 1979 "電解透析法による放射性廃棄物
容化装置の開発"に記載)とは異なる。That is, when the waste liquid is treated by the conventional electrodialysis method and electrolytic dialysis method, the electrolyte concentration (that is, NO 3 − , NH 4 + concentration) in the waste liquid decreases as the desalting proceeds. Become. Along with this, (a) since the resistance increases as the concentration decreases, the voltage must be increased in order to flow a constant current, the running cost increases, and it is difficult to improve the desalination efficiency. There is a problem that is. In this sense, the solution can be supplied without reducing the concentration of the stock solution, and such a problem does not occur. The salt production method by electrodialysis of seawater that is currently industrially used,
A method for obtaining high-purity sulfuric acid / caustic soda from each waste solution of sulfuric acid / caustic soda by electrolytic dialysis (thermal nuclear power generation Vol.
30 No. 4 1979, which is described in "Development of Radioactive Waste Concentrator by Electrodialysis").
【0011】また、(b)イオン移動過程は原液濃度に依
存しており、すなわち電解質濃度が低下すると硝酸イオ
ンNO3 -とアンモニウムイオンNH4 +の移動に伴ってイ
オンの水和水も同時に移動すること、及び、濃度拡散現
象によって濃縮側から脱塩側に逆方向のイオン移動が生
じることにより、ついには濃縮液の濃縮限界を生じ、見
かけ上それ以上の脱塩ができなくなる。よって廃液中の
硝酸イオンNO3 -・アンモニウムイオンNH4 +を十分に
除去することが困難となる。このことは、最終的に分離
成分を精製して回収する電気透析法においては、結果と
して、高純度・高濃度かつ高い回収率で硝酸・アンモニ
アガスを回収するのが困難となるという課題があった。(B) The ion transfer process depends on the concentration of the undiluted solution. That is, when the concentration of the electrolyte decreases, the water of hydration of the ions also moves with the transfer of the nitrate ions NO 3 - and the ammonium ions NH 4 +. In addition, the ion diffusion in the reverse direction from the concentration side to the desalination side due to the concentration diffusion phenomenon eventually causes a concentration limit of the concentrated solution, and apparently further desalination cannot be performed. Therefore, it becomes difficult to sufficiently remove nitrate ion NO 3 − and ammonium ion NH 4 + in the waste liquid. This means that in the electrodialysis method for finally purifying and recovering the separated components, it is difficult to recover nitric acid / ammonia gas with high purity, high concentration and high recovery rate. Was.
【0012】ここにおいて、電気透析による公知技術
、及び電解透析による公知技術を硝酸アンモニウム
含有廃液の処理方法に適用した場合には、廃液中の電解
質濃度の低下に配慮されていないことから、上記したよ
うな(a)電圧増加と低効率、(b)十分なイオン除去が困
難、という課題が生じる。また、公知技術はいずれ
も窒素成分の処理のみを行う電気透析によるものであ
り、硝酸アンモニウム含有廃液を脱窒素処理した場合に
は、廃液が脱塩される一方で濃縮された硝酸アンモニウ
ムNH4NO3が生じる。しかしこの硝酸アンモニウムは
爆発性の化合物であるのでこの形態で放置・貯蔵するの
は好ましくない。また硝酸イオンNO3 -及びアンモニウ
ムイオンNH4 +はそれぞれ、もともとは酸である硝酸H
NO3及びアルカリであるアンモニアNH3から生じたも
のであるので、廃液の再利用の観点からも、脱窒素処理
のみならずこれらのイオンを分離・精製し硝酸・アンモ
ニア水として回収することが望ましい。[0012] Here, when the known technology based on electrodialysis and the known technology based on electrodialysis are applied to a method for treating a waste solution containing ammonium nitrate, no consideration is given to a decrease in the electrolyte concentration in the waste solution. However, the following problems arise: (a) voltage increase and low efficiency; and (b) sufficient ion removal is difficult. In addition, all of the known techniques are based on electrodialysis in which only the treatment of the nitrogen component is performed.When the waste liquid containing ammonium nitrate is subjected to the denitrification treatment, the waste liquid is desalted while the concentrated ammonium nitrate NH 4 NO 3 is removed. Occurs. However, since ammonium nitrate is an explosive compound, it is not preferable to leave and store it in this form. In addition, nitrate ion NO 3 − and ammonium ion NH 4 + are respectively nitric acid H which is originally an acid.
Since it is generated from NO 3 and ammonia NH 3, which is an alkali, it is desirable not only from the denitrification treatment but also to separate and purify these ions and recover them as nitric acid / ammonia water from the viewpoint of recycling the waste liquid. .
【0013】本発明の目的は、廃液中の電解質濃度を低
下させず効率良く脱塩を行うことにより、廃液中の硝酸
イオン・アンモニウムイオンを十分に除去し、高純度か
つ高濃度の硝酸・アンモニウムを高い回収率で回収する
ことができる廃液処理方法及び廃液処理装置を提供する
ことである。[0013] It is an object of the present invention to efficiently remove salts by lowering the electrolyte concentration in the waste liquid, thereby sufficiently removing nitrate ions and ammonium ions in the waste liquid to obtain a high-purity and high-concentration ammonium nitrate. To provide a waste liquid treatment method and a waste liquid treatment device capable of recovering wastewater at a high recovery rate.
【0014】[0014]
【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、硝酸アンモニウムを含有する廃液
から硝酸イオンとアンモニウムイオンとを分離し、この
分離された硝酸イオンを含む溶液及びアンモニウムイオ
ンを含む溶液をそれぞれ精製して硝酸とアンモニアとを
回収する廃液処理方法において、前記硝酸アンモニウム
を含有する廃液を濃縮する第1の工程と、その濃縮され
た廃液を電解透析して硝酸イオンとアンモニウムイオン
とを分離し脱塩を行う第2の工程とを有し、その脱塩さ
れた廃液を再び前記濃縮手段へ導き循環させることによ
り前記第1の工程及び前記第2の工程を繰り返すことを
特徴とする廃液処理方法が提供される。According to the present invention, a nitrate ion and an ammonium ion are separated from a waste liquid containing ammonium nitrate, and a solution containing the separated nitrate ion and ammonium ion are separated. In a waste liquid treatment method for purifying a solution containing ions to recover nitric acid and ammonia, a first step of concentrating the waste liquid containing ammonium nitrate, and electrodialyzing the concentrated waste liquid to obtain nitrate ions and ammonium A second step of separating ions and desalting, and repeating the first step and the second step by introducing the desalted waste liquid again to the concentration means and circulating the same. A method for treating waste liquid is provided.
【0015】好ましくは、前記廃液処理方法において、
前記第1の工程は、多孔質疎水性膜を介し片側に高温の
前記廃液を流通させるとともに反対側に冷却水を流通さ
せ、前記廃液から生じた蒸気を前記冷却水で分離して回
収する工程であることを特徴とする廃液処理方法が提供
される。Preferably, in the waste liquid treatment method,
The first step is a step of circulating the high-temperature waste liquid on one side and circulating cooling water on the other side through a porous hydrophobic membrane, and separating and collecting steam generated from the waste liquid with the cooling water. A waste liquid treatment method is provided.
【0016】また上記目的を達成するために、本発明に
よれば、電圧が印加される陽極及び陰極と、これら陽極
と陰極との間に配置されたカチオン交換膜、アニオン交
換膜、及び脱塩室とを備え、硝酸アンモニウムを含有す
る廃液が前記脱塩室に供給されるとともに前記陽極及び
陰極に電圧が印加されることにより、前記廃液から硝酸
イオン及びアンモニウムイオンがそれぞれ個別に分離さ
れ脱塩が行われる電解透析手段と、前記分離された硝酸
イオンを含む溶液を精製して硝酸を回収する硝酸回収手
段と、前記分離されたアンモニウムイオンを含む溶液を
精製してアンモニアを回収するアンモニア回収手段とを
有する廃液処理装置において、前記電解透析手段の上流
側に設けられ前記電解透析手段に供給される前記廃液を
あらかじめ濃縮する濃縮手段と、前記濃縮手段で濃縮さ
れた廃液を前記電解透析手段に導く第1の配管と、前記
電解透析手段で脱塩された廃液を前記濃縮手段に導く第
2の配管と、を有することを特徴とする廃液処理装置が
提供される。According to the present invention, there is provided an anode and a cathode to which a voltage is applied, and a cation exchange membrane, an anion exchange membrane, and a desalination membrane disposed between the anode and the cathode. A waste liquid containing ammonium nitrate is supplied to the desalting chamber and a voltage is applied to the anode and the cathode, whereby nitrate ions and ammonium ions are separately separated from the waste liquid, and desalination is performed. Electrolytic dialysis means to be performed, nitric acid recovery means for purifying the separated solution containing nitrate ions to recover nitric acid, and ammonia recovery means for purifying the separated solution containing ammonium ions to recover ammonia Wherein the waste liquid provided upstream of the electrolytic dialysis means and supplied to the electrolytic dialysis means is concentrated in advance. Concentrating means, a first pipe for guiding the waste liquid concentrated by the concentrating means to the electrolytic dialysis means, and a second pipe for guiding the waste liquid desalted by the electrolytic dialysis means to the concentrating means. A waste liquid treatment apparatus is provided.
【0017】好ましくは、前記廃液処理装置において、
前記アニオン交換膜は、一価選択性を備えていることを
特徴とする廃液処理装置が提供される。Preferably, in the waste liquid treatment apparatus,
A waste liquid treatment apparatus is provided, wherein the anion exchange membrane has monovalent selectivity.
【0018】また好ましくは、前記廃液処理装置におい
て、前記濃縮手段は、多孔質疎水性膜を備えており、そ
の多孔質疎水性膜を介し片側に高温の前記廃液を流通さ
せ反対側に冷却水を流通させて前記廃液から生じた蒸気
を前記冷却水で凝縮して回収する膜蒸発手段であること
を特徴とする廃液処理装置が提供される。Preferably, in the waste liquid treatment apparatus, the concentrating means includes a porous hydrophobic membrane, through which the high-temperature waste liquid flows through one side and cooling water flows through the other side. The waste liquid treatment apparatus is characterized in that it is a film evaporating means for circulating steam and condensing and recovering steam generated from the waste liquid with the cooling water.
【0019】[0019]
【0020】さらに好ましくは、前記廃液処理装置にお
いて、前記膜蒸発手段の上流側に設けられその膜蒸発手
段に供給される廃液をあらかじめ加熱する加熱手段と、
前記膜蒸発手段の下流側に設けられその膜蒸発手段で濃
縮された廃液を冷却する冷却手段とを有することを特徴
とする廃液処理装置が提供される。[0020] More preferably, in the waste liquid treatment apparatus, heating means provided upstream of the film evaporating means and preheating the waste liquid supplied to the film evaporating means,
And a cooling means provided downstream of the film evaporating means for cooling the waste liquid concentrated by the film evaporating means.
【0021】また好ましくは、前記廃液処理装置におい
て、前記濃縮手段は、前記廃液を加熱して蒸発させ、そ
の蒸気を凝縮して回収することにより前記廃液を濃縮す
る加熱蒸発手段であることを特徴とする廃液処理装置が
提供される。 [0021] Preferably, in the waste water treatment apparatus, wherein the concentration means, characterized in that the waste heat to evaporate the a heating evaporation means for concentrating the waste liquid by collecting and condensing the vapor Is provided.
【0022】さらに好ましくは、前記廃液処理装置にお
いて、前記第2の配管に設けられ、前記電解透析手段で
脱塩された廃液のpH調整を行うpH調整手段と、前記
第2の配管の前記pH調整手段の下流側に設けられ前記
廃液中の不純物を分離するろ過手段とを有することを特
徴とする廃液処理装置が提供される。 More preferably, in the waste liquid treatment apparatus, a pH adjusting means provided in the second pipe for adjusting the pH of the waste liquid desalted by the electrolytic dialysis means, and the pH of the second pipe is adjusted. A wastewater treatment apparatus provided with a filtration means provided downstream of the adjustment means for separating impurities in the wastewater.
【0023】またに好ましくは、前記廃液処理装置にお
いて、前記第2の配管に設けられ、前記電解透析手段で
脱塩された廃液中に含まれる不純物イオンの濃度が制限
値を越えた場合、その不純物を含む廃液の一部を前記第
2の配管から取り出して排出する排出手段を有すること
を特徴とする廃液処理装置が提供される。[0023] also be preferable, in the waste water treatment apparatus, if the provided second pipe, the concentration of the impurity ions contained in waste liquid desalted by the electrodialysis means exceeds the limit value, the A waste liquid treatment apparatus is provided, comprising a discharge means for taking out and discharging a part of the waste liquid containing impurities from the second pipe.
【0024】[0024]
【0025】さらに好ましくは、前記廃液処理装置にお
いて、前記アンモニア回収手段は、前記アンモニウムイ
オンを含む溶液に不活性ガス及びH2ガスの少なくとも
一方を注入する注入手段を有することを特徴とする廃液
処理装置が提供される。More preferably, in the waste liquid treatment apparatus, the ammonia recovery means has an injection means for injecting at least one of an inert gas and an H 2 gas into the solution containing ammonium ions. An apparatus is provided.
【0026】[0026]
【作用】以上のように構成した本発明においては、第1
の工程で硝酸アンモニウムを含有する廃液を濃縮した後
に、第2の工程でその濃縮された廃液を電解透析を行う
ことにより、従来に比し陽極・陰極に印加する電圧を小
さくすることができ、脱塩効率を向上することができ
る。またその脱塩された廃液を再び濃縮手段へ導き循環
させ第1の工程及び第2の工程を繰り返すことにより、
廃液濃度を低下させずに何度も脱塩することができる。
よって従来のようにイオン水和水・濃度拡散現象による
脱塩限界が生じず、常に一定の高い効率で脱塩を行え
る。よって最終的に第1の工程における濃縮量と第2の
工程における脱塩量がほぼ等しくなって廃液中の硝酸イ
オンNO3 -・アンモニウムイオンNH4 +をほぼ全量除去
することができ、この結果高純度・高濃度の硝酸・アン
モニアを高い回収率で同時に回収することができる。In the present invention configured as described above, the first
After concentrating the waste liquid containing ammonium nitrate in the step (2), the concentrated waste liquid is subjected to electrolytic dialysis in the second step, whereby the voltage applied to the anode / cathode can be reduced as compared with the conventional method. Salt efficiency can be improved. In addition, the desalted waste liquid is guided again to the concentration means and circulated, and the first step and the second step are repeated, whereby
Desalting can be performed many times without reducing the concentration of the waste liquid.
Therefore, unlike the conventional case, the desalination limit due to the ion hydration water / concentration diffusion phenomenon does not occur, and the desalination can always be performed with a constant high efficiency. Therefore, finally, the amount of concentration in the first step and the amount of desalination in the second step are almost equal, and almost all of the nitrate ion NO 3 − and ammonium ion NH 4 + in the waste liquid can be removed. High-purity, high-concentration nitric acid / ammonia can be simultaneously recovered at a high recovery rate.
【0027】また、第1の工程において、多孔質疎水性
膜を介し片側に高温の廃液を流通させるとともに反対側
に冷却水を流通させ、廃液から生じた蒸気を冷却水で分
離して回収することにより、廃液中の水分を回収し高純
度水を得ることができる。In the first step, a high-temperature waste liquid is circulated to one side and a cooling water is circulated to the other side via the porous hydrophobic membrane, and steam generated from the waste liquid is separated and collected by the cooling water. This makes it possible to recover the water in the waste liquid and obtain high-purity water.
【0028】また、本発明においては、電解透析手段の
上流側に設けられた濃縮手段で電解透析手段に供給され
る廃液をあらかじめ濃縮し、その濃縮廃液を第1の配管
で電解透析手段に導き、電解透析手段で脱塩された廃液
を第2の配管で再び濃縮手段に導くことにより、濃縮と
脱塩とを繰り返す廃液循環系を実現することができる。In the present invention, the waste liquid supplied to the electrodialysis means is concentrated in advance by the concentration means provided upstream of the electrodialysis means, and the concentrated waste liquid is led to the electrodialysis means by the first pipe. By introducing the waste liquid desalted by the electrolytic dialysis means to the concentration means again through the second pipe, a waste liquid circulation system which repeats concentration and desalination can be realized.
【0029】また、アニオン交換膜は一価選択性を備え
ていることにより、廃液中に含まれている可能性のある
硫酸イオンが、硝酸イオンとともに廃液から分離される
のを防止できる。さらに、濃縮手段は、多孔質疎水性膜
を介し片側に高温の廃液を反対側に冷却水を流通させて
廃液から生じた蒸気を冷却水で凝縮して回収する膜蒸発
手段であることにより、電解透析手段に供給される廃液
をあらかじめ濃縮する手段を実現できる。また、膜蒸発
手段の上流側に設けられた加熱手段で膜蒸発手段に供給
される廃液をあらかじめ加熱することにより、廃液を高
温にして膜蒸発手段内での蒸発をより促進することがで
き、また膜蒸発手段の下流側に設けられた冷却手段で膜
蒸発手段で濃縮された廃液を所定温度まで冷却すること
により、高温に弱いカチオン・アニオン交換膜の破損を
防止できる。また、濃縮手段は、廃液を加熱した蒸気を
凝縮・回収し廃液を濃縮する加熱蒸発手段であることに
より、電解透析手段に供給される廃液をあらかじめ濃縮
する手段を実現できる。さらに、第2の配管に設けられ
たpH調整手段によって電解透析手段で脱塩された廃液
のpH調整を行うことにより、その廃液中に含まれる不
純物イオンを水酸化物に変化させせることができ、そし
てこの廃液中に浮遊・沈澱している水酸化物を、第2の
配管のpH調整手段の下流側に設けられたろ過手段で分
離することができ、また回収するアンモニア・硝酸の純
度をさらに向上することができる。また、電解透析手段
で脱塩された廃液中に含まれる不純物イオンの濃度が制
限値を越えた場合、第2の配管に設けられた排出手段で
廃液の一部を取り出して排出することにより、廃液中の
不純物の蓄積を防止でき、また回収するアンモニア・硝
酸の純度をさらに向上することができる。さらに、アン
モニア回収手段に備えられた注入手段で、不活性ガス及
びH2ガスの少なくとも一方をアンモニウムイオンを含
む溶液に注入することにより、カルシウムイオン、マグ
ネシウムイオン、ナトリウムイオン等も含みうるこの溶
液からアンモニアガスのみを放散させて回収することが
できる。Further, since the anion exchange membrane has monovalent selectivity, it is possible to prevent sulfate ions possibly contained in the waste liquid from being separated from the waste liquid together with nitrate ions. Further, the concentrating means is a film evaporating means for allowing high-temperature waste liquid to flow through the porous hydrophobic membrane on one side and cooling water to the other side to condense and collect steam generated from the waste liquid with the cooling water, A means for pre-concentrating the waste liquid supplied to the electrodialysis means can be realized. Further , by previously heating the waste liquid supplied to the film evaporating means by the heating means provided on the upstream side of the film evaporating means, the waste liquid can be heated to a high temperature to further promote evaporation in the film evaporating means, Further, by cooling the waste liquid concentrated by the membrane evaporating means to a predetermined temperature by the cooling means provided on the downstream side of the membrane evaporating means, it is possible to prevent the cation / anion exchange membrane weak at high temperatures from being damaged. Further, since the concentrating means is a heating and evaporating means for condensing and recovering the vapor heated from the waste liquid and condensing the waste liquid, a means for pre-concentrating the waste liquid supplied to the electrolytic dialysis means can be realized. Further, by adjusting the pH of the waste liquid desalted by the electrolytic dialysis means by the pH adjusting means provided in the second pipe, the impurity ions contained in the waste liquid can be changed to hydroxides. The hydroxide suspended / precipitated in the waste liquid can be separated by a filtration means provided on the downstream side of the pH adjusting means of the second pipe, and the purity of the recovered ammonia / nitric acid can be reduced. It can be further improved. Further, when the concentration of impurity ions contained in the waste liquid desalted by the electrolytic dialysis means exceeds the limit value, a part of the waste liquid is taken out and discharged by the discharge means provided in the second pipe, Accumulation of impurities in the waste liquid can be prevented, and the purity of the recovered ammonia and nitric acid can be further improved. Furthermore, injection means provided in A down <br/> pneumoniae recovery means, by injecting a solution comprising at least one of ammonium ions of an inert gas and H2 gas, calcium ions, magnesium ions, also sodium ions Only ammonia gas can be diffused and recovered from the solution that can be contained.
【0030】[0030]
【実施例】以下、本発明の一実施例を図1〜図5により
説明する。本実施例による廃液処理方法を実施する廃液
処理装置の全体構成を図1に示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows the overall configuration of a waste liquid treatment apparatus that implements the waste liquid treatment method according to the present embodiment.
【0031】図1において、廃液処理装置100は、硝
酸アンモニウムNH4NO3を含有する廃液から硝酸イオ
ンNO3 -及びアンモニウムイオンNH4 +がそれぞれ個別
に分離され脱塩が行われる電解透析部1と、電解透析部
1の上流側に設けられ電解透析部1に供給される廃液を
あらかじめ濃縮する蒸発部2と、蒸発部2で濃縮された
廃液を電解透析部1に導く配管40と、電解透析部1で
脱塩された廃液を蒸発部2に導く配管50と、分離され
た硝酸イオンを含む溶液を精製して硝酸HNO3を回収
する硝酸回収系18と、分離されたアンモニウムイオン
を含む溶液を精製してアンモニアガスNH3を回収する
アンモニア回収系19とを有する。In FIG. 1, a waste liquid treatment apparatus 100 includes an electrolytic dialysis unit 1 in which nitrate ions NO 3 − and ammonium ions NH 4 + are separately separated from a waste liquid containing ammonium nitrate NH 4 NO 3 and desalting is performed. An evaporator 2 provided upstream of the electrodialysis unit 1 for pre-concentrating waste liquid supplied to the electrodialysis unit 1, a pipe 40 for guiding the waste liquid concentrated in the evaporator 2 to the electrodialysis unit 1; A pipe 50 for guiding the waste liquid desalted in the section 1 to the evaporating section 2; a nitric acid recovery system 18 for purifying the separated solution containing nitrate ions to recover nitric acid HNO 3 ; and a solution containing the separated ammonium ions And an ammonia recovery system 19 for recovering ammonia gas NH 3 by purifying the ammonia gas.
【0032】電解透析部1の詳細構造を図2に示す。図
2において、電解透析部1は、3つの透析室1A,1B,
1Cから構成されており、それぞれの透析室1A〜1C
が、両側に対向して配置された陽極30及び陰極31
と、陽極30と陰極31との間に配置されたカチオン交
換膜13及びアニオン交換膜11とを備えている。この
とき陽極30側にはアニオン交換膜11が、陰極31側
にカチオン交換膜13が配置されており、これらによっ
て、各透析室1A〜1Cは陽極室10と脱塩室9と陰極
室12とに区分されている。またアニオン交換膜11は
一価選択性を有しており、これによって廃液中に含まれ
ている可能性のある硫酸イオンSO4 2-が硝酸イオンN
O3 -とともに廃液から分離されるのを防止することがで
きる。各透析室1A〜1Cの陽極室10は硝酸液槽34
を備えた硝酸回収系18に接続されており、また各透析
室1A〜1Cの陰極室12はアンモニア水槽20を備え
たアンモニア回収系19に接続されている。FIG. 2 shows the detailed structure of the electrodialysis unit 1. In FIG. 2, the electrodialysis unit 1 includes three dialysis chambers 1A, 1B,
1C, each dialysis room 1A-1C
Is an anode 30 and a cathode 31 that are arranged on both sides to face each other.
And a cation exchange membrane 13 and an anion exchange membrane 11 disposed between the anode 30 and the cathode 31. At this time, the anion exchange membrane 11 is disposed on the side of the anode 30 and the cation exchange membrane 13 is disposed on the side of the cathode 31, whereby each of the dialysis chambers 1A to 1C is connected to the anode chamber 10, the desalination chamber 9, and the cathode chamber 12. It is divided into. Further, the anion exchange membrane 11 has a monovalent selectivity, whereby the sulfate ion SO 4 2- which may be contained in the waste liquid is changed to the nitrate ion N
O 3 - it is possible to prevent from being separated from the effluent. The anode chamber 10 of each of the dialysis chambers 1A to 1C has a nitric acid solution tank 34.
The dialysis chambers 1A to 1C are connected to an ammonia recovery system 19 provided with an ammonia water tank 20.
【0033】蒸発部2の詳細構造を図3に示す。図3に
おいて、蒸発部2はフィルタ27を備えており、このフ
ィルタ27には例えばPTFE(ポリテトラフルオロエ
チレン)材等、ミクロンオーダの多数の細孔を有する円
管状の多孔質疎水性膜が多数本装填されている。このフ
ィルタ27には、冷却水槽15と冷却器16とを備えた
循環系統である冷却系17からの冷却水が導かれてお
り、膜の内部を廃液が流通し膜の外部をこの冷却水が流
通するようになっている。また蒸発部2の上流側の配管
50には加熱部5が設けられており、下流側の配管40
には冷却部32が設けられている。FIG. 3 shows a detailed structure of the evaporating section 2. 3, the evaporating section 2 includes a filter 27. The filter 27 includes a large number of cylindrical porous hydrophobic films having a large number of micron-order pores, such as a PTFE (polytetrafluoroethylene) material. It is fully loaded. Cooling water from a cooling system 17, which is a circulation system including a cooling water tank 15 and a cooler 16, is guided to the filter 27. A waste liquid flows inside the membrane, and the cooling water flows outside the membrane. It is circulating. A heating section 5 is provided in a pipe 50 on the upstream side of the evaporating section 2, and a pipe 40 on the downstream side is provided.
Is provided with a cooling unit 32.
【0034】図1に戻り、また配管50には、電解透析
部1で脱塩された廃液のpH調整を行う図示しないpH
調整手段と、そのpH調整手段の下流側で廃液中に沈澱
・浮遊する不純物を分離するろ過部33と、さらにその
ろ過部33の下流側において廃液が貯蔵される廃液貯槽
4とが設けられている。またこの廃液貯槽4には不純物
イオンを含む廃液の一部を配管50から取り出して排出
する排出系22が設けられている。Returning to FIG. 1, a pipe 50 is provided with a pH (not shown) for adjusting the pH of the waste liquid desalted in the electrodialysis unit 1.
An adjusting unit, a filtration unit 33 for separating impurities precipitated and floating in the waste liquid downstream of the pH adjusting unit, and a waste liquid storage tank 4 for storing the waste liquid downstream of the filtration unit 33. I have. The waste liquid storage tank 4 is provided with a discharge system 22 for taking out and discharging a part of the waste liquid containing impurity ions from the pipe 50.
【0035】以上、図1〜図3に示した構成において、
硝酸アンモニウムを含む廃液は、外部から廃液槽4に供
給されて一旦貯蔵される。そして廃液槽4から配管50
に取り入れられた廃液は加熱部5で所定の温度に加熱さ
れた後、蒸発部2の上流側の水室29Uに入ってフィル
タ27の円管状の多孔質疎水性膜に分配されて流入する
(図3参照)。このときフィルタ27では膜を介し片側
に高温の廃液が流通し反対側に冷却系17からの冷却水
が流通することとなる。廃液の水分はこの膜内を蒸気と
なって冷却水側に移動し、冷却水で直ちに凝縮されて高
純度水となり冷却水の増分として冷却系17に回収され
る。これによって廃液は濃縮されるが、この濃縮の程度
は、電解透析部1での脱塩性能に応じ、膜面積と原液温
度とを変化させることにより調整される。一方、濃縮さ
れた廃液は、下流側の水室29Lで再び集められて合流
し冷却部32で所定温度まで冷却された後電解透析部1
に送られる。As described above, in the configuration shown in FIGS.
The waste liquid containing ammonium nitrate is supplied from outside to the waste liquid tank 4 and temporarily stored therein. And from the waste liquid tank 4 to the pipe 50
Is heated to a predetermined temperature by the heating unit 5, enters the water chamber 29U on the upstream side of the evaporation unit 2, is distributed to the tubular porous hydrophobic membrane of the filter 27, and flows in ( (See FIG. 3). At this time, in the filter 27, high-temperature waste liquid flows on one side through the membrane, and cooling water from the cooling system 17 flows on the other side. The moisture of the waste liquid is converted into steam in the film and moves to the cooling water side, where it is immediately condensed by the cooling water to become high-purity water, which is collected by the cooling system 17 as an increment of the cooling water. As a result, the waste liquid is concentrated. The degree of concentration is adjusted by changing the membrane area and the stock solution temperature in accordance with the desalting performance in the electrodialysis unit 1. On the other hand, the concentrated waste liquid is collected again in the water chamber 29L on the downstream side, merged and cooled to a predetermined temperature in the cooling unit 32, and then cooled to a predetermined temperature.
Sent to
【0036】冷却部32で冷却された廃液は、電解透析
部1の各透析室1A〜1Cの脱塩室9に供給される(図
2参照)。このとき各透析室1A〜1Cにおいて、陽極
30及び陰極31に電圧が印加され、廃液に含まれるN
O3 -がアニオン交換膜11を介し陽極室10へ移行し、
またNH4 +がカチオン交換膜13を介し陰極室12へ移
行する。なおこの電解透析においては溶液の電気抵抗に
よりジュール熱が発生するが、この熱は配管50を介し
蒸発部2における蒸発熱として利用され、これによって
熱の有効利用を図ることができる。またこのとき、硝酸
回収系18からの硝酸が各透析室1A〜1Cの陽極室1
0に分流して導かれており、各陽極室10に移行してき
たNO3 -を吸収した後に再び合流し硝酸液槽34に戻っ
て循環する。電解透析部1で脱塩が行われる間この硝酸
回収系18を循環させることにより硝酸の精製が行わ
れ、硝酸液槽34から適時高濃度・高純度の硝酸HNO
3を得ることができる。また同様に、アンモニア回収系
19からのアンモニア水が各透析室1A〜1Cの陰極室
12に分流して導かれており、各陰極室12に移行して
きたNH4 +を吸収した後に再び合流しアンモニア水槽2
0に戻って循環する。電解透析部1で脱塩が行われる間
このアンモニア回収系19を循環させることによりアン
モニア水の精製が行われる。ここでアンモニア水槽20
には、アンモニア回収系19を循環するアンモニア水中
に不活性ガス又はH2ガスを注入する不活性ガス注入系
21が備えられている。前述したように、カチオン交換
膜13はイオンの価数による選択性を備えていないの
で、廃液中からアンモニウムイオンNH4 +のほかカルシ
ウムイオンCa2+、マグネシウムイオンMg2+、ナトリ
ウムイオンNa+等がカチオン交換膜13を介してこの
アンモニア水中に移行し混入され得るが、不活性ガス又
はH2ガスを注入することにより、アンモニア水槽20
でアンモニアガスNH3のみを放散させ、適時高濃度・
高純度のアンモニアガスNH3を回収することができ
る。The waste liquid cooled in the cooling section 32 is supplied to the desalting chamber 9 of each of the dialysis chambers 1A to 1C of the electrodialysis section 1 (see FIG. 2). At this time, in each of the dialysis chambers 1A to 1C, a voltage is applied to the anode 30 and the cathode 31, and the N contained in the waste liquid is
O 3 − moves to the anode chamber 10 via the anion exchange membrane 11,
Further, NH 4 + moves to the cathode chamber 12 through the cation exchange membrane 13. In this electrolytic dialysis, Joule heat is generated due to the electric resistance of the solution, and this heat is used as evaporation heat in the evaporating section 2 through the pipe 50, whereby the heat can be effectively used. At this time, the nitric acid from the nitric acid recovery system 18 is supplied to the anode chamber 1 of each of the dialysis chambers 1A to 1C.
After absorbing the NO 3 − that has migrated to the respective anode chambers 10, the NO 3 − is merged again, returned to the nitric acid solution tank 34 and circulated. During the desalting in the electrodialysis unit 1, the nitric acid recovery system 18 is circulated to purify the nitric acid.
You can get 3 . Similarly, the ammonia water from the ammonia recovery system 19 is diverted and led to the cathode chambers 12 of the dialysis chambers 1A to 1C, and merges again after absorbing the NH 4 + transferred to the cathode chambers 12. Ammonia water tank 2
Return to 0 and cycle. The ammonia recovery system 19 is circulated during the desalting in the electrodialysis unit 1 to purify the ammonia water. Here the ammonia water tank 20
Is provided with an inert gas injection system 21 for injecting an inert gas or H 2 gas into the ammonia water circulating in the ammonia recovery system 19. As described above, since the cation exchange membrane 13 does not have selectivity depending on the valence of ions, it is possible to use ammonium ion NH 4 + , calcium ion Ca 2+ , magnesium ion Mg 2+ , sodium ion Na +, etc. Can migrate into the aqueous ammonia via the cation exchange membrane 13 and be mixed therein, but by injecting an inert gas or H 2 gas, the aqueous ammonia
To release only ammonia gas NH 3
High-purity ammonia gas NH 3 can be recovered.
【0037】一方、このようにして各透析室1A〜1C
の脱塩室9においてNO3 -とNH4 +とが除かれ脱塩され
た廃液は、再び合流し配管50に導かれる。このとき図
示しないpH調整手段によって随時この廃液のpHが調
整され、これによってこの廃液中に含まれる不純物イオ
ン、例えばカルシウムイオン、マグネシウムイオン、鉄
イオン、ニッケルイオン等を水酸化物(固体)に変化さ
せて廃液中を沈澱・浮遊させ、ろ過部33においてこれ
ら沈澱・浮遊した不純物を分離して取り除く(図1参
照)。さらに、このようなろ過部33による不純物の分
離作用に加えて、廃液中に含まれるこれら不純物イオン
の濃度が制限値を越えた場合には、廃液槽4に設けられ
た排出系22によって廃液の一部をブローダウンし廃液
中の不純物の蓄積を防止する。これらによって、配管等
から析出し又は廃液にもともと混入していたカルシウム
イオン、マグネシウムイオン、鉄イオン、ニッケルイオ
ン等を分離・排出し、アンモニア回収系19又は硝酸回
収系18で回収するアンモニア又は硝酸の純度をさらに
向上することができる。このようにして不純物が除かれ
た廃液は配管50によって再び加熱器5を経て蒸発部2
へ供給され、電気透析部1によって廃液中からほぼ完全
にNO3 -,NH4 +が取り除かれるまで上記の手順が繰り
返される。On the other hand, each of the dialysis chambers 1A to 1C
The desalted waste liquid from which NO 3 − and NH 4 + have been removed in the desalting chamber 9 is again joined and led to the pipe 50. At this time, the pH of the waste liquid is adjusted at any time by a pH adjusting means (not shown), whereby impurity ions, such as calcium ions, magnesium ions, iron ions, nickel ions, etc., contained in the waste liquid are changed to hydroxides (solids). Then, the waste liquid is precipitated and suspended, and the precipitated and suspended impurities are separated and removed in the filtration unit 33 (see FIG. 1). Further, in addition to the action of separating the impurities by the filtration unit 33, when the concentration of these impurity ions contained in the waste liquid exceeds the limit value, the discharge system 22 provided in the waste liquid tank 4 removes the waste liquid. Partially blow down to prevent accumulation of impurities in waste liquid. By these, calcium ions, magnesium ions, iron ions, nickel ions, etc., which are precipitated from the pipes or mixed in the waste liquid, are separated and discharged, and the ammonia or nitric acid recovered in the ammonia recovery system 19 or the nitric acid recovery system 18 is separated. Purity can be further improved. The waste liquid from which the impurities have been removed in this way passes through the heater 5 again through the pipe 50 and passes through the evaporator 2.
The above procedure is repeated until NO 3 − and NH 4 + are almost completely removed from the waste liquid by the electrodialysis unit 1.
【0038】次に、本実施例の作用を説明する。電解透
析の脱塩液濃度依存性の一例を図4に示す。図4は、本
実施例の廃液処理装置100の電解透析部1と同様の構
造をもつ電解透析装置に、脱塩液として硝酸アンモニウ
ム溶液を供給し、この溶液の初期濃度が異なる2つの場
合について脱塩液濃度・温度の経時変化とそのときの電
流効率を測定し比較したものである。測定条件として
は、陽極室には2.0Mの硝酸1.5リットル、陰極室に
は2.0Mのアンモニア液1.5リットルをそれぞれあら
かじめ供給した上で、脱塩室に2.0Mの硝酸アンモ
ニウム溶液1.5リットル(初期温度21℃)を供給し
た場合、4.0Mの硝酸アンモニウム溶液1.5リット
ル(初期温度20℃)を供給した場合、のそれぞれにつ
き、20A(電流密度25A/dm2)の一定電流を6
時間通電した。Next, the operation of this embodiment will be described. FIG. 4 shows an example of the salt concentration dependence of the electrodialysis. FIG. 4 shows an example in which an ammonium nitrate solution is supplied as a desalting solution to an electrodialysis apparatus having the same structure as the electrodialysis unit 1 of the wastewater treatment apparatus 100 of the present embodiment. This is a comparison of measured changes in salt solution concentration and temperature with time and current efficiency at that time. As the measurement conditions, 1.5 L of 2.0 M nitric acid and 1.5 L of 2.0 M ammonia solution were previously supplied to the anode chamber and the cathode chamber, respectively, and then 2.0 M ammonium nitrate was supplied to the desalting chamber. When 1.5 liters of the solution (initial temperature: 21 ° C.) is supplied, and when 1.5 liters of the 4.0 M ammonium nitrate solution (initial temperature: 20 ° C.) is supplied, each of them is 20 A (current density: 25 A / dm 2 ). Constant current of 6
Energized for hours.
【0039】このような測定の結果、いずれの場合も時
間の経過とともに脱塩が進んで陽極液の濃度が増加する
とともに脱塩液の濃度が減少したが、図4に示すように
の2.0Mの硝酸アンモニウム溶液では、6時間後の
硝酸アンモニウム溶液の濃度は0.75Mであり、この
間の平均電流効率は42%であった。一方の4.0M
の硝酸アンモニウム液では、6時間後の硝酸アンモニウ
ム溶液の濃度は2.3Mであり、この間の平均電流効率
は74%であった。このように、脱塩液の濃度が高いほ
ど電流効率が大きくなり脱塩効率が良いことがわかっ
た。なお脱塩液温度については、とも大差はなく2
0℃前後から50℃前後に上昇した。As a result of such measurement, in each case, the desalting proceeded with the lapse of time and the concentration of the anolyte increased and the concentration of the desalin decreased as time passed. However, as shown in FIG. With a 0 M ammonium nitrate solution, the concentration of the ammonium nitrate solution after 6 hours was 0.75 M, during which the average current efficiency was 42%. 4.0M on one side
The concentration of the ammonium nitrate solution after 6 hours was 2.3 M, and the average current efficiency during this period was 74%. Thus, it was found that the higher the concentration of the desalted liquid, the higher the current efficiency and the better the desalination efficiency. Note that the desalting solution temperature is not much different from
The temperature rose from about 0 ° C to about 50 ° C.
【0040】本実施例においては、蒸発部2で硝酸アン
モニウムを含有する廃液をあらかじめ濃縮した後に、電
解透析部1でその濃縮された廃液を電解透析することに
より、従来に比し電流効率が大きくなる。すなわち陽極
30・陰極31に印加する電圧を小さくすることがで
き、脱塩効率を向上することができる。また、その脱塩
された廃液を再び配管50を介して蒸発部2へ導き循環
させ濃縮と電解透析を繰り返すことにより、廃液濃度を
低下させずに何度も脱塩することができる。よって従来
のようにイオン水和水・濃度拡散現象による脱塩限界が
生じず、常に一定の高い効率で脱塩を行える。したがっ
て最終的に蒸発部2における濃縮量と電解透析部1にお
ける脱塩量がほぼ等しくなって廃液中の硝酸イオンNO
3 -・アンモニウムイオンNH4 +をほぼ全量除去すること
ができ、この結果高純度・高濃度の硝酸・アンモニアを
高い回収率で同時に回収することができる。In this embodiment, after the waste liquid containing ammonium nitrate is concentrated in advance in the evaporating section 2 and the concentrated waste liquid is subjected to electrolytic dialysis in the electrolytic dialysis section 1, the current efficiency is increased as compared with the conventional case. . That is, the voltage applied to the anode 30 and the cathode 31 can be reduced, and the desalting efficiency can be improved. In addition, the desalted waste liquid is again guided to the evaporating section 2 through the pipe 50, circulated, and the concentration and the electrodialysis are repeated, whereby the desalting can be performed many times without lowering the waste liquid concentration. Therefore, unlike the conventional case, the desalination limit due to the ion hydration water / concentration diffusion phenomenon does not occur, and the desalination can always be performed with a constant high efficiency. Therefore, finally, the amount of concentration in the evaporator 2 and the amount of desalination in the electrodialysis unit 1 become substantially equal, and the nitrate ion NO
3 - ammonium ion NH 4 + to be able to almost all removed, can be recovered simultaneously nitrate ammonia for this result high purity and high concentration at a high recovery rate.
【0041】膜蒸発における蒸発速度特性を図5を用い
て説明する。疎水性多孔質膜を介し高温溶液と冷却水が
存在する場合の膜蒸発においては、多孔質膜を介し溶液
から蒸発した水分が冷却水側へ移動して原液が濃縮され
る一方、冷却水側に移動した蒸気は冷却水で凝縮され
る。この時の蒸発速度Vは、 V=K・A(Ph−Pc) K:透過係数 A:膜面積 Ph:溶液の蒸気圧 Pc:冷却水の蒸気圧 で表される。すなわち、蒸発速度は、溶液と冷却水との
蒸気圧差(Ph−Pc)及び膜面積Aに比例する。よっ
て他の条件が同じならば、溶液の温度が高くまた冷却水
温度が低いほど大きい蒸発量が得られることになる。こ
のような蒸発量の温度依存性の一例を図5に示す。The evaporation rate characteristics in film evaporation will be described with reference to FIG. In film evaporation when a high-temperature solution and cooling water are present through the hydrophobic porous membrane, water evaporated from the solution through the porous membrane moves to the cooling water side, and the undiluted solution is concentrated. The steam moved to is cooled by the cooling water. The evaporation rate V at this time is represented by: V = KA (Ph-Pc) K: Permeability coefficient A: Membrane area Ph: Vapor pressure of solution Pc: Vapor pressure of cooling water That is, the evaporation rate is proportional to the vapor pressure difference (Ph-Pc) between the solution and the cooling water and the film area A. Therefore, if other conditions are the same, the higher the temperature of the solution and the lower the temperature of the cooling water, the larger the amount of evaporation can be obtained. FIG. 5 shows an example of such a temperature dependence of the evaporation amount.
【0042】図5は、本実施例の廃液処理装置100の
蒸発部2と同様の構造をもつ膜蒸発装置に脱塩液として
硝酸アンモニウム溶液を供給し、溶液温度が異なる2つ
の場合について蒸発量を測定し比較したものである。測
定条件としては、200cm2のPTFE平膜を配置し
た直接接触型の膜蒸発装置に20℃の冷却水を導入し、
60℃の硝酸アンモニウム溶液を供給した場合、4
0℃の硝酸アンモニウム溶液を供給した場合、のそれぞ
れについて蒸発速度を測定した。FIG. 5 shows an example in which an ammonium nitrate solution is supplied as a desalting solution to a membrane evaporator having a structure similar to that of the evaporator 2 of the waste liquid treatment apparatus 100 of the present embodiment, and the amount of evaporation in two cases where the solution temperatures are different. Measured and compared. The measurement conditions were as follows: cooling water at 20 ° C. was introduced into a direct contact type film evaporator in which a 200 cm 2 PTFE flat film was arranged;
When an ammonium nitrate solution at 60 ° C is supplied, 4
When an ammonium nitrate solution at 0 ° C. was supplied, the evaporation rate was measured for each of them.
【0043】このような測定の結果、図5に示すよう
に、の60℃の溶液では蒸発量は12Kg/m2h、の4
0℃の溶液では5Kg/m2hとなって、の場合はの場合
に比し2.4倍の蒸発量を得ることができ、溶液の温度
が高いほど蒸発量が大きくなる傾向が分かった。なおこ
のとき溶液温度もの場合はの場合よりも5℃程度低
下した。As a result of such measurement, as shown in FIG. 5, the evaporation amount of the solution at 60 ° C. was 12 kg / m 2 h,
In the case of the solution at 0 ° C., the amount was 5 kg / m 2 h, and the amount of evaporation was 2.4 times as large as that in the case of, and the amount of evaporation was found to increase as the temperature of the solution increased. . At this time, the temperature was lower by about 5 ° C. than in the case of the solution temperature.
【0044】本実施例においては、蒸発部2の上流側に
設けられた加熱部5で蒸発部2に供給される廃液をあら
かじめ加熱することにより、廃液を高温にして蒸発部2
内での蒸発をより促進することができる。そして蒸発部
2の下流側に設けられた冷却部32で蒸発部2で濃縮さ
れた廃液を所定温度まで冷却することにより、高温に弱
い電解透析部1のカチオン交換膜13及びアニオン交換
膜11の破損を防止できる。In this embodiment, the waste liquid supplied to the evaporating section 2 is heated in advance by the heating section 5 provided on the upstream side of the evaporating section 2 so that the waste liquid is heated to a high temperature.
The evaporation in the inside can be further promoted. Then, the waste liquid concentrated in the evaporator 2 is cooled to a predetermined temperature in the cooler 32 provided on the downstream side of the evaporator 2, so that the cation exchange membrane 13 and the anion exchange membrane 11 of the electrodialysis unit 1, which are weak to high temperatures, are cooled. Damage can be prevented.
【0045】なお上記実施例においては、蒸発部2にP
TFEを用いたが、これに限られず、ポリプロピレン、
ポリエチレン材等であってもよく、また形状も円管状に
限られず、平膜形状膜、中空糸膜等であってもよい。さ
らに蒸発部2は、疎水性多孔質膜を備えるものに限られ
ず、例えば廃液を加熱して蒸発させ、その蒸気を凝縮し
て回収することにより廃液を濃縮する蒸発缶等の加熱蒸
発手段を用いても良い。また、上記廃液処理装置100
においては、加熱部5、蒸発部2、冷却部32等の放熱
・吸熱部材が多数配置され、また電解透析部1で直流電
流を通電することから廃液の電気抵抗でジュール熱を発
生し廃液温度が上昇する。したがって、装置の設計にあ
たっては、熱的なバランス、すなわち蒸発部2での液温
度を維持するだけの加熱と蒸発潜熱に相当する低下温
度、電解透析部1の温度上昇分、系統での損失分等を考
慮して決定されることが望ましい。In the above embodiment, P
TFE was used, but not limited thereto, polypropylene,
It may be a polyethylene material or the like, and the shape is not limited to a circular tube, but may be a flat membrane-shaped membrane, a hollow fiber membrane, or the like. Further, the evaporating section 2 is not limited to the one provided with the hydrophobic porous membrane, and uses a heating and evaporating means such as an evaporator for condensing the waste liquid by heating and evaporating the waste liquid and condensing and collecting the vapor. May be. Further, the waste liquid treatment apparatus 100
, A large number of heat-dissipating and heat-absorbing members such as a heating unit 5, an evaporating unit 2, and a cooling unit 32 are arranged, and a direct current is passed through the electrodialysis unit 1, so that Joule heat is generated due to the electric resistance of the waste liquid and the waste liquid temperature is increased. Rises. Therefore, in designing the apparatus, thermal balance, that is, heating for maintaining the liquid temperature in the evaporating section 2 and a reduced temperature corresponding to latent heat of evaporation, an increase in the temperature of the electrolytic dialysis section 1, and an amount of loss in the system. It is desirable that it be determined in consideration of such factors.
【0046】[0046]
【発明の効果】本発明によれば、第1の工程で硝酸アン
モニウムを含有する廃液を濃縮した後に、第2の工程で
その濃縮された廃液を電解透析を行うので、脱塩効率を
向上することができる。またその脱塩された廃液を再び
濃縮手段へ導き循環させ第1の工程及び第2の工程を繰
り返すので、廃液濃度を低下させずに何度も脱塩するこ
とができ常に一定の高い効率で脱塩を行える。よって廃
液中の硝酸イオンNO3 -・アンモニウムイオンNH4 +を
ほぼ全量除去することができ、高純度・高濃度の硝酸・
アンモニアを高い回収率で同時に回収することができ
る。また、第1の工程において、多孔質疎水性膜を介し
片側に高温の廃液を流通させるとともに反対側に冷却水
を流通させ、廃液から生じた蒸気を冷却水で分離して回
収するので、廃液中の水分を回収し高純度水を得ること
ができる。またこの電解透析の際発生するジュ-ル熱を
回収して蒸発熱に利用し熱の有効利用を図ることができ
る。According to the present invention, since the waste liquid containing ammonium nitrate is concentrated in the first step and the concentrated waste liquid is subjected to electrodialysis in the second step, the desalting efficiency is improved. Can be. Further, since the desalted waste liquid is guided again to the concentrating means and circulated, the first step and the second step are repeated, so that desalting can be performed many times without lowering the concentration of the waste liquid, so that the desalted waste liquid can always be obtained at a constant high efficiency. Desalination can be performed. Therefore, almost all of the nitrate ion NO 3 − and ammonium ion NH 4 + in the waste liquid can be removed, and high purity and high concentration nitric acid.
Ammonia can be simultaneously recovered at a high recovery rate. In the first step, high-temperature waste liquid is circulated to one side through the porous hydrophobic membrane and cooling water is circulated to the other side, and steam generated from the waste liquid is separated and collected by the cooling water. High-purity water can be obtained by recovering the water content. In addition, Joule heat generated during the electrodialysis can be recovered and used for evaporative heat, so that the heat can be effectively used.
【0047】また、アニオン交換膜は一価選択性を備え
ているので、廃液中に含まれている可能性のある硫酸イ
オンが、硝酸イオンとともに廃液から分離されるのを防
止できる。さらに、膜蒸発手段の上流側に設けられた加
熱手段で膜蒸発手段に供給される廃液をあらかじめ加熱
するので、廃液を高温にして膜蒸発手段内での蒸発を促
進することができ、また膜蒸発手段の下流側に設けられ
た冷却手段で膜蒸発手段で濃縮された廃液を冷却するの
で、高温に弱いカチオン・アニオン交換膜の破損を防止
できる。また、第2の配管に設けられたpH調整手段に
よって電解透析手段で脱塩された廃液のpH調整を行う
ので、その廃液中に含まれる不純物イオンを水酸化物に
変化させせることができ、そしてこれをろ過手段で分離
するので、回収するアンモニア・硝酸の純度をさらに向
上することができる。さらに、電解透析手段で脱塩され
た廃液中に含まれる不純物イオンの濃度が制限値を越え
た場合、第2の配管に設けられた排出手段で廃液の一部
を取り出して排出するので、廃液中の不純物の蓄積を防
止でき、また回収するアンモニア・硝酸の純度をさらに
向上することができる。またアンモニア回収手段に備え
られた注入手段で、不活性ガス及びH2ガスの少なくと
も一方をアンモニウムイオンを含む溶液に注入するの
で、カルシウムイオン、マグネシウムイオン、ナトリウ
ムイオン等も含みうるこの溶液からアンモニアガスのみ
を放散させて回収することができる。Further, since the anion exchange membrane has a monovalent selectivity, it is possible to prevent sulfate ions possibly contained in the waste liquid from being separated from the waste liquid together with nitrate ions. Further, since the waste liquid supplied to the film evaporating means is heated in advance by the heating means provided on the upstream side of the film evaporating means, the waste liquid can be heated to a high temperature to promote evaporation in the film evaporating means. Since the waste liquid concentrated by the membrane evaporating means is cooled by the cooling means provided on the downstream side of the evaporating means, it is possible to prevent the cation / anion exchange membrane which is vulnerable to high temperature from being damaged. Further, since the pH of the waste liquid desalted by the electrolytic dialysis means is adjusted by the pH adjusting means provided in the second pipe, impurity ions contained in the waste liquid can be changed to hydroxides, Since this is separated by the filtration means, the purity of the recovered ammonia / nitric acid can be further improved. Further, when the concentration of impurity ions contained in the waste liquid desalted by the electrodialysis means exceeds the limit value, a part of the waste liquid is taken out and discharged by the discharge means provided in the second pipe, so that the waste liquid is discharged. Accumulation of impurities therein can be prevented, and the purity of the recovered ammonia / nitric acid can be further improved. Further, since at least one of the inert gas and the H 2 gas is injected into the solution containing ammonium ions by the injection means provided in the ammonia recovery means, the ammonia gas is removed from this solution which may also contain calcium ions, magnesium ions, sodium ions, etc. Only the radiation can be released and collected.
【図1】本発明の一実施例の廃液処理方法を実施する廃
液処理装置の全体構成を示す概念図である。FIG. 1 is a conceptual diagram showing an overall configuration of a waste liquid processing apparatus that performs a waste liquid processing method according to an embodiment of the present invention.
【図2】電解透析部の詳細構造を示す概念図である。FIG. 2 is a conceptual diagram showing a detailed structure of an electrodialysis unit.
【図3】蒸発部の詳細構造を示す概念図である。FIG. 3 is a conceptual diagram showing a detailed structure of an evaporator.
【図4】電解透析の脱塩液濃度依存性の一例を示す図で
ある。FIG. 4 is a graph showing an example of the concentration of a desalted solution in electrodialysis.
【図5】膜蒸発における蒸発速度特性の一例を示す図で
ある。FIG. 5 is a diagram illustrating an example of an evaporation rate characteristic in film evaporation.
1 電解透析部 2 蒸発部(濃縮手段、膜蒸発手段) 5 加熱部 9 脱塩室 10 陽極室 11 アニオン交換膜 12 陰極室 13 カチオン交換膜 18 硝酸回収系 19 アンモニア回収系 20 アンモニア水槽 21 不活性ガス注入系(注入手段) 22 排出系 27 フィルタ 32 冷却部 33 ろ過部 34 硝酸液槽 40 配管(第1の配管) 50 配管(第2の配管) 100 廃液処理装置 DESCRIPTION OF SYMBOLS 1 Electrodialysis part 2 Evaporation part (concentration means, membrane evaporation means) 5 Heating part 9 Demineralization room 10 Anode room 11 Anion exchange membrane 12 Cathode room 13 Cation exchange membrane 18 Nitric acid recovery system 19 Ammonia recovery system 20 Ammonia water tank 21 Inactive Gas injection system (injection means) 22 Discharge system 27 Filter 32 Cooling unit 33 Filtration unit 34 Nitric acid tank 40 Pipe (first pipe) 50 Pipe (second pipe) 100 Waste liquid treatment device
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/469 C02F 9/00 502B 9/00 502 502L 503G 503 504B 504 C25B 7/00 C25B 7/00 C02F 1/46 103 (56)参考文献 特開 平5−200388(JP,A) 特開 平6−246296(JP,A) 特開 平7−214068(JP,A) 特開 平1−130706(JP,A) 特開 昭50−105547(JP,A) 特開 平7−163845(JP,A) 特開 平5−185094(JP,A) 特開 昭58−37596(JP,A) 特公 昭46−35841(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B01D 61/44 B01D 61/36 C01B 21/42 C01C 1/10 C02F 1/469 C02F 9/00 C25B 7/00 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 7 identifications FI C02F 1/469 C02F 9/00 502B 9/00 502 502L 503G 503 504B 504 C25B 7/00 C25B 7/00 C02F 1/46 103 ( 56) References JP-A-5-200388 (JP, A) JP-A-6-246296 (JP, A) JP-A-7-214068 (JP, A) JP-A-1-130706 (JP, A) JP-A-50-105547 (JP, A) JP-A-7-163845 (JP, A) JP-A-5-185094 (JP, A) JP-A-58-37596 (JP, A) JP-B-46-35841 (JP, A) , B1) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 61/44 B01D 61/36 C01B 21/42 C01C 1/10 C02F 1/469 C02F 9/00 C25B 7/00
Claims (10)
イオンとアンモニウムイオンとを分離し、この分離され
た硝酸イオンを含む溶液及びアンモニウムイオンを含む
溶液をそれぞれ精製して硝酸とアンモニアとを回収する
廃液処理方法において、 前記硝酸アンモニウムを含有する廃液を濃縮する第1の
工程と、その濃縮された廃液を電解透析して硝酸イオン
とアンモニウムイオンとを分離し脱塩を行う第2の工程
とを有し、その脱塩された廃液を再び前記濃縮手段へ導
き循環させることにより前記第1の工程及び前記第2の
工程を繰り返すことを特徴とする廃液処理方法。1. A waste liquid treatment for separating nitrate ions and ammonium ions from a waste liquid containing ammonium nitrate and purifying the separated solution containing nitrate ions and the solution containing ammonium ions to recover nitric acid and ammonia. The method, comprising: a first step of concentrating the waste liquid containing ammonium nitrate; and a second step of subjecting the concentrated waste liquid to electrolytic dialysis to separate nitrate ions and ammonium ions and desalting, A waste liquid treatment method comprising repeating the first step and the second step by guiding the desalted waste liquid again to the concentrating means and circulating the waste liquid.
記第1の工程は、多孔質疎水性膜を介し片側に高温の前
記廃液を流通させるとともに反対側に冷却水を流通さ
せ、前記廃液から生じた蒸気を前記冷却水で分離して回
収する工程であることを特徴とする廃液処理方法。2. The waste liquid treatment method according to claim 1, wherein in the first step, the waste liquid having a high temperature is circulated to one side through a porous hydrophobic membrane and cooling water is circulated to the other side. A process for separating and collecting steam generated from the wastewater with the cooling water.
陽極と陰極との間に配置されたカチオン交換膜、アニオ
ン交換膜、及び脱塩室とを備え、硝酸アンモニウムを含
有する廃液が前記脱塩室に供給されるとともに前記陽極
及び陰極に電圧が印加されることにより、前記廃液から
硝酸イオン及びアンモニウムイオンがそれぞれ個別に分
離され脱塩が行われる電解透析手段と、前記分離された
硝酸イオンを含む溶液を精製して硝酸を回収する硝酸回
収手段と、前記分離されたアンモニウムイオンを含む溶
液を精製してアンモニアを回収するアンモニア回収手段
とを有する廃液処理装置において、 前記電解透析手段の上流側に設けられ前記電解透析手段
に供給される前記廃液をあらかじめ濃縮する濃縮手段
と、 前記濃縮手段で濃縮された廃液を前記電解透析手段に導
く第1の配管と、 前記電解透析手段で脱塩された廃液を前記濃縮手段に導
く第2の配管と、 を有することを特徴とする廃液処理装置。3. An anode and a cathode to which a voltage is applied, a cation exchange membrane, an anion exchange membrane, and a desalting chamber disposed between the anode and the cathode, and a waste liquid containing ammonium nitrate is removed from the waste water. An electrolytic dialysis means for supplying nitrate ions and ammonium ions to the salt chamber and applying a voltage to the anode and the cathode to separately separate nitrate ions and ammonium ions from the waste liquid to perform desalting; and A wastewater treatment apparatus having a nitric acid recovery means for purifying a solution containing and recovering nitric acid, and an ammonia recovery means for purifying a solution containing the separated ammonium ions and recovering ammonia, wherein an upstream of the electrolytic dialysis means A concentration means for concentrating the waste liquid supplied to the electrodialysis means provided on the side in advance, and a waste liquid concentrated by the concentration means. Serial electrolyte a first pipe leading to the dialysis unit, the second pipe for guiding the desalted effluent to said concentrating means in electrodialysis unit, waste liquid treatment apparatus characterized by having a.
記アニオン交換膜は、一価選択性を備えていることを特
徴とする廃液処理装置。4. The waste liquid treatment apparatus according to claim 3, wherein said anion exchange membrane has monovalent selectivity.
記濃縮手段は、多孔質疎水性膜を備えており、その多孔
質疎水性膜を介し片側に高温の前記廃液を流通させ反対
側に冷却水を流通させて前記廃液から生じた蒸気を前記
冷却水で凝縮して回収する膜蒸発手段であることを特徴
とする廃液処理装置。5. The waste liquid treatment apparatus according to claim 3, wherein said concentrating means has a porous hydrophobic membrane, and allows the high-temperature waste liquid to flow to one side through the porous hydrophobic membrane and to the other side. A waste liquid processing apparatus, comprising: a film evaporating unit that circulates cooling water and condenses and collects steam generated from the waste liquid with the cooling water.
記膜蒸発手段の上流側に設けられその膜蒸発手段に供給
される廃液をあらかじめ加熱する加熱手段と、前記膜蒸
発手段の下流側に設けられその膜蒸発手段で濃縮された
廃液を冷却する冷却手段とを有することを特徴とする廃
液処理装置。6. A waste liquid treatment apparatus according to claim 5, wherein said heating means is provided upstream of said film evaporating means and preheats waste liquid supplied to said film evaporating means, and said heating means is provided downstream of said film evaporating means. And a cooling means for cooling the waste liquid concentrated by the film evaporation means.
記濃縮手段は、前記廃液を加熱して蒸発させ、その蒸気
を凝縮して回収することにより前記廃液を濃縮する加熱
蒸発手段であることを特徴とする廃液処理装置。7. The waste liquid treatment apparatus according to claim 3, wherein said concentrating means is a heating and evaporating means for heating and evaporating said waste liquid, condensing and recovering the vapor to concentrate said waste liquid. A waste liquid treatment device characterized by the above-mentioned.
記第2の配管に設けられ前記電解透析手段で脱塩された
廃液のpH調整を行うpH調整手段と、前記第2の配管
の前記pH調整手段の下流側に設けられ前記廃液中の不
純物を分離するろ過手段とを有することを特徴とする廃
液処理装置。8. The waste liquid treatment apparatus according to claim 3, wherein the pH adjustment means is provided in the second pipe and adjusts the pH of the waste liquid desalted by the electrolytic dialysis means. a wastewater treatment apparatus, comprising: a filtration means provided downstream of the pH adjusting means for separating impurities in the wastewater.
記第2の配管に設けられ、前記電解透析手段で脱塩され
た廃液中に含まれる不純物イオンの濃度が制限値を越え
た場合、その不純物イオンを含む廃液の一部を前記第2
の配管から取り出して排出する排出手段を有することを
特徴とする廃液処理装置。9. The waste liquid treatment apparatus according to claim 3, wherein the concentration of impurity ions contained in the waste liquid provided in the second pipe and desalted by the electrolytic dialysis means exceeds a limit value. Part of the waste liquid containing the impurity ions is transferred to the second
A wastewater treatment apparatus, comprising a discharge means for taking out and discharging from a pipe.
前記アンモニア回収手段は、前記アンモニウムイオンを
含む溶液に不活性ガス及びH2ガスの少なくとも一方を
注入する注入手段を有することを特徴とする廃液処理装
置。10. The waste liquid treatment apparatus according to claim 3,
The waste liquid treatment apparatus according to claim 1, wherein the ammonia recovery means has an injection means for injecting at least one of an inert gas and an H2 gas into the solution containing ammonium ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09975794A JP3270244B2 (en) | 1994-05-13 | 1994-05-13 | Waste liquid treatment method and waste liquid treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09975794A JP3270244B2 (en) | 1994-05-13 | 1994-05-13 | Waste liquid treatment method and waste liquid treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07303821A JPH07303821A (en) | 1995-11-21 |
JP3270244B2 true JP3270244B2 (en) | 2002-04-02 |
Family
ID=14255861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09975794A Expired - Fee Related JP3270244B2 (en) | 1994-05-13 | 1994-05-13 | Waste liquid treatment method and waste liquid treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3270244B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102527187B1 (en) * | 2023-02-28 | 2023-04-27 | 한만길 | Waste organic solvent recycling system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2469769A1 (en) * | 2004-06-04 | 2005-12-04 | Aker Kvaerner Canada Inc. | Apparatus and method for spent alkali metal halide solution concentration using osmotic membrane distillation |
JP4953577B2 (en) * | 2005-02-18 | 2012-06-13 | メタウォーター株式会社 | Ammonia supply method to hydrogen conversion catalyst |
JP4501160B2 (en) * | 2005-08-26 | 2010-07-14 | ミヤマ株式会社 | How to use ammonia |
JP2010064074A (en) * | 2009-12-07 | 2010-03-25 | Hitachi-Ge Nuclear Energy Ltd | Method and apparatus for treating ammonia-containing regeneration waste liquid from condensate demineralizer |
CN103359862A (en) * | 2012-03-28 | 2013-10-23 | 杜惠红 | Process and system for treating nitrochlorobenzene ammonolysis wastewater |
CN111960513A (en) * | 2020-08-28 | 2020-11-20 | 浙江浙能技术研究院有限公司 | Electrodialysis reactor for preventing cathode plate from scaling and wastewater treatment method |
CN114195311A (en) * | 2021-12-14 | 2022-03-18 | 常州大学 | High-concentration chemical wastewater recycling treatment device and method |
CN115676973B (en) * | 2022-10-31 | 2024-05-31 | 福州大学 | High-concentration complex wastewater treatment and resource recovery system and working method thereof |
CN118173828B (en) * | 2024-05-07 | 2024-07-23 | 湖南德赛电池有限公司 | Battery waste liquid utilization control system and control method thereof |
-
1994
- 1994-05-13 JP JP09975794A patent/JP3270244B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102527187B1 (en) * | 2023-02-28 | 2023-04-27 | 한만길 | Waste organic solvent recycling system |
Also Published As
Publication number | Publication date |
---|---|
JPH07303821A (en) | 1995-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8002989B2 (en) | Osmotic desalination process | |
US5500098A (en) | Process for regeneration of volatile acids | |
JP3270244B2 (en) | Waste liquid treatment method and waste liquid treatment device | |
US20240308888A1 (en) | Electrodialysis processes using an organic solvent for separating dissolved species | |
CN111655629A (en) | Ammonia nitrogen recovery equipment and method | |
US5578181A (en) | Method for treating waste water containing neutral salts comprising monovalent ions | |
KR101919948B1 (en) | Ammonia recycling apparatus for wastewater generated in the manufacturing process of the secondary battery precursor | |
JPH0240220A (en) | Pure water producing device | |
JP3133880B2 (en) | Equipment for treating wastewater containing ammonium nitrate | |
CN108314112B (en) | Method for treating waste water containing ammonium salt | |
CN211660014U (en) | Refining device and recovery refining system | |
JPH09294974A (en) | Water treatment apparatus | |
JP4058787B2 (en) | Method for treating boron-containing water | |
CN114455771B (en) | Waste acid treatment system and method | |
CN108726606B (en) | Treatment method of catalyst production wastewater | |
CN108314115B (en) | Method for treating waste water containing ammonium salt | |
JP2981077B2 (en) | Mineral recovery method and mineral recovery device | |
JPH0759296B2 (en) | Pure water production equipment | |
JP2952741B2 (en) | Pure water production system for fuel cell power plant | |
JPS61114704A (en) | Desalting apparatus by electrodialytic method | |
CN221397586U (en) | High ammonia nitrogen wastewater treatment device based on membrane contactor | |
JPS6219299A (en) | Water circulating system | |
JP3293475B2 (en) | Method for concentrating nitric acid aqueous solution and its concentrating device | |
CN112777813A (en) | Method for treating evaporated condensate water containing ammonia nitrogen | |
US20230364560A1 (en) | Lithium recovery using aqueous sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080118 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080118 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080118 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100118 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |