JP5330684B2 - Blue-emitting phosphor particles - Google Patents

Blue-emitting phosphor particles Download PDF

Info

Publication number
JP5330684B2
JP5330684B2 JP2007337403A JP2007337403A JP5330684B2 JP 5330684 B2 JP5330684 B2 JP 5330684B2 JP 2007337403 A JP2007337403 A JP 2007337403A JP 2007337403 A JP2007337403 A JP 2007337403A JP 5330684 B2 JP5330684 B2 JP 5330684B2
Authority
JP
Japan
Prior art keywords
phosphor particles
emitting phosphor
blue light
blue
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007337403A
Other languages
Japanese (ja)
Other versions
JP2009155546A (en
Inventor
正人 山内
隆 出光
明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2007337403A priority Critical patent/JP5330684B2/en
Priority to TW097150253A priority patent/TW200940685A/en
Priority to KR1020080133582A priority patent/KR101538173B1/en
Priority to CNA2008101895259A priority patent/CN101469264A/en
Publication of JP2009155546A publication Critical patent/JP2009155546A/en
Application granted granted Critical
Publication of JP5330684B2 publication Critical patent/JP5330684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77922Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、基本組成式がMeMgSi26:Eu2+で表される、ディオプサイド結晶構造を有する青色発光蛍光体粒子に関し、特にXe2分子線に相当する波長172nmの真空紫外線の励起による発光輝度が向上した青色発光蛍光体粒子に関する。 The present invention relates to blue-emitting phosphor particles having a diopside crystal structure, whose basic composition formula is represented by MeMgSi 2 O 6 : Eu 2+ , and in particular, excitation of vacuum ultraviolet rays having a wavelength of 172 nm corresponding to a Xe 2 molecular beam. The present invention relates to a blue light emitting phosphor particle having improved light emission luminance.

カラー表示のプラズマディスプレイパネル(以下、単にPDPという)は、希ガスの放電により発生した真空紫外線を蛍光体に照射して、蛍光体を励起させることにより、青色、緑色、赤色の可視光を得て、その組み合わせにより画像を表示する。希ガスとしては、一般にXe(キセノン)とNe(ネオン)との混合ガスが用いられている。この混合ガスでは、Xeが放電ガスであり、Neはバッファガスである。Xeの放電により発生する主な真空紫外線は、波長147nmのXeの共鳴線と、波長172nm(173nmと記載されている文献もある)のXe2の分子線である。通常、蛍光体の発光に利用されるのは、波長147nmのXe共鳴線である。 Plasma display panels for color display (hereinafter simply referred to as PDP) emit blue, green and red visible light by irradiating the phosphor with vacuum ultraviolet rays generated by rare gas discharge to excite the phosphor. Then, an image is displayed by the combination. As the rare gas, a mixed gas of Xe (xenon) and Ne (neon) is generally used. In this mixed gas, Xe is a discharge gas and Ne is a buffer gas. The main vacuum ultraviolet rays generated by the discharge of Xe are the Xe resonance line having a wavelength of 147 nm and the Xe 2 molecular beam having a wavelength of 172 nm (some literatures are described as 173 nm). Usually, the Xe resonance line having a wavelength of 147 nm is used for light emission of the phosphor.

このようなPDPに用いられる青色発光用の蛍光体粒子としては、基本組成式がBaMgAl1017:Eu2+で表されるBAM:Eu2+青色発光蛍光体粒子や、基本組成式がMeMgSi26:Eu2+で表される、ディオプサイド結晶構造を有する青色発光蛍光体粒子(但し、Meは、Ca、Sr及びBaからなる群より選ばれる一種以上のアルカリ土類金属元素)が知られている。 As the phosphor particles for blue light emission used for such PDP, BAM: Eu 2+ blue light-emitting phosphor particles whose basic composition formula is represented by BaMgAl 10 O 17 : Eu 2+ , and the basic composition formula is MeMgSi Blue light-emitting phosphor particles having a diopside crystal structure represented by 2 O 6 : Eu 2+ (where Me is one or more alkaline earth metal elements selected from the group consisting of Ca, Sr and Ba) It has been known.

ディオプサイド結晶構造の青色発光蛍光体粒子は、BAM:Eu2+青色発光蛍光体粒子と比べて、結晶構造が安定で経時的な安定性が高いという利点がある。しかし、ディオプサイド結晶構造の青色発光蛍光体粒子は、BAM:Eu2+青色発光蛍光体粒子と比べて、発光輝度が低いという問題がある。 Compared with BAM: Eu 2+ blue light-emitting phosphor particles, the blue light-emitting phosphor particles having a diopside crystal structure have an advantage that the crystal structure is stable and the stability over time is high. However, the blue light-emitting phosphor particles having a diopside crystal structure have a problem that the emission luminance is lower than that of the BAM: Eu 2+ blue light-emitting phosphor particles.

特に最近では、PDPの発光効率を向上させることを目的として、希ガス中のXeガスの割合を多くする傾向にある。この希ガス中のXeガスの割合が多くなると、Xeの放電により発生する真空紫外線は、波長172nmの分子線の割合が多くなる。このため、波長172nmの真空紫外線での励起による発光輝度を向上させることが重要である。   In particular, recently, for the purpose of improving the luminous efficiency of PDP, the ratio of Xe gas in rare gas tends to be increased. As the ratio of Xe gas in the rare gas increases, the ratio of molecular beams having a wavelength of 172 nm increases in the vacuum ultraviolet rays generated by the discharge of Xe. For this reason, it is important to improve the light emission luminance by excitation with vacuum ultraviolet light having a wavelength of 172 nm.

波長172nmの真空紫外線での励起による発光輝度が向上したディオプサイド結晶構造の青色発光蛍光体粒子として、特許文献1には、カルシウム源粉末、ユウロピウム源粉末、マグネシウム源粉末及び珪素源粉末を、所定量のフッ素源と共に還元性雰囲気下にて加熱焼成して製造した、一般式がCaMgSi26:Eu2+で表される青色発光蛍光体粒子が開示されている。この特許文献1によれば、フッ素源の量を最適化することによって、波長172nmの真空紫外線での励起による発光輝度が10〜30%程度向上する。しかしながら、実施例に記載されている青色発光蛍光体粒子の発光輝度は、BAM:Eu2+青色発光蛍光体粒子の発光輝度100とした相対値で49〜55であり、従ってディオプサイド結晶構造を有する青色発光蛍光体粒子については、さらなる発光輝度の向上が望まれる。
特開2007−217510号公報
As a blue light-emitting phosphor particle having a diopside crystal structure in which emission luminance is improved by excitation with vacuum ultraviolet light having a wavelength of 172 nm, Patent Document 1 includes calcium source powder, europium source powder, magnesium source powder and silicon source powder. Blue-emitting phosphor particles having a general formula represented by CaMgSi 2 O 6 : Eu 2+ manufactured by heating and firing in a reducing atmosphere with a predetermined amount of fluorine source are disclosed. According to this patent document 1, by optimizing the amount of the fluorine source, the light emission luminance by excitation with vacuum ultraviolet light having a wavelength of 172 nm is improved by about 10 to 30%. However, the emission luminance of the blue light emitting phosphor particles described in the examples is 49 to 55 relative to the emission luminance 100 of BAM: Eu 2+ blue light emitting phosphor particles, and therefore the diopside crystal structure For the blue-emitting phosphor particles having the above, further improvement in emission luminance is desired.
JP 2007-217510 A

本発明の目的は、特にXe2分子線の励起による発光輝度が向上した基本組成式がMeMgSi26:Eu2+で表される、ディオプサイド結晶構造を有する青色発光蛍光体を提供することにある。 An object of the present invention is to provide a blue light-emitting phosphor having a diopside crystal structure, in which a basic composition formula in which emission luminance is improved particularly by excitation of Xe 2 molecular beam is represented by MeMgSi 2 O 6 : Eu 2+. There is.

本発明は、MeMgSi26:Eu2+で表される、ディオプサイド結晶構造を有する青色発光蛍光体粒子(但し、Meは、Caである)であって、厚さが2〜5nmの範囲にあるアモルファス二酸化珪素層で表面が被覆されていることを特徴とする青色発光蛍光体粒子、及びMeMgSi 2 6 :Eu 2+ で表される、ディオプサイド結晶構造を有する青色発光蛍光体粒子(但し、Meは、CaとSrの組み合わせである)であって、厚さが5〜8nmの範囲にあるアモルファス二酸化珪素層で表面が被覆されていることを特徴とする青色発光蛍光体粒子にある。 The present invention, M eMgSi 2 O 6: represented by Eu 2+, blue-emitting phosphor particles having a diopside crystalline structure (where, Me is a is Ca) a, thickness 2-5 Blue light-emitting phosphor particles whose surface is coated with an amorphous silicon dioxide layer in the range of nm , and blue light emission having a diopside crystal structure represented by MeMgSi 2 O 6 : Eu 2+ Fluorescent particles (where Me is a combination of Ca and Sr), the surface of which is coated with an amorphous silicon dioxide layer having a thickness in the range of 5 to 8 nm. Body particles .

本発明の青色発光蛍光体粒子は、Xe2分子線に相当する波長172nmの真空紫外線の励起による輝度が、従来のディオプサイド結晶構造を有する青色発光蛍光体と比較して、高い値を示す。従って、本発明の青色発光蛍光体粒子は、希ガス中のXeガスの割合が多いPDP用の青色発光蛍光体として有利に使用することができる。 The blue light-emitting phosphor particles of the present invention show a higher luminance than that of a conventional blue light-emitting phosphor having a diopside crystal structure when excited by vacuum ultraviolet light having a wavelength of 172 nm corresponding to the Xe 2 molecular beam. . Therefore, the blue light-emitting phosphor particles of the present invention can be advantageously used as a blue light-emitting phosphor for PDP having a large proportion of Xe gas in a rare gas.

本発明の青色発光蛍光体粒子は、基本組成式がMeMgSi26:Eu2+で表される、ディオプサイド(CaMgSi26)結晶構造を有する青色発光蛍光体粒子からなる。Meは、Ca単体、またはCaとSrの組み合わせであることが好ましい。CaとSrの組み合わせの場合、CaとSrとの比率は、原子比で9:1〜1:9の範囲にあることが好ましい。 The blue light-emitting phosphor particles of the present invention are blue light-emitting phosphor particles having a diopside (CaMgSi 2 O 6 ) crystal structure whose basic composition formula is represented by MeMgSi 2 O 6 : Eu 2+ . M e is preferably a combination of Ca alone or Ca and Sr,. In the case of a combination of Ca and Sr, the ratio of Ca and Sr is preferably in the range of 9: 1 to 1: 9 in atomic ratio.

本発明の青色発光蛍光体粒子は、その表面がアモルファス二酸化珪素層で被覆されている点に特徴がある。アモルファス二酸化珪素層がアモルファスであること及びその厚みは、透過型電子顕微鏡を用いて二酸化珪素層の断面の構造を観察することによって確認することができる。 Blue-emitting phosphor particles of the present invention is characterized in that is coated on its surface there Amorphous silicon dioxide layer. Whether the amorphous silicon dioxide layer is amorphous and its thickness can be confirmed by observing the cross-sectional structure of the silicon dioxide layer using a transmission electron microscope.

本発明の青色発光蛍光体粒子を構成するMe、Mg、Si及びEuの各原子の比率は、ディオプサイド結晶構造を形成する比率である限り特に制限はない。通常、Me、Mg、Si及びEuの各原子の比率は、Mgを1として、Meが0.8〜1.2の範囲、Siが1.8〜2.4の範囲、Euが0.005〜0.1の範囲にあり、Eu/(Me+Eu)は、0.004〜0.11の範囲にある。   The ratio of each atom of Me, Mg, Si, and Eu constituting the blue-emitting phosphor particle of the present invention is not particularly limited as long as it is a ratio that forms a diopside crystal structure. Usually, the ratio of each atom of Me, Mg, Si and Eu is such that Mg is 1, Me is in the range of 0.8 to 1.2, Si is in the range of 1.8 to 2.4, and Eu is 0.005. In the range of ~ 0.1, Eu / (Me + Eu) is in the range of 0.004 to 0.11.

ディオプサイド結晶構造を有する青色発光蛍光体粒子は、Me源粉末、Mg源粉末、Si源粉末及びEu源粉末を、ディオプサイド結晶構造を有する青色発光蛍光体粒子を生成する割合にて混合して、得られた粉末混合物を還元性雰囲気下にて、焼成することによって製造することができる。   Blue light-emitting phosphor particles having a diopside crystal structure are prepared by mixing Me source powder, Mg source powder, Si source powder, and Eu source powder at a ratio to generate blue light-emitting phosphor particles having a diopside crystal structure. And it can manufacture by baking the obtained powder mixture in reducing atmosphere.

Me源粉末、Mg源粉末、Si源粉末及びEu源粉末の各原料粉末は、酸化物、もしくは炭酸塩、硝酸塩、水酸化物、フッ化物及び塩化物などの加熱より酸化物を生成する化合物であることが好ましい。Me源粉末、Mg源粉末、Si源粉末又はEu源粉末の一部もしくは全部に、融剤(フラックス)として作用するフッ化物もしくは塩化物を用いることが好ましい。   Each raw material powder of Me source powder, Mg source powder, Si source powder and Eu source powder is an oxide or a compound that generates an oxide by heating such as carbonate, nitrate, hydroxide, fluoride and chloride. Preferably there is. It is preferable to use a fluoride or chloride acting as a flux (flux) for a part or all of the Me source powder, Mg source powder, Si source powder or Eu source powder.

粉末混合物は、還元性雰囲気下での焼成の前に、大気雰囲気下にて、600〜900℃の温度で仮焼してもよい。   The powder mixture may be calcined at a temperature of 600 to 900 ° C. in an air atmosphere before firing in a reducing atmosphere.

粉末混合物を還元性雰囲気下にて焼成する際の温度は、1000〜1500℃の範囲にあることが好ましい。粉末混合物の焼成を行なう際の還元性雰囲気は、水素ガスを1〜10体積%の範囲にて含むアルゴンガスあるいは窒素ガス雰囲気であることが好ましい。焼成時間は、一般に1〜100時間の範囲である。   The temperature at which the powder mixture is fired in a reducing atmosphere is preferably in the range of 1000 to 1500 ° C. The reducing atmosphere when firing the powder mixture is preferably an argon gas or nitrogen gas atmosphere containing hydrogen gas in a range of 1 to 10% by volume. The firing time is generally in the range of 1 to 100 hours.

上記のようにして得られる青色発光蛍光体粒子の発光輝度を向上させるために、青色発光蛍光体粒子を大気雰囲気中にて再焼成するアニール処理や、酸水溶液に接触させる酸処理を行なってもよい。   In order to improve the emission luminance of the blue light-emitting phosphor particles obtained as described above, annealing treatment for refiring the blue light-emitting phosphor particles in the air atmosphere or acid treatment for contacting with an acid aqueous solution may be performed. Good.

アニール処理の処理温度は、300〜1500℃の範囲、好ましくは400〜1000℃の範囲、より好ましくは550〜1000℃の範囲である。処理時間は、一般に10分〜10時間の範囲である。   The treatment temperature of the annealing treatment is in the range of 300 to 1500 ° C, preferably in the range of 400 to 1000 ° C, more preferably in the range of 550 to 1000 ° C. The treatment time is generally in the range of 10 minutes to 10 hours.

酸処理に用いる酸溶液の例としては塩酸水溶液、硝酸水溶液及び硫酸水溶液が挙げられる。特に塩酸水溶液が好ましい。酸溶液の濃度は0.05〜10モル/Lの範囲にあることが好ましい。処理時間は、一般に10分〜10時間の範囲である。   Examples of the acid solution used for the acid treatment include a hydrochloric acid aqueous solution, a nitric acid aqueous solution, and a sulfuric acid aqueous solution. A hydrochloric acid aqueous solution is particularly preferable. The concentration of the acid solution is preferably in the range of 0.05 to 10 mol / L. The treatment time is generally in the range of 10 minutes to 10 hours.

青色発光蛍光体粒子の表面をアモルファス二酸化珪素層で被覆する方法としては、アルコール溶媒中にて、蛍光体粒子、加水分解性珪素化合物及び水を混合して、加水分解性珪素化合物を加水分解縮合させ、生成した珪素含有化合物を蛍光体粒子の表面に付着させることによって珪素含有化合物層付き蛍光体粒子を得て、次いで該珪素含有化合物層付き蛍光体粒子を焼成する方法が挙げられる。   As a method of coating the surface of the blue light emitting phosphor particles with an amorphous silicon dioxide layer, the phosphor particles, the hydrolyzable silicon compound and water are mixed in an alcohol solvent to hydrolyze and condense the hydrolyzable silicon compound. There is a method in which phosphor particles with a silicon-containing compound layer are obtained by attaching the produced silicon-containing compound to the surface of the phosphor particles, and then firing the phosphor particles with a silicon-containing compound layer.

アルコール溶媒の例としては、メタノール、エタノールなどの炭素原子数1〜6の低級アルコールを挙げることができる。   Examples of alcohol solvents include lower alcohols having 1 to 6 carbon atoms such as methanol and ethanol.

加水分解性珪素化合物の例としては、一般式SiR1 a2 4-aで表される化合物を挙げることができる。この一般式において、R1は有機官能基、R2は加水分解性官能基、aは、0〜2の整数を表す。 Examples of the hydrolyzable silicon compound include compounds represented by the general formula SiR 1 a R 2 4-a . In this general formula, R 1 represents an organic functional group, R 2 represents a hydrolyzable functional group, and a represents an integer of 0 to 2.

有機官能基R1の例としては、アルキル基(例、メチル基、エチル基)及びアルケニル基(例、ビニル基、アリル基)などの炭化水素基が挙げられる。炭化水素基は、炭素原子数が6以下であることが好ましい。加水分解性官能基R2は、加水分解反応によりシラノール基を生成する官能基であり、その例としては、アルコシキ基(例、メトキシ基、エトキシ基)及びハロゲン元素(例、塩素、臭素)を挙げることができる。
加水分解性珪素化合物は、反応速度の観点から、テトラメチルオルソシリケート及びテトラエチルオルソシリケート(TEOS)又は四塩化珪素であることが好ましい。
Examples of the organic functional group R 1 include hydrocarbon groups such as alkyl groups (eg, methyl group, ethyl group) and alkenyl groups (eg, vinyl group, allyl group). The hydrocarbon group preferably has 6 or less carbon atoms. The hydrolyzable functional group R 2 is a functional group that generates a silanol group by hydrolysis reaction. Examples thereof include an alkoxy group (eg, methoxy group, ethoxy group) and a halogen element (eg, chlorine, bromine). Can be mentioned.
The hydrolyzable silicon compound is preferably tetramethyl orthosilicate and tetraethyl orthosilicate (TEOS) or silicon tetrachloride from the viewpoint of reaction rate.

加水分解性珪素化合物の加水分解縮合は、必要に応じてアルカリ触媒の存在下にて行なう。アルカリ触媒の例としては、アンモニア、及び水酸化ナトリウムや水酸化カリウムなどのアルカリ金属の水酸化物を挙げることができる。   Hydrolytic condensation of the hydrolyzable silicon compound is performed in the presence of an alkali catalyst as necessary. Examples of the alkali catalyst include ammonia and hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide.

珪素含有化合物層付き蛍光体粒子の焼成温度は、一般に750℃以下、好ましくは350〜700℃の範囲である。焼成時間は、一般に10分〜10時間の範囲である。   The firing temperature of the phosphor particles with a silicon-containing compound layer is generally 750 ° C. or lower, preferably 350 to 700 ° C. The firing time is generally in the range of 10 minutes to 10 hours.

[比較例1]
Ca:Mg:Si:Euのモル比が、0.975:1:2.000:0.025となるように炭酸カルシウム粉末(純度:99.99質量%、平均粒子径:3.87μm)15.01g、塩基性炭酸マグネシウム粉末(純度:99.99質量%、平均粒子径:11.08μm)15.58g、二酸化珪素粉末(純度:99.9質量%、平均粒子径:3.87μm)20.00g、酸化ユウロピウム(純度:99.9質量%、平均粒子径:2.71μm)0.733g、塩化カルシウム粉末(純度:99.9質量%)3.675gをそれぞれ秤量した。なお、各原料粉末の平均粒子径はいずれもレーザ回折散乱法により測定した値である。秤量した各原料粉末を、純水750mLと共にボールミルに投入して、24時間湿式混合した後、乾燥して、粉末混合物を得た。
[Comparative Example 1]
Calcium carbonate powder (purity: 99.99 mass%, average particle size: 3.87 μm) so that the molar ratio of Ca: Mg: Si: Eu is 0.975: 1: 2.000: 0.025 15 0.01 g, basic magnesium carbonate powder (purity: 99.99% by mass, average particle size: 11.08 μm) 15.58 g, silicon dioxide powder (purity: 99.9% by mass, average particle size: 3.87 μm) 20 0.000 g, europium oxide (purity: 99.9% by mass, average particle size: 2.71 μm) 0.733 g, and calcium chloride powder (purity: 99.9% by mass) 3.675 g were weighed. The average particle diameter of each raw material powder is a value measured by a laser diffraction scattering method. Each raw material powder weighed was put into a ball mill together with 750 mL of pure water, wet-mixed for 24 hours, and then dried to obtain a powder mixture.

得られた粉末混合物を、アルミナ坩堝に入れて、大気雰囲気中にて、850℃の温度で3時間焼成し、次いで室温まで放冷した後、2体積%水素−98体積%アルゴンの混合ガス雰囲気中にて、1050℃の温度で3時間焼成して、粉末焼成物を得た。   The obtained powder mixture was put in an alumina crucible, calcined at 850 ° C. for 3 hours in an air atmosphere, and then allowed to cool to room temperature, and then mixed gas atmosphere of 2 volume% hydrogen-98 volume% argon. Inside, it baked at the temperature of 1050 degreeC for 3 hours, and the powder baked material was obtained.

得られた粉末焼成物を、濃度0.1モル/Lの塩酸水溶液に30分間接触させた後、水で洗浄し、乾燥した後、アルミナ坩堝に入れて、大気雰囲気中にて600℃の温度で1時間アニールした。   The obtained powder fired product was brought into contact with a 0.1 mol / L hydrochloric acid aqueous solution for 30 minutes, washed with water, dried, then placed in an alumina crucible and a temperature of 600 ° C. in an air atmosphere. For 1 hour.

アニール後の粉末焼成物のX線回折パターンを測定した結果、粉末焼成物はディオプサイド結晶構造を有することが確認された。また、粉末焼成物に波長172nmの真空紫外線を照射した結果、青色の発光が確認された。これらの結果から、粉末焼成物はディオプサイド結晶構造を有する青色発光蛍光体粒子であることが確認された。青色発光蛍光体粒子の平均粒子径は2.8μmであった。   As a result of measuring the X-ray diffraction pattern of the fired powder after annealing, it was confirmed that the fired powder had a diopside crystal structure. Moreover, as a result of irradiating the powder fired product with vacuum ultraviolet rays having a wavelength of 172 nm, blue light emission was confirmed. From these results, it was confirmed that the fired powder was blue-emitting phosphor particles having a diopside crystal structure. The average particle diameter of the blue light emitting phosphor particles was 2.8 μm.

[実施例1]
上記比較例1にて製造したディオプサイド結晶構造を有する青色発光蛍光体粒子2.5gと、エタノール50mLとを、100mLビーカーに投入し、青色発光蛍光体粒子をエタノール中に分散させた。分散液を撹拌しながら、該分散液にテトラエチルオルソシリケート(純度:99.999質量%)5mL(青色発光蛍光体粒子に対する二酸化珪素換算量として50質量%)を添加した。次いで、分散液に濃度2.8質量%のアンモニア水2mLを10分かけて滴下し、さらに、1時間撹拌を続けた。撹拌終了後、分散液を遠心分離して、青色発光蛍光体粒子を回収した。回収した青色発光蛍光体粒子を、真空乾燥した後、アルミナ坩堝に入れて、大気雰囲気中にて、400℃の温度で1時間焼成した。焼成後の青色発光蛍光体粒子の表面を透過型電子顕微鏡(日本電子(株)製、JEM−2010F型)を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ9nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Example 1]
2.5 g of blue light emitting phosphor particles having a diopside crystal structure produced in Comparative Example 1 above and 50 mL of ethanol were put into a 100 mL beaker, and the blue light emitting phosphor particles were dispersed in ethanol. While stirring the dispersion, 5 mL of tetraethyl orthosilicate (purity: 99.999% by mass) (50% by mass in terms of silicon dioxide with respect to the blue light emitting phosphor particles) was added to the dispersion. Next, 2 mL of aqueous ammonia having a concentration of 2.8% by mass was added dropwise to the dispersion over 10 minutes, and stirring was further continued for 1 hour. After the stirring was completed, the dispersion was centrifuged to collect blue light emitting phosphor particles. The collected blue light-emitting phosphor particles were vacuum-dried, placed in an alumina crucible, and fired at 400 ° C. for 1 hour in an air atmosphere. As a result of observing the surface of the blue light-emitting phosphor particles after firing with a transmission electron microscope (JEM-2010F type, manufactured by JEOL Ltd.), the surface of the blue light-emitting phosphor particles has a uniform thickness of 9 nm. It was confirmed that an amorphous silicon dioxide layer was formed.

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光スペクトルを励起波長172nmとして分光蛍光光度計により測定し、その発光スペクトルの最大ピーク値を発光輝度として計測した。この発光輝度を、同じ条件で測定した比較例1の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表1に示す。   The emission spectrum of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured with a spectrofluorometer at an excitation wavelength of 172 nm, and the maximum peak value of the emission spectrum was measured as the emission luminance. This emission luminance is shown in Table 1 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 1 measured under the same conditions as 100.

[実施例2]
青色発光蛍光体粒子2.5gに対して、テトラエチルオルソシリケートの添加量を3mL(青色発光蛍光体粒子に対する二酸化珪素換算量として30質量%)とした以外は、実施例1と同様にして、青色発光蛍光体粒子の表面にアモルファス二酸化珪素層を形成した。青色発光蛍光体粒子の表面を実施例1と同様に透過型電子顕微鏡を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ5nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Example 2]
In the same manner as in Example 1, except that the amount of tetraethyl orthosilicate added was 3 mL (30% by mass as the amount of silicon dioxide converted to the blue light-emitting phosphor particles) with respect to 2.5 g of the blue light-emitting phosphor particles. An amorphous silicon dioxide layer was formed on the surface of the luminescent phosphor particles. As a result of observing the surface of the blue light emitting phosphor particles using a transmission electron microscope in the same manner as in Example 1, a uniform amorphous silicon dioxide layer having a thickness of 5 nm is formed on the surface of the blue light emitting phosphor particles. Was confirmed.

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例1の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表1に示す。   The emission luminance of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured in the same manner as in Example 1. This emission luminance is shown in Table 1 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 1 as 100.

[実施例3]
青色発光蛍光体粒子2.5gに対して、テトラエチルオルソシリケートの添加量を2mL(青色発光蛍光体粒子に対する二酸化珪素換算量として20質量%)とした以外は、実施例1と同様にして、青色発光蛍光体粒子の表面にアモルファス二酸化珪素層を形成した。青色発光蛍光体粒子の表面を実施例1と同様に透過型電子顕微鏡を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ3nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Example 3]
In the same manner as in Example 1, except that the amount of tetraethyl orthosilicate added was 2 mL (20% by mass as the amount of silicon dioxide converted to the blue light-emitting phosphor particles) with respect to 2.5 g of the blue light-emitting phosphor particles. An amorphous silicon dioxide layer was formed on the surface of the luminescent phosphor particles. As a result of observing the surface of the blue light-emitting phosphor particles using a transmission electron microscope in the same manner as in Example 1, a uniform amorphous silicon dioxide layer having a thickness of 3 nm is formed on the surface of the blue light-emitting phosphor particles. Was confirmed.

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例1の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表1に示す。   The emission luminance of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured in the same manner as in Example 1. This emission luminance is shown in Table 1 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 1 as 100.

[実施例4]
青色発光蛍光体粒子2.5gに対して、テトラエチルオルソシリケートの添加量を1mL(青色発光蛍光体粒子に対する二酸化珪素換算量として10質量%)とした以外は、実施例1と同様にして、青色発光蛍光体粒子の表面にアモルファス二酸化珪素層を形成した。青色発光蛍光体粒子の表面を実施例1と同様に透過型電子顕微鏡を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ2nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Example 4]
In the same manner as in Example 1, except that the amount of tetraethyl orthosilicate added was 1 mL (10% by mass as silicon dioxide equivalent to the blue light-emitting phosphor particles) with respect to 2.5 g of the blue light-emitting phosphor particles. An amorphous silicon dioxide layer was formed on the surface of the luminescent phosphor particles. As a result of observing the surface of the blue light emitting phosphor particles using a transmission electron microscope in the same manner as in Example 1, a uniform amorphous silicon dioxide layer having a thickness of 2 nm is formed on the surface of the blue light emitting phosphor particles. Was confirmed.

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例1の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表1に示す。   The emission luminance of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured in the same manner as in Example 1. This emission luminance is shown in Table 1 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 1 as 100.

[比較例2]
青色発光蛍光体粒子2.5gに対して、テトラエチルオルソシリケートの添加量を0.5mL(青色発光蛍光体粒子に対する二酸化珪素換算量として5質量%)とした以外は、実施例1と同様にして、青色発光蛍光体粒子の表面にアモルファス二酸化珪素層を形成した。得られた青色発光蛍光体粒子の表面を実施例1と同様に透過型電子顕微鏡を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ1nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Comparative Example 2]
The same procedure as in Example 1 was conducted except that the amount of tetraethyl orthosilicate added was 0.5 mL (5% by mass as the amount of silicon dioxide converted to the blue light-emitting phosphor particles) with respect to 2.5 g of the blue light-emitting phosphor particles. An amorphous silicon dioxide layer was formed on the surface of the blue light emitting phosphor particles. As a result of observing the surface of the obtained blue light-emitting phosphor particles using a transmission electron microscope in the same manner as in Example 1, a uniform amorphous silicon dioxide layer having a thickness of 1 nm was formed on the surface of the blue light-emitting phosphor particles. It was confirmed that

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例1の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表1に示す。   The emission luminance of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured in the same manner as in Example 1. This emission luminance is shown in Table 1 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 1 as 100.

[比較例3]
市販のBAM:Eu2+青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例1の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表1に示す。
[Comparative Example 3]
The emission luminance of commercially available BAM: Eu 2+ blue-emitting phosphor particles was measured in the same manner as in Example 1. This emission luminance is shown in Table 1 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 1 as 100.

表1
────────────────────────────────────────
アモルファス二酸化素層 相対発光輝度*
の厚み(nm) (対BAM:Eu2+青色発光蛍光体粒子)
────────────────────────────────────────
実施例1** 9 103(56.6)
実施例2 5 104(57.1)
実施例3 3 107(58.8)
実施例4 2 107(58.8)
────────────────────────────────────────
比較例1 0 100(54.9)
比較例2 1 101(55.5)
比較例3 0 182(100)
────────────────────────────────────────
*)相対発光輝度は、比較例1の青色発光蛍光体粒子の発光輝度を100とした相対値。括弧内は、比較例3(市販のBAM:Eu2+青色発光蛍光体粒子)の発光輝度を100とした相対値。
**)実施例1は、本発明の実施例ではない。
Table 1
────────────────────────────────────────
Amorphous dioxide layer Relative luminance *
Thickness (nm) (vs BAM: Eu 2+ blue-emitting phosphor particles)
────────────────────────────────────────
Example 1 ** 9 103 (56.6)
Example 2 5 104 (57.1)
Example 3 3 107 (58.8)
Example 4 2 107 (58.8)
────────────────────────────────────────
Comparative Example 1 0 100 (54.9)
Comparative Example 2 1 101 (55.5)
Comparative Example 3 0 182 (100)
────────────────────────────────────────
*) The relative light emission luminance is a relative value with the light emission luminance of the blue light emitting phosphor particles of Comparative Example 1 as 100. The values in parentheses are relative values with the emission luminance of Comparative Example 3 (commercially available BAM: Eu 2+ blue-emitting phosphor particles) as 100.
**) Example 1 is not an example of the present invention.

表1の結果から明らかなように、ディオプサイド結晶構造を有する青色発光蛍光体粒子(CaMgSi26:Eu2+)の表面にアモルファス二酸化珪素層を2nm以上の厚さとなるように形成することにより、Xe2分子線に相当する波長172nmの真空紫外線の励起による発光輝度が向上する。 As is apparent from the results in Table 1, an amorphous silicon dioxide layer is formed to a thickness of 2 nm or more on the surface of blue light emitting phosphor particles (CaMgSi 2 O 6 : Eu 2+ ) having a diopside crystal structure. As a result, the luminance of light emitted by excitation of vacuum ultraviolet rays having a wavelength of 172 nm corresponding to the Xe 2 molecular beam is improved.

[比較例4]
Ca:Sr:Mg:Si:Euのモル比が、0.475:0.500:1:2.000:0.025となるように、炭酸カルシウム粉末(純度:99.99質量%、平均粒子径:3.87μm)5.417g、炭酸ストロンチウム粉末(純度:99.99質量%、平均粒子径:9.08μm)12.30g、塩基性炭酸マグネシウム粉末(純度:99.99質量%、平均粒子径:11.08μm)15.58g、二酸化珪素粉末(純度:99.9質量%、平均粒子径:3.87μm)20.00g、酸化ユウロピウム(純度:99.9質量%、平均粒子径:2.71μm)0.733g、塩化カルシウム粉末(純度:99.9質量%)3.675gをそれぞれ秤量した。なお、各原料粉末の平均粒子径はいずれもレーザ回折散乱法により測定した値である。秤量した各原料粉末を、純水750mLと共にボールミルに投入して、24時間湿式混合した後、乾燥して、粉末混合物を得た。
[Comparative Example 4]
Calcium carbonate powder (purity: 99.99% by mass, average particle size) so that the molar ratio of Ca: Sr: Mg: Si: Eu is 0.475: 0.500: 1: 2.000: 0.025 Diameter: 3.87 μm) 5.417 g, strontium carbonate powder (purity: 99.99% by mass, average particle size: 9.08 μm) 12.30 g, basic magnesium carbonate powder (purity: 99.99% by mass, average particle) Diameter: 11.08 μm) 15.58 g, silicon dioxide powder (purity: 99.9% by mass, average particle size: 3.87 μm) 20.00 g, europium oxide (purity: 99.9% by mass, average particle size: 2) 0.771 g) and calcium chloride powder (purity: 99.9% by mass) 3.675 g were weighed. The average particle diameter of each raw material powder is a value measured by a laser diffraction scattering method. Each raw material powder weighed was put into a ball mill together with 750 mL of pure water, wet-mixed for 24 hours, and then dried to obtain a powder mixture.

得られた粉末混合物を、アルミナ坩堝に入れて、大気雰囲気中にて、850℃の温度で3時間焼成し、次いで室温まで放冷した後、2体積%水素−98体積%アルゴンの混合ガス雰囲気中にて、1050℃の温度で3時間焼成して、粉末焼成物を得た。   The obtained powder mixture was put in an alumina crucible, calcined at 850 ° C. for 3 hours in an air atmosphere, and then allowed to cool to room temperature, and then mixed gas atmosphere of 2 volume% hydrogen-98 volume% argon. Inside, it baked at the temperature of 1050 degreeC for 3 hours, and the powder baked material was obtained.

得られた粉末焼成物を、濃度0.1モル/Lの塩酸水溶液に30分間接触させた後、水で洗浄し、乾燥した後、アルミナ坩堝に入れて、大気雰囲気中にて600℃の温度で1時間アニールした。   The obtained powder fired product was brought into contact with a 0.1 mol / L hydrochloric acid aqueous solution for 30 minutes, washed with water, dried, then placed in an alumina crucible and a temperature of 600 ° C. in an air atmosphere. For 1 hour.

アニール後の粉末焼成物のX線回折パターンを測定した結果、粉末焼成物はディオプサイド結晶構造を有することが確認された。また、粉末焼成物に波長172nmの真空紫外線を照射した結果、青色の発光が確認された。これらの結果から、粉末焼成物はディオプサイド結晶構造を有する青色発光蛍光体粒子であることが確認された。青色発光蛍光体粒子の平均粒子径は5.0μmであった。   As a result of measuring the X-ray diffraction pattern of the fired powder after annealing, it was confirmed that the fired powder had a diopside crystal structure. Moreover, as a result of irradiating the powder fired product with vacuum ultraviolet rays having a wavelength of 172 nm, blue light emission was confirmed. From these results, it was confirmed that the fired powder was blue-emitting phosphor particles having a diopside crystal structure. The average particle diameter of the blue light emitting phosphor particles was 5.0 μm.

[実施例5]
上記比較例4にて製造したディオプサイド結晶構造を有する青色発光蛍光体粒子2.5gと、エタノール50mLとを、100mLビーカーに投入し、青色発光蛍光体粒子をエタノール中に分散させた。分散液を撹拌しながら、該分散液にテトラエチルオルソシリケート(純度:99.999質量%)5mL(青色発光蛍光体粒子に対する二酸化珪素換算量として50質量%)を添加した。次いで、分散液に濃度2.8質量%のアンモニア水2mLを10分かけて滴下し、さらに、1時間撹拌を続けた。撹拌終了後、分散液を遠心分離して、青色発光蛍光体粒子を回収した。回収した青色発光蛍光体粒子を、真空乾燥した後、アルミナ坩堝に入れて、大気雰囲気中にて、400℃の温度で1時間焼成した。焼成後の青色発光蛍光体粒子の表面を実施例1と同様に透過型電子顕微鏡を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ13nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Example 5]
The blue light emitting phosphor particles having a diopside crystal structure produced in Comparative Example 4 and 2.5 g of ethanol and 50 mL of ethanol were put into a 100 mL beaker, and the blue light emitting phosphor particles were dispersed in ethanol. While stirring the dispersion, 5 mL of tetraethyl orthosilicate (purity: 99.999% by mass) (50% by mass in terms of silicon dioxide with respect to the blue light emitting phosphor particles) was added to the dispersion. Next, 2 mL of aqueous ammonia having a concentration of 2.8% by mass was added dropwise to the dispersion over 10 minutes, and stirring was further continued for 1 hour. After the stirring was completed, the dispersion was centrifuged to collect blue light emitting phosphor particles. The collected blue light-emitting phosphor particles were vacuum-dried, placed in an alumina crucible, and fired at 400 ° C. for 1 hour in an air atmosphere. As a result of observing the surface of the blue light-emitting phosphor particles after firing using a transmission electron microscope in the same manner as in Example 1, a uniform amorphous silicon dioxide layer having a thickness of 13 nm was formed on the surface of the blue light-emitting phosphor particles. It was confirmed that

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例4の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表2に示す。   The emission luminance of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured in the same manner as in Example 1. This emission luminance is shown in Table 2 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 4 as 100.

[実施例6]
青色発光蛍光体粒子2.5gに対して、テトラエチルオルソシリケートの添加量を3mL(青色発光蛍光体粒子に対する二酸化珪素換算量として30質量%)とした以外は、実施例5と同様にして、青色発光蛍光体粒子の表面にアモルファス二酸化珪素層を形成した。青色発光蛍光体粒子の表面を実施例1と同様に透過型電子顕微鏡を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ8nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Example 6]
In the same manner as in Example 5, except that the amount of tetraethyl orthosilicate added was 3 mL (30% by mass as the amount of silicon dioxide converted to the blue light-emitting phosphor particles) with respect to 2.5 g of the blue light-emitting phosphor particles. An amorphous silicon dioxide layer was formed on the surface of the luminescent phosphor particles. As a result of observing the surface of the blue light-emitting phosphor particles using a transmission electron microscope in the same manner as in Example 1, a uniform amorphous silicon dioxide layer having a thickness of 8 nm is formed on the surface of the blue light-emitting phosphor particles. Was confirmed.

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例4の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表2に示す。   The emission luminance of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured in the same manner as in Example 1. This emission luminance is shown in Table 2 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 4 as 100.

[実施例7]
青色発光蛍光体粒子2.5gに対して、テトラエチルオルソシリケートの添加量を2mL(青色発光蛍光体粒子に対する二酸化珪素換算量として20質量%)とした以外は、実施例5と同様にして、青色発光蛍光体粒子の表面にアモルファス二酸化珪素層を形成した。青色発光蛍光体粒子の表面を実施例1と同様に透過型電子顕微鏡を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ5nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Example 7]
In the same manner as in Example 5, except that the amount of tetraethyl orthosilicate added was 2 mL (20% by mass as the amount of silicon dioxide converted to the blue light-emitting phosphor particles) with respect to 2.5 g of the blue light-emitting phosphor particles. An amorphous silicon dioxide layer was formed on the surface of the luminescent phosphor particles. As a result of observing the surface of the blue light emitting phosphor particles using a transmission electron microscope in the same manner as in Example 1, a uniform amorphous silicon dioxide layer having a thickness of 5 nm is formed on the surface of the blue light emitting phosphor particles. Was confirmed.

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例4の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表2に示す。   The emission luminance of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured in the same manner as in Example 1. This emission luminance is shown in Table 2 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 4 as 100.

[実施例8]
青色発光蛍光体粒子2.5gに対して、テトラエチルオルソシリケートの添加量を1mL(青色発光蛍光体粒子に対する二酸化珪素換算量として10質量%)とした以外は、実施例5と同様にして、青色発光蛍光体粒子の表面にアモルファス二酸化珪素層を形成した。青色発光蛍光体粒子の表面を実施例1と同様に透過型電子顕微鏡を用いて観察した結果、青色発光蛍光体粒子の表面には厚さ3nmの均一なアモルファス二酸化珪素層が形成されていることが確認された。
[Example 8]
In the same manner as in Example 5, except that the amount of tetraethyl orthosilicate added was 1 mL (10% by mass as silicon dioxide equivalent to the blue light-emitting phosphor particles) with respect to 2.5 g of the blue light-emitting phosphor particles. An amorphous silicon dioxide layer was formed on the surface of the luminescent phosphor particles. As a result of observing the surface of the blue light-emitting phosphor particles using a transmission electron microscope in the same manner as in Example 1, a uniform amorphous silicon dioxide layer having a thickness of 3 nm is formed on the surface of the blue light-emitting phosphor particles. Was confirmed.

得られたアモルファス二酸化珪素層付き青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例4の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表2に示す。   The emission luminance of the resulting blue light-emitting phosphor particles with an amorphous silicon dioxide layer was measured in the same manner as in Example 1. This emission luminance is shown in Table 2 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 4 as 100.

[比較例5]
市販のBAM:Eu2+青色発光蛍光体粒子の発光輝度を実施例1と同様に測定した。この発光輝度を、比較例4の青色発光蛍光体粒子の発光輝度を100とした相対値として下記の表2に示す。
[Comparative Example 5]
The emission luminance of commercially available BAM: Eu 2+ blue-emitting phosphor particles was measured in the same manner as in Example 1. This emission luminance is shown in Table 2 below as a relative value with the emission luminance of the blue-emitting phosphor particles of Comparative Example 4 as 100.

表2
────────────────────────────────────────
アモルファス二酸化素層 相対発光輝度*
の厚み(nm) (対BAM:Eu2+青色発光蛍光体粒子)
────────────────────────────────────────
実施例5** 13 103(60.6)
実施例6 8 108(63.5)
実施例7 5 105(61.8)
実施例8** 3 103(60.6)
────────────────────────────────────────
比較例4 0 100(58.8)
比較例5 0 170(100)
────────────────────────────────────────
*)相対発光輝度は、比較例4の青色発光蛍光体粒子の発光輝度を100とした相対値。括弧内は、比較例5(市販のBAM:Eu2+青色発光蛍光体粒子)の発光輝度を100とした相対値。
**)実施例5及び実施例8は、本発明の実施例ではない。
Table 2
────────────────────────────────────────
Amorphous dioxide layer Relative luminance *
Thickness (nm) (vs BAM: Eu 2+ blue-emitting phosphor particles)
────────────────────────────────────────
Example 5 ** 13 103 (60.6)
Example 6 8 108 (63.5)
Example 7 5 105 (61.8)
Example 8 ** 3 103 (60.6)
────────────────────────────────────────
Comparative Example 4 0 100 (58.8)
Comparative Example 5 0 170 (100)
────────────────────────────────────────
*) The relative light emission luminance is a relative value with the light emission luminance of the blue light-emitting phosphor particles of Comparative Example 4 as 100. The values in parentheses are relative values with the light emission luminance of Comparative Example 5 (commercially available BAM: Eu 2+ blue light emitting phosphor particles) as 100.
**) Examples 5 and 8 are not examples of the present invention.

表2の結果から明らかなように、カルシウムの一部をストロンチウムに置換したディオプサイド結晶構造を有する青色発光蛍光体粒子[(Ca,Sr)MgSi26:Eu2+]についても、表面に2nm以上の厚さのアモルファス二酸化珪素層を形成することにより、Xe2分子線に相当する波長172nmの真空紫外線の励起による発光輝度が向上する。 As is apparent from the results in Table 2, the surface of blue-emitting phosphor particles [(Ca, Sr) MgSi 2 O 6 : Eu 2+ ] having a diopside crystal structure in which a part of calcium is substituted with strontium In addition, by forming an amorphous silicon dioxide layer having a thickness of 2 nm or more, emission luminance is improved by excitation of vacuum ultraviolet rays having a wavelength of 172 nm corresponding to the Xe 2 molecular beam.

Claims (2)

MeMgSi26:Eu2+で表される、ディオプサイド結晶構造を有する青色発光蛍光体粒子(但し、Meは、Caである)であって、厚さが2〜5nmの範囲にあるアモルファス二酸化珪素層で表面が被覆されていることを特徴とする青色発光蛍光体粒子。 MeMgSi 2 O 6 : Blue luminescent phosphor particles having a diopside crystal structure represented by Eu 2+ (where Me is Ca ) and having a thickness in the range of 2 to 5 nm A blue light-emitting phosphor particle, the surface of which is coated with an amorphous silicon dioxide layer. MeMgSiMeMgSi 22 O 66 :Eu: Eu 2+2+ で表される、ディオプサイド結晶構造を有する青色発光蛍光体粒子(但し、Meは、CaとSrの組み合わせである)であって、厚さが5〜8nmの範囲にあるアモルファス二酸化珪素層で表面が被覆されていることを特徴とする青色発光蛍光体粒子。A blue-emitting phosphor particle having a diopside crystal structure (where Me is a combination of Ca and Sr), and an amorphous silicon dioxide layer having a thickness in the range of 5 to 8 nm. A blue light-emitting phosphor particle having a surface coated.
JP2007337403A 2007-12-27 2007-12-27 Blue-emitting phosphor particles Expired - Fee Related JP5330684B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007337403A JP5330684B2 (en) 2007-12-27 2007-12-27 Blue-emitting phosphor particles
TW097150253A TW200940685A (en) 2007-12-27 2008-12-23 Blue light-emitting fluophor
KR1020080133582A KR101538173B1 (en) 2007-12-27 2008-12-24 Blue light-emitting phosphor
CNA2008101895259A CN101469264A (en) 2007-12-27 2008-12-29 Blue light-emitting fluophor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337403A JP5330684B2 (en) 2007-12-27 2007-12-27 Blue-emitting phosphor particles

Publications (2)

Publication Number Publication Date
JP2009155546A JP2009155546A (en) 2009-07-16
JP5330684B2 true JP5330684B2 (en) 2013-10-30

Family

ID=40827075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337403A Expired - Fee Related JP5330684B2 (en) 2007-12-27 2007-12-27 Blue-emitting phosphor particles

Country Status (4)

Country Link
JP (1) JP5330684B2 (en)
KR (1) KR101538173B1 (en)
CN (1) CN101469264A (en)
TW (1) TW200940685A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049056A1 (en) * 2009-10-12 2011-04-14 Osram Gesellschaft mit beschränkter Haftung Process for coating a silicate phosphor
CN106025043B (en) * 2016-05-30 2017-07-28 江苏博睿光电有限公司 New concept-based phosphor with implanted edge angles and penetration diffusion layer and light-emitting device
KR102021328B1 (en) * 2017-12-27 2019-09-16 주식회사 디엔에스 Blue phosphor nanoparticles having a core cell structure and blue light emitting diode using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3234526B2 (en) * 1996-08-29 2001-12-04 松下電器産業株式会社 Plasma display panel and method of manufacturing phosphor for plasma display
JP2002069442A (en) * 2000-09-01 2002-03-08 Showa Denko Kk Silica film coated with light emitting grain
JP3985478B2 (en) * 2000-09-29 2007-10-03 住友化学株式会社 Phosphor for vacuum ultraviolet light-excited light emitting device
JP2003238954A (en) * 2002-02-18 2003-08-27 Matsushita Electric Ind Co Ltd Plasma display apparatus
DE10307282A1 (en) * 2003-02-20 2004-09-02 Osram Opto Semiconductors Gmbh Coated phosphor, light-emitting device with such phosphor and method for its production
JP2005120320A (en) * 2003-10-20 2005-05-12 Sony Corp Light emitter, method for producing the same, and fed and pdp devices using light emitter
JP4524469B2 (en) * 2004-06-03 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor particles, method for producing the same, plasma display panel, illumination device, and LED
JP4861722B2 (en) * 2005-03-01 2012-01-25 宇部マテリアルズ株式会社 Blue light emitting phosphor powder and method for producing the same
JP2007224262A (en) * 2005-08-18 2007-09-06 Sumitomo Chemical Co Ltd Phosphor particle
JP2008111080A (en) * 2006-10-31 2008-05-15 Mitsubishi Chemicals Corp Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
KR20090016416A (en) * 2007-08-10 2009-02-13 우베 마테리알즈 가부시키가이샤 A blue light-emitting phosphor

Also Published As

Publication number Publication date
TW200940685A (en) 2009-10-01
CN101469264A (en) 2009-07-01
KR101538173B1 (en) 2015-07-20
JP2009155546A (en) 2009-07-16
KR20090071457A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4796774B2 (en) Phosphor containing boron and rare earth metal, and light source incorporating the phosphor
JP5225539B2 (en) Phosphors containing phosphates and / or boric acid of group IIIA, IVA, and lanthanide series metals, and light sources incorporating the phosphors
JP4844567B2 (en) Method for producing blue-emitting phosphor
JP5330684B2 (en) Blue-emitting phosphor particles
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
KR101323508B1 (en) A method for preparing a fluorine-containing magnesium oxide powder
JP4861722B2 (en) Blue light emitting phosphor powder and method for producing the same
JP4222099B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4702565B2 (en) Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same
JP5230214B2 (en) Blue light emitting phosphor powder and method for producing the same
JP2005336488A (en) Blue fluorophor for plasma display panel and method for producing the same, and plasma display panel
JP2007217510A (en) Blue light-emitting phosphor
JP4639125B2 (en) Method for producing blue-emitting phosphor
JP5390305B2 (en) Luminescent laminate
JP2004026922A (en) Fluorescent substance for vacuum ultraviolet light excitation light emission element
JP4016724B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4147915B2 (en) Blue phosphor for vacuum ultraviolet light-emitting device
JP2006206619A (en) Phosphor
JP4232559B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4440068B2 (en) Blue phosphor
JP5484833B2 (en) Phosphor powder composition
JP2006104445A (en) Fluorescent substance for vacuum ultraviolet-excited light-emitting diode
JP2004217865A (en) Phosphor
JP2005314596A (en) Phosphor for vacuum ultraviolet ray-excited luminescent element
JP2004217709A (en) Phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees