JP5335727B2 - 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法 - Google Patents

発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法 Download PDF

Info

Publication number
JP5335727B2
JP5335727B2 JP2010075097A JP2010075097A JP5335727B2 JP 5335727 B2 JP5335727 B2 JP 5335727B2 JP 2010075097 A JP2010075097 A JP 2010075097A JP 2010075097 A JP2010075097 A JP 2010075097A JP 5335727 B2 JP5335727 B2 JP 5335727B2
Authority
JP
Japan
Prior art keywords
calorific value
gas
calculation formula
temperature measuring
electrical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010075097A
Other languages
English (en)
Other versions
JP2011209008A (ja
Inventor
裕行 武藤
安治 大石
美佐子 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010075097A priority Critical patent/JP5335727B2/ja
Priority to KR1020110021982A priority patent/KR101245437B1/ko
Priority to CN2011100743180A priority patent/CN102253078B/zh
Priority to EP11159686.2A priority patent/EP2372359B1/en
Publication of JP2011209008A publication Critical patent/JP2011209008A/ja
Application granted granted Critical
Publication of JP5335727B2 publication Critical patent/JP5335727B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/04Calorimeters using compensation methods, i.e. where the absorbed or released quantity of heat to be measured is compensated by a measured quantity of heating or cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明はガス検査技術に係り、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法に関する。
従来、混合ガスの発熱量を求める際には、高価なガスクロマトグラフィ装置等を用いて混合ガスの成分を分析する必要がある。また、混合ガスの熱伝導率及び混合ガスにおける音速を測定することにより、混合ガスに含まれるメタン(CH4)、プロパン(C38)、窒素(N2)、及び炭酸ガス(CO2)の成分比率を算出し、混合ガスの発熱量を求める方法も提案されている(例えば、特許文献1参照。)。
特表2004−514138号公報
しかし、特許文献1に開示された方法は、熱伝導率を測定するためのセンサの他に、音速を測定するための高価な音速センサが必要である。そこで、本発明は、ガスの発熱量を容易に測定可能な発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法を提供することを目的の一つとする。
本発明の態様によれば、(a)複数の混合ガスのそれぞれが注入される容器と、(b)容器に配置された測温素子と、(c)容器に配置された、複数の発熱温度で発熱する発熱素子と、(d)複数の混合ガスのそれぞれの温度に依存する測温素子からの電気信号の値と、複数の発熱温度のそれぞれにおける発熱素子からの電気信号の値と、を計測する計測モジュールと、(e)複数の混合ガスの既知の発熱量の値、測温素子からの電気信号の値、及び複数の発熱温度における発熱素子からの電気信号の値に基づいて、測温素子からの電気信号及び複数の発熱温度における発熱素子からの電気信号を独立変数とし、発熱量を従属変数とする発熱量算出式を作成する式作成モジュールと、を備える、発熱量算出式作成システムが提供される。
本発明の態様によれば、(a)複数の混合ガスを用意することと、(b)複数の混合ガスのそれぞれの温度に依存する測温素子からの電気信号の値を得ることと、(c)複数の混合ガスのそれぞれに接する発熱素子を複数の発熱温度で発熱させることと、(d)複数の発熱温度のそれぞれにおける発熱素子からの電気信号の値を得ることと、(e)複数の混合ガスの既知の発熱量の値、測温素子からの電気信号の値、及び複数の発熱温度における発熱素子からの電気信号の値に基づいて、測温素子からの電気信号及び複数の発熱温度における発熱素子からの電気信号を独立変数とし、発熱量を従属変数とする発熱量算出式を作成することと、を含む、発熱量算出式の作成方法が提供される。
本発明の態様によれば、(a)発熱量が未知の計測対象混合ガスが注入される容器と、(b)容器に配置された測温素子と、(c)容器に配置された、複数の発熱温度で発熱する発熱素子と、(d)計測対象混合ガスの温度に依存する測温素子からの電気信号の値と、複数の発熱温度のそれぞれにおける発熱素子からの電気信号の値と、を計測する計測モジュールと、(e)測温素子からの電気信号及び複数の発熱温度における発熱素子からの電気信号を独立変数とし、発熱量を従属変数とする発熱量算出式を保存する式記憶装置と、(f)発熱量算出式の測温素子からの電気信号の独立変数、及び発熱素子からの電気信号の独立変数に、測温素子からの電気信号の値、及び発熱素子からの電気信号の値を代入し、計測対象混合ガスの発熱量の値を算出する発熱量算出モジュールと、を備える、発熱量測定システムが提供される。
本発明の態様によれば、(a)発熱量が未知の計測対象混合ガスを用意することと、(b)計測対象混合ガスの温度に依存する測温素子からの電気信号の値を得ることと、(c)計測対象混合ガスに接する発熱素子を複数の発熱温度で発熱させることと、(d)複数の発熱温度のそれぞれにおける発熱素子からの電気信号の値を得ることと、(e)測温素子からの電気信号及び複数の発熱温度における発熱素子からの電気信号を独立変数とし、発熱量を従属変数とする発熱量算出式を用意することと、(f)発熱量算出式の測温素子からの電気信号の独立変数、及び発熱素子からの電気信号の独立変数に、測温素子からの電気信号の値、及び発熱素子からの電気信号の値を代入し、計測対象混合ガスの発熱量の値を算出することと、を含む、発熱量の測定方法が提供される。
本発明によれば、ガスの発熱量を容易に測定可能な発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法を提供可能である。
本発明の第1の実施の形態に係るマイクロチップの斜視図である。 本発明の第1の実施の形態に係るマイクロチップの図1のII−II方向から見た断面図である。 本発明の第1の実施の形態に係る発熱素子に関する回路図である。 本発明の第1の実施の形態に係る測温素子に関する回路図である。 本発明の第1の実施の形態に係る発熱素子の温度と、ガスの放熱係数の関係を示すグラフである。 本発明の第1の実施の形態に係るガス物性値測定システムの第1の模式図である。 本発明の第1の実施の形態に係るガス物性値測定システムの第2の模式図である。 本発明の第1の実施の形態に係る発熱量算出式の作成方法を示すフローチャートである。 本発明の第2の実施の形態に係るガス物性値測定システムを示す模式図である。 本発明の第2の実施の形態に係る発熱量の測定方法を示すフローチャートである。 本発明の実施の形態の実施例2に係るサンプル混合ガスの算出された発熱量の真値からの誤差を示す第1のグラフである。 本発明の実施の形態の実施例2に係るサンプル混合ガスの算出された発熱量の真値からの誤差を示す第2のグラフである。 本発明の実施の形態の実施例2に係るサンプル混合ガスの算出された発熱量の真値からの誤差を示す第3のグラフである。
以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(第1の実施の形態)
まず、斜視図である図1、及びII−II方向から見た断面図である図2を参照して、第1の実施の形態に係るガス物性値測定システムに用いられるマイクロチップ8について説明する。マイクロチップ8は、キャビティ66が設けられた基板60、及び基板60上にキャビティ66を覆うように配置された絶縁膜65を備える。基板60の厚みは、例えば0.5mmである。また、基板60の縦横の寸法は、例えばそれぞれ1.5mm程度である。絶縁膜65のキャビティ66を覆う部分は、断熱性のダイアフラムをなしている。さらにマイクロチップ8は、絶縁膜65のダイアフラムの部分に設けられた発熱素子61と、発熱素子61を挟むように絶縁膜65のダイアフラムの部分に設けられた第1の測温素子62及び第2の測温素子63と、基板60上に設けられた保温素子64と、を備える。
発熱素子61は、キャビティ66を覆う絶縁膜65のダイアフラムの部分の中心に配置されている。発熱素子61は、例えば抵抗器であり、電力を与えられて発熱し、発熱素子61に接する雰囲気ガスを加熱する。第1の測温素子62及び第2の測温素子63は、例えば抵抗器等の受動素子等の電子素子であり、雰囲気ガスのガス温度に依存した電気信号を出力する。以下においては、第1の測温素子62の出力信号を利用する例を説明するが、これに限定されず、例えば第1の測温素子62の出力信号及び第2の測温素子63の出力信号の平均値を、測温素子の出力信号として利用してもよい。
保温素子64は、例えば抵抗器であり、電力を与えられて発熱し、基板60の温度を一定に保つ。基板60の材料としては、シリコン(Si)等が使用可能である。絶縁膜65の材料としては、酸化ケイ素(SiO2)等が使用可能である。キャビティ66は、異方性エッチング等により形成される。また発熱素子61、第1の測温素子62、第2の測温素子63、及び保温素子64のそれぞれの材料には白金(Pt)等が使用可能であり、リソグラフィ法等により形成可能である。また、発熱素子61、第1の測温素子62、及び第2の測温素子63は、同一の部材からなっていてもよい。
マイクロチップ8は、マイクロチップ8の底面に配置された断熱部材18を介して、雰囲気ガスが充填されるチャンバ等の容器に固定される。断熱部材18を介してマイクロチップ8をチャンバ等に固定することにより、マイクロチップ8の温度が、チャンバ等の内壁の温度変動の影響を受けにくくなる。ガラス等からなる断熱部材18の熱伝導率は、例えば1.0W/(m・K)以下である。
図3に示すように、発熱素子61の一端には、例えば、オペアンプ170の+入力端子が電気的に接続され、他端は接地される。また、オペアンプ170の+入力端子及び出力端子と並列に、抵抗素子161が接続される。オペアンプ170の−入力端子は、直列に接続された抵抗素子162と抵抗素子163との間、直列に接続された抵抗素子163と抵抗素子164との間、直列に接続された抵抗素子164と抵抗素子165との間、又は抵抗素子165の接地端子に電気的に接続される。各抵抗素子162−165の抵抗値を適当に定めることにより、例えば5.0Vの電圧Vinを抵抗素子162の一端に印加すると、抵抗素子163と抵抗素子162との間には、例えば2.4Vの電圧VL3が生じる。また、抵抗素子164と抵抗素子163との間には、例えば1.9Vの電圧VL2が生じ、抵抗素子165と抵抗素子164との間には、例えば1.4Vの電圧VL1が生じる。
抵抗素子162及び抵抗素子163の間と、オペアンプの−入力端子との間には、スイッチSW1が設けられており、抵抗素子163及び抵抗素子164の間と、オペアンプの−入力端子との間には、スイッチSW2が設けられている。また、抵抗素子164及び抵抗素子165の間と、オペアンプの−入力端子との間には、スイッチSW3が設けられており、抵抗素子165の接地端子と、オペアンプの−入力端子との間には、スイッチSW4が設けられている。
オペアンプ170の−入力端子に2.4Vの電圧VL3を印加する場合、スイッチSW1のみが通電され、スイッチSW2,SW3,SW4は切断される。オペアンプ170の−入力端子に1.9Vの電圧VL2を印加する場合、スイッチSW2のみが通電され、スイッチSW1,SW3,SW4は切断される。オペアンプ170の−入力端子に1.4Vの電圧VL1を印加する場合、スイッチSW3のみが通電され、スイッチSW1,SW2,SW4は切断される。オペアンプ170の−入力端子に0Vの電圧VL0を印加する場合、スイッチSW4のみが通電され、スイッチSW1,SW2,SW3は切断される。したがって、スイッチSW1,SW2,SW3,SW4の開閉によって、オペアンプ170の−入力端子に0V又は3段階の電圧のいずれかを印加可能である。そのため、スイッチSW1,SW2,SW3,SW4の開閉によって、発熱素子61の発熱温度を定める印加電圧を3段階に設定可能である。
ここで、オペアンプ170の入力端子に1.4Vの電圧VL1を印加した場合の発熱素子61の温度をTH1とする。また、オペアンプ170の入力端子に1.9Vの電圧VL2を印加した場合の発熱素子61の温度をTH2、オペアンプ170の入力端子に2.4Vの電圧VL3を印加した場合の発熱素子61の温度をTH3とする。
図4に示すように、第1の測温素子62の一端には、例えば、オペアンプ270の−入力端子が電気的に接続され、他端は接地される。また、オペアンプ270の−入力端子及び出力端子と並列に、抵抗素子261が接続される。オペアンプ270の+入力端子は、直列に接続された抵抗素子264と抵抗素子265との間に電気的に接続される。これにより、第1の測温素子62には、0.3V程度の弱い電圧が加えられる。
図1及び図2に示す発熱素子61の抵抗値は、発熱素子61の温度によって変化する。発熱素子61の温度THと、発熱素子61の抵抗値RHの関係は、下記(1)式で与えられる。
RH = RH_STD×[1+αH (TH-TH_STD) + βH (TH-TH_STD)2] ・・・(1)
ここで、TH_STDは発熱素子61の標準温度を表し、例えば20℃である。RH_STDは標準温度TH_STDにおける予め計測された発熱素子61の抵抗値を表す。αHは1次の抵抗温度係数を表す。βHは2次の抵抗温度係数を表す。
発熱素子61の抵抗値RHは、発熱素子61の駆動電力PHと、発熱素子61の通電電流IHから、下記(2)式で与えられる。
RH = PH / IH 2 ・・・(2)
あるいは発熱素子61の抵抗値RHは、発熱素子61にかかる電圧VHと、発熱素子61の通電電流IHから、下記(3)式で与えられる。
RH = VH / IH ・・・(3)
ここで、発熱素子61の温度THは、発熱素子61と雰囲気ガスの間が熱的に平衡になったときに安定する。なお、熱的に平衡な状態とは、発熱素子61の発熱と、発熱素子61から雰囲気ガスへの放熱とが釣り合っている状態をいう。下記(4)式に示すように、平衡状態における発熱素子61の駆動電力PHを、発熱素子61の温度THと雰囲気ガスの温度TIとの差ΔTHで割ることにより、雰囲気ガスの放熱係数MIが得られる。なお、放熱係数MIの単位は、例えばW/℃である。
MI = PH / (TH - TI)
= PH /ΔTH ・・・(4)
上記(1)式より、発熱素子61の温度THは下記(5)式で与えられる。
TH = (1 / 2βH)×[-αH+ [αH 2 - 4βH (1 - RH / RH_STD)]1/2] + TH_STD ・・・(5)
したがって、発熱素子61の温度THと雰囲気ガスの温度TIとの差ΔTHは、下記(6)式で与えられる。
ΔTH = (1 / 2βH)×[-αH+ [αH 2 - 4βH (1 - RH / RH_STD)]1/2] + TH_STD - TI ・・・(6)
雰囲気ガスの温度TIは、自己発熱しない程度の電力を与えられる第1の測温素子62の温度TIに近似する。第1の測温素子62の温度TIと、第1の測温素子62の抵抗値RIの関係は、下記(7)式で与えられる。
RI = RI_STD×[1+αI (TI-TI_STD) + βI (TI-TI_STD)2] ・・・(7)
I_STDは第1の測温素子62の標準温度を表し、例えば20℃である。RI_STDは標準温度TI_STDにおける予め計測された第1の測温素子62の抵抗値を表す。αIは1次の抵抗温度係数を表す。βIは2次の抵抗温度係数を表す。上記(7)式より、第1の測温素子62の温度TIは下記(8)式で与えられる。
TI = (1 / 2βI)×[-αI+ [αI 2 - 4βI (1 - RI / RI_STD)]1/2] + TI_STD ・・・(8)
よって、雰囲気ガスの放熱係数MIは、下記(9)式で与えられる。
MI = PH /ΔTH
=PH/[(1/2βH)[-αH+[αH 2-4βH (1-RH/RH_STD)]1/2]+TH_STD-(1/2βI)[-αI+[αI 2-4βI (1-RI/RI_STD)]1/2]-TI_STD] ・・・(9)
発熱素子61の通電電流IHと、駆動電力PH又は電圧VHは計測可能であるため、上記(2)式又は(3)式から発熱素子61の抵抗値RHを算出可能である。同様に、第1の測温素子62の抵抗値RIも算出可能である。よって、マイクロチップ8を用いて、上記(9)式から雰囲気ガスの放熱係数MIが算出可能である。
なお、保温素子64で基板60の温度を一定に保つことにより、発熱素子61が発熱する前のマイクロチップ8の近傍の雰囲気ガスの温度が、基板60の一定の温度と近似する。そのため、発熱素子61が発熱する前の雰囲気ガスの温度の変動が抑制される。温度変動が一度抑制された雰囲気ガスを発熱素子61でさらに加熱することにより、より高い精度で放熱係数MIを算出することが可能となる。
ここで、雰囲気ガスが混合ガスであり、混合ガスが、ガスA、ガスB、ガスC、及びガスDの4種類のガス成分からなっていると仮定する。ガスAの体積率VA、ガスBの体積率VB、ガスCの体積率VC、及びガスDの体積率VDの総和は、下記(10)式で与えられるように、1である。
VA+VB+VC+VD=1 ・・・(10)
また、ガスAの単位体積当たりの発熱量をKA、ガスBの単位体積当たりの発熱量をKB、ガスCの単位体積当たりの発熱量をKC、ガスDの単位体積当たりの発熱量をKDとすると、混合ガスの単位体積当たりの発熱量Qは、各ガス成分の体積率に、各ガス成分の単位体積当たりの発熱量を乗じたものの総和で与えられる。したがって、混合ガスの単位体積当たりの発熱量Qは、下記(11)式で与えられる。なお、単位体積当たりの発熱量の単位は、例えばMJ/m3である。
Q = KA×VA+ KB×VB+ KC×VC+KD×VD ・・・(11)
また、ガスAの放熱係数をMA、ガスBの放熱係数をMB、ガスCの放熱係数をMC、ガスDの放熱係数をMDとすると、混合ガスの放熱係数MIは、各ガス成分の体積率に、各ガス成分の放熱係数を乗じたものの総和で与えられる。したがって、混合ガスの放熱係数MIは、下記(12)式で与えられる。
MI = MA×VA+ MB×VB+ MC×VC+MD×VD ・・・(12)
さらに、ガスの放熱係数は発熱素子61の温度THに依存するので、混合ガスの放熱係数MIは、発熱素子61の温度THの関数として、下記(13)式で与えられる。
MI (TH)= MA(TH)×VA+ MB(TH)×VB+ MC(TH)×VC+MD(TH)×VD ・・・(13)
したがって、発熱素子61の温度がTH1のときの混合ガスの放熱係数MI1(TH1)は下記(14)式で与えられる。また、発熱素子61の温度がTH2のときの混合ガスの放熱係数MI2(TH2)は下記(15)式で与えられ、発熱素子61の温度がTH3のときの混合ガスの放熱係数MI3(TH3)は下記(16)式で与えられる。
MI1 (TH1)= MA(TH1)×VA+ MB(TH1)×VB+ MC(TH1)×VC+MD(TH1)×VD ・・・(14)
MI2 (TH2)= MA(TH2)×VA+ MB(TH2)×VB+ MC(TH2)×VC+MD(TH2)×VD ・・・(15)
MI3 (TH3)= MA(TH3)×VA+ MB(TH3)×VB+ MC(TH3)×VC+MD(TH3)×VD ・・・(16)
ここで、発熱素子61の温度THに対して各ガス成分の放熱係数MA(TH),MB(TH),MC(TH),MD(TH)が非線形性を有する場合、上記(14)乃至(16)式は、線形独立な関係を有する。また、発熱素子61の温度THに対して各ガス成分の放熱係数MA(TH),MB(TH),MC(TH),MD(TH)が線形性を有する場合でも、発熱素子61の温度THに対する各ガス成分の放熱係数MA(TH),MB(TH),MC(TH),MD(TH)の変化率が異なる場合は、上記(14)乃至(16)式は、線形独立な関係を有する。さらに、(14)乃至(16)式が線形独立な関係を有する場合、(10)及び(14)乃至(16)式は線形独立な関係を有する。
図5は、天然ガスに含まれるメタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)の放熱係数と、発熱抵抗体である発熱素子61の温度との関係を示すグラフである。発熱素子61の温度に対して、メタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)のそれぞれのガス成分の放熱係数は線形性を有する。しかし、発熱素子61の温度に対する放熱係数の変化率は、メタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)のそれぞれで異なる。したがって、混合ガスを構成するガス成分がメタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)であるである場合、上記(14)乃至(16)式は、線形独立な関係を有する。
(14)乃至(16)式中の各ガス成分の放熱係数MA(TH1),MB(TH1),MC(TH1),MD(TH1),MA(TH2),MB(TH2),MC(TH2),MD(TH2),MA(TH3),MB(TH3),MC(TH3),MD(TH3)の値は、計測等により予め得ることが可能である。したがって、(10)及び(14)乃至(16)式の連立方程式を解くと、ガスAの体積率VA、ガスBの体積率VB、ガスCの体積率VC、及びガスDの体積率VDのそれぞれが、下記(17)乃至(20)式に示すように、混合ガスの放熱係数MI1(TH1),MI2(TH2),MI3(TH3)の関数として与えられる。なお、下記(17)乃至(20)式において、nを自然数として、fnは関数を表す記号である。
VA=f1[MI1 (TH1), MI2 (TH2), MI3 (TH3)] ・・・(17)
VB=f2[MI1 (TH1), MI2 (TH2), MI3 (TH3)] ・・・(18)
VC=f3[MI1 (TH1), MI2 (TH2), MI3 (TH3)] ・・・(19)
VD=f4[MI1 (TH1), MI2 (TH2), MI3 (TH3)] ・・・(20)
ここで、上記(11)式に(17)乃至(20)式を代入することにより、下記(21)式が得られる。
Q = KA×VA+ KB×VB+ KC×VC+KD×VD
= KA×f1[MI1 (TH1), MI2 (TH2), MI3 (TH3)]
+ KB×f2[MI1 (TH1), MI2 (TH2), MI3 (TH3)]
+ KC×f3[MI1 (TH1), MI2 (TH2), MI3 (TH3)]
+ KD×f4[MI1 (TH1), MI2 (TH2), MI3 (TH3)] ・・・(21)
上記(21)式に示すように、混合ガスの単位体積当たりの発熱量Qは、発熱素子61の温度がTH1,TH2,TH3である場合の混合ガスの放熱係数MI1(TH1),MI2(TH2),MI3(TH3)を変数とする方程式で与えられる。したがって、混合ガスの発熱量Qは、gを関数を表す記号として、下記(22)式で与えられる。
Q = g[MI1 (TH1), MI2 (TH2), MI3 (TH3)] ・・・(22)
よって、ガスA、ガスB、ガスC、及びガスDからなる混合ガスについて、予め上記(22)式を得れば、ガスAの体積率VA、ガスBの体積率VB、ガスCの体積率VC、及びガスDの体積率VDが未知の検査対象混合ガスの単位体積当たりの発熱量Qを容易に算出可能であることを、発明者らは見出した。具体的には、発熱素子61の発熱温度がTH1,TH2,TH3である場合の検査対象混合ガスの放熱係数MI1(TH1),MI2(TH2),MI3(TH3)とを計測し、(22)式に代入することにより、検査対象混合ガスの発熱量Qを一意に求めることが可能となる。
また、混合ガスの放熱係数MIは、上記(9)式に示すように、発熱素子61の抵抗値RHと、第1の測温素子62の抵抗値RIと、に依存する。そこで、本発明者らは、混合ガスの単位体積当たりの発熱量Qは、下記(23)式に示すように、発熱素子61の温度がTH1,TH2,TH3である場合の発熱素子61の抵抗値RH1(TH1),RH2(TH2),RH3(TH3)と、混合ガスに接する第1の測温素子62の抵抗値RIと、を変数とする方程式でも与えられることを見出した。
Q = g[RH1 (TH1), RH2 (TH2), RH3 (TH3), RI] ・・・(23)
よって、検査対象混合ガスに接する発熱素子61の発熱温度がTH1,TH2,TH3である場合の発熱素子61の抵抗値RH1(TH1),RH2(TH2),RH3(TH3)と、検査対象混合ガスに接する第1の測温素子62の抵抗値RIを計測し、(23)式に代入することによっても、検査対象混合ガスの発熱量Qを一意に求めることが可能となる。
また、混合ガスの単位体積当たりの発熱量Qは、下記(24)式に示すように、発熱素子61の温度がTH1,TH2,TH3である場合の発熱素子61の通電電流IH1(TH1),IH2(TH2),IH3(TH3)と、混合ガスに接する第1の測温素子62の通電電流IIと、を変数とする方程式でも与えられる。
Q = g[IH1 (TH1), IH2 (TH2), IH3 (TH3), II] ・・・(24)
あるいは混合ガスの単位体積当たりの発熱量Qは、下記(25)式に示すように、発熱素子61の温度がTH1,TH2,TH3である場合の発熱素子61にかかる電圧VH1(TH1),VH2(TH2),VH3(TH3)と、混合ガスに接する第1の測温素子62にかかる電圧VIと、を変数とする方程式でも与えられる。
Q = g[VH1 (TH1), VH2 (TH2), VH3 (TH3), VI] ・・・(25)
またあるいは混合ガスの単位体積当たりの発熱量Qは、下記(26)式に示すように、発熱素子61の温度がTH1,TH2,TH3である場合の発熱素子61に接続されたアナログ−デジタル変換回路(以下において「A/D変換回路」という。)の出力信号ADH1(TH1),ADH2(TH2),ADH3(TH3)と、混合ガスに接する第1の測温素子62に接続されたA/D変換回路の出力信号ADIと、を変数とする方程式でも与えられる。
Q = g[ADH1 (TH1), ADH2 (TH2), ADH3 (TH3), ADI] ・・・(26)
よって、混合ガスの単位体積当たりの発熱量Qは、下記(27)式に示すように、発熱素子61の発熱温度がTH1,TH2,TH3である場合の発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)と、混合ガスに接する第1の測温素子62からの電気信号SIと、を変数とする方程式で与えられる。
Q = g[SH1 (TH1), SH2 (TH2), SH3 (TH3), SI] ・・・(27)
なお、混合ガスのガス成分は、4種類に限定されることはない。例えば、混合ガスがn種類のガス成分からなる場合、まず、下記(28)式で与えられる、少なくともn−1種類の発熱温度TH1,TH2,TH3,・・・,THn-1における発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3),・・・,SHn-1(THn-1)と、混合ガスに接する第1の測温素子62からの電気信号SIと、を変数とする方程式を予め取得する。そして、n−1種類の発熱温度TH1,TH2,TH3,・・・,THn-1における、n種類のガス成分のそれぞれの体積率が未知の検査対象混合ガスに接する発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3),・・・,SHn-1(THn-1)の値と、検査対象混合ガスに接する第1の測温素子62からの電気信号SIの値と、を計測し、(28)式に代入することにより、検査対象混合ガスの単位体積当たりの発熱量Qを一意に求めることが可能となる。
Q = g[SH1 (TH1), SH2 (TH2), SH3 (TH3), ・・・, SHn-1 (THn-1), SI] ・・・(28)
ただし、混合ガスが、ガス成分としてメタン(CH4)、プロパン(C38)に加えて、jを自然数として、メタン(CH4)とプロパン(C38)以外のアルカン(Cj2j+2)を含む場合、メタン(CH4)とプロパン(C38)以外のアルカン(Cj2j+2)を、メタン(CH4)とプロパン(C38)の混合物とみなしても、(28)式の算出には影響しない。例えば、エタン(C26)、ブタン(C410)、ペンタン(C512)、ヘキサン(C614)を、下記(29)乃至(32)式に示すように、それぞれ所定の係数を掛けられたメタン(CH4)とプロパン(C38)の混合物とみなして(28)式を算出してもかまわない。
C2H6 = 0.5 CH4 + 0.5 C3H8 ・・・(29)
C4H10 = -0.5 CH4 + 1.5 C3H8 ・・・(30)
C5H12 = -1.0 CH4 + 2.0 C3H8 ・・・(31)
C6H14 = -1.5 CH4 + 2.5 C3H8 ・・・(32)
したがって、zを自然数として、n種類のガス成分からなる混合ガスが、ガス成分としてメタン(CH4)、プロパン(C38)に加えて、メタン(CH4)とプロパン(C38)以外のz種類のアルカン(Cj2j+2)を含む場合、少なくともn−z−1種類の発熱温度における発熱素子61からの電気信号SHと、第1の測温素子62からの電気信号SIと、を変数とする方程式を求めてもよい。
なお、(28)式の算出に用いられた混合ガスのガス成分の種類と、単位体積当たりの発熱量Qが未知の検査対象混合ガスのガス成分の種類が同じ場合に、検査対象混合ガスの発熱量Qの算出に(28)式を利用可能であることはもちろんである。さらに、検査対象混合ガスがn種類より少ない種類のガス成分からなり、かつ、n種類より少ない種類のガス成分が、(28)式の算出に用いられた混合ガスに含まれている場合も、(28)式を利用可能である。例えば、(28)式の算出に用いられた混合ガスが、メタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)の4種類のガス成分を含む場合、検査対象混合ガスが、窒素(N2)を含まず、メタン(CH4)、プロパン(C38)、及び二酸化炭素(CO2)の3種類のガス成分のみを含む場合も、検査対象混合ガスの発熱量Qの算出に(28)式を利用可能である。
さらに、(28)式の算出に用いられた混合ガスが、ガス成分としてメタン(CH4)とプロパン(C38)を含む場合、検査対象混合ガスが、(28)式の算出に用いられた混合ガスに含まれていないアルカン(Cj2j+2)を含んでいても、(28)式を利用可能である。これは、上述したように、メタン(CH4)とプロパン(C38)以外のアルカン(Cj2j+2)を、メタン(CH4)とプロパン(C38)の混合物とみなしても、(28)式を用いた単位体積当たりの発熱量Qの算出に影響しないためである。
ここで、図6に示す第1の実施の形態に係るガス物性値測定システム20は、複数のサンプル混合ガスのそれぞれが注入される容器であるチャンバ101と、チャンバ101に配置され、図1に示す第1の測温素子62及び複数の発熱温度THで発熱する発熱素子61を含むマイクロチップ8と、を備える。さらに、図6に示すガス物性値測定システム20は、複数のサンプル混合ガスのそれぞれの温度TIに依存する第1の測温素子62からの電気信号SIの値と、複数の発熱温度THのそれぞれにおける発熱素子61からの電気信号SHの値と、を計測する計測モジュール301と、複数の混合ガスの既知の発熱量Qの値、第1の測温素子62からの電気信号SIの値、及び複数の発熱温度における発熱素子61からの電気信号の値に基づいて、第1の測温素子62からの電気信号SI及び複数の発熱温度THにおける発熱素子61からの電気信号SHを独立変数とし、発熱量Qを従属変数とする発熱量算出式を作成する式作成モジュールと、を備える。なお、サンプル混合ガスは、複数種類のガス成分を含む。
マイクロチップ8は、断熱部材18を介してチャンバ101内に配置されている。チャンバ101には、サンプル混合ガスをチャンバ101に送るための流路102と、サンプル混合ガスをチャンバ101から外部に排出するための流路103と、が接続されている。
それぞれ発熱量Qが異なる4種類のサンプル混合ガスが使用される場合、図7に示すように、第1のサンプル混合ガスを貯蔵する第1のガスボンベ50A、第2のサンプル混合ガスを貯蔵する第2のガスボンベ50B、第3のサンプル混合ガスを貯蔵する第3のガスボンベ50C、及び第4のサンプル混合ガスを貯蔵する第4のガスボンベ50Dが用意される。第1のガスボンベ50Aには、流路91Aを介して、第1のガスボンベ50Aから例えば0.2MPa等の低圧に調節された第1のサンプル混合ガスを得るための第1のガス圧調節器31Aが接続されている。また、第1のガス圧調節器31Aには、流路92Aを介して、第1の流量制御装置32Aが接続されている。第1の流量制御装置32Aは、流路92A及び流路102を介してガス物性値測定システム20に送られる第1のサンプル混合ガスの流量を制御する。
第2のガスボンベ50Bには、流路91Bを介して、第2のガス圧調節器31Bが接続されている。また、第2のガス圧調節器31Bには、流路92Bを介して、第2の流量制御装置32Bが接続されている。第2の流量制御装置32Bは、流路92B,93,102を介してガス物性値測定システム20に送られる第2のサンプル混合ガスの流量を制御する。
第3のガスボンベ50Cには、流路91Cを介して、第3のガス圧調節器31Cが接続されている。また、第3のガス圧調節器31Cには、流路92Cを介して、第3の流量制御装置32Cが接続されている。第3の流量制御装置32Cは、流路92C,93,102を介してガス物性値測定システム20に送られる第3のサンプル混合ガスの流量を制御する。
第4のガスボンベ50Dには、流路91Dを介して、第4のガス圧調節器31Dが接続されている。また、第4のガス圧調節器31Dには、流路92Dを介して、第4の流量制御装置32Dが接続されている。第4の流量制御装置32Dは、流路92D,93,102を介してガス物性値測定システム20に送られる第4のサンプル混合ガスの流量を制御する。
第1乃至第4のサンプル混合ガスのそれぞれは、例えば天然ガスである。第1乃至第4のサンプル混合ガスのそれぞれは、例えばメタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)の4種類のガス成分を含む。
図6に示すチャンバ101に第1のサンプル混合ガスが充填された後、図1及び図2に示すマイクロチップ8の第1の測温素子62は、第1のサンプル混合ガスの温度に依存する電気信号SIを出力する。次に、発熱素子61は、図6に示す駆動回路303から駆動電力PH1,PH2,PH3を与えられる。駆動電力PH1,PH2,PH3を与えられた場合、第1のサンプル混合ガスに接する発熱素子61は、例えば、100℃の温度TH1、150℃の温度TH2、及び200℃の温度TH3で発熱し、発熱温度TH1における電気信号SH1(TH1)、発熱温度TH2における電気信号SH2(TH2)、及び発熱温度TH3における電気信号SH3(TH3)を出力する。
チャンバ101から第1のサンプル混合ガスが除去された後、第2乃至第4のサンプル混合ガスがチャンバ101に順次充填される。第2のサンプル混合ガスがチャンバ101に充填された後、図1及び図2に示すマイクロチップ8の第1の測温素子62は、第2のサンプル混合ガスの温度に依存する電気信号SIを出力する。次に、第2のサンプル混合ガスに接する発熱素子61は、発熱温度TH1における電気信号SH1(TH1)、発熱温度TH2における電気信号SH2(TH2)、及び発熱温度TH3における電気信号SH3(TH3)を出力する。
第3のサンプル混合ガスが図6に示すチャンバ101に充填された後、図1及び図2に示すマイクロチップ8の第1の測温素子62は、第3のサンプル混合ガスの温度に依存する電気信号SIを出力する。次に、第3のサンプル混合ガスに接する発熱素子61は、発熱温度TH1における電気信号SH1(TH1)、発熱温度TH2における電気信号SH2(TH2)、及び発熱温度TH3における電気信号SH3(TH3)を出力する。
第4のサンプル混合ガスが図6に示すチャンバ101に充填された後、図1及び図2に示すマイクロチップ8の第1の測温素子62は、第4のサンプル混合ガスの温度に依存する電気信号SIを出力する。次に、第4のサンプル混合ガスに接する発熱素子61は、発熱温度TH1における電気信号SH1(TH1)、発熱温度TH2における電気信号SH2(TH2)、及び発熱温度TH3における電気信号SH3(TH3)を出力する。
なお、それぞれのサンプル混合ガスがn種類のガス成分を含む場合、マイクロチップ8の図1及び図2に示す発熱素子61は、少なくともn−1種類の異なる温度で発熱させられる。ただし、上述したように、メタン(CH4)及びプロパン(C38)以外のアルカン(Cj2j+2)は、メタン(CH4)及びプロパン(C38)の混合物とみなしうる。したがって、zを自然数として、n種類のガス成分からなるサンプル混合ガスが、ガス成分としてメタン(CH4)及びプロパン(C38)に加えてz種類のアルカン(Cj2j+2)を含む場合は、発熱素子61は、少なくともn−z−1種類の異なる温度で発熱させられる。
図6に示すように、マイクロチップ8は、計測モジュール301を含む中央演算処理装置(CPU)300に接続されている。CPU300には、電気信号記憶装置401が接続されている。計測モジュール301は、第1の測温素子62からの電気信号SIの値と、発熱素子61からの発熱温度TH1における電気信号SH1(TH1)、発熱温度TH2における電気信号SH2(TH2)、及び発熱温度TH3における電気信号SH3(TH3)の値と、を計測し、計測値を電気信号記憶装置401に保存する。
なお、第1の測温素子62からの電気信号SIとは、第1の測温素子62の抵抗値RI、第1の測温素子62の通電電流II、第1の測温素子62にかかる電圧VI、及び第1の測温素子62に接続されたA/D変換回路304の出力信号ADIのいずれであってもよい。同様に、発熱素子61からの電気信号SHとは、発熱素子61の抵抗値RH、発熱素子61の通電電流IH、発熱素子61にかかる電圧VH、及び発熱素子61に接続されたA/D変換回路304の出力信号ADHのいずれであってもよい。
CPU300に含まれる式作成モジュール302は、例えば第1乃至第4のサンプル混合ガスのそれぞれの既知の発熱量Qの値と、第1の測温素子62からの電気信号SIの複数の計測値と、発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の複数の計測値と、を収集する。さらに式作成モジュール302は、収集した発熱量Q、電気信号SI、及び電気信号SHの値に基づいて、多変量解析により、第1の測温素子62からの電気信号SI及び発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)を独立変数とし、発熱量Qを従属変数とする発熱量算出式を算出する。
なお、「多変量解析」とは、A. J Smola及びB. Scholkopf著の「A Tutorial on Support Vector Regression」(NeuroCOLT Technical Report (NC−TR−98−030)、1998年)に開示されているサポートベクトル回帰、重回帰分析、及び特開平5−141999号公報に開示されているファジィ数量化理論II類等を含む。
ガス物性値測定システム20は、CPU300に接続された式記憶装置402をさらに備える。式記憶装置402は、式作成モジュール302が作成した発熱量算出式を保存する。さらにCPU300には、入力装置312及び出力装置313が接続される。入力装置312としては、例えばキーボード、及びマウス等のポインティングデバイス等が使用可能である。出力装置313には液晶ディスプレイ、モニタ等の画像表示装置、及びプリンタ等が使用可能である。
次に、図8に示すフローチャートを用いて第1の実施の形態に係る発熱量算出式の作成方法について説明する。
(a)ステップS100で、図7に示す第2乃至第4の流量制御装置32B−32Dの弁を閉じたまま、第1の流量制御装置32Aの弁を開き、図6に示すチャンバ101内に第1のサンプル混合ガスを導入する。ステップS101で、計測モジュール301は、第1のサンプル混合ガスに接する第1の測温素子62からの電気信号SIの値を計測し、電気信号記憶装置401に保存する。次に、駆動回路303は、図1及び図2に示す発熱素子61に駆動電力PH1を与え、発熱素子61を100℃で発熱させる。図6に示す計測モジュール301は、100℃で発熱する発熱素子61からの電気信号SH1(TH1)の値を、電気信号記憶装置401に保存する。
(b)ステップS102で、駆動回路303は、図1及び図2に示す発熱素子61の温度の切り替えが完了したか否か判定する。温度150℃及び温度200℃への切り替えが完了していない場合には、ステップS101に戻り、図6に示す駆動回路303は、図1及び図2に示す発熱素子61を150℃で発熱させる。図6に示す計測モジュール301は、150℃で発熱する発熱素子61からの電気信号SH2(TH2)の値を、電気信号記憶装置401に保存する。
(c)再びステップS102で、図1及び図2に示す発熱素子61の温度の切り替えが完了したか否か判定する。温度200℃への切り替えが完了していない場合には、ステップS101に戻り、図6に示す駆動回路303は、図1及び図2に示す発熱素子61を200℃で発熱させる。図6に示す計測モジュール301は、200℃で発熱する発熱素子61からの電気信号SH3(TH3)の値を、電気信号記憶装置401に保存する。
(d)発熱素子61の温度の切り替えが完了した場合には、ステップS102からステップS103に進む。ステップS103で、サンプル混合ガスの切り替えが完了したか否かを判定する。第2乃至第4のサンプル混合ガスへの切り替えが完了していない場合には、ステップS100に戻る。ステップS100で、図7に示す第1の流量制御装置32Aを閉じ、第3乃至第4の流量制御装置32C−32Dの弁を閉じたまま第2の流量制御装置32Bの弁を開き、図6に示すチャンバ101内に第2のサンプル混合ガスを導入する。
(e)第1のサンプル混合ガスと同様に、ステップS101乃至ステップS102のループが繰り返される。計測モジュール301は、第2のサンプル混合ガスに接する第1の測温素子62からの電気信号SIの値を計測し、電気信号記憶装置401に保存する。また、計測モジュール301は、第2のサンプル混合ガスに接し、100℃、150℃、及び200℃で発熱する発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の値を、電気信号記憶装置401に保存する。その後、ステップS100乃至ステップS103のループが繰り返される。これにより、第3のサンプル混合ガスに接する第1の測温素子62からの電気信号SIの値と、第3のサンプル混合ガスに接し、100℃、150℃、及び200℃で発熱する発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の値と、第4のサンプル混合ガスに接する第1の測温素子62からの電気信号SIの値と、第4のサンプル混合ガスに接し、100℃、150℃、及び200℃で発熱する発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の値とが、電気信号記憶装置401に保存される。
(f)ステップS104で、入力装置312から式作成モジュール302に、第1のサンプル混合ガスの既知の発熱量Qの値、第2のサンプル混合ガスの既知の発熱量Qの値、第3のサンプル混合ガスの既知の発熱量Qの値、及び第4のサンプル混合ガスの既知の発熱量Qの値を入力する。また、式作成モジュール302は、電気信号記憶装置401から、第1の測温素子62からの電気信号SIの複数の計測値と、発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の複数の計測値と、を読み出す。
(g)ステップS105で、第1乃至第4のサンプル混合ガスの発熱量Qの値と、第1の測温素子62からの電気信号SIの複数の計測値と、発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の複数の計測値と、に基づいて、式作成モジュール302は、重回帰分析を行う。重回帰分析により、式作成モジュール302は、第1の測温素子62からの電気信号SI及び発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)を独立変数とし、発熱量Qを従属変数とする発熱量算出式を算出する。その後、ステップS106で、式作成モジュール302は作成した発熱量算出式を式記憶装置402に保存し、第1の実施の形態に係る発熱量算出式の作成方法が終了する。
以上示したように、第1の実施の形態に係る発熱量算出式の作成方法によれば、計測対象混合ガスの発熱量Qの値を一意に算出可能な発熱量算出式を作成することが可能となる。
(第2の実施の形態)
図9に示すように、第2の実施の形態に係るガス物性値測定システム21は、発熱量Qが未知の計測対象混合ガスが注入されるチャンバ101と、チャンバ101に配置され、図1及び図2に示す第1の測温素子62及び複数の発熱温度THで発熱する発熱素子61を含むマイクロチップ8と、を備える。図9に示すガス物性値測定システム21は、さらに、計測対象混合ガスの温度TIに依存する第1の測温素子62からの電気信号SIの値と、複数の発熱温度THのそれぞれにおける発熱素子61からの電気信号SHの値と、を計測する計測モジュール301と、第1の測温素子62からの電気信号SI及び複数の発熱温度THにおける発熱素子61からの電気信号SHを独立変数とし、発熱量Qを従属変数とする発熱量算出式を保存する式記憶装置402と、発熱量算出式の第1の測温素子62からの電気信号SIの独立変数、及び発熱素子61からの電気信号SHの独立変数に、第1の測温素子62からの電気信号SIの計測値、及び発熱素子61からの電気信号SHの計測値を代入し、計測対象混合ガスの発熱量Qの値を算出する発熱量算出モジュールと、を備える。
式記憶装置402は、第1の実施の形態で説明した発熱量算出式を保存する。ここでは、例として、発熱量算出式の作成のために、メタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)を含む天然ガスがサンプル混合ガスとして使用された場合を説明する。また、発熱量算出式は、第1の測温素子62からの電気信号SIと、発熱温度TH1が100℃の発熱素子61からの電気信号SH1(TH1)と、発熱温度TH2が150℃の発熱素子61からの電気信号SH2(TH2)と、発熱温度TH3が200℃の発熱素子61からの電気信号SH3(TH3)と、を独立変数としているものとする。
第2の実施の形態においては、例えば、未知の体積率でメタン(CH4)、プロパン(C38)、窒素(N2)、及び二酸化炭素(CO2)を含む、発熱量Qが未知の天然ガスが、計測対象混合ガスとして、チャンバ101に導入される。図1及び図2に示すマイクロチップ8の第1の測温素子62は、計測対象混合ガスの温度に依存する電気信号SIを出力する。次に、発熱素子61は、図6に示す駆動回路303から駆動電力PH1,PH2,PH3を与えられる。駆動電力PH1,PH2,PH3を与えられた場合、計測対象混合ガスに接する発熱素子61は、例えば、100℃の温度TH1、150℃の温度TH2、及び200℃の温度TH3で発熱し、発熱温度TH1における電気信号SH1(TH1)、発熱温度TH2における電気信号SH2(TH2)、及び発熱温度TH3における電気信号SH3(TH3)を出力する。
図9に示す計測モジュール301は、計測対象混合ガスに接する第1の測温素子62からの電気信号SIの値と、計測対象混合ガスに接する発熱素子61からの発熱温度TH1における電気信号SH1(TH1)、発熱温度TH2における電気信号SH2(TH2)、及び発熱温度TH3における電気信号SH3(TH3)の値と、を計測し、計測値を電気信号記憶装置401に保存する。
発熱量算出モジュール305は、発熱量算出式の第1の測温素子62からの電気信号SI及び発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の独立変数に、計測値をそれぞれ代入し、計測対象混合ガスの発熱量Qの値を算出する。CPU300には、発熱量記憶装置403がさらに接続されている。発熱量記憶装置403は、発熱量算出モジュール305が算出した計測対象混合ガスの発熱量Qの値を保存する。第2の実施の形態に係るガス物性値測定システム21のその他の構成要件は、図6で説明した第1の実施の形態に係るガス物性値測定システム20と同様であるので、説明は省略する。
次に、図10に示すフローチャートを用いて、第2の実施の形態に係る発熱量の測定方法について説明する。
(a)ステップS200で、図9に示すチャンバ101内に計測対象混合ガスを導入する。ステップS201で、計測モジュール301は、計測対象混合ガスに接する第1の測温素子62からの電気信号SIの値を計測し、電気信号記憶装置401に保存する。次に、駆動回路303は、図1及び図2に示す発熱素子61に駆動電力PH1を与え、発熱素子61を100℃で発熱させる。図9に示す計測モジュール301は、計測対象混合ガスに接し、100℃で発熱する発熱素子61からの電気信号SH1(TH1)の値を、電気信号記憶装置401に保存する。
(b)ステップS202で、図9に示す駆動回路303は、図1及び図2に示す発熱素子61の温度の切り替えが完了したか否か判定する。温度150℃及び温度200℃への切り替えが完了していない場合には、ステップS201に戻り、駆動回路303は、図1及び図2に示す発熱素子61に駆動電力PH2を与え、発熱素子61を150℃で発熱させる。図9に示す計測モジュール301は、計測対象混合ガスに接し、150℃で発熱する発熱素子61からの電気信号SH2(TH2)の値を、電気信号記憶装置401に保存する。
(c)再びステップS202で、図1及び図2に示す発熱素子61の温度の切り替えが完了したか否か判定する。温度200℃への切り替えが完了していない場合には、ステップS201に戻り、駆動回路303は、図1及び図2に示す発熱素子61に駆動電力PH3を与え、発熱素子61を200℃で発熱させる。図9に示す計測モジュール301は、計測対象混合ガスに接し、200℃で発熱する発熱素子61からの電気信号SH3(TH3)の値を、電気信号記憶装置401に保存する。
(d)発熱素子61の温度の切り替えが完了した場合には、ステップS202からステップS203に進む。ステップS203で、図9に示す発熱量算出モジュール305は、式記憶装置402から、第1の測温素子62からの電気信号SI及び発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)を独立変数とし、発熱量Qを従属変数とする発熱量算出式を読み出す。また、発熱量算出モジュール305は、電気信号記憶装置401から、計測対象混合ガスに接する第1の測温素子62からの電気信号SIの計測値、及び計測対象混合ガスに接する発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の計測値を読み出す。
(e)ステップS204で、発熱量算出モジュール305は、発熱量算出式の電気信号SI及び電気信号SH1(TH1),SH2(TH2),SH3(TH3)の独立変数に、それぞれ計測値を代入し、計測対象混合ガスの発熱量Qの値を算出する。その後、発熱量算出モジュール305は、算出した発熱量Qの値を発熱量記憶装置403に保存し、第2の実施の形態に係る発熱量の測定方法を終了する。
以上説明した第2の実施の形態に係る発熱量算出方法によれば、高価なガスクロマトグラフィ装置や音速センサを用いることなく、計測対象混合ガスに接する第1の測温素子62からの電気信号SIの値と、計測対象混合ガスに接する発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の値と、から、計測対象混合ガスの混合ガスの発熱量Qの値を測定することが可能となる。
天然ガスは、産出ガス田によって炭化水素の成分比率が異なる。また、天然ガスには、炭化水素の他に、窒素(N2)や炭酸ガス(CO2)等が含まれる。そのため、産出ガス田によって、天然ガスに含まれるガス成分の体積率は異なり、ガス成分の種類が既知であっても、天然ガスの発熱量Qは未知であることが多い。また、同一のガス田由来の天然ガスであっても、発熱量Qが常に一定であるとは限らず、採取時期によって変化することもある。
従来、天然ガスの使用料金を徴収する際には、天然ガスの使用発熱量Qでなく、使用体積に応じて課金する方法がとられている。しかし、天然ガスは由来する産出ガス田によって発熱量Qが異なるため、使用体積に課金するのは公平でない。これに対し、第2の実施の形態に係る発熱量算出方法を用いれば、ガス成分の種類が既知であるが、ガス成分の体積率が未知であるために発熱量Qが未知の天然ガス等の混合ガスの発熱量Qを、簡易に算出することが可能となる。そのため、公平な使用料金を徴収することが可能となる。
また、ガラス加工品の製造業においては、ガラスを加熱加工する際、加工精度を一定に保つために、一定の発熱量Qを有する天然ガスが供給されることが望まれている。そのためには、複数のガス田由来の天然ガスのそれぞれの発熱量Qを正確に把握し、総ての天然ガスの発熱量Qが同一になるよう調整した上で、ガラスの加熱加工工程に天然ガスを供給することが検討されている。これに対し、第2の実施の形態に係る発熱量算出方法を用いれば、複数のガス田由来の天然ガスのそれぞれ発熱量Qを正確には把握することが可能となるため、ガラスの加熱加工精度を一定に保つことが可能となる。
さらに、第2の実施の形態に係る発熱量算出方法によれば、天然ガス等の混合ガスの正確な発熱量Qを容易に知ることが可能となるため、混合ガスを燃焼させる場合に必要な空気量を適切に設定することが可能となる。そのため、無駄な二酸化炭素(CO2)の排出量を削減することも可能となる。
(実施例1)
まず、発熱量Qの値が既知の23種類のサンプル混合ガスを用意した。23種類のサンプル混合ガスのそれぞれは、ガス成分としてメタン(CH4)、エタン(C26)、プロパン(C38)、ブタン(C410)、窒素(N2)、及び二酸化炭素(CO2)のいずれか又は全部を含んでいた。例えば、あるサンプル混合ガスは、90vol%のメタン、3vol%のエタン、1vol%のプロパン、1vol%のブタン、4vol%の窒素、及び1vol%の二酸化炭素を含んでいた。また、あるサンプル混合ガスは、85vol%のメタン、10vol%のエタン、3vol%のプロパン、及び2vol%のブタンを含み、窒素及び二酸化炭素を含んでいなかった。また、あるサンプル混合ガスは、85vol%のメタン、8vol%のエタン、2vol%のプロパン、1vol%のブタン、2vol%の窒素、及び2vol%の二酸化炭素を含んでいた。
次に、23種類のサンプル混合ガスのそれぞれを用いて、図6に示す第1の測温素子62からの電気信号SIの複数の計測値と、発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の複数の計測値と、を取得した。その後、23種類のサンプル混合ガスの既知の発熱量Qの値と、第1の測温素子62からの電気信号SIの複数の計測値と、発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)の複数の計測値と、に基づいて、サポートベクトル回帰により、第1の測温素子62からの電気信号SI及び発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)を独立変数とし、発熱量Qを従属変数とする、発熱量Qを算出するための1次方程式、2次方程式、及び3次方程式を作成した。
発熱量Qを算出するための1次方程式を作成する際には、キャリブレーション・ポイントは、3乃至5個を目安に、適宜決定できる。作成された1次方程式は下記(33)乃至(35)式で与えられた。23種類のサンプル混合ガスの発熱量Qを(33)乃至(35)式で算出し、真の発熱量Qと比較したところ、最大誤差は2.1%であった。
Q = 40.1 + 17.4×VH1 (100℃) + 17.9×VH2 (150℃) - 28.9×VH3 (200℃) - 10.4×VI ・・・(33)
Q = 40.1 + 23.8×RH1 (100℃) + 6.07×RH2 (150℃) - 22.8×RH3 (200℃) - 11.4×RI ・・・(34)
Q = 40.1 + 17.4×ADH1 (100℃) + 17.9×ADH2 (150℃) - 28.9×ADH3 (200℃) - 10.4×ADI ・・・(35)
発熱量Qを算出するための2次方程式を作成する際には、キャリブレーション・ポイントは、8乃至9個を目安に、適宜決定できる。23種類のサンプル混合ガスの発熱量Qを作成された2次方程式で算出し、真の発熱量Qと比較したところ、最大誤差は1.2乃至1.4%であった。
発熱量Qを算出するための3次方程式を作成する際には、キャリブレーション・ポイントは、10乃至14個を目安に、適宜決定できる。23種類のサンプル混合ガスの発熱量Qを作成された3次方程式で算出し、真の発熱量Qと比較したところ、最大誤差は1.2%未満であった。
(実施例2)
実施例1で使用したサンプル混合ガスと同様に、発熱量Qの値が既知の23種類のサンプル混合ガスを用意した。ここで、発熱素子61で加熱される前のサンプル混合ガスの温度を、−10℃、5℃、23℃、40℃、及び50℃に設定した。次に、サポートベクトル回帰により、第1の測温素子62からの電気信号SI及び発熱素子61からの電気信号SH1(TH1),SH2(TH2),SH3(TH3)を独立変数とし、発熱量Qを従属変数とする、発熱量Qを算出するための3次方程式を作成した。すると、図11乃至図13に示すように、発熱素子61で加熱される前のサンプル混合ガスの温度にかかわらず、算出される発熱量Qの誤差にばらつきが生じなかった。なお、図11の結果は、電気信号Sとして抵抗Rを用いて得られた。図12の結果は、電気信号Sとして電圧Vを用いて得られた。図13の結果は、電気信号SとしてA/D変換回路304からの出力信号ADを用いて得られた。
8 マイクロチップ
18 断熱部材
20,21 ガス物性値測定システム
31A,31B,31C,31D ガス圧調節器
32A,32B,32C,32D 流量制御装置
50A,50B,50C,50D ガスボンベ
60 基板
61 発熱素子
62 第1の測温素子
63 第2の測温素子
64 保温素子
65 絶縁膜
66 キャビティ
91A,91B,91C,91D,92A,92B,92C,92D,93,102,103 流路
101 チャンバ
160,161,162,163,164,165,181,182,183 抵抗素子
170,171 オペアンプ
301 計測モジュール
302 式作成モジュール
303 駆動回路
304 A/D変換回路
305 発熱量算出モジュール
312 入力装置
313 出力装置
401 電気信号記憶装置
402 式記憶装置
403 発熱量記憶装置

Claims (28)

  1. 複数の混合ガスのそれぞれが注入される容器と、
    前記容器に配置された測温素子と、
    前記容器に配置された、複数の発熱温度で発熱する発熱素子と、
    前記複数の混合ガスのそれぞれの温度に依存する前記測温素子からの電気信号の値と、
    前記複数の発熱温度のそれぞれにおける前記発熱素子からの電気信号の値と、を計測する
    計測モジュールと、
    前記複数の混合ガスの既知の発熱量の値、前記測温素子からの電気信号の値、及び前記複数の発熱温度における前記発熱素子からの電気信号の値に基づいて、前記測温素子からの電気信号及び前記複数の発熱温度における前記発熱素子からの電気信号を独立変数とし、前記発熱量を従属変数とする発熱量算出式を作成する式作成モジュールと、
    を備える、発熱量算出式作成システム。
  2. 前記測温素子が受動素子である、請求項1に記載の発熱量算出式作成システム。
  3. 前記測温素子が抵抗器である、請求項1又は2に記載の発熱量算出式作成システム。
  4. 前記発熱素子の複数の発熱温度の数が、少なくとも、前記複数の混合ガスのそれぞれが含むガス成分の数から1を引いた数である、請求項1乃至3のいずれか1項に記載の発熱
    量算出式作成システム。
  5. 前記式作成モジュールが、サポートベクトル回帰を用いて前記発熱量算出式を作成する、請求項1乃至4のいずれか1項に記載の発熱量算出式作成システム。
  6. 前記複数の混合ガスのそれぞれが天然ガスである、請求項1乃至5のいずれか1項に記載の発熱量算出式作成システム。
  7. 複数の混合ガスを用意することと、
    前記複数の混合ガスのそれぞれの温度に依存する測温素子からの電気信号の値を得ることと、
    前記複数の混合ガスのそれぞれに接する発熱素子を複数の発熱温度で発熱させることと、
    前記複数の発熱温度のそれぞれにおける前記発熱素子からの電気信号の値を得ることと、
    前記複数の混合ガスの既知の発熱量の値、前記測温素子からの電気信号の値、及び前記複数の発熱温度における前記発熱素子からの電気信号の値に基づいて、前記測温素子からの電気信号及び前記複数の発熱温度における前記発熱素子からの電気信号を独立変数とし、前記発熱量を従属変数とする発熱量算出式を作成することと、
    を含む、発熱量算出式の作成方法。
  8. 前記測温素子が受動素子である、請求項7に記載の発熱量算出式の作成方法。
  9. 前記測温素子が抵抗器である、請求項7又は8に記載の発熱量算出式の作成方法。
  10. 前記複数の発熱温度の数が、少なくとも、前記複数の混合ガスのそれぞれが含むガス成分の数から1を引いた数である、請求項7乃至9のいずれか1項に記載の発熱量算出式の
    作成方法。
  11. 前記発熱量算出式を作成することにおいて、サポートベクトル回帰が用いられる、請求項7乃至10のいずれか1項に記載の発熱量算出式の作成方法。
  12. 前記複数の混合ガスのそれぞれが天然ガスである、請求項7乃至11のいずれか1項に記載の発熱量算出式の作成方法。
  13. 発熱量が未知の計測対象混合ガスが注入される容器と、
    前記容器に配置された測温素子と、
    前記容器に配置された、複数の発熱温度で発熱する発熱素子と、
    前記計測対象混合ガスの温度に依存する前記測温素子からの電気信号の値と、前記複数の発熱温度のそれぞれにおける前記発熱素子からの電気信号の値と、を計測する計測モジュールと、
    前記測温素子からの電気信号及び前記複数の発熱温度における前記発熱素子からの電気信号を独立変数とし、前記発熱量を従属変数とする発熱量算出式を保存する式記憶装置と、
    前記発熱量算出式の前記測温素子からの電気信号の独立変数、及び前記発熱素子からの電気信号の独立変数に、前記測温素子からの電気信号の値、及び前記前記発熱素子からの電気信号の値を代入し、前記計測対象混合ガスの発熱量の値を算出する発熱量算出モジュールと、
    を備える、発熱量測定システム。
  14. 前記測温素子が受動素子である、請求項13に記載の発熱量測定システム。
  15. 前記測温素子が抵抗器である、請求項13又は14に記載の発熱量測定システム。
  16. 前記複数の発熱温度の数が、少なくとも、前記計測対象混合ガスに含まれる複数種類のガス成分の数から1を引いた数である、請求項13乃至15のいずれか1項に記載の発熱量測定システム。
  17. 複数種類のガス成分を含む複数のサンプル混合ガスの発熱量の値と、前記複数のサンプル混合ガスのそれぞれに接する前記発熱素子からの電気信号の値とに基づいて、前記発熱量算出式が作成された、請求項13乃至16のいずれか1項に記載の発熱量測定システム。
  18. 前記発熱量算出式を作成するために、サポートベクトル回帰が用いられた、請求項17に記載の発熱量測定システム。
  19. 前記複数のサンプル混合ガスのそれぞれが天然ガスである、請求項17又は18に記載の発熱量測定システム。
  20. 前記計測対象混合ガスが天然ガスである、請求項13乃至19のいずれか1項に記載の発熱量測定システム。
  21. 発熱量が未知の計測対象混合ガスを用意することと、
    前記計測対象混合ガスの温度に依存する測温素子からの電気信号の値を得ることと、
    前記計測対象混合ガスに接する発熱素子を複数の発熱温度で発熱させることと、
    前記複数の発熱温度のそれぞれにおける前記発熱素子からの電気信号の値を得ることと、
    前記測温素子からの電気信号及び前記複数の発熱温度における前記発熱素子からの電気信号を独立変数とし、前記発熱量を従属変数とする発熱量算出式を用意することと、
    前記発熱量算出式の前記測温素子からの電気信号の独立変数、及び前記発熱素子からの電気信号の独立変数に、前記測温素子からの電気信号の値、及び前記発熱素子からの電気信号の値を代入し、前記計測対象混合ガスの発熱量の値を算出することと、
    を含む、発熱量の測定方法。
  22. 前記測温素子が受動素子である、請求項21に記載の発熱量の測定方法。
  23. 前記測温素子が抵抗器である、請求項21又は22に記載の発熱量の測定方法。
  24. 前記複数の発熱温度の数が、少なくとも、前記計測対象混合ガスに含まれる複数種類のガス成分の数から1を引いた数である、請求項21乃至23のいずれか1項に記載の発熱量の測定方法。
  25. 複数種類のガス成分を含む複数のサンプル混合ガスの発熱量の値と、前記複数のサンプル混合ガスのそれぞれに接する前記発熱素子からの電気信号の値とに基づいて、前記発熱量算出式が作成された、請求項21乃至24のいずれか1項に記載の発熱量の測定方法。
  26. 前記発熱量算出式を作成するために、サポートベクトル回帰が用いられた、請求項25に記載の発熱量の測定方法。
  27. 前記複数のサンプル混合ガスのそれぞれが天然ガスである、請求項25又は26に記載の発熱量の測定方法。
  28. 前記計測対象混合ガスが天然ガスである、請求項21乃至27のいずれか1項に記載の発熱量の測定方法。
JP2010075097A 2010-03-29 2010-03-29 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法 Active JP5335727B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010075097A JP5335727B2 (ja) 2010-03-29 2010-03-29 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
KR1020110021982A KR101245437B1 (ko) 2010-03-29 2011-03-11 발열량 산출식 작성 시스템, 발열량 산출식 작성 방법, 발열량 측정 시스템 및 발열량 측정 방법
CN2011100743180A CN102253078B (zh) 2010-03-29 2011-03-18 发热量计算式制作系统、发热量计算式的制作方法、发热量测定系统以及发热量的测定方法
EP11159686.2A EP2372359B1 (en) 2010-03-29 2011-03-24 Calorific value calculation formula creation system, method of creating calorific value calculation formula, calorific value measurement system and method of measuring calorific value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075097A JP5335727B2 (ja) 2010-03-29 2010-03-29 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法

Publications (2)

Publication Number Publication Date
JP2011209008A JP2011209008A (ja) 2011-10-20
JP5335727B2 true JP5335727B2 (ja) 2013-11-06

Family

ID=43982458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075097A Active JP5335727B2 (ja) 2010-03-29 2010-03-29 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法

Country Status (4)

Country Link
EP (1) EP2372359B1 (ja)
JP (1) JP5335727B2 (ja)
KR (1) KR101245437B1 (ja)
CN (1) CN102253078B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781968B2 (ja) 2012-03-27 2015-09-24 アズビル株式会社 発熱量測定システム及び発熱量の測定方法
JP5784534B2 (ja) * 2012-03-27 2015-09-24 アズビル株式会社 発熱量測定システム及び発熱量の測定方法
JP5779130B2 (ja) * 2012-03-27 2015-09-16 アズビル株式会社 発電システム及びガス測定システム
JP5779131B2 (ja) * 2012-03-27 2015-09-16 アズビル株式会社 発熱量測定システム及び発熱量の測定方法
JP5784535B2 (ja) * 2012-03-27 2015-09-24 アズビル株式会社 密度測定システム及び密度の測定方法
JP2015031576A (ja) * 2013-08-01 2015-02-16 アズビル株式会社 発熱量算出式作成システム、発熱量算出式作成方法、発熱量測定システム、および、発熱量測定方法
US9354220B2 (en) 2013-09-27 2016-05-31 Caterpillar Inc. Engine system having fuel quality sensor
JP6499851B2 (ja) * 2014-12-05 2019-04-10 新日本空調株式会社 流量計測方法
JP6670706B2 (ja) * 2016-08-09 2020-03-25 アズビル株式会社 発熱量測定装置および方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190013A (ja) * 1984-10-10 1986-05-08 Nippon Soken Inc 流体流量測定装置
US4731732A (en) * 1985-08-07 1988-03-15 Aluminum Company Of America Method and apparatus for determining soluble gas content
EP0612405B1 (en) * 1991-10-23 2001-08-01 Honeywell Inc. Apparatus for combustionless measuring fuel gas quality
JP2643699B2 (ja) 1991-11-22 1997-08-20 山武ハネウエル株式会社 ファジィセンサ装置
JPH0850109A (ja) * 1994-08-08 1996-02-20 Yamatake Honeywell Co Ltd ガス分析方法
JP3136553B2 (ja) * 1994-09-05 2001-02-19 株式会社山武 熱量計
JP3114139B2 (ja) * 1995-01-24 2000-12-04 株式会社山武 熱伝導率計
JP3262315B2 (ja) * 1996-07-19 2002-03-04 東京瓦斯株式会社 熱伝導率式発熱量計を用いた混合ガスの発熱量測定方法
US6202480B1 (en) * 1998-04-02 2001-03-20 Agilent Technologies, Inc. Thermometric vapor sensor with evaporation surface having micropores
US6604051B1 (en) * 2000-04-17 2003-08-05 Southwest Research Institute System and method to determine thermophysical properties of a multi-component gas
EP1193488B1 (de) * 2000-09-29 2004-12-08 E.ON Ruhrgas AG Verfahren und Vorrichtung zum Ermitteln der Gasbeschaffenheit eines Erdgases
JP4028380B2 (ja) * 2000-11-15 2007-12-26 ラティス インテレクチュアル プロパティー リミテッド 炭化水素ガスの混合物の有効組成の決定
US7191645B2 (en) * 2003-08-14 2007-03-20 Fluid Components International Llc Dynamic mixed gas flowmeter
JP4383990B2 (ja) * 2004-09-09 2009-12-16 日本電信電話株式会社 パラメータ推定装置、パラメータ推定方法、パラメータ推定プログラム、および、パラメータ推定プログラムの記録媒体
WO2007036983A1 (ja) * 2005-09-27 2007-04-05 Yamatake Corporation 熱伝導率測定方法および装置、並びにガス成分比率測定装置
JP4890874B2 (ja) * 2006-02-10 2012-03-07 株式会社山武 熱量計測システム
JP4798773B2 (ja) * 2006-03-03 2011-10-19 理研計器株式会社 可燃性ガス検出装置
JP4505842B2 (ja) * 2006-03-15 2010-07-21 株式会社山武 熱伝導率測定方法とその装置およびガス成分比率測定装置
US20110185789A1 (en) * 2008-10-01 2011-08-04 Yamatake Corporation Calorific value calculation formula generating system, calorific value calculation formula generating method, calorific value calculating system, and calorific value calculating method
JP5389502B2 (ja) * 2009-03-31 2014-01-15 アズビル株式会社 ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP5389501B2 (ja) * 2009-03-31 2014-01-15 アズビル株式会社 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP5420456B2 (ja) * 2010-03-17 2014-02-19 アズビル株式会社 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法

Also Published As

Publication number Publication date
CN102253078B (zh) 2013-12-18
KR101245437B1 (ko) 2013-03-19
CN102253078A (zh) 2011-11-23
EP2372359B1 (en) 2016-01-06
JP2011209008A (ja) 2011-10-20
EP2372359A1 (en) 2011-10-05
KR20110109853A (ko) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5335727B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP5759780B2 (ja) 発熱量測定システム及び発熱量の測定方法
JP5335722B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP5781968B2 (ja) 発熱量測定システム及び発熱量の測定方法
JP5421832B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP5420456B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP5389502B2 (ja) ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP5389501B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP5641996B2 (ja) 密度測定システム及び密度の測定方法
JP5192431B2 (ja) ガス物性値測定システム
JP5275876B2 (ja) ヒータ及びガス物性値測定システム
JP2012198111A (ja) 天然ガス発熱量測定システム及び天然ガス発熱量測定システムの校正方法
JP5779131B2 (ja) 発熱量測定システム及び発熱量の測定方法
JP2012202739A (ja) 発熱量測定システム及び発熱量の測定方法
JP5335728B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP5344958B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP5784534B2 (ja) 発熱量測定システム及び発熱量の測定方法
JP5784535B2 (ja) 密度測定システム及び密度の測定方法
JP2013205109A (ja) 天然ガス発熱量測定システム及び天然ガス発熱量測定システムの校正方法
JP2011203217A (ja) ガス制御システム及びガス制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Ref document number: 5335727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150