JP2007217510A - Blue light-emitting phosphor - Google Patents

Blue light-emitting phosphor Download PDF

Info

Publication number
JP2007217510A
JP2007217510A JP2006038293A JP2006038293A JP2007217510A JP 2007217510 A JP2007217510 A JP 2007217510A JP 2006038293 A JP2006038293 A JP 2006038293A JP 2006038293 A JP2006038293 A JP 2006038293A JP 2007217510 A JP2007217510 A JP 2007217510A
Authority
JP
Japan
Prior art keywords
powder
emitting phosphor
blue light
source
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006038293A
Other languages
Japanese (ja)
Inventor
Masato Yamauchi
正人 山内
Takashi Idemitsu
隆 出光
Akira Ueki
明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2006038293A priority Critical patent/JP2007217510A/en
Publication of JP2007217510A publication Critical patent/JP2007217510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CMS:Eu<SP>2+</SP>blue light-emitting phosphor whose luminescence intensity when exposed to a molecular beam irradiation of Xe<SB>2</SB>is improved. <P>SOLUTION: The CaMgSi<SB>2</SB>O<SB>6</SB>:Eu<SP>2+</SP>blue light-emitting phosphor is obtained by heating and baking a powder mixture in a reducing atmosphere. The powder mixture contains a calcium source powder, a europium source powder, a magnesium source powder, a silicon source powder and a fluorine source in a ratio that produces the CaMgSi<SB>2</SB>O<SB>6</SB>:Eu<SP>2+</SP>blue light-emitting phosphor. The amount of fluorine in the fluorine source falls within the range of 0.023-0.048 mol against 1 mol obtained phosphor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Xe2の分子線の照射による発光強度が向上した基本組成式がCaMgSi26:Eu2+で表されるディオプサイド結晶構造を有する青色発光蛍光体に関する。 The present invention relates to a blue light-emitting phosphor having a diopside crystal structure in which a basic composition formula in which emission intensity is improved by irradiation with a molecular beam of Xe 2 is represented by CaMgSi 2 O 6 : Eu 2+ .

カラー表示のプラズマディスプレイパネル(以下、単にPDPという)は、希ガスの放電により発生した真空紫外線を蛍光体に照射して、蛍光体を励起させることにより青色、緑色、赤色の可視光を得て、その組み合わせにより画像を表示する。希ガスとしては、一般にXe(キセノン)とNe(ネオン)との混合ガスが用いられている。この混合ガスでは、Xeが放電ガスであり、Neはバッファガスである。Xeの放電により発生する主な真空紫外線は、波長147nmのXeの共鳴線と、波長172nm(173nmと記載されている文献もある)のXe2の分子線である。 Plasma display panels for color display (hereinafter simply referred to as PDP) emit blue, green and red visible light by irradiating the phosphor with vacuum ultraviolet rays generated by rare gas discharge and exciting the phosphor. The image is displayed by the combination. As the rare gas, a mixed gas of Xe (xenon) and Ne (neon) is generally used. In this mixed gas, Xe is a discharge gas and Ne is a buffer gas. The main vacuum ultraviolet rays generated by the discharge of Xe are the Xe resonance line having a wavelength of 147 nm and the Xe 2 molecular beam having a wavelength of 172 nm (some literatures are described as 173 nm).

Xeの共鳴線は、Xe原子による自己吸収と発光とを繰り返しながら伝搬するため、蛍光体に伝搬するまでの損失が大きいという問題がある。一方、Xe2の分子線は、自己吸収が起こらないため、そのまま損失することなく蛍光体にまで伝搬するという利点がある。このため、近年では、PDPの混合ガス中のXe分圧を高めて、Xe2の分子線の発生量を増加させることにより、PDPの発光効率を高めようとする傾向があるため、Xe2の分子線の照射による発光強度が高い蛍光体が望まれている(非特許文献1)。 Since the resonance line of Xe propagates while repeating self-absorption and light emission by Xe atoms, there is a problem that loss until propagation to the phosphor is large. On the other hand, since the molecular beam of Xe 2 does not cause self-absorption, there is an advantage that it propagates to the phosphor without loss. Therefore, in recent years, to increase the partial pressure of Xe mixed gas of PDP, by increasing the amount of generated molecular lines Xe 2, since there is a tendency to increase the luminous efficiency of the PDP, the Xe 2 A phosphor with high emission intensity by irradiation with molecular beams is desired (Non-Patent Document 1).

真空紫外線により励起されると青色の発光を示す青色発光蛍光体として、BaMgAl1017:Eu2+(以下、BAM:Eu2+という)が知られている。しかしながら、BAM:Eu2+青色発光蛍光体は、結晶構造が不安定で発光強度の経時的な低下が起こり易いという問題がある。このため、結晶構造が比較的安定なディオプサイド(CaMgSi26)のカルシウムの一部をユウロピウムで置換したCaMgSi26:Eu2+(以下、CMS:Eu2+ともいう)をPDPの青色発光材料として利用することが検討されている。しかしながら、非特許文献1によれば、CMS:Eu2+青色発光蛍光体は、BAM:Eu2+青色発光蛍光体と比べてXe2の分子線の照射による発光強度が低いという問題があるとされている。
國本崇,「真空紫外線励起用蛍光体」,月刊ディスプレイ,2005年11月号,p.18−25
BaMgAl 10 O 17 : Eu 2+ (hereinafter referred to as BAM: Eu 2+ ) is known as a blue light emitting phosphor that emits blue light when excited by vacuum ultraviolet rays. However, the BAM: Eu 2+ blue-emitting phosphor has a problem that the crystal structure is unstable and the emission intensity tends to decrease with time. For this reason, PDP is used as CaMgSi 2 O 6 : Eu 2+ (hereinafter also referred to as CMS: Eu 2+ ) in which a part of calcium of diopside (CaMgSi 2 O 6 ) having a relatively stable crystal structure is replaced with europium. Utilization as a blue light-emitting material is under consideration. However, according to Non-Patent Document 1, the CMS: Eu 2+ blue light-emitting phosphor has a problem that the emission intensity due to irradiation of the molecular beam of Xe 2 is lower than that of the BAM: Eu 2+ blue light-emitting phosphor. Has been.
Takashi Kunimoto, “Phosphor for Exciting Vacuum Ultraviolet Light”, Monthly Display, November 2005, p. 18-25

本発明の目的は、Xe2の分子線の照射による発光強度が改善されたCMS:Eu2+青色発光蛍光体を提供することにある。 An object of the present invention is to provide a CMS: Eu 2+ blue-emitting phosphor having improved emission intensity by irradiation with Xe 2 molecular beam.

本発明は、カルシウム源粉末、ユウロピウム源粉末、マグネシウム源粉末、ケイ素源粉末、及びフッ素源を、基本組成式がCaMgSi26:Eu2+で表されるディオプサイド結晶構造を有する青色発光蛍光体を生成する比率にて、かつ生成する蛍光体1モルに対して、フッ素源中のフッ素量が0.023〜0.048モルの範囲の量となるように含む粉末混合物を還元性雰囲気下にて加熱焼成して得られる、Xe2の分子線の照射により青色光を発光させるための基本組成式がCaMgSi26:Eu2+で表されるディオプサイド結晶構造を有する青色発光蛍光体にある。 The present invention relates to a blue light emission having a diopside crystal structure in which a basic composition formula is expressed as CaMgSi 2 O 6 : Eu 2+ using a calcium source powder, a europium source powder, a magnesium source powder, a silicon source powder, and a fluorine source. A reducing atmosphere containing a powder mixture containing the phosphor in such a ratio that the amount of fluorine in the fluorine source is in the range of 0.023 to 0.048 mol relative to 1 mol of the phosphor to be produced. Blue light emission having a diopside crystal structure represented by CaMgSi 2 O 6 : Eu 2+ , the basic composition formula for emitting blue light by irradiation with molecular beam of Xe 2 obtained by heating and baking under In the phosphor.

本発明の青色発光蛍光体の好ましい態様は、次の通りである。
(1)粉末混合物に含まれるフッ素源中のフッ素の量が0.023〜0.042モルの範囲にある。
(2)粉末混合物の加熱焼成温度が、800〜1500℃の範囲にある。
Preferred embodiments of the blue light emitting phosphor of the present invention are as follows.
(1) The amount of fluorine in the fluorine source contained in the powder mixture is in the range of 0.023 to 0.042 mol.
(2) The heating and baking temperature of the powder mixture is in the range of 800 to 1500 ° C.

本発明の青色発光蛍光体を、Xe分圧の高い希ガスを用いたPDPや希ガスランプなどのガス放電発光装置に用いることによって、ガス放電発光装置の発光効率が向上する。   By using the blue light emitting phosphor of the present invention in a gas discharge light emitting device such as a PDP or a rare gas lamp using a rare gas having a high Xe partial pressure, the light emission efficiency of the gas discharge light emitting device is improved.

本発明の青色発光蛍光体は、基本組成式がCaMgSi26:Eu2+で表されるディオプサイド結晶構造を有するCMS:Eu2+青色発光蛍光体である。本発明のCMS:Eu2+青色発光蛍光体は、カルシウム源粉末、ユウロピウム源粉末、マグネシウム源粉末、ケイ素源粉末、及びフッ素源を原料として製造することができる。 The blue light-emitting phosphor of the present invention is a CMS: Eu 2+ blue light-emitting phosphor having a diopside crystal structure whose basic composition formula is represented by CaMgSi 2 O 6 : Eu 2+ . The CMS: Eu 2+ blue light emitting phosphor of the present invention can be produced using calcium source powder, europium source powder, magnesium source powder, silicon source powder, and fluorine source as raw materials.

カルシウム源粉末の例としては、炭酸カルシウム粉末及び酸化カルシウム粉末を挙げることができる。カルシウム源粉末の純度は、99質量%以上であることが好ましく、99.9質量%以上であることが特に好ましい。カルシウム源粉末は、レーザ散乱回折法により測定された平均粒子径が0.1〜5.0μmの範囲にあることが好ましい。   Examples of the calcium source powder include calcium carbonate powder and calcium oxide powder. The purity of the calcium source powder is preferably 99% by mass or more, and particularly preferably 99.9% by mass or more. The calcium source powder preferably has an average particle diameter measured by a laser scattering diffraction method in the range of 0.1 to 5.0 μm.

ユウロピウム源粉末の例としては、酸化ユウロピウム粉末及び塩化ユウロピウム粉末を挙げることができる。ユウロピウム源粉末の純度は、99質量%以上であることが好ましく、99.5質量%以上であることが特に好ましい。ユウロピウム源粉末は、レーザ散乱回折法により測定された平均粒子径が0.1〜5.0μmの範囲にあることが好ましい。   Examples of the europium source powder include a europium oxide powder and a europium chloride powder. The purity of the europium source powder is preferably 99% by mass or more, and particularly preferably 99.5% by mass or more. The europium source powder preferably has an average particle diameter measured by a laser scattering diffraction method in a range of 0.1 to 5.0 μm.

マグネシウム源粉末の例としては、炭酸マグネシウム粉末及び酸化マグネシム粉末を挙げることができる。マグネシウム源粉末の純度は、99質量%以上であることが好ましく、99.9質量%以上であることが特に好ましい。マグネシウム源粉末は、金属マグネシウム蒸気と酸素とを接触させる方法(気相酸化反応法)により得られた、BET比表面積から換算された平均粒子径が0.01〜3.0μmの範囲にある酸化マグネシウム粉末が特に好ましい。   Examples of the magnesium source powder include magnesium carbonate powder and magnesium oxide powder. The purity of the magnesium source powder is preferably 99% by mass or more, and particularly preferably 99.9% by mass or more. Magnesium source powder is an oxidation in which the average particle diameter converted from the BET specific surface area is in the range of 0.01 to 3.0 μm, obtained by a method of contacting metal magnesium vapor with oxygen (gas phase oxidation reaction method). Magnesium powder is particularly preferred.

ケイ素源粉末の例としては、二酸化ケイ素粉末を挙げることができる。ケイ素源粉末の純度は、99質量%以上であることが好ましく、99.5質量%以上であることが特に好ましい。ケイ素源粉末は、レーザ散乱回折法により測定された平均粒子径が1〜50μmの範囲にあることが好ましい。   Examples of the silicon source powder include silicon dioxide powder. The purity of the silicon source powder is preferably 99% by mass or more, and particularly preferably 99.5% by mass or more. The silicon source powder preferably has an average particle diameter measured by a laser scattering diffraction method in the range of 1 to 50 μm.

フッ素源の例としては、フッ化カルシウム粉末、フッ化ユウロピウム粉末、フッ化マグネシウム粉末を挙げることができる。フッ素源は、フッ化カルシウム粉末であることが特に好ましい。フッ化カルシウム粉末は、レーザ散乱回折法にて測定された平均粒子径が1.0〜3.0μmの範囲にあることが好ましい。   Examples of the fluorine source include calcium fluoride powder, europium fluoride powder, and magnesium fluoride powder. The fluorine source is particularly preferably calcium fluoride powder. The calcium fluoride powder preferably has an average particle diameter measured by a laser scattering diffraction method in the range of 1.0 to 3.0 μm.

本発明のCMS:Eu2+青色発光蛍光体の製造においては、カルシウム源粉末、ユウロピウム源粉末、マグネシウム源粉末、ケイ素源粉末、及びフッ素源を、CMS:Eu2+青色発光蛍光体を生成する比率にて、かつ生成する蛍光体1モルに対して、フッ素源中のフッ素量が0.023〜0.048モルの範囲、好ましくは0.023〜0.042モルの範囲となる量にて混合して粉末混合物を調製する。CMS:Eu2+青色発光蛍光体を生成する比率は、カルシウム源粉末、ユウロピウム源粉末、マグネシウム源粉末、ケイ素源粉末、及びフッ素源が、カルシウム(Ca)、ユウロピウム(Eu)、マグネシウム(Mg)、そしてケイ素(Si)のモル比(Ca:Eu:Mg:Si)に換算して、0.900〜0.999:0.100〜0.001:1:1.900〜2.100、好ましくは0.900〜0.985:0.100〜0.015:1:1.900〜2.100、特に好ましくは0.970〜0.985:0.030〜0.015:1:1.900〜2.100であり、カルシウムとユウロピウムとの総モル数に対するユウロピウムのモル比[Eu/(Ca+Eu)]が0.001〜0.1の範囲、より好ましくは0.015〜0.1の範囲、特に好ましくは0.015〜0.030の範囲となる量である。 In the production of the CMS: Eu 2+ blue light emitting phosphor of the present invention, a calcium source powder, a europium source powder, a magnesium source powder, a silicon source powder, and a fluorine source are used to produce a CMS: Eu 2+ blue light emitting phosphor. In an amount such that the amount of fluorine in the fluorine source is in the range of 0.023 to 0.048 mol, preferably in the range of 0.023 to 0.042 mol, with respect to 1 mol of the phosphor to be produced. Mix to prepare a powder mixture. The ratio of CMS: Eu 2+ blue-emitting phosphors is as follows: calcium source powder, europium source powder, magnesium source powder, silicon source powder, and fluorine source are calcium (Ca), europium (Eu), magnesium (Mg) In terms of the molar ratio of silicon (Si) (Ca: Eu: Mg: Si), 0.900 to 0.999: 0.10 to 0.001: 1: 1.900 to 2.100, preferably 0.900 to 0.985: 0.100 to 0.015: 1: 1.900 to 2.100, particularly preferably 0.970 to 0.985: 0.030 to 0.015: 1: 1. 900-2.100, and the molar ratio [Eu / (Ca + Eu)] of europium to the total number of moles of calcium and europium is in the range of 0.001-0.1, more preferably 0.015-0. Range, particularly preferably in an amount comprised within the range of 0.015 to 0.030.

粉末混合物の調製には、ボールミルなどの公知の混合機を用いることができる。粉末の混合は、メタノール、エタノール及びアセトンなどの有機溶媒中にて行なうことが好ましい。   For the preparation of the powder mixture, a known mixer such as a ball mill can be used. The powder is preferably mixed in an organic solvent such as methanol, ethanol and acetone.

粉末混合物の加熱焼成は、水素ガスを1〜10体積%の範囲にて含むアルゴンガスあるいは窒素ガスなどの還元性ガスの雰囲気下にて行なう。加熱焼成温度は、800〜1500℃の範囲、好ましくは900〜1300℃の範囲、より好ましくは980〜1080℃の範囲である。加熱焼成時間は、一般に1〜100時間の範囲である。粉末混合物の加熱焼成により、粉末混合物中のフッ素の全部もしくは一部は揮発する。従って、生成したCMS:Eu2+青色発光蛍光体に含まれるフッ素量は、粉末混合物中のフッ素量よりも少なくなる。 The powder mixture is heated and fired in an atmosphere of a reducing gas such as argon gas or nitrogen gas containing hydrogen gas in the range of 1 to 10% by volume. The heating and baking temperature is in the range of 800 to 1500 ° C, preferably in the range of 900 to 1300 ° C, and more preferably in the range of 980 to 1080 ° C. The heating and baking time is generally in the range of 1 to 100 hours. By heating and baking the powder mixture, all or part of the fluorine in the powder mixture is volatilized. Accordingly, the amount of fluorine contained in the produced CMS: Eu 2+ blue light emitting phosphor is smaller than the amount of fluorine in the powder mixture.

前述のようにCMS:Eu2+青色発光蛍光体は、BAM:Eu2+青色発光蛍光体と比べて経時的な劣化が起こりにくいことが知られている。従って、Xe2の分子線に対する発光強度が改善された本発明のCMS:Eu2+青色発光蛍光体は、Xe分圧の高い希ガス(例えば、Xe分圧が全圧の10%以上の希ガス)を用いたPDPや希ガスランプなどのガス放電発光装置の青色蛍光材料として有利に用いることができる。 As described above, it is known that the CMS: Eu 2+ blue light-emitting phosphor is less likely to deteriorate over time than the BAM: Eu 2+ blue light-emitting phosphor. Therefore, the CMS: Eu 2+ blue light emitting phosphor of the present invention with improved emission intensity with respect to the molecular beam of Xe 2 is a rare gas having a high Xe partial pressure (for example, a rare gas whose Xe partial pressure is 10% or more of the total pressure). It can be advantageously used as a blue fluorescent material of a gas discharge light emitting device such as a PDP using a gas) or a rare gas lamp.

[実施例1]
炭酸カルシウム(CaCO3)粉末(純度:99.99質量%、レーザ回折散乱法により測定された平均粒子径:3.87μm)、フッ化カルシウム(CaF2)粉末(純度:99.9質量%、レーザ回折散乱法により測定された平均粒子径:2.70μm)、酸化ユウロピウム(Eu23)粉末(純度:99.9質量%、レーザ回折散乱法により測定された平均粒子径:2.70μm)、酸化マグネシウム(MgO)粉末(気相酸化反応により製造したもの、純度99.99質量%、BET比表面積より換算された平均粒子径:0.05μm)、そして二酸化ケイ素(SiO2)粉末(純度:99.9質量%、レーザ回折散乱法により測定された平均粒子径:49.8μm)を、CaCO3:CaF2:Eu23:MgO:SiO2のモル比が、0.9675:0.0125:0.020:1:2.000となるようにそれぞれ秤量し、エタノール溶媒中にて、ボールミルを用いて24時間湿式混合した。次いで、エタノールを蒸発させて、乾燥することで粉末混合物を得た。粉末混合物中のフッ素量は、生成するCMS:Eu2+青色発光蛍光体1モルに対して0.025モルである。得られた混合粉末をアルミナ坩堝に入れ、2体積%水素−98体積%アルゴンの混合ガス雰囲気中にて1150℃の温度で3時間焼成して粉末焼成物を得た。得られた粉末焼成物を、アルミナ坩堝に入れたまま、さらに大気中600℃の温度で1時間加熱した。
得られた粉末焼成物のX線回折パターンを測定したところ、ディオプサイド(CaMgSi26)のX線回折パターンが確認された。
[Example 1]
Calcium carbonate (CaCO 3 ) powder (purity: 99.99 mass%, average particle size measured by laser diffraction scattering method: 3.87 μm), calcium fluoride (CaF 2 ) powder (purity: 99.9 mass%, Average particle diameter measured by laser diffraction scattering method: 2.70 μm) Europium oxide (Eu 2 O 3 ) powder (purity: 99.9% by mass, average particle diameter measured by laser diffraction scattering method: 2.70 μm) ), Magnesium oxide (MgO) powder (produced by gas phase oxidation reaction, purity 99.99 mass%, average particle diameter converted from BET specific surface area: 0.05 μm), and silicon dioxide (SiO 2 ) powder ( purity: 99.9%, average particle diameter measured by a laser diffraction scattering method: 49.8Myuemu a), CaCO 3: CaF 2: Eu 2 O 3: MgO: SiO 2 molar But 0.9675: 0.0125: 0.020: 1: 2.000 to become so weighed respectively, with ethanol solvent were wet-mixed for 24 hours using a ball mill. Subsequently, ethanol was evaporated and dried to obtain a powder mixture. The amount of fluorine in the powder mixture is 0.025 mol with respect to 1 mol of CMS: Eu 2+ blue-emitting phosphor produced. The obtained mixed powder was put in an alumina crucible and fired at a temperature of 1150 ° C. for 3 hours in a mixed gas atmosphere of 2 volume% hydrogen-98 volume% argon to obtain a powder fired product. The obtained powder fired product was further heated in the atmosphere at a temperature of 600 ° C. for 1 hour while being put in an alumina crucible.
When the X-ray diffraction pattern of the obtained powder fired product was measured, the X-ray diffraction pattern of diopside (CaMgSi 2 O 6 ) was confirmed.

[実施例2]
炭酸カルシウム粉末、フッ化カルシウム粉末、酸化ユウロピウム粉末、酸化マグネシウム粉末、そして二酸化ケイ素粉末の配合比をモル比で、0.9650:0.0150:0.0200:1:2.000(CaCO3:CaF2:Eu23:MgO:SiO2)として粉末混合物を調製した以外は実施例1と同様にして粉末焼成物を得た。粉末混合物中のフッ素量は、生成するCMS:Eu2+青色発光蛍光体1モルに対して0.030モルである。得られた粉末焼成物のX線回折パターンを測定したところ、ディオプサイド(CaMgSi26)のX線回折パターンが確認された。
[Example 2]
The compounding ratio of calcium carbonate powder, calcium fluoride powder, europium oxide powder, magnesium oxide powder, and silicon dioxide powder is 0.9650: 0.0150: 0.0200: 1: 2.000 (CaCO 3 : A powder fired product was obtained in the same manner as in Example 1 except that a powder mixture was prepared as CaF 2 : Eu 2 O 3 : MgO: SiO 2 ). The amount of fluorine in the powder mixture is 0.030 mol with respect to 1 mol of CMS: Eu 2+ blue-emitting phosphor produced. When the X-ray diffraction pattern of the obtained powder fired product was measured, the X-ray diffraction pattern of diopside (CaMgSi 2 O 6 ) was confirmed.

[実施例3]
炭酸カルシウム粉末、フッ化カルシウム粉末、酸化ユウロピウム粉末、酸化マグネシウム粉末、そして二酸化ケイ素粉末の配合比をモル比で、0.9625:0.0175:0.0200:1:2.0000(CaCO3:CaF2:Eu23:MgO:SiO2)として粉末混合物を調製した以外は実施例1と同様にして粉末焼成物を得た。粉末混合物中のフッ素量は、生成するCMS:Eu2+青色発光蛍光体1モルに対して0.035モルである。得られた粉末焼成物のX線回折パターンを測定したところ、ディオプサイド(CaMgSi26)のX線回折パターンが確認された。
[Example 3]
The molar ratio of calcium carbonate powder, calcium fluoride powder, europium oxide powder, magnesium oxide powder, and silicon dioxide powder is 0.9625: 0.0175: 0.0200: 1: 2.0000 (CaCO 3 : A powder fired product was obtained in the same manner as in Example 1 except that a powder mixture was prepared as CaF 2 : Eu 2 O 3 : MgO: SiO 2 ). The amount of fluorine in the powder mixture is 0.035 mol with respect to 1 mol of CMS: Eu 2+ blue-emitting phosphor produced. When the X-ray diffraction pattern of the obtained powder fired product was measured, the X-ray diffraction pattern of diopside (CaMgSi 2 O 6 ) was confirmed.

[実施例4]
炭酸カルシウム粉末、フッ化カルシウム粉末、酸化ユウロピウム粉末、酸化マグネシウム粉末、そして二酸化ケイ素粉末の配合比をモル比で、0.9600:0.0200:0.0200:1:2.0000(CaCO3:CaF2:Eu23:MgO:SiO2)として粉末混合物を調製した以外は実施例1と同様にして粉末焼成物を得た。粉末混合物中のフッ素量は、生成するCMS:Eu2+青色発光蛍光体1モルに対して0.040モルである。得られた粉末焼成物のX線回折パターンを測定したところ、ディオプサイド(CaMgSi26)のX線回折パターンが確認された。
[Example 4]
The molar ratio of calcium carbonate powder, calcium fluoride powder, europium oxide powder, magnesium oxide powder, and silicon dioxide powder is 0.9600: 0.0200: 0.0200: 1: 2.0000 (CaCO 3 : A powder fired product was obtained in the same manner as in Example 1 except that a powder mixture was prepared as CaF 2 : Eu 2 O 3 : MgO: SiO 2 ). The amount of fluorine in the powder mixture is 0.040 mol with respect to 1 mol of CMS: Eu 2+ blue-emitting phosphor produced. When the X-ray diffraction pattern of the obtained powder fired product was measured, the X-ray diffraction pattern of diopside (CaMgSi 2 O 6 ) was confirmed.

[比較例1]
炭酸カルシウム粉末、フッ化カルシウム粉末、酸化ユウロピウム粉末、酸化マグネシウム粉末、そして二酸化ケイ素粉末の配合比をモル比で、0.9700:0.0100:0.0200:1:2.0000(CaCO3:CaF2:Eu23:MgO:SiO2)として粉末混合物を調製した以外は実施例1と同様にして粉末焼成物を得た。粉末混合物中のフッ素量は、生成するCMS:Eu2+青色発光蛍光体1モルに対して0.020モルである。得られた粉末焼成物のX線回折パターンを測定したところ、ディオプサイド(CaMgSi26)のX線回折パターンが確認された。
[Comparative Example 1]
The molar ratio of calcium carbonate powder, calcium fluoride powder, europium oxide powder, magnesium oxide powder, and silicon dioxide powder is 0.9700: 0.0100: 0.0200: 1: 2.0000 (CaCO 3 : A powder fired product was obtained in the same manner as in Example 1 except that a powder mixture was prepared as CaF 2 : Eu 2 O 3 : MgO: SiO 2 ). The amount of fluorine in the powder mixture is 0.020 mol with respect to 1 mol of CMS: Eu 2+ blue-emitting phosphor produced. When the X-ray diffraction pattern of the obtained powder fired product was measured, the X-ray diffraction pattern of diopside (CaMgSi 2 O 6 ) was confirmed.

[比較例2]
炭酸カルシウム粉末、フッ化カルシウム粉末、酸化ユウロピウム粉末、酸化マグネシウム粉末、そして二酸化ケイ素粉末の配合比をモル比で、0.9550:0.0250:0.0200:1:2.0000(CaCO3:CaF2:Eu23:MgO:SiO2)として粉末混合物を調製した以外は実施例1と同様にして粉末焼成物を得た。粉末混合物中のフッ素量は、生成するCMS:Eu2+青色発光蛍光体1モルに対して0.050モルである。得られた粉末焼成物のX線回折パターンを測定したところ、ディオプサイド(CaMgSi26)のX線回折パターンが確認された。
[Comparative Example 2]
The mixing ratio of calcium carbonate powder, calcium fluoride powder, europium oxide powder, magnesium oxide powder, and silicon dioxide powder is 0.9550: 0.0250: 0.0200: 1: 2.0000 (CaCO 3 : A powder fired product was obtained in the same manner as in Example 1 except that a powder mixture was prepared as CaF 2 : Eu 2 O 3 : MgO: SiO 2 ). The amount of fluorine in the powder mixture is 0.050 mol with respect to 1 mol of CMS: Eu 2+ blue-emitting phosphor produced. When the X-ray diffraction pattern of the obtained powder fired product was measured, the X-ray diffraction pattern of diopside (CaMgSi 2 O 6 ) was confirmed.

[評価]
実施例1〜4及び比較例1〜2にて得られた粉末焼成物、並びに市販のBAM:Eu2+青色発光蛍光体について、分光蛍光光度計を用いて、励起波長172nmの条件にて発光スペクトルを測定した。得られた発光スペクトルの最大発光強度(発光スペクトルのピークの最大値)を、BAM:Eu2+青色発光蛍光体の最大発光強度を100とした相対値として下記の表1に示す。
[Evaluation]
For the powder fired products obtained in Examples 1 to 4 and Comparative Examples 1 to 2, and commercially available BAM: Eu 2+ blue light-emitting phosphor, light was emitted using a spectrofluorometer at an excitation wavelength of 172 nm. The spectrum was measured. The maximum emission intensity of the obtained emission spectrum (the maximum value of the peak of the emission spectrum) is shown in Table 1 below as a relative value with the maximum emission intensity of the BAM: Eu 2+ blue-emitting phosphor as 100.

表1
────────────────────────────────────────
粉末混合物中の生成する 励起波長172nm
CMS:Eu2+1モルに での最大発光強度
対するフッ素量(モル%) (−)
────────────────────────────────────────
実施例1にて得られた粉末焼成物 2.5 50
実施例2にて得られた粉末焼成物 3.0 49
実施例3にて得られた粉末焼成物 3.5 55
実施例4にて得られた粉末焼成物 4.0 51
────────────────────────────────────────
比較例1にて得られた粉末焼成物 2.0 41
比較例2にて得られた粉末焼成物 5.0 44
────────────────────────────────────────
市販のBAM:Eu2+青色発光蛍光体 − 100
────────────────────────────────────────
Table 1
────────────────────────────────────────
Excitation wavelength 172 nm generated in the powder mixture
CMS: Maximum emission intensity at 1 mol of Eu 2+
Fluorine content (mol%) (-)
────────────────────────────────────────
Powder fired product obtained in Example 1 2.5 50
Baked powder obtained in Example 2 3.0 49
Powder fired product obtained in Example 3 3.5 55
Baked powder obtained in Example 4 4.0 51
────────────────────────────────────────
Powder fired product obtained in Comparative Example 1 2.0 41
Powder fired product obtained in Comparative Example 2 5.0 44
────────────────────────────────────────
Commercially available BAM: Eu 2+ blue-emitting phosphor-100
────────────────────────────────────────

表1に示す結果から、生成するCMS:Eu2+青色発光蛍光体1モルに対してフッ素を0.025〜0.040モルの範囲にて含む粉末混合物を焼成して得られた粉末焼成物(実施例1〜4)は、生成するCMS:Eu2+青色発光蛍光体1モルに対してフッ素を0.020モル又は0.050モル含む粉末混合物を焼成して得られた粉末焼成物(比較例1、比較例2)と比べて、Xe2の分子線発光に相当する波長172nmの真空紫外線の照射に対する発光強度が約20〜30%向上することがわかる。
また、CMS:Eu2+青色発光蛍光体は、BAM:Eu2+青色発光蛍光体と比べて、結晶構造が安定で発光強度の経時的な低下が起こりにくいことが知られている。従って、本発明のXe2の分子線に対する発光強度が改善されたCMS:Eu2+青色発光蛍光体は、PDP用の青色発光蛍光体として有用である。
From the results shown in Table 1, a powder fired product obtained by firing a powder mixture containing fluorine in a range of 0.025 to 0.040 mole per mole of CMS: Eu 2+ blue-emitting phosphor produced. (Examples 1 to 4) are powder fired products obtained by firing a powder mixture containing 0.020 mol or 0.050 mol of fluorine with respect to 1 mol of CMS: Eu 2+ blue light emitting phosphor to be produced ( Compared with Comparative Example 1 and Comparative Example 2), it can be seen that the emission intensity with respect to irradiation with vacuum ultraviolet rays having a wavelength of 172 nm corresponding to Xe 2 molecular beam emission is improved by about 20 to 30%.
Further, it is known that the CMS: Eu 2+ blue light-emitting phosphor has a stable crystal structure and is less likely to cause a decrease in emission intensity over time as compared with the BAM: Eu 2+ blue light-emitting phosphor. Therefore, the CMS: Eu 2+ blue-emitting phosphor with improved emission intensity for the molecular beam of Xe 2 of the present invention is useful as a blue-emitting phosphor for PDP.

Claims (3)

カルシウム源粉末、ユウロピウム源粉末、マグネシウム源粉末、ケイ素源粉末、及びフッ素源を、基本組成式がCaMgSi26:Eu2+で表されるディオプサイド結晶構造を有する青色発光蛍光体を生成する比率にて、かつ生成する蛍光体1モルに対して、フッ素源中のフッ素量が0.023〜0.048モルの範囲の量となるように含む粉末混合物を還元性雰囲気下にて加熱焼成して得られる、Xe2の分子線の照射により青色光を発光させるための基本組成式がCaMgSi26:Eu2+で表されるディオプサイド結晶構造を有する青色発光蛍光体。 A blue light emitting phosphor having a diopside crystal structure in which the basic composition formula is represented by CaMgSi 2 O 6 : Eu 2+ is generated from calcium source powder, europium source powder, magnesium source powder, silicon source powder, and fluorine source. And heating the powder mixture in a reducing atmosphere so that the amount of fluorine in the fluorine source is in the range of 0.023 to 0.048 mol with respect to 1 mol of the produced phosphor. A blue-emitting phosphor having a diopside crystal structure represented by CaMgSi 2 O 6 : Eu 2+ in a basic composition formula for emitting blue light by irradiation with a molecular beam of Xe 2 obtained by firing. 粉末混合物に含まれるフッ素源中のフッ素の量が0.023〜0.042モルの範囲にある請求項1に記載の青色発光蛍光体。   The blue light-emitting phosphor according to claim 1, wherein the amount of fluorine in the fluorine source contained in the powder mixture is in the range of 0.023 to 0.042 mol. 粉末混合物の加熱焼成温度が、800〜1500℃の範囲にある請求項1に記載の青色発光蛍光体。   The blue light-emitting phosphor according to claim 1, wherein the powder mixture has a heating and firing temperature in the range of 800 to 1500 ° C.
JP2006038293A 2006-02-15 2006-02-15 Blue light-emitting phosphor Pending JP2007217510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038293A JP2007217510A (en) 2006-02-15 2006-02-15 Blue light-emitting phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038293A JP2007217510A (en) 2006-02-15 2006-02-15 Blue light-emitting phosphor

Publications (1)

Publication Number Publication Date
JP2007217510A true JP2007217510A (en) 2007-08-30

Family

ID=38495139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038293A Pending JP2007217510A (en) 2006-02-15 2006-02-15 Blue light-emitting phosphor

Country Status (1)

Country Link
JP (1) JP2007217510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274244A (en) * 2005-03-01 2006-10-12 Ube Material Industries Ltd Blue light-emitting phosphor powder and method for producing the same
KR101256782B1 (en) 2005-03-01 2013-04-25 우베 마테리알즈 가부시키가이샤 Blue color luminous fluorescent body powder and manufacturing method thereof
KR101625448B1 (en) 2015-05-11 2016-05-30 서강대학교산학협력단 Europium-doped silicate nanophosphor and preparing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187690A (en) * 2003-12-26 2005-07-14 Nichia Chem Ind Ltd Silicate phosphor excited by vacuum ultraviolet ray, method for producing the same and light-emitting device excited by vacuum ultraviolet ray
JP4639125B2 (en) * 2005-08-29 2011-02-23 宇部マテリアルズ株式会社 Method for producing blue-emitting phosphor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187690A (en) * 2003-12-26 2005-07-14 Nichia Chem Ind Ltd Silicate phosphor excited by vacuum ultraviolet ray, method for producing the same and light-emitting device excited by vacuum ultraviolet ray
JP4639125B2 (en) * 2005-08-29 2011-02-23 宇部マテリアルズ株式会社 Method for producing blue-emitting phosphor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274244A (en) * 2005-03-01 2006-10-12 Ube Material Industries Ltd Blue light-emitting phosphor powder and method for producing the same
KR101256782B1 (en) 2005-03-01 2013-04-25 우베 마테리알즈 가부시키가이샤 Blue color luminous fluorescent body powder and manufacturing method thereof
KR101625448B1 (en) 2015-05-11 2016-05-30 서강대학교산학협력단 Europium-doped silicate nanophosphor and preparing method thereof

Similar Documents

Publication Publication Date Title
JP4844567B2 (en) Method for producing blue-emitting phosphor
JP4969529B2 (en) Production material and light emitting material of ultraviolet light emitting layer
JP5230143B2 (en) Method for producing fluorinated magnesium oxide fired powder
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
JP2007217510A (en) Blue light-emitting phosphor
JP5330684B2 (en) Blue-emitting phosphor particles
JP4639125B2 (en) Method for producing blue-emitting phosphor
JP2006002043A (en) Fluorescent substance to be excited by vacuum ultraviolet rays, method for producing the same, and vacuum ultraviolet ray-excited light-emitting element
JP5230214B2 (en) Blue light emitting phosphor powder and method for producing the same
JP4861722B2 (en) Blue light emitting phosphor powder and method for producing the same
JP4533781B2 (en) Method for producing phosphor powder
JP4622135B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP2004339401A (en) Fluorescent substance for vacuum ultraviolet-excited light emitting element
JP5390305B2 (en) Luminescent laminate
JP2004026922A (en) Fluorescent substance for vacuum ultraviolet light excitation light emission element
JP4440068B2 (en) Blue phosphor
JP2006028480A (en) Phosphor and light-emitting element using the same
JP5014814B2 (en) Vacuum ultraviolet excitation phosphor
JP5484833B2 (en) Phosphor powder composition
JP4850107B2 (en) Baked magnesium oxide powder containing aluminum oxide
JP2006104445A (en) Fluorescent substance for vacuum ultraviolet-excited light-emitting diode
JP2004002513A (en) Phosphor for vacuum ultraviolet-excitable light emitting element
JP2004059615A (en) Phosphor
JP2004175908A (en) Blue phosphor for vacuum ultraviolet-exciting light-emitting device
JP2004217865A (en) Phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018