JPH08105995A - Condensate filter - Google Patents

Condensate filter

Info

Publication number
JPH08105995A
JPH08105995A JP6243653A JP24365394A JPH08105995A JP H08105995 A JPH08105995 A JP H08105995A JP 6243653 A JP6243653 A JP 6243653A JP 24365394 A JP24365394 A JP 24365394A JP H08105995 A JPH08105995 A JP H08105995A
Authority
JP
Japan
Prior art keywords
condensate
tank
liquid
storage tank
suspended substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6243653A
Other languages
Japanese (ja)
Inventor
Ken Abe
研 安部
Masato Kobayashi
政人 小林
Seiichi Kazama
誠一 風間
Ryozo Yoshikawa
凉三 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6243653A priority Critical patent/JPH08105995A/en
Publication of JPH08105995A publication Critical patent/JPH08105995A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE: To eliminate the need of removing a suspended substance contained in supernatant liquid in a tank to store a filtrated and separated suspended substance by adding an electrolytic substance to the tank. CONSTITUTION: Steam generated in a nuclear reactor 1 is condensed into condensate via a condenser 5 after driving a turbine 3 and a generator 4. The condensate, after fed from a condensate pump 7 to a condensate filter 11 and a condensate denitration device 14, is returned to the reactor 1 on the operation of a suction pump 16. When the suspended substance in the condensate arrested with the filter 11 amounts to the prescribed volume, a backwashing process begins. Liquid in the filter 11 containing the suspended substance due to the backwashing process is carried to a tank 25. Also, when the liquid held in the tank 25 reaches the preset volume, a valve 15 is opened and an electrolyte in an electrolyte tank 13 is added to the tank 25. As a result, the conductivity or pH value of the liquid can be increased. Thus, the coagulating sedimentation of the floating suspended substance can be improved, and the suspended substance can be properly precipitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は濾過装置に係り、特に原
子力発電所の復水を濾過するのに好適な復水濾過装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter device, and more particularly to a condensate filter device suitable for filtering condensate of a nuclear power plant.

【0002】[0002]

【従来の技術】例えば、原子力発電所で復水の浄化処理
設備としては、復水中のクラッドと称される鉄錆成分を
主体とする懸濁物の不純物を除去するために復水濾過装
置、及びコバルトイオンやニッケルイオンなどのイオン
性不純物を除去するために復水脱塩装置を設置してい
る。これは、各不純物が原子炉に持ち込まれて原子炉内
の中性子照射で放射化された後、原子炉周りの機器,配
管等に付着してこれらの放射線量が増大するのを防止す
るためである。
2. Description of the Related Art For example, as a condensate purification treatment facility in a nuclear power plant, a condensate filtering device for removing impurities of a suspension mainly composed of iron rust component called clad in condensate, A condensate demineralizer is installed to remove ionic impurities such as cobalt ions and nickel ions. This is to prevent each impurity from being brought into the nuclear reactor and being activated by neutron irradiation in the nuclear reactor, and then adhering to the equipment, pipes, etc. around the nuclear reactor and increasing the radiation dose. is there.

【0003】図3は、原子力発電所の系統構成を示すも
のである。原子炉1にて発生した蒸気は、タービン3と
これに接続した発電機4を駆動した後、復水器5にて凝
縮され復水となる。この復水は、復水ポンプ7から復水
濾過装置11と復水脱塩装置14に供給された後、給水
ポンプ16により原子炉1に戻される。この復水濾過装
置11として、従来は、粉末イオン交換樹脂等の濾過助
材をエレメントにプリコートし、濾過助材プリコート層
で懸濁物を分離除去するプリコート式濾過装置が採用さ
れていたが、近年のプラントでは、濾過助材を使用しな
い中空糸膜を濾過エレメントとして使用している中空糸
膜式濾過装置を採用している。
FIG. 3 shows the system configuration of a nuclear power plant. The steam generated in the reactor 1 drives the turbine 3 and the generator 4 connected to the turbine 3, and then is condensed in the condenser 5 to be condensed water. This condensate is supplied from the condensate pump 7 to the condensate filter 11 and the condensate demineralizer 14, and then returned to the reactor 1 by the feed pump 16. As the condensate filter device 11, a precoat type filter device has been conventionally used in which a filter aid such as a powder ion exchange resin is precoated on an element and a suspension is separated and removed by a filter aid precoat layer. In recent plants, a hollow fiber membrane type filtration device that uses a hollow fiber membrane that does not use a filter aid as a filtration element is adopted.

【0004】図2は、中空糸膜式濾過装置の濾過器廻り
の概略構成を示すものである。濾過処理の必要な原水
は、原水入口管33,原水入口弁34を介して濾過塔2
8に導かれ中空糸膜濾過エレメント27内にたばねられ
ている中空糸膜で濾過処理され、蓋容器26に集めら
れ、処理液出口弁29,処理液出口管30をへて下流系
統に送られる。中空糸膜で捕捉した懸濁物が規定量に達
すると中空糸膜の逆洗を行う。中空糸膜の逆洗は、まず
バイパス弁31を開くとともに原水入口弁34、及び処
理液出口弁29を閉じ、復水を復水ポンプ7から復水脱
塩装置14へとバイパスさせる。次に空気入口弁40を
開き、下部空気入口管32より供給される低圧空気によ
り中空糸膜を振動させて懸濁物を除去する。この逆洗に
使用された空気は、ベント弁37,ベント配管38を介
して排気される。また、懸濁物を含んだ濾過塔28内の
保有液は、貯槽25に移送され、その後、濾過塔28を
上記の隔離の手順と逆の手順で運転に投入される。貯槽
25に移送された懸濁物は、貯槽25に保管される。
FIG. 2 shows a schematic structure around a filter of a hollow fiber membrane type filtration device. Raw water that needs to be filtered is passed through the raw water inlet pipe 33 and the raw water inlet valve 34 to the filtration tower 2
The hollow fiber membrane is guided to the hollow fiber membrane 8 and is subjected to a filtration treatment with the hollow fiber membrane springed in the hollow fiber membrane filtration element 27, collected in the lid container 26, and sent to the downstream system through the treatment liquid outlet valve 29 and the treatment liquid outlet pipe 30. . When the amount of the suspension captured by the hollow fiber membrane reaches a specified amount, the hollow fiber membrane is backwashed. In backwashing the hollow fiber membrane, first, the bypass valve 31 is opened, the raw water inlet valve 34 and the treatment liquid outlet valve 29 are closed, and the condensate is bypassed from the condensate pump 7 to the condensate demineralizer 14. Next, the air inlet valve 40 is opened, and the hollow fiber membrane is vibrated by the low pressure air supplied from the lower air inlet pipe 32 to remove the suspended matter. The air used for this backwash is exhausted through the vent valve 37 and the vent pipe 38. Further, the retained liquid in the filtration tower 28 containing the suspension is transferred to the storage tank 25, and then the filtration tower 28 is put into operation in the reverse order of the isolation procedure described above. The suspension transferred to the storage tank 25 is stored in the storage tank 25.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、懸
濁物を含んだ濾過塔28に保有液を貯槽25に移送する
操作を繰り返すことにより、貯槽25に蓄積される懸濁
物を含む液の量が貯槽25の容量を越える状態となった
場合、貯槽25の上澄み液を別の廃棄物処理系統に廃棄
する必要があるが、この上澄み液に含まれる懸濁物を廃
棄工程に際して除去処理する必要があり、そのための設
備も必要であった。
In the above-mentioned prior art, by repeating the operation of transferring the retained liquid to the storage tank 25 to the filtration tower 28 containing the suspension, the liquid containing the suspension accumulated in the storage tank 25 is repeated. When the amount exceeds the capacity of the storage tank 25, it is necessary to discard the supernatant of the storage tank 25 to another waste treatment system. However, the suspension contained in this supernatant is removed during the disposal process. It was necessary to do so, and equipment for that was also necessary.

【0006】本発明の目的は、上澄み液に含まれる懸濁
物の除去処理を不要とする復水濾過装置を提供すること
にある。
[0006] An object of the present invention is to provide a condensate filtration device which eliminates the need to remove the suspension contained in the supernatant.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、蒸気を動力源あるいは熱源として利用
後、これを復水器にて凝集した復水中の懸濁物を濾過す
る復水濾過装置において、濾過分離除去した懸濁物を貯
留する槽を備え、この槽に電解質物質を添加するように
したものである。
In order to achieve the above object, the present invention uses a steam as a power source or a heat source, and then recovers a suspension of condensate condensed in a condenser by filtering the suspension. The water filter device is provided with a tank for storing the suspension separated by filtration, and an electrolyte substance is added to this tank.

【0008】[0008]

【作用】本発明によれば、懸濁物成分を含む液に電解質
物質を添加することにより、この液の導電率あるいはp
Hを上昇させることができるので、浮遊懸濁物の凝集沈
降性を改善し、懸濁物を確実に沈降させることが可能と
なる。従って、上澄み液に含まれる懸濁物の除去処理を
不要とすることができる。
According to the present invention, by adding an electrolyte substance to a liquid containing a suspension component, the conductivity of the liquid or the p
Since H can be increased, it is possible to improve the flocculation / sedimentation property of the suspended suspension, and to reliably sediment the suspension. Therefore, it is possible to eliminate the process of removing the suspension contained in the supernatant.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は、本発明による原子力発電所の基本
構成を示すものである。原子炉1,タービン3,復水濾
過装置11及び復水脱塩装置14からなる基本構成は変
わることはない。すなわち、原子炉1にて発生した蒸気
は、タービン3とこれに接続した発電機4を駆動した
後、復水器5にて凝縮され復水となり、この復水は、復
水ポンプ7から復水濾過装置11と復水脱塩装置14に
供給された後、給水ポンプ16により原子炉1に戻され
る。復水濾過装置11廻りの構成は、図2の通りで変わ
ることはない。また、復水濾過装置11の濾過塔28で
捕捉した復水中の懸濁物が規定量に達すると逆洗を行う
ことも、その方法も変わることはない。特徴的なことと
して、逆洗廃液を一時貯溜する貯槽25に導電率やpH
を調整するための、あるいはアニオン系高分子凝集剤を
添加するための電解質物質を添加する設備を具備したこ
とである。すなわち、電解質物質をためる電解液タンク
13が配管と弁15を介して貯槽25に接続されてい
る。
FIG. 1 shows the basic configuration of a nuclear power plant according to the present invention. The basic configuration including the reactor 1, the turbine 3, the condensate filter 11 and the condensate demineralizer 14 remains unchanged. That is, the steam generated in the reactor 1 drives the turbine 3 and the generator 4 connected to the turbine 3 and then is condensed in the condenser 5 to become condensed water, and this condensed water is condensed from the condensate pump 7. After being supplied to the water filtering device 11 and the condensate demineralizing device 14, the water is returned to the reactor 1 by the water supply pump 16. The configuration around the condensate filtering device 11 does not change as shown in FIG. Further, when the suspension in the condensate captured by the filtration tower 28 of the condensate filtration device 11 reaches a specified amount, the backwashing is performed and the method is not changed. Characteristically, the conductivity and pH are stored in the storage tank 25 that temporarily stores the backwash waste liquid.
In order to adjust the above, or to add an anionic polymer flocculant, equipment for adding an electrolyte substance is provided. That is, the electrolytic solution tank 13 for accumulating the electrolytic substance is connected to the storage tank 25 through the pipe and the valve 15.

【0011】次に、逆洗水受けタンク内の逆洗水中の懸
濁物を沈降させる方法について説明する。濾過塔28の
逆洗により、懸濁物を含んだ濾過塔28内の保有液は、
貯槽25に移送され、貯槽25内の保有液量が一定量に
達した時点で弁15を開き、電解質液タンク13の電解
質溶液を貯槽25に添加する。この添加量は後述するよ
うに、最適な量となるように弁15の開閉操作により調
節する。貯槽25内の懸濁成分は、発電所の復水系統の
機器及び配管を構成する鋼材が、復水と接して腐食する
ことにより発生した鉄錆成分が主体であり、その化学形
態は、Fe34及びFe23の鉄酸化物、並びにFeO
OHの鉄水酸化物である。原子力発電所の復水は不純物
が少なく、その水質は純水に近いものである。従って、
濾過塔28の逆洗により、濾過塔28から移送された貯
槽25内の保有液も純水に近い水質であり、その導電率
は1μS/cm程度と低く、また、pH値も6付近とな
る。このような条件では、鉄水酸化物であるFeOOH
が液中にコロイド状態で分散して重力による沈降が起り
にくくなる。このFeOOHは、以下のように貯槽25
内の液の水質を制御することにより、コロイドを凝集さ
せて、沈降させることができる。
Next, a method for precipitating a suspension in the backwash water in the backwash water receiving tank will be described. By backwashing the filtration tower 28, the retained liquid in the filtration tower 28 containing the suspension is
When transferred to the storage tank 25 and the amount of the retained liquid in the storage tank 25 reaches a certain amount, the valve 15 is opened and the electrolyte solution in the electrolyte solution tank 13 is added to the storage tank 25. As will be described later, this addition amount is adjusted by opening / closing the valve 15 so as to be an optimum amount. The suspended components in the storage tank 25 are mainly iron rust components generated by the corrosion of steel materials forming the equipment and piping of the condensate system of the power plant in contact with the condensate, and the chemical form thereof is Fe. Iron oxides of 3 O 4 and Fe 2 O 3 , and FeO
It is an iron hydroxide of OH. Condensate in a nuclear power plant has few impurities and its water quality is close to that of pure water. Therefore,
By backwashing the filtration tower 28, the liquid retained in the storage tank 25 transferred from the filtration tower 28 also has a quality close to that of pure water, its conductivity is low at about 1 μS / cm, and its pH value is around 6. . Under such conditions, FeOOH which is an iron hydroxide
Is dispersed in the liquid in a colloidal state, and sedimentation due to gravity is less likely to occur. This FeOOH is stored in the storage tank 25 as follows.
By controlling the water quality of the liquid inside, the colloid can be aggregated and settled.

【0012】まず、貯槽25内の液の導電率を制御する
方法について説明する。電解質液タンク13に入れる電
解質物質としては、液に添加して導電性を向上させるも
のであれば特に制限はないが、例えば硫酸ナトリウム
(Na2SO4)の水溶液を使用する。貯槽25内の液の
導電率を適宜確認しながら弁15を開き、電解質液タン
ク13のNa2SO4水溶液を貯槽25に添加し、貯槽2
5内の液の導電率が30μS/cm以上に達した時点で弁
15を閉じる。この場合、例えば貯槽25内の液の導電
率を50μS/cm程度にする場合、貯槽25中の濃度で
30ppm 程度のNa2SO4を添加すれば良い。図4は、
貯槽25内の液の導電率を上昇させたときの効果を説明
するグラフである。この図の横軸は、時間の経過を表
し、時間0で電解質物質を添加し、その後の経過時間を
表している。縦軸は、貯槽25内の上澄み液中の鉄濃度
を表している。グラフ内の曲線Aは、比較として電解質
物質を添加しない場合、曲線B,C,D及びEは、それ
ぞれ電解質物質を添加して、貯槽25内の液の導電率を
5μS/cm,10μS/cm,30μS/cm及び50μS/
cmとした場合である。電解質物質を添加しない場合は、
上澄み液中に鉄成分FeOOHが浮遊しているが、電解
質物質を添加して導電率を上昇させるとこの沈降が促進
される。図中の破線は、目標である上澄み液中の鉄濃度
100ppm 以下、及び経過時間3日以内の範囲を示して
いる。この結果、導電率を30μS/cm以上とした場合
に、鉄成分が短時間で効率良く沈降することが確認さ
れ、目標範囲内に収まることが分かった。
First, a method for controlling the conductivity of the liquid in the storage tank 25 will be described. The electrolyte substance put in the electrolyte liquid tank 13 is not particularly limited as long as it is added to the liquid to improve the conductivity, but for example, an aqueous solution of sodium sulfate (Na 2 SO 4 ) is used. While appropriately checking the conductivity of the liquid in the storage tank 25, the valve 15 is opened, and the Na 2 SO 4 aqueous solution in the electrolyte solution tank 13 is added to the storage tank 25.
When the conductivity of the liquid in 5 reaches 30 μS / cm or more, the valve 15 is closed. In this case, for example, when the conductivity of the liquid in the storage tank 25 is set to about 50 μS / cm, Na 2 SO 4 of about 30 ppm in concentration in the storage tank 25 may be added. FIG.
7 is a graph illustrating the effect of increasing the conductivity of the liquid in the storage tank 25. The horizontal axis of this figure represents the passage of time, and represents the elapsed time after the addition of the electrolyte substance at time 0. The vertical axis represents the iron concentration in the supernatant liquid in the storage tank 25. As a comparison, curve A in the graph shows the case where no electrolyte substance is added, and curves B, C, D and E show the conductivity of the liquid in the storage tank 25 of 5 μS / cm and 10 μS / cm, respectively. , 30μS / cm and 50μS /
The case is cm. If no electrolyte material is added,
Although the iron component FeOOH is floating in the supernatant, this precipitation is promoted by adding an electrolyte substance to increase the conductivity. The broken line in the figure shows the target iron concentration in the supernatant of 100 ppm or less, and the range within 3 days of elapsed time. As a result, it was confirmed that when the conductivity was set to 30 μS / cm or more, the iron component was efficiently precipitated in a short time, and it was found that the iron component was within the target range.

【0013】次に、貯槽25内の液のpHを制御する方
法について説明する。電解質液タンク13に入れる電解
質物質としては、液に添加してpHを上昇させるもの、
すなわちアルカリ性の電解質物質であれば特に制限はな
いが、例えば水酸化ナトリウム(NaOH)の水溶液を
使用する。貯槽25内の液のpHを適宜確認しながら弁
15を開き、電解質液タンク13のNaOH水溶液を貯
槽25に添加し、貯槽25内の液のpHが8以上に達し
た時点で弁15を閉じる。この場合、例えば貯槽25内
の液のpHを8にする場合、貯槽25中の濃度で4ppm
程度のNaOHを添加すれば良い。図5は、貯槽25内
の液のpHを上昇させたときの効果を説明するグラフで
ある。この図の横軸は、時間の経過を表し、時間0で電
解質物質を添加し、その後の経過時間を表している。縦
軸は、貯槽25内の上澄み液中の鉄濃度を表している。
グラフ内の曲線Fは、比較として電解質物質を添加しな
いときでpHが6程度の場合、曲線Gは、電解質物質を
添加して貯槽25内の液のpHを8とした場合である。
図中の破線は、目標である上澄み液中の鉄濃度100ppm
以下、及び経過時間3日以内の範囲を示している。この
結果、電解質物質を添加しない場合、上澄み液中に鉄成
分FeOOHが浮遊しているが、電解質物質を添加して
pHを8とした場合、この鉄成分が短時間で効率良く沈
降することが確認され、目標範囲内に収まることが分か
った。
Next, a method for controlling the pH of the liquid in the storage tank 25 will be described. The electrolyte substance to be added to the electrolyte liquid tank 13 is one that is added to the liquid to raise the pH,
That is, there is no particular limitation as long as it is an alkaline electrolyte substance, but, for example, an aqueous solution of sodium hydroxide (NaOH) is used. The valve 15 is opened while appropriately checking the pH of the liquid in the storage tank 25, the NaOH aqueous solution in the electrolyte solution tank 13 is added to the storage tank 25, and the valve 15 is closed when the pH of the liquid in the storage tank 25 reaches 8 or more. . In this case, for example, when the pH of the liquid in the storage tank 25 is set to 8, the concentration in the storage tank 25 is 4 ppm.
It is sufficient to add about NaOH. FIG. 5 is a graph for explaining the effect of increasing the pH of the liquid in the storage tank 25. The horizontal axis of this figure represents the passage of time, and represents the elapsed time after the addition of the electrolyte substance at time 0. The vertical axis represents the iron concentration in the supernatant liquid in the storage tank 25.
As a comparison, a curve F is a case where the pH is about 6 when the electrolyte substance is not added, and a curve G is a case where the pH of the liquid in the storage tank 25 is 8 by adding the electrolyte substance.
The broken line in the figure is the target iron concentration in the supernatant, which is 100 ppm.
The following shows the range and the elapsed time within 3 days. As a result, the iron component FeOOH floats in the supernatant liquid when no electrolyte substance is added, but when the pH is adjusted to 8 by adding the electrolyte substance, the iron component can be efficiently precipitated in a short time. It was confirmed and found to be within the target range.

【0014】更に、貯槽25内に電解質溶液としてアニ
オン系高分子凝集剤を添加する方法について説明する。
電解質液タンク13に入れる電解質物質として、アニオ
ン系高分子凝集剤の溶液を使用する。弁15を開き電解
質液タンク13のアニオン系高分子凝集剤を添加し、貯
槽25内の濃度で数ppm になった時点で弁15を閉じ
る。図6は、貯槽25内にアニオン系高分子凝集剤を添
加したときの効果を説明するグラフである。この図の横
軸は、時間の経過を表し、時間0でアニオン系高分子凝
集剤を添加し、その後の経過時間を表している。縦軸
は、貯槽25内の上澄み液中の鉄濃度を表している。グ
ラフ内の曲線Jは、比較として電解質物質を添加しない
場合、曲線Hは、アニオン系高分子凝集剤を1ppm を添
加した場合である。図中の破線は、目標である上澄み液
中の鉄濃度100ppm 以下、及び経過時間3日以内の範
囲を示している。この結果、アニオン系高分子凝集剤を
添加しない場合、上澄み液中に鉄成分FeOOHが浮遊
しているが、これを添加した場合、この鉄成分が短時間
で効率良く沈降することが確認され、目標範囲内に収ま
ることが分かった。
Further, a method of adding an anionic polymer flocculant as an electrolyte solution in the storage tank 25 will be described.
A solution of an anionic polymer coagulant is used as an electrolyte substance to be placed in the electrolyte solution tank 13. The valve 15 is opened, the anionic polymer flocculant in the electrolyte solution tank 13 is added, and the valve 15 is closed when the concentration in the storage tank 25 reaches several ppm. FIG. 6 is a graph illustrating the effect when an anionic polymer flocculant is added to the storage tank 25. The horizontal axis of this figure represents the passage of time, and represents the elapsed time after the addition of the anionic polymer flocculant at time 0. The vertical axis represents the iron concentration in the supernatant liquid in the storage tank 25. Curve J in the graph is the case where the electrolyte substance is not added, and curve H is the case where 1 ppm of the anionic polymer coagulant is added for comparison. The broken line in the figure shows the target iron concentration in the supernatant of 100 ppm or less, and the range within 3 days of elapsed time. As a result, when the anionic polymer flocculant was not added, the iron component FeOOH was suspended in the supernatant liquid, but when this was added, it was confirmed that the iron component sedimented efficiently in a short time, It was found to be within the target range.

【0015】[0015]

【発明の効果】本発明によれば、復水濾過装置で濾過分
離した懸濁物成分を貯槽の底部に確実に沈降できるの
で、貯槽の上澄み水を廃棄処理する際、懸濁物成分の処
理が不要となる。従って、このための設備を削除するこ
とができるので、設備の規模縮小及び設備費用の低減が
可能となる。
According to the present invention, the suspension components filtered and separated by the condensate filter can be reliably settled at the bottom of the storage tank. Therefore, when the supernatant water of the storage tank is discarded, the suspension components are treated. Is unnecessary. Therefore, since the equipment for this purpose can be deleted, the scale of the equipment can be reduced and the equipment cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原子力発電所系統概要を示す図。FIG. 1 is a diagram showing an outline of a nuclear power plant system of the present invention.

【図2】復水濾過装置廻り系統概要を示す図。FIG. 2 is a diagram showing an outline of a system around a condensate filtering device.

【図3】従来の原子力発電所系統概要を示す図。FIG. 3 is a diagram showing an outline of a conventional nuclear power plant system.

【図4】導電率と上澄み水懸濁物質濃度の関係を示す
図。
FIG. 4 is a graph showing the relationship between conductivity and the concentration of supernatant water suspended matter.

【図5】pHと上澄み水懸濁物質濃度の関係を示す図。FIG. 5 is a graph showing the relationship between pH and the concentration of supernatant water suspended matter.

【図6】アニオン系高分子凝集剤の添加と上澄み水懸濁
物質濃度の関係を示す図。
FIG. 6 is a diagram showing the relationship between the addition of an anionic polymer flocculant and the concentration of supernatant water suspended matter.

【符号の説明】[Explanation of symbols]

1…原子炉、3…タービン、4…発電機、5…復水器、
7…復水ポンプ、11…復水濾過装置、13…電解質液
タンク、14…復水脱塩装置、15…弁、16…給水ポ
ンプ、25…貯槽、26…蓋容器、27…中空糸膜濾過
エレメント、28…濾過塔、29…処理液出口弁、30
…処理液出口管、31…バイパス弁、32…下部空気入
口管、33…原水入口管、34…原水入口弁、37…ベ
ント弁、38…ベント配管、40…空気入口弁。
1 ... Reactor, 3 ... Turbine, 4 ... Generator, 5 ... Condenser,
7 ... Condensate pump, 11 ... Condensate filter, 13 ... Electrolyte tank, 14 ... Condensate demineralizer, 15 ... Valve, 16 ... Water pump, 25 ... Storage tank, 26 ... Lid container, 27 ... Hollow fiber membrane Filtration element, 28 ... Filtration tower, 29 ... Treatment liquid outlet valve, 30
Treatment liquid outlet pipe, 31 ... Bypass valve, 32 ... Lower air inlet pipe, 33 ... Raw water inlet pipe, 34 ... Raw water inlet valve, 37 ... Vent valve, 38 ... Vent piping, 40 ... Air inlet valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 凉三 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Rinzo Yoshikawa 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】蒸気を動力源あるいは熱源として利用後、
これを復水器にて凝集した復水中の懸濁物を濾過する復
水濾過装置において、濾過分離除去した懸濁物を貯留す
る槽を備え、この槽に電解質物質を添加することを特徴
とした復水濾過装置。
1. After using steam as a power source or a heat source,
In a condensate filtering device for filtering a suspension in condensed water condensed in a condenser, a tank for storing the suspension separated by filtration is provided, and an electrolyte substance is added to the tank. Condensate filter device.
【請求項2】請求項1に記載の復水濾過装置において、
前記槽内の水の導電率を30μS/cm以上に制御するこ
とを特徴とする復水濾過装置。
2. The condensate filter according to claim 1,
A condensate filtration device, characterized in that the conductivity of water in the tank is controlled to 30 μS / cm or more.
【請求項3】請求項1に記載の復水濾過装置において、
前記槽内の水のpHを8以上に制御することを特徴とす
る復水濾過装置。
3. The condensate filter according to claim 1,
A condensate filtration device, wherein the pH of water in the tank is controlled to 8 or more.
【請求項4】請求項1に記載の復水濾過装置において、
前記電解質物質としてアニオン系高分子凝集剤を添加す
ることを特徴とする復水濾過装置。
4. The condensate filtration device according to claim 1,
A condensate filtration device, wherein an anionic polymer flocculant is added as the electrolyte substance.
JP6243653A 1994-10-07 1994-10-07 Condensate filter Pending JPH08105995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6243653A JPH08105995A (en) 1994-10-07 1994-10-07 Condensate filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6243653A JPH08105995A (en) 1994-10-07 1994-10-07 Condensate filter

Publications (1)

Publication Number Publication Date
JPH08105995A true JPH08105995A (en) 1996-04-23

Family

ID=17107020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6243653A Pending JPH08105995A (en) 1994-10-07 1994-10-07 Condensate filter

Country Status (1)

Country Link
JP (1) JPH08105995A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324593A (en) * 2000-05-18 2001-11-22 Japan Organo Co Ltd Radioactive waste treatment system for boiling water type nuclear power plant
JP2009047704A (en) * 2008-10-09 2009-03-05 Toshiba Corp Nuclear power plant
JP2018179834A (en) * 2017-04-17 2018-11-15 日立Geニュークリア・エナジー株式会社 System and method for removing radioactive particles in fluid
CN109336294A (en) * 2018-11-28 2019-02-15 北京国电龙源环保工程有限公司 Inexpensive flue gas condensing water treatment facilities

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324593A (en) * 2000-05-18 2001-11-22 Japan Organo Co Ltd Radioactive waste treatment system for boiling water type nuclear power plant
JP2009047704A (en) * 2008-10-09 2009-03-05 Toshiba Corp Nuclear power plant
JP4560114B2 (en) * 2008-10-09 2010-10-13 株式会社東芝 Nuclear power plant
JP2018179834A (en) * 2017-04-17 2018-11-15 日立Geニュークリア・エナジー株式会社 System and method for removing radioactive particles in fluid
CN109336294A (en) * 2018-11-28 2019-02-15 北京国电龙源环保工程有限公司 Inexpensive flue gas condensing water treatment facilities

Similar Documents

Publication Publication Date Title
EP0876198B1 (en) Method and device for removing iron from aqueous liquids
US4276176A (en) Water purification system
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
EP1242313B1 (en) Waste water treatment system
JPH08105995A (en) Condensate filter
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JP2001239138A (en) Device for treating liquid
CN208166803U (en) A kind of desalting water treatment system
JP5135654B2 (en) Secondary pure water production equipment
JPH06304559A (en) Method for treating water and device therefor
US4053397A (en) Method of recovering backwash liquid with exhausted resin
JPH11137972A (en) Equipment for producing pure water for boiler makeup water, production of pure water for boiler makeup water and hollow-fiber membrane filter unit
JP3509846B2 (en) Power plant heater drain water treatment method
JPH074592B2 (en) Ultrapure water production method
JPS6061089A (en) Purifying method of condensate
JP5340237B2 (en) Radioactive liquid processing equipment
JP5350337B2 (en) Radioactive waste treatment method and apparatus
JP2000218109A (en) Treatment of waste water
JP2694969B2 (en) Method for cleaning up a power plant having a filtration tower equipped with a hollow fiber module
JP2544426B2 (en) Fluid purification device
JPH09206567A (en) Method for filtering heater drain in power plant and device therefor
JPS63274405A (en) Reverse washing treatment method of hollow fiber membrane filter apparatus
JP2677380B2 (en) Method for collecting backwash wastewater from condensate demineralizer
KR0163280B1 (en) Apparatus for reuse of wastewater from metal surface treatment process
JP3852829B2 (en) Filtration device backwash method and apparatus