JPS63221886A - Purifying method and apparatus using hollow yarn membrane filter - Google Patents

Purifying method and apparatus using hollow yarn membrane filter

Info

Publication number
JPS63221886A
JPS63221886A JP5328687A JP5328687A JPS63221886A JP S63221886 A JPS63221886 A JP S63221886A JP 5328687 A JP5328687 A JP 5328687A JP 5328687 A JP5328687 A JP 5328687A JP S63221886 A JPS63221886 A JP S63221886A
Authority
JP
Japan
Prior art keywords
hollow fiber
oxygen
membrane filter
fiber membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5328687A
Other languages
Japanese (ja)
Inventor
Tetsuro Adachi
安達 哲朗
Toshio Sawa
俊雄 沢
Katsumi Osumi
大角 克己
Hisahiko Sakai
坂井 久彦
Jun Kikuchi
菊池 恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5328687A priority Critical patent/JPS63221886A/en
Publication of JPS63221886A publication Critical patent/JPS63221886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To reduce operation cost, by injecting an oxidizing agent in the water on the upstream of a hollow yarn membrane filter to remove the metal ion or colloid dissolved in said water. CONSTITUTION:The steam 2 generated in a nuclear reactor 1 is supplied to a power generator turbine 3 to generate electricity by a generator 4. The steam from the turbine 3 is sent to a condenser 5 and cooled by cooling water 6 to obtain condensed water 7 which is, in turn, sent to a purifying treatment apparatus by a pump 8. The purifying apparatus is provided with a hollow yarn membrane filter 9 and a desalting device 10, and an oxygen injection apparatus 24 is provided on the upstream of the hollow yarn membrane filter 9 so as to be able to inject oxygen. Oxygen is injected to be mixed with the condensed water and reacted with an iron ion or iron colloid to form oxide. Impurities are grown into a solid state which is, in turn, caught on the surface of the hollow yarn membrane. By this structure, the impurities are prevented from penetrating into the pores and hollow parts of the membrane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水中の微細不純物の除去を中空糸膜フィルタ
により浄化する方法及びその浄化装置に関し、特に原子
力発電所や火力発電所の復水及び廃水を中空糸膜フィル
タにより浄化する方法及びその浄化装置に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for removing fine impurities in water using a hollow fiber membrane filter and a purification device thereof, and in particular to a method for purifying water using a hollow fiber membrane filter, and particularly for condensate water in nuclear power plants and thermal power plants. and a method for purifying wastewater using a hollow fiber membrane filter, and a purification device therefor.

〔従来の技術〕[Conventional technology]

従来、原子力発電所や火力発電所等において、発生した
スチームを復水器で復水し、循環して使用する。この復
水には微細不純物、イオン、コロイド等が含まれ、特に
原子力発電所の復水には放射性物質が含まれており、こ
れらを除去する必要があり、また大量の復水を殆ど完全
に浄化する必要がある。
Conventionally, in nuclear power plants, thermal power plants, etc., generated steam is condensed in a condenser and circulated for use. This condensate contains fine impurities, ions, colloids, etc. In particular, condensate from nuclear power plants contains radioactive materials, which must be removed, and large amounts of condensate can be almost completely removed. It needs to be purified.

この様な復水浄化装置は例えば特開昭60−61089
号に記載され、その復水処理系の中に中空糸膜フィルタ
とベッド型説塩器が配設されており、その代表的な装置
を第4図に示す。第4図において、原子が1で発生した
蒸気2は蒸気タービン3を作動させ発電機4で発電を行
なう。その後、蒸気は復水器5で海水6等により冷却さ
れ復水7にされる。この復水中には配管等の腐食により
生じた固形物やイオ、ン、コロイドの不純物、主とじて
鉄等の酸化物が含まれている。次に、復水7が復水ポン
プ8を介して原子炉1に戻される流路の途中に、中空糸
膜フィルタ9及びベッド型説塩器10が設置されて浄化
処理を行なう。この中空糸膜フィルタ9は、第5図に示
すようにポリエチレン等の高分子材料からなる外径約1
+n+++の中空糸15で表面の多孔が内側の中空部に
通孔している中空糸15を約数千木束ねて充填して中空
糸膜モジュール16に形成され、この中空系膜モジュー
ル16の約100本が濾過塔11に装着され、復水を入
口13から流入し、透過水を出口14から排出するもの
である。この際、中空糸15は多孔質で表面に0.1 
 μm程度の微小な孔が多数形成されており、復水を中
空糸15の外側表面から内側中空部へ透過させ、これに
より復水中の特に固形状の不純物を濾過し除去する。
Such a condensate purification device is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-61089.
The condensate treatment system is equipped with a hollow fiber membrane filter and a bed-type salt analyzer, and a typical device is shown in Figure 4. In FIG. 4, steam 2 generated with one atom operates a steam turbine 3 and a generator 4 generates electricity. Thereafter, the steam is cooled by seawater 6 or the like in a condenser 5 and becomes condensate 7. This condensate water contains impurities such as solid matter, ions, colloids, etc. caused by corrosion of pipes, etc., and mainly oxides of iron and the like. Next, a hollow fiber membrane filter 9 and a bed-type desaltizer 10 are installed in the middle of the flow path in which the condensate 7 is returned to the reactor 1 via the condensate pump 8 to perform purification processing. As shown in FIG. 5, this hollow fiber membrane filter 9 is made of a polymeric material such as polyethylene and has an outer diameter of about 1.
A hollow fiber membrane module 16 is formed by bundling and filling approximately several thousand pieces of hollow fibers 15 whose surface pores pass through the inner hollow portion. 100 filters are attached to the filter tower 11, and condensate flows in through the inlet 13, and permeated water is discharged through the outlet 14. At this time, the hollow fiber 15 is porous and has a surface of 0.1
A large number of micropores on the order of μm are formed, allowing condensate to permeate from the outer surface of the hollow fiber 15 to the inner hollow portion, thereby filtering and removing particularly solid impurities in the condensate.

次に、中空糸膜フィルタ9からの透過水をベッド型説塩
器1oに流入する。脱塩基10は塔内に粒状のイオン交
換樹脂が混床で充填されたものであり、イオン状の不純
物、特に復水器5において海水がリークした場合のNa
、CΩイオン等を除去する。この様に発電所の安全性、
信頼性を維持する為には復水中の不純物を除去すること
が非常に重要である。
Next, the permeated water from the hollow fiber membrane filter 9 flows into the bed type salt analyzer 1o. Debasing 10 is a column filled with a mixed bed of granular ion exchange resin, and contains ionic impurities, especially Na when seawater leaks in condenser 5.
, CΩ ions, etc. are removed. In this way, the safety of power plants,
In order to maintain reliability, it is very important to remove impurities from condensate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の従来の復水浄化装置は原子力発電プラントにおい
て低放射能化、被曝低減に貢献している。
The conventional condensate purification device described above contributes to lowering radioactivity and reducing exposure in nuclear power plants.

しかし、復水浄化装置の部材である中空糸膜フィルタは
極めて精密で高価な中空糸膜を大量に使用する。例えば
発電プラント出力1,100  kWで復水を約6,5
00rn’/h処理するので中空糸膜フィルタも大量使
用しなければならない。その為に中空糸膜の耐用年数を
延長し、運転コストを低くする復水の浄化方法及びその
装置の開発が望まれている。
However, the hollow fiber membrane filter, which is a component of the condensate purification device, uses a large amount of extremely precise and expensive hollow fiber membranes. For example, in a power plant with an output of 1,100 kW, the condensate is approximately 6.5 kW.
Since the treatment is performed at 00rn'/h, a large amount of hollow fiber membrane filters must be used. Therefore, it is desired to develop a condensate purification method and apparatus that extend the service life of hollow fiber membranes and reduce operating costs.

中空糸膜は使用する年数の経過によって機械的強度が劣
化して破損し易くなる。また中空糸膜が不純物により汚
染されて透過水量が低下するため新品と交換する必要が
ある。尚、耐用年数については中空糸膜の汚染の影響の
方が支配的である。
As the hollow fiber membranes are used for years, their mechanical strength deteriorates and they become easily damaged. In addition, the hollow fiber membrane becomes contaminated with impurities and the amount of permeated water decreases, so it is necessary to replace it with a new one. In addition, regarding the service life, the influence of contamination of the hollow fiber membrane is more dominant.

膜汚染について述べると、中空糸膜フィルタは固形状の
不純物を捕捉するのに伴ない濾過圧が上昇し、このため
に所定の期間後、膜を洗浄し、捕捉した不純物を除去し
て濾過圧力を低減させる操作を行なう。この洗浄操作は
一般に水と空気を用いてフィルタを物理的に洗浄する。
Regarding membrane contamination, as hollow fiber membrane filters trap solid impurities, the filtration pressure increases, so after a predetermined period of time, the membrane is washed to remove the trapped impurities and increase the filtration pressure. Perform operations to reduce This cleaning operation generally uses water and air to physically clean the filter.

しかし中空糸膜に固着した不純物を完全に除去すること
が難しく、次第に中空糸膜のボア(孔)が閉塞され、透
過水量が低下して使用できなくなる。また、中空糸膜の
洗浄には化学的洗浄法、例えば塩酸等を使用する酸溶解
法等があり、これは強力な方法であるが、操作性や排液
処理の点から原子力発電プラントに使用するのは、難点
がある。
However, it is difficult to completely remove impurities stuck to the hollow fiber membranes, and the bores of the hollow fiber membranes gradually become clogged, resulting in a decrease in the amount of permeable water, making the membranes unusable. In addition, there are chemical cleaning methods for cleaning hollow fiber membranes, such as the acid dissolution method using hydrochloric acid, etc. Although this method is powerful, it is not used in nuclear power plants due to its ease of operation and wastewater treatment. There are some difficulties in doing so.

従って、中空糸膜フィルタの耐用年数を延長する為に、
一般的な物理的洗浄で殆ど完全にしかも容易に洗浄し得
る微細不純物にした後、中空糸膜フィルタで除去させる
ようにする中空糸膜フィルタによる洗浄方法及びその装
置を提供することを目的とするものである。
Therefore, in order to extend the service life of hollow fiber membrane filters,
The object of the present invention is to provide a cleaning method using a hollow fiber membrane filter and an apparatus therefor, in which fine impurities are reduced to almost completely and easily cleaned by general physical cleaning, and then removed by a hollow fiber membrane filter. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するための本発明の中空糸膜フィルタに
よる浄化方法は、中空糸膜フィルタにより水中の微細不
純物を除去する洗浄方法において、前記中空糸膜フィル
タの上流側の水中に酸化剤を注入し、水中に溶存する金
属のイオンやコロイドを酸化して、中空糸膜外表面が除
去する浄化方法である。
A purification method using a hollow fiber membrane filter of the present invention to achieve the above object is a cleaning method for removing fine impurities in water using a hollow fiber membrane filter, in which an oxidizing agent is injected into the water upstream of the hollow fiber membrane filter. This is a purification method in which metal ions and colloids dissolved in water are oxidized and removed by the outer surface of the hollow fiber membrane.

特に溶存する金属イオンは、原子力又は火力発電プラン
トの復水については機器材質から溶存する主として鉄イ
オンや鉄コロイドで、これらを酸化物にして中空糸膜表
面で析出除去し、膜の孔内や中空部表面に析出するのを
防ぐ方法である。また酸化剤としては酸素、空気、オゾ
ン及び過酸化水素の群から選ばれ、水中の酸素濃度は復
水水質によって変るが一般的に500ppb以下で使用
される。
In particular, dissolved metal ions are mainly iron ions and iron colloids dissolved from equipment materials in the condensate of nuclear or thermal power plants, and these are converted into oxides and precipitated and removed on the surface of the hollow fiber membrane, and are removed inside the pores of the membrane. This method prevents precipitation on the surface of the hollow part. The oxidizing agent is selected from the group of oxygen, air, ozone, and hydrogen peroxide, and the oxygen concentration in the water varies depending on the quality of the condensate water, but is generally used at 500 ppb or less.

また、本発明の浄化装置は、前記中空糸膜フィルタの上
流側に水中に酸素を注入する酸素注入装置が配設され、
前記酸素注入器の酸素源として酸素ボンベ又はPSA方
式酸素発生器が設けられた装置である。特に、中空糸膜
フィルタの下流側に酸素検出器が設けられ、溶存酸素量
を検出し、これに連動して前記酸素注入装置からの酸素
注入量を制御するように酸素制御装置を設けることが好
ましい。
Further, in the purification device of the present invention, an oxygen injection device for injecting oxygen into water is disposed upstream of the hollow fiber membrane filter,
This device is equipped with an oxygen cylinder or a PSA type oxygen generator as an oxygen source for the oxygen injector. In particular, an oxygen detector may be provided downstream of the hollow fiber membrane filter, and an oxygen control device may be provided to detect the amount of dissolved oxygen and control the amount of oxygen injected from the oxygen injector in conjunction with this. preferable.

〔作用〕[Effect]

中空糸膜フィルタの上流側の水中に酸化剤を注入する作
用について述べる。先ず中空糸膜フィルタの膜汚染状況
を第2図に示す。水の流れ22は中空糸15の外側表面
19からボア18を透過し。
The effect of injecting an oxidizing agent into the water upstream of the hollow fiber membrane filter will be described. First, Figure 2 shows the membrane contamination situation of the hollow fiber membrane filter. A stream of water 22 passes through the bore 18 from the outer surface 19 of the hollow fiber 15 .

透過水の流れ23は中空糸15の内側の中空部内を上昇
する。ここで膜汚染の状況は中空糸断面17を電子顕微
鏡等でa察した場合、外側表面19、ボア内部20.中
空部表面21に汚染物が析出し、量的には外側表面19
が最も多い。しかし、ボア内部20と中空部表面21に
付着した汚染物は一般に物理的洗浄法では除去すること
が非常に困難で、使用経過と共に残留、蓄積され、膜汚
染による透過水量への影響が大きく、透過水量を低下さ
せる。
The permeate flow 23 rises within the hollow space inside the hollow fibers 15 . Here, the state of membrane contamination can be determined by observing the hollow fiber cross section 17 using an electron microscope or the like, on the outer surface 19, inside the bore 20. Contaminants are deposited on the surface 21 of the hollow part, and the amount is less than the outer surface 19.
is the most common. However, contaminants adhering to the inside of the bore 20 and the surface of the hollow part 21 are generally very difficult to remove by physical cleaning methods, and remain and accumulate over the course of use, and membrane contamination has a large effect on the amount of permeated water. Reduces the amount of permeated water.

中空糸15のボア内部2oや中空部表面21で汚染が生
じるのは、復水等の中にボア径約0.1μm以下の不純
物が存在し、それがボア内部20や中空部内側表面21
で付着し、析出、生長するからであると考えられる。
Contamination occurs in the bore interior 20 and the hollow surface 21 of the hollow fiber 15 because impurities with a bore diameter of about 0.1 μm or less are present in condensate, etc.
This is thought to be due to the fact that it adheres, precipitates, and grows.

従って、これらの汚染を防止するには大きさの極めて小
さいイオン状又はコロイドの不純物を水中から取り除く
ことが重要な課題となる。これらの不純物は機器や装置
の配管等の溶出物であり、これについて金遣耐食性材料
の採用等によって対策が施され、溶出物の量を低減させ
ているが、それでも中空糸膜フィルタは汚染される。こ
れらを考慮すると、汚染防止の最適の方法は中空糸膜フ
ィルタの上流側で不純物を不溶の固形物にし、ボア内に
侵入させないようにすることである。復水等の中の微細
な不純物は鉄イオンや鉄コロイドが大部分を占める。そ
こでこれらの鉄イオンや鉄コロイドを酸化させて酸化物
にし、不純物の大きさを大きくすることである1例えば
酸化反応は下記に示す反応式: %式%() により、固形状の水酸化鉄が生成される。この様に復水
中の微細な不純物の酸化は中空糸膜フィルタの上流側に
酸化剤、好ましくは酸素を注入することである。従って
酸化によって大きい粒子に生長する固形状の不純物は中
空糸膜フィルタの外側表面で容易に捕捉され得る。
Therefore, in order to prevent these contaminations, it is important to remove extremely small ionic or colloidal impurities from water. These impurities are leached from equipment and equipment piping, and although countermeasures have been taken to reduce the amount of leached substances, such as by using corrosion-resistant materials, hollow fiber membrane filters are still contaminated. Ru. Taking these into consideration, the best way to prevent contamination is to turn impurities into insoluble solids upstream of the hollow fiber membrane filter and prevent them from entering the bore. Most of the fine impurities in condensate are iron ions and iron colloids. Therefore, these iron ions and iron colloids are oxidized to form oxides to increase the size of impurities.1For example, the oxidation reaction is as shown below: %Formula %(), solid iron hydroxide is generated. In this way, fine impurities in condensate can be oxidized by injecting an oxidizing agent, preferably oxygen, into the upstream side of the hollow fiber membrane filter. Therefore, solid impurities that grow into large particles due to oxidation can be easily trapped on the outer surface of the hollow fiber membrane filter.

〔実施例〕〔Example〕

本発明の好ましい実施例を第1図の原子力発電プラント
の復水の浄化のフローシステムについて説明する。原子
炉1で蒸気2を発生し、その蒸気2を発電タービン3に
供給し発電機4で発電する。
A preferred embodiment of the present invention will be described with reference to the flow system for purifying condensate in a nuclear power plant shown in FIG. A nuclear reactor 1 generates steam 2, the steam 2 is supplied to a power generation turbine 3, and a generator 4 generates power.

発電タービン3からの蒸気を復水器5に送り、海水等の
冷却水6で冷却した復水7にする。この復水7をポンプ
8により浄化処理装置に送る。浄化処理装置は中空糸膜
フィルタ9と脱塩器10を設置し、中空糸膜フィルタ9
の上流側に酸素を注入できるように酸素注入装置24を
設ける。この酸素注入装置24は酸素ガスを充填したボ
ンベ、又はP S A (Pressure Swin
g Adsorption)方式等の酸素発生器を設け
て酸素源とする。
Steam from the power generation turbine 3 is sent to a condenser 5 and converted into condensate 7 cooled with cooling water 6 such as seawater. This condensate 7 is sent to a purification treatment device by a pump 8. The purification treatment equipment is equipped with a hollow fiber membrane filter 9 and a demineralizer 10.
An oxygen injection device 24 is provided so that oxygen can be injected on the upstream side. This oxygen injection device 24 is a cylinder filled with oxygen gas or a PSA (Pressure Swin
An oxygen generator such as a g Adsorption system is provided as an oxygen source.

注入された酸素は復水中で良く混合され、復水中の微細
な不純物、主として鉄イオン、鉄コロイド等と反応して
酸化物を生成する。不純物は固形状に生長し、中空糸膜
フィルタ9に送りこまれるが、ポフ径よりも大きな不純
物は中空糸膜表面で捕捉される。その結果、イオン状又
はコロイド状の微細な不純物量が非常に少なくなり、不
純物の大部分は中空糸膜表面で捕捉され、膜のボア内及
び中空部内への侵入を極力防ぐことができる。次に中空
糸膜フィルタ9の透過水を脱塩器10において、イオン
交換樹脂で不純物イオンを除去し、復水を浄化処理し、
原子炉1に循環させる。尚、酸素の注入は中空糸膜フィ
ルタ9の濾過塔内の膜の上流側に直接注入してもよい。
The injected oxygen is well mixed in the condensate and reacts with fine impurities in the condensate, mainly iron ions and iron colloids, to form oxides. Impurities grow into a solid form and are sent to the hollow fiber membrane filter 9, but impurities larger than the poff diameter are captured on the surface of the hollow fiber membrane. As a result, the amount of fine ionic or colloidal impurities is extremely reduced, most of the impurities are captured on the surface of the hollow fiber membrane, and intrusion into the bores and hollow parts of the membrane can be prevented as much as possible. Next, the permeated water from the hollow fiber membrane filter 9 is sent to a demineralizer 10, where impurity ions are removed using an ion exchange resin, and the condensate is purified.
Circulate to reactor 1. Note that oxygen may be directly injected into the upstream side of the membrane in the filtration tower of the hollow fiber membrane filter 9.

ここで、中空糸膜フィルタ9は不純物の捕捉に伴い、濾
過圧力が上昇し、透過量が低下するので、所定の時期に
中空糸膜フィルタ9を洗浄する。本発明により、微細な
不純物による中空糸膜フィルタのボア内の汚染及び中空
部表面の汚染が少ないので、通常の水と空気による物理
的洗浄により充分に洗浄効果を挙げることができる。
Here, as the hollow fiber membrane filter 9 captures impurities, the filtration pressure increases and the amount of permeation decreases, so the hollow fiber membrane filter 9 is cleaned at a predetermined time. According to the present invention, contamination in the bore of the hollow fiber membrane filter and contamination on the surface of the hollow part due to fine impurities is reduced, so that a sufficient cleaning effect can be achieved by ordinary physical cleaning with water and air.

また、注入する酸素の量は復水中の微細な不純物量に応
じて変えることが望ましい。一般的に復水中の溶存酸素
濃度は酸素注入前は20〜3゜ρρb程度であるが、復
水中の鉄イオン等を充分に酸化するように酸素を注入し
、一般的に30〜50ppb+好ましくは100ppb
程度になるようにする。このとき中空糸膜フィルタ9の
下流側に溶存酸素検出器26を設け、復水中の反応後の
溶存酸素濃度を検出し、その検出値に連動して酸素注入
量制御装置25により酸素注入器24からの酸素量を制
御することが好ましい。これにより酸素を復水に少なす
ぎたり又は甚だしく過剰に注入することなく運用できる
Further, it is desirable to change the amount of oxygen injected depending on the amount of fine impurities in the condensate. Generally, the dissolved oxygen concentration in condensate is about 20~3゜ρρb before oxygen injection, but oxygen is injected to sufficiently oxidize iron ions, etc. in condensate, and generally 30~50ppb + preferably 100ppb
Make sure that it is at a certain level. At this time, a dissolved oxygen detector 26 is provided downstream of the hollow fiber membrane filter 9 to detect the dissolved oxygen concentration after the reaction in the condensate, and in conjunction with the detected value, the oxygen injection amount control device 25 controls the oxygen injector 24. It is preferable to control the amount of oxygen from the This allows operation without injecting too little or grossly excessive oxygen into the condensate.

また、酸素源としては酸素ボンベ、PSA酸素発生器の
他に、水の電気分解により発生させた酸素も使用できる
Further, as an oxygen source, in addition to an oxygen cylinder or a PSA oxygen generator, oxygen generated by electrolysis of water can also be used.

また酸素の他に空気、過酸化水素やオゾン等も使用でき
る4、特に過酸化水素を復水に注入する場合、過酸化水
素はイオン状、コロイド状鉄を酸化物に生長させ、比較
的安価な処理コストで粒子が中空糸膜内へ侵入するのを
防ぎ得る。尚、過酸化水素の注入量は酸素換算で50〜
500ppbの範囲が一般的に好適である。また、オゾ
ンを復水に注入する場合、オゾンの強力な酸化力により
イオン状、コロイド状鉄を酸化物に短時間に生長させ、
粒子径を大にし、中空糸膜内に侵入するのを極力少なく
できる。注入量は一般に500ppb以下、好ましくは
30〜300ppbが適する。またオゾンは現場で製造
できるので、貯蔵設備を必要とせず、オゾン生成量は電
圧の調整で変え得るので、制御性の高いシステムになし
得る。
In addition to oxygen, air, hydrogen peroxide, ozone, etc. can also be used.4 Especially when hydrogen peroxide is injected into condensate, hydrogen peroxide grows ionic and colloidal iron into oxides and is relatively inexpensive. Particles can be prevented from entering the hollow fiber membrane at a low processing cost. In addition, the amount of hydrogen peroxide injected is 50 ~
A range of 500 ppb is generally preferred. In addition, when ozone is injected into condensate, the strong oxidizing power of ozone causes ionic and colloidal iron to grow into oxides in a short time.
By increasing the particle size, it is possible to minimize intrusion into the hollow fiber membrane. The injection amount is generally 500 ppb or less, preferably 30 to 300 ppb. Furthermore, since ozone can be produced on-site, there is no need for storage equipment, and the amount of ozone produced can be changed by adjusting the voltage, making it possible to create a highly controllable system.

次に、本発明による酸素を復水に注入する浄化方法と従
来方法の酸素を注入しない浄化方法について比較する。
Next, a comparison will be made between a purification method according to the present invention in which oxygen is injected into condensate and a conventional purification method in which oxygen is not injected.

両者とも同じ中空糸膜フィルタ及び脱塩器を用いた。ま
た試験条件、即ち復水性状濾過線流速、洗浄時期及び洗
浄方法を第1表に示す。
The same hollow fiber membrane filter and desalter were used in both cases. Table 1 shows the test conditions, ie, condensate properties, filtration line flow rate, cleaning timing, and cleaning method.

第   1   表 試験結果を第3図に示し、クラッド負荷量及び使用年数
に対して濾過差圧との関係を示す。使用年数と共に中空
糸膜フィルタに付着するクラッド負荷量が増え、これに
応じて濾過差圧が上昇する。
Table 1 The test results are shown in Figure 3, which shows the relationship between filtration differential pressure and cladding load and years of use. As the years of use increase, the amount of crud load attached to the hollow fiber membrane filter increases, and the filtration differential pressure increases accordingly.

本発明の場合、最初の始点aoで濾過差圧1.0kg/
adであったが、使用と共に点a工′で濾過差圧り、S
  kg/aJになったので、エア・スクラビングとエ
ア・サージをして点a1に戻して濾過差圧を下げた。こ
の様に順次繰り返し、点a2′からax、 as’から
a3.・・・へと濾過差圧を下げた。
In the case of the present invention, the filtration differential pressure at the first starting point ao is 1.0 kg/
ad, but as it was used, the filtration differential pressure was removed at point a', and S
kg/aJ, so air scrubbing and air surging were performed to return to point a1 to lower the filtration differential pressure. Repeat this sequentially, from point a2' to ax, from as' to a3, and so on. The filtration differential pressure was lowered to...

またクラッド負荷量に対するエア・スクラビングとエア
・サージをした直後の中空糸膜フィルタの濾過差圧は直
線Aで示される。従来例についても同様に操作したとき
の中空糸膜フィルタの濾過差圧は直線Bで示される。直
線AとBとを比較すると、従来例は許容上限濾過差圧(
膜交換時期)2.0kg/a+fに不純物捕捉量35g
/ポで達し。
Further, the filtration differential pressure of the hollow fiber membrane filter immediately after air scrubbing and air surging with respect to the cladding load amount is shown by a straight line A. The filtration differential pressure of the hollow fiber membrane filter when the conventional example is operated in the same manner is shown by a straight line B. Comparing straight lines A and B, the conventional example shows that the allowable upper limit filtration differential pressure (
Membrane replacement period) Impurity capture amount 35g at 2.0kg/a+f
/Achieved with Po.

中空糸膜フィルタの耐用年数は1〜2年程度である。こ
れに対し本発明の方法は許容上限濾過差圧に達する不純
物捕捉量は90g/rdであり、中空糸膜フィルタの耐
用年数は3〜5年程度となり。
The service life of hollow fiber membrane filters is about 1 to 2 years. On the other hand, in the method of the present invention, the amount of impurities captured that reaches the allowable upper limit filtration differential pressure is 90 g/rd, and the service life of the hollow fiber membrane filter is about 3 to 5 years.

本発明の方法により耐用年数を大幅に延長できることが
確認された。なお、本発明の方法においても中空糸膜フ
ィルタは使用年数と共に濾過差圧は緩やかに高くなるが
、試験後の中空糸膜の汚染状況を電子顕微鏡il!察し
たところ、ボア内や中空部表面に不純物の付着は殆ど認
められなかった。しかし従来例の場合についてはボア内
や中空部表面に不純物が多く付着していた。
It has been confirmed that the method of the invention can significantly extend the service life. In addition, even in the method of the present invention, the filtration differential pressure of the hollow fiber membrane filter gradually increases with the age of use, but the contamination status of the hollow fiber membrane after the test can be observed using an electron microscope. Upon inspection, it was found that almost no impurities were observed inside the bore or on the surface of the hollow part. However, in the case of the conventional example, many impurities were attached to the inside of the bore and the surface of the hollow part.

〔発明の効果〕〔Effect of the invention〕

本発明により、中空糸膜フィルタの上流側の水中に酸素
剤を注入し、鉄イオンや鉄コロイドを酸化して酸化物し
て粒子を生長させ、中空糸膜のボア内や中空部表面の付
着を防止し、物理的な洗浄を容易にするので、膜汚染に
よる透過水量の低下を最小限にすることができ、中空糸
膜フィルタの耐用年数を大幅に延長でき、運転コストの
安い水の浄化装置となし得る。また本発明の方法は原子
力発電所の復水処理に好適であり、また火力発電所の復
水処理、及び半導体製造、バイオ、製薬関係の純水製造
にも有効に使用されることができる。
According to the present invention, an oxygen agent is injected into the water on the upstream side of the hollow fiber membrane filter, oxidizes iron ions and iron colloids to form oxides, and grows particles. Because it prevents water damage and facilitates physical cleaning, it can minimize the decrease in permeated water amount due to membrane contamination, greatly extending the service life of hollow fiber membrane filters, and providing water purification with low operating costs. It can be used as a device. Further, the method of the present invention is suitable for condensate treatment in nuclear power plants, and can also be effectively used for condensate treatment in thermal power plants, and in the production of pure water for semiconductor manufacturing, biotechnology, and pharmaceuticals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による復水の浄化のフローシステムを示
し、第2図は中空糸膜の汚染状況、第3図は本発明の試
験結果を示し、また第4図は従来の復水の浄化のフロー
システム、第5図は中空糸膜フィルタの構造を示す。 1・・・原子炉、3・・・蒸気タービン、4・・・発電
機、5・・・復水器、9・・・中空糸膜フィルタ、10
・・・脱塩器、12・・・濾過塔、15・・・中空糸、
16・・・中空糸膜モジュール、18・・・ボア、19
・・・外側表面、21・・・中空部表面、24・・・酸
素注入装置、25・・・注入量制御装置、26・・・溶
存酸素検出器。
Fig. 1 shows the flow system for condensate purification according to the present invention, Fig. 2 shows the contamination status of hollow fiber membranes, Fig. 3 shows the test results of the present invention, and Fig. 4 shows the conventional condensate purification flow system. Purification Flow System, Figure 5 shows the structure of a hollow fiber membrane filter. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 3... Steam turbine, 4... Generator, 5... Condenser, 9... Hollow fiber membrane filter, 10
... Demineralizer, 12 ... Filtration tower, 15 ... Hollow fiber,
16... Hollow fiber membrane module, 18... Bore, 19
... Outer surface, 21 ... Hollow part surface, 24 ... Oxygen injection device, 25 ... Injection amount control device, 26 ... Dissolved oxygen detector.

Claims (1)

【特許請求の範囲】 1、中空糸膜フィルタにより水中の微細不純物を除去す
る浄化方法において、前記中空糸膜フィルタの上流側の
水中に酸化剤を注入し、溶存する金属のイオンやコロイ
ドを酸化して中空糸膜外表面で除去することを特徴とす
る中空糸膜フィルタによる浄化方法。 2、前記水が原子力発電所の復水又は廃水で、前記金属
が主として鉄イオンや鉄コロイドであることを特徴とす
る特許請求の範囲第1項に記載の中空糸膜フィルタによ
る浄化方法。 3、前記酸化剤が酸素、空気、オゾン及び過酸化水素の
群から選ばれることを特徴とする特許請求の範囲第1項
又は第2項に記載の中空糸膜フィルタによる浄化方法。 4、前記酸素の水中での濃度を500ppb以下になる
ように酸素を注入することを特徴とする特許請求の範囲
第1項ないし第3項の何れかの項に記載の中空糸膜フィ
ルタによる浄化方法。 5、中空糸膜フィルタにより水中の微細不純物を除去す
る浄化装置において、前記中空糸膜フィルタの上流側の
水中に酸素を注入する酸素注入装置が配設され、その酸
素注入装置の酸素源として酸素ボンベまたはPSA(P
ressure SwingAdsorption)方
式酸素発生器が設けられることを特徴とする中空糸膜フ
ィルタによる浄化装置。 6、前記中空糸膜フィルタの下流側に酸素検出器が設け
られ、溶存酸素量を検出し、これに連動して前記酸素注
入装置からの酸素注入量を制御するように酸素制御装置
が設けられることを特徴とする特許請求の範囲第5項に
記載の中空糸膜フィルタによる浄化装置。
[Claims] 1. In a purification method for removing minute impurities from water using a hollow fiber membrane filter, an oxidizing agent is injected into the water upstream of the hollow fiber membrane filter to oxidize dissolved metal ions and colloids. A purification method using a hollow fiber membrane filter, characterized in that the removal is carried out on the outer surface of the hollow fiber membrane. 2. The purification method using a hollow fiber membrane filter according to claim 1, wherein the water is condensate or wastewater from a nuclear power plant, and the metal is mainly iron ions or iron colloids. 3. A purification method using a hollow fiber membrane filter according to claim 1 or 2, wherein the oxidizing agent is selected from the group of oxygen, air, ozone, and hydrogen peroxide. 4. Purification using a hollow fiber membrane filter according to any one of claims 1 to 3, characterized in that oxygen is injected so that the concentration of oxygen in water is 500 ppb or less Method. 5. In a purification device that removes minute impurities from water using a hollow fiber membrane filter, an oxygen injection device for injecting oxygen into the water upstream of the hollow fiber membrane filter is provided, and oxygen is used as an oxygen source for the oxygen injection device. cylinder or PSA (P
1. A purification device using a hollow fiber membrane filter, characterized in that it is equipped with a SwingAdsorption type oxygen generator. 6. An oxygen detector is provided downstream of the hollow fiber membrane filter, and an oxygen control device is provided to detect the amount of dissolved oxygen and control the amount of oxygen injected from the oxygen injection device in conjunction with this. A purification device using a hollow fiber membrane filter according to claim 5.
JP5328687A 1987-03-09 1987-03-09 Purifying method and apparatus using hollow yarn membrane filter Pending JPS63221886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328687A JPS63221886A (en) 1987-03-09 1987-03-09 Purifying method and apparatus using hollow yarn membrane filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328687A JPS63221886A (en) 1987-03-09 1987-03-09 Purifying method and apparatus using hollow yarn membrane filter

Publications (1)

Publication Number Publication Date
JPS63221886A true JPS63221886A (en) 1988-09-14

Family

ID=12938483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328687A Pending JPS63221886A (en) 1987-03-09 1987-03-09 Purifying method and apparatus using hollow yarn membrane filter

Country Status (1)

Country Link
JP (1) JPS63221886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288587A (en) * 1999-03-31 2000-10-17 Nkk Corp Method and apparatus for treating excretion sewage
JP2008508093A (en) * 2004-08-04 2008-03-21 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Method for cleaning membranes and chemicals therefor
JP2008289958A (en) * 2007-05-22 2008-12-04 Toshiba Corp Membrane filtration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288587A (en) * 1999-03-31 2000-10-17 Nkk Corp Method and apparatus for treating excretion sewage
JP2008508093A (en) * 2004-08-04 2008-03-21 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Method for cleaning membranes and chemicals therefor
JP2008289958A (en) * 2007-05-22 2008-12-04 Toshiba Corp Membrane filtration system

Similar Documents

Publication Publication Date Title
US6387271B1 (en) Method for separating solid particulates from a liquid
JP2000079390A (en) Purified water production
JPS63221886A (en) Purifying method and apparatus using hollow yarn membrane filter
JPS62110795A (en) Device for producing high-purity water
JP3620577B2 (en) Cleaning method for ultrapure water production system
JPS63273093A (en) Condensate purifier
JP2001239138A (en) Device for treating liquid
GB2197860A (en) Apparatus for and the method of water purification
JPH0785797B2 (en) Condensate filter
US6810100B2 (en) Method for treating power plant heater drain water
JP2922059B2 (en) Operating method of hollow fiber membrane filter
JP2003010849A (en) Secondary pure water making apparatus
JP3899545B2 (en) Supply water supply device to condenser
JPH01203096A (en) Operation process for hollow yarn membrane filter
JPS6287205A (en) Method for washing hollow yarn membrane filter
JPH01143687A (en) Condensate purifying equipment
JPH074592B2 (en) Ultrapure water production method
JPS62180705A (en) Method for operating hollow yarn membrane filter
JP2708043B2 (en) Plant operation method
JP2000218109A (en) Treatment of waste water
JPS63315190A (en) Operation method for hollow yarn membrane filter
JP4631313B2 (en) Water supply system
JPWO2019188964A1 (en) Ultrapure water production system and ultrapure water production method
JPH105761A (en) Purifying method of condensate
JPH01245893A (en) Method for making ultrapure water