JP4440068B2 - Blue phosphor - Google Patents

Blue phosphor Download PDF

Info

Publication number
JP4440068B2
JP4440068B2 JP2004304593A JP2004304593A JP4440068B2 JP 4440068 B2 JP4440068 B2 JP 4440068B2 JP 2004304593 A JP2004304593 A JP 2004304593A JP 2004304593 A JP2004304593 A JP 2004304593A JP 4440068 B2 JP4440068 B2 JP 4440068B2
Authority
JP
Japan
Prior art keywords
powder
ray diffraction
blue phosphor
diffraction pattern
diopside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004304593A
Other languages
Japanese (ja)
Other versions
JP2006117725A (en
Inventor
隆 出光
洋 在田
明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2004304593A priority Critical patent/JP4440068B2/en
Publication of JP2006117725A publication Critical patent/JP2006117725A/en
Application granted granted Critical
Publication of JP4440068B2 publication Critical patent/JP4440068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、プラズマディスプレイパネル(以下、PDPという)あるいは希ガスランプの青色発光材料として有用な真空紫外線で励起されて青色の発光を示す蛍光体に関する。   The present invention relates to a phosphor that emits blue light when excited by vacuum ultraviolet light, which is useful as a blue light emitting material for a plasma display panel (hereinafter referred to as PDP) or a rare gas lamp.

紫外線又は真空紫外線により励起されると青色の発光を示す青色蛍光体として、ディオプサイド(CaMgSi26)のカルシウムの一部をユウロピウムで置換したCaMgSi26:Eu2+(以下、CMS:Eu2+という)が知られている。CMS:Eu2+は、PDPや希ガスランプの青色発光材料として広く利用されているBaMgAl1017:Eu2+(以下、BAM:Eu2+という)と比べて、結晶構造が安定で発光効率の経時的な低下が起こりにくいという特徴がある。しかしながら、CMS:Eu2+青色蛍光体は、BAM:Eu2+青色蛍光体と比べて発光強度が低いことが既に知られている。このため、発光強度の高いCMS:Eu2+青色蛍光体の開発が望まれている。 As a blue phosphor that emits blue light when excited by ultraviolet rays or vacuum ultraviolet rays, CaMgSi 2 O 6 : Eu 2+ (hereinafter referred to as CMS) in which a part of calcium of diopside (CaMgSi 2 O 6 ) is replaced with europium. : Eu 2+ ) is known. CMS: Eu 2+ emits light with a stable crystal structure compared to BaMgAl 10 O 17 : Eu 2+ (hereinafter referred to as BAM: Eu 2+ ), which is widely used as a blue light emitting material for PDP and rare gas lamps. There is a feature that efficiency is less likely to decrease over time. However, it is already known that the emission intensity of CMS: Eu 2+ blue phosphor is lower than that of BAM: Eu 2+ blue phosphor. Therefore, development of a CMS: Eu 2+ blue phosphor with high emission intensity is desired.

CMS:Eu2+青色蛍光体は、カルシウム化合物、ユウロピウム化合物、マグネシウム化合物及び珪素化合物を混合して、1000℃以上の温度で焼成することにより合成することができる。
非特許文献1には、炭酸カルシウム、炭酸マグネシウム、二酸化珪素及びフッ化ユウロピウムを、二酸化珪素量が理論比よりも過剰になるように混合、焼成して製造した二酸化珪素を含むCMS:Eu2+青色蛍光体が記載されている。この非特許文献1の記載によれば、CMS:Eu2+青色蛍光体の発光強度は、二酸化珪素の仕込量が多くなるに従って増加し、最大でBAM:Eu2+の発光強度に対して約74%を示すとされている。
The CMS: Eu 2+ blue phosphor can be synthesized by mixing a calcium compound, a europium compound, a magnesium compound, and a silicon compound and firing at a temperature of 1000 ° C. or higher.
Non-Patent Document 1 discloses CMS: Eu 2+ containing silicon dioxide produced by mixing and firing calcium carbonate, magnesium carbonate, silicon dioxide, and europium fluoride so that the amount of silicon dioxide exceeds the theoretical ratio. A blue phosphor is described. According to the description of Non-Patent Document 1, the emission intensity of the CMS: Eu 2+ blue phosphor increases as the charged amount of silicon dioxide increases, and is about the maximum with respect to the emission intensity of BAM: Eu 2+. 74%.

非特許文献2には、ユウロピウム含有量の異なるCMS:Eu2+青色蛍光体のX線回折パターンが報告されている。この非特許文献2に記載されているX線回折パターンには、CMS:Eu2+青色蛍光体は、不純物としてCa2MgSi27(オケルマナイト)とCa2Eu8(SiO4)62とが混在し易いこと、特に、ユウロピウム含有量が0.02モル以上になるとオケルマナイトが混在し易くなることが示されている。
吉松良、本田晋吾、國本崇、大観光徳、田中省作、小林洋志,「真空紫外線励起洋蛍光体CaMgSi2O6:Eu2+の発光特性」,信学技報,社団法人電子情報通信学会発行,2001年7月,p.37−42 國本崇,「PDP(プラズマディスプレイ)における各部材特性および最新の開発事例」PDP書籍発行記念セミナー,情報機構発行,平成16年7月23日,p.9
Non-Patent Document 2 reports X-ray diffraction patterns of CMS: Eu 2+ blue phosphors having different europium contents. In the X-ray diffraction pattern described in Non-Patent Document 2, CMS: Eu 2+ blue phosphor has Ca 2 MgSi 2 O 7 (Okermanite) and Ca 2 Eu 8 (SiO 4 ) 6 O 2 as impurities. In particular, it is shown that ochermanite is likely to be mixed when the europium content is 0.02 mol or more.
Ryo Yoshimatsu, Satoshi Honda, Takashi Kunimoto, Tadashi Tokusaku, Sho Tanaka, Hiroshi Kobayashi, "Vacuum UV Excited Phosphor CaMgSi2O6: Eu2 + Emission Characteristics", IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, 2001 July, p. 37-42 Takashi Kunimoto, “Characteristics of PDP (Plasma Display) and the latest developments” PDP book issuance seminar, published by Information Organization, July 23, 2004, p. 9

本発明の課題は、発光強度の高いCMS:Eu2+青色蛍光体、特にBAM:Eu2+青色蛍光体の発光強度と同等もしくはそれに近い発光強度を示す(特に、BAM:Eu2+青色蛍光体の発光強度に対して80%以上の発光強度を示す)CMS:Eu2+青色蛍光体を提供することにある。 An object of the present invention is to exhibit an emission intensity equivalent to or close to the emission intensity of a CMS: Eu 2+ blue phosphor having a high emission intensity, particularly BAM: Eu 2+ blue phosphor (particularly, BAM: Eu 2+ blue fluorescence). The object of the present invention is to provide a CMS: Eu 2+ blue phosphor exhibiting an emission intensity of 80% or more of the emission intensity of the body.

本発明者は、CMS:Eu2+青色蛍光体の不純物と発光強度との関係について詳細に検討した。その結果、オケルマナイトの混在量が多くなるほどCMS:Eu2+青色蛍光体の発光強度が低下する傾向にあることを見出した。 The present inventor has examined in detail the relationship between the impurities of the CMS: Eu 2+ blue phosphor and the emission intensity. As a result, it was found that the emission intensity of the CMS: Eu 2+ blue phosphor tends to decrease as the mixed amount of akermanite increases.

本発明は、ディオプサイドと同じ結晶構造を有し、基本組成式がCa p Eu q Mg x Si y z (pは、0.90〜0.985、qは、0.1〜0.015、xは、0.95〜1.05、yは1.90〜2.10、zは、p+q+x+2yであり、そしてq/(p+q)は0.015〜0.10)で表される青色蛍光体であって、下記の測定条件で測定されたX線回折パターンからオケルマナイトのX線回折パターンが検出されない青色蛍光体にある。
X線回折パターンの測定条件]
測定:連続測定
X線源:CuKα
管電圧:50kV
管電流:150mA
発散スリット幅:1/2deg
散乱スリット幅:1/2deg
受光スリット幅:0.15mm
スキャンスピード:5deg/分
スキャンステップ:0.02deg
The present invention has the same crystal structure as diopside, the basic compositional formula Ca p Eu q Mg x Si y O z (p, 0.90~0.985, q is from 0.1 to 0. 015, x is 0.95 to 1.05, y is 1.90 to 2.10, z is p + q + x + 2y, and q / (p + q) is 0.015 to 0.10) The phosphor is a blue phosphor in which an akermanite X-ray diffraction pattern is not detected from an X-ray diffraction pattern measured under the following measurement conditions .
[ X-ray diffraction pattern measurement conditions]
Measurement: Continuous measurement
X-ray source: CuKα
Tube voltage: 50 kV
Tube current: 150 mA
Divergent slit width: 1/2 deg
Scattering slit width: 1/2 deg
Light receiving slit width: 0.15 mm
Scan speed: 5 deg / min
Scan step: 0.02 deg

ディオプサイドの(−221)面に相当するX線回折ピークは、下記の条件で測定されたX線回折パターンにおいて、2θの角度が29.7度のX線回折ピークに相当する。一方のオケルマナイトの(211)面に相当するX線回折ピークは、下記の条件で測定されたX線回折パターンにおいて、2θの角度が31.1度のX線回折ピークに相当する。
[X線回折パターンの測定条件]
測定:連続測定
X線源:CuKα
管電圧:50kV
管電流:150mA
発散スリット幅:1/2deg
散乱スリット幅:1/2deg
受光スリット幅:0.15mm
スキャンスピード:5deg/分
スキャンステップ:0.02deg
The X-ray diffraction peak corresponding to the (−221) plane of the diopside corresponds to an X-ray diffraction peak having an angle of 2θ of 29.7 degrees in the X-ray diffraction pattern measured under the following conditions. The X-ray diffraction peak corresponding to the (211) plane of one akermanite corresponds to an X-ray diffraction peak having an angle of 2θ of 31.1 degrees in the X-ray diffraction pattern measured under the following conditions.
[Measurement conditions of X-ray diffraction pattern]
Measurement: Continuous measurement X-ray source: CuKα
Tube voltage: 50 kV
Tube current: 150 mA
Divergent slit width: 1/2 deg
Scattering slit width: 1/2 deg
Light receiving slit width: 0.15 mm
Scan speed: 5 deg / min Scan step: 0.02 deg

本発明はまた、炭酸カルシウム粉末、ユウロピウム化合物粉末、酸化マグネシウム粉末及び二酸化珪素粉末を、Ca:Eu:Mg:Siのモル比が0.90〜0.985:0.1〜0.015:0.95〜1.05:1.90〜2.10(但し、Eu/(Ca+Eu)=0.015〜0.10)となる量にて含む混合粉末を1000〜1500℃の温度で焼成することからなる、ディオプサイドと同じ結晶構造を有し、基本組成式がCaThe present invention also provides calcium carbonate powder, europium compound powder, magnesium oxide powder, and silicon dioxide powder with a Ca: Eu: Mg: Si molar ratio of 0.90 to 0.985: 0.1 to 0.015: 0. .95 to 1.05: 1.90 to 2.10 (provided that Eu / (Ca + Eu) = 0.015 to 0.10) is fired at a temperature of 1000 to 1500 ° C. It has the same crystal structure as diopside, and the basic composition formula is Ca pp EuEu qq MgMg xx SiSi yy O zz (pは、0.90〜0.985、qは、0.1〜0.015、xは、0.95〜1.05、yは1.90〜2.10、zは、p+q+x+2yであり、そしてq/(p+q)は0.015〜0.10)で表される青色蛍光体であって、オケルマナイトの(211)面に相当するX線回折ピークの高さがディオプサイドの(−211)面に相当するX線回折ピークの高さの1/50以下である青色蛍光体の製造方法にもある。(P is 0.90 to 0.985, q is 0.1 to 0.015, x is 0.95 to 1.05, y is 1.90 to 2.10, and z is p + q + x + 2y. , And q / (p + q) is 0.015-0.10), and the height of the X-ray diffraction peak corresponding to the (211) plane of the akermanite is diopside (- 211) a blue phosphor that is 1/50 or less the height of the X-ray diffraction peak corresponding to the plane.

本発明のCMS:Eu2+青色蛍光体は、BAM:Eu2+青色蛍光体の発光強度と同等もしくはそれに近い発光強度を示す。従って、PDPや希ガスランプの青色蛍光材料として有利に用いることができる。また、本発明の青色蛍光体の製造方法を利用することにより、オケルマナイトが混在していないか、あるいはオケルマナイトの混在量が極く少量のCMS:Eu2+青色蛍光体を製造することが可能となる。 The CMS: Eu 2+ blue phosphor of the present invention exhibits an emission intensity equivalent to or close to that of the BAM: Eu 2+ blue phosphor. Therefore, it can be advantageously used as a blue fluorescent material for PDP and rare gas lamps. In addition, by using the method for producing a blue phosphor of the present invention, it is possible to produce a CMS: Eu 2+ blue phosphor that is not mixed with or has a very small amount of mixed akermanite. Become.

本発明のCMS:Eu2+青色蛍光体は、カルシウム、ユウロピウム、マグネシウム及び珪素をそれぞれモル比で0.90〜0.985:0.1〜0.015:0.95〜1.05:1.90〜2.10の割合にて含む酸化物であり、ユウロピウムの含有量がカルシウムとユウロピウムとの総含有量に対して1.5〜10モル%の範囲、好ましくは0.018〜0.050の範囲にある。本発明のCMS:Eu2+青色蛍光体は、下記の一般式(I)で表すことができる。

(I) CapEuqMgxSiyz

式(I)中、pは、0.90〜0.985、qは、0.1〜0.015、xは、0.95〜1.05、yは、1.90〜2.10、zは、p+q+x+2yであり、そしてq/(p+q)は、0.015〜0.10(好ましくは、0.018〜0.050)である。
The CMS: Eu 2+ blue phosphor of the present invention has a molar ratio of 0.90 to 0.985: 0.1 to 0.015: 0.95 to 1.05: 1 for calcium, europium, magnesium and silicon, respectively. .90 to 2.10, and the content of europium is in the range of 1.5 to 10 mol% with respect to the total content of calcium and europium, preferably 0.018 to 0.8. It is in the range of 050. The CMS: Eu 2+ blue phosphor of the present invention can be represented by the following general formula (I).

(I) Ca p Eu q Mg x Si y O z

In the formula (I), p is 0.90 to 0.985, q is 0.1 to 0.015, x is 0.95 to 1.05, y is 1.90 to 2.10, z is p + q + x + 2y and q / (p + q) is 0.015 to 0.10 (preferably 0.018 to 0.050).

本発明の製造方法により得られるCMS:Eu2+青色蛍光体は、オケルマナイトの(211)面に相当するX線回折ピークの高さがディオプサイドの(−221)面に相当するX線回折ピークの高さの1/50以下、好ましくは1/100以下にあり、オケルマナイトが混在していないか、あるいはオケルマナイトの混在量が極く少量であることに主な特徴がある。 In the CMS: Eu 2+ blue phosphor obtained by the production method of the present invention, the height of the X-ray diffraction peak corresponding to the (211) plane of akermanite is X-ray diffraction corresponding to the (−221) plane of the diopside. The main characteristic is that the peak height is 1/50 or less, preferably 1/100 or less, and no akermanite is mixed, or the amount of the akermanite is extremely small.

本発明のCMS:Eu2+青色蛍光体は、炭酸カルシウム粉末、ユウロピウム化合物粉末、酸化マグネシウム粉末及び二酸化珪素粉末からなる混合粉末を1000〜1500℃の温度で焼成することにより好適に製造することができる。この青色蛍光体の製造方法は、マグネシウム源として酸化マグネシウム粉末を用いることに主な特徴がある。 The CMS: Eu 2+ blue phosphor of the present invention can be preferably manufactured by firing a mixed powder composed of calcium carbonate powder, europium compound powder, magnesium oxide powder and silicon dioxide powder at a temperature of 1000 to 1500 ° C. it can. This blue phosphor manufacturing method is mainly characterized by using magnesium oxide powder as a magnesium source.

本発明のCMS:Eu2+青色蛍光体の製造に使用する炭酸カルシウム粉末は、純度が99質量%以上であることが好ましく、99.9質量%以上であることが特に好ましい。炭酸カルシウム粉末は、平均粒子径が0.1〜5.0μmの範囲にあることが好ましい。 The calcium carbonate powder used for the production of the CMS: Eu 2+ blue phosphor of the present invention preferably has a purity of 99% by mass or more, particularly preferably 99.9% by mass or more. The calcium carbonate powder preferably has an average particle size in the range of 0.1 to 5.0 μm.

酸化マグネシウム粉末は、純度が99質量%以上であることが好ましく、99.9質量%以上であることが特に好ましい。酸化マグネシウム粉末は、平均粒子径が0.1〜3.0μmの範囲にあることが好ましい。酸化マグネシウム粉末としては、金属マグネシウム蒸気と酸素とを接触させる方法(気相酸化反応法)により得られたものを好ましく用いることができる。   The magnesium oxide powder preferably has a purity of 99% by mass or more, particularly preferably 99.9% by mass or more. The magnesium oxide powder preferably has an average particle size in the range of 0.1 to 3.0 μm. As the magnesium oxide powder, a powder obtained by a method of contacting metal magnesium vapor with oxygen (gas phase oxidation reaction method) can be preferably used.

ユウロピウム化合物粉末としては、フッ化ユウロピウム粉末、酸化ユウロピウム粉末又は塩化ユウロピウム粉末を使用することができる。フッ化ユウロピウム粉末及び酸化ユウロピウム粉末が好ましく、フッ化ユウロピウム粉末が特に好ましい。ユウロピウム化合物粉末は、純度が99質量%以上であることが好ましく、99.5質量%以上であることが特に好ましい。ユウロピウム化合物粉末は、平均粒子径が0.1〜5.0μmの範囲にあることが好ましい。   As the europium compound powder, a europium fluoride powder, a europium oxide powder, or a europium chloride powder can be used. Europium fluoride powder and europium oxide powder are preferred, and europium fluoride powder is particularly preferred. The europium compound powder preferably has a purity of 99% by mass or more, particularly preferably 99.5% by mass or more. The europium compound powder preferably has an average particle size in the range of 0.1 to 5.0 μm.

二酸化珪素粉末は、純度が99質量%以上であることが好ましく、99.5質量%以上であることが特に好ましい。二酸化珪素粉末は、平均粒子径が1〜50μmの範囲にあることが好ましい。   The silicon dioxide powder preferably has a purity of 99% by mass or more, and particularly preferably 99.5% by mass or more. The silicon dioxide powder preferably has an average particle size in the range of 1 to 50 μm.

本発明のCMS:Eu2+青色蛍光体の製造に際しては、上記の炭酸カルシウム粉末、ユウロピウム化合物粉末、酸化マグネシウム粉末及び二酸化珪素粉末を、それぞれCa:Eu:Mg:Siのモル比が0.90〜0.985:0.1〜0.015:0.95〜1.05:1.90〜2.10(但し、Eu/(Ca+Eu)=0.015〜0.10)となるように、ボールミルなどの混合機を用いて混合粉末を調製する。粉末の混合は、メタノール、エタノール、アセトンなどの有機溶媒中にて行なうことが好ましい。 In the production of the CMS: Eu 2+ blue phosphor of the present invention, the above-mentioned calcium carbonate powder, europium compound powder, magnesium oxide powder, and silicon dioxide powder were mixed at a molar ratio of Ca: Eu: Mg: Si of 0.90. ˜0.985: 0.1 to 0.015: 0.95 to 1.05: 1.90 to 2.10 (where Eu / (Ca + Eu) = 0.015 to 0.10) In addition, a mixed powder is prepared using a mixer such as a ball mill. The mixing of the powder is preferably performed in an organic solvent such as methanol, ethanol, acetone or the like.

上記の工程で得られた混合粉末は1000〜1500℃の温度で焼成する。混合粉末の焼成は、還元性雰囲気中にて行なうことが好ましい。具体的には、水素ガスを1〜10体積%の範囲にて含むアルゴンガスあるいは窒素ガス中にて混合粉末の焼成を行なうことが好ましい。焼成時間は、一般に1〜100時間の範囲である。   The mixed powder obtained in the above step is fired at a temperature of 1000 to 1500 ° C. Firing of the mixed powder is preferably performed in a reducing atmosphere. Specifically, the mixed powder is preferably fired in argon gas or nitrogen gas containing hydrogen gas in a range of 1 to 10% by volume. The firing time is generally in the range of 1 to 100 hours.

上記のようにして得られる本発明のCMS:Eu2+青色蛍光体は、BAM:Eu2+と比べて経時的な劣化が起こりにくいことが知られている。また、本発明のCMS:Eu2+青色蛍光体は、BAM:Eu2+青色蛍光体の発光強度と同等もしくはそれに近い発光強度を示す。従って、本発明のCMS:Eu2+青色蛍光体は、PDPや希ガスランプの青色蛍光材料として長期間にわたって有利に用いることができる。 It is known that the CMS: Eu 2+ blue phosphor of the present invention obtained as described above is less susceptible to deterioration over time than BAM: Eu 2+ . Further, the CMS: Eu 2+ blue phosphor of the present invention exhibits an emission intensity that is equal to or close to that of the BAM: Eu 2+ blue phosphor. Therefore, the CMS: Eu 2+ blue phosphor of the present invention can be advantageously used over a long period of time as a blue fluorescent material for PDP and rare gas lamps.

[実施例1]
炭酸カルシウム(純度:99.99質量%、平均粒子径:3.87μm)、フッ化ユウロピウム(純度:99.9質量%、平均粒子径:2.71μm)、酸化マグネシウム(気相酸化反応法により製造したもの、純度:99.99質量%、平均粒子径:0.66μm)、そして二酸化珪素(純度:99.9質量%、平均粒子径:49.8μm)をCa:Eu:Mg:Siのモル比が0.98:0.02:1.00:2.00となるようにそれぞれ秤量し、エタノール溶媒中にてボールミルを用いて24時間湿式混合した。得られた混合粉末を乾燥してエタノールを蒸発させた。乾燥後の混合粉末をアルミナ坩堝に入れ、2体積%水素−98体積%アルゴン雰囲気中で1150℃の温度にて6時間焼成した。
[Example 1]
Calcium carbonate (purity: 99.99% by mass, average particle size: 3.87 μm), europium fluoride (purity: 99.9% by mass, average particle size: 2.71 μm), magnesium oxide (by vapor phase oxidation method) What was produced, purity: 99.99% by mass, average particle size: 0.66 μm), and silicon dioxide (purity: 99.9% by mass, average particle size: 49.8 μm) of Ca: Eu: Mg: Si Each was weighed so that the molar ratio was 0.98: 0.02: 1.00: 2.00, and wet-mixed in an ethanol solvent using a ball mill for 24 hours. The obtained mixed powder was dried to evaporate ethanol. The mixed powder after drying was put in an alumina crucible and fired at a temperature of 1150 ° C. for 6 hours in a 2% by volume hydrogen-98% by volume argon atmosphere.

上記のようにして製造した焼成物のX線回折パターンを前記の条件にて測定したところ、得られたX線回折パターンからディオプサイドのX線回折パターンは確認され、Ca0.98Eu0.02MgSi26が生成していることが確認された。一方、焼成物のX線回折パターンからオケルマナイトのX線回折パターンは確認されなかった。 When the X-ray diffraction pattern of the fired product produced as described above was measured under the above conditions, the diopside X-ray diffraction pattern was confirmed from the obtained X-ray diffraction pattern, and Ca 0.98 Eu 0.02 MgSi 2 It was confirmed that O 6 was formed. On the other hand, no X-ray diffraction pattern of akermanite was confirmed from the X-ray diffraction pattern of the fired product.

上記の焼成物の発光スペクトルを励起波長254nmとした分光蛍光光度計により測定した。その結果を図1に示す。   The emission spectrum of the fired product was measured with a spectrofluorometer having an excitation wavelength of 254 nm. The result is shown in FIG.

[比較例1]
実施例1における酸化マグネシウムを塩基性炭酸マグネシウム(純度:酸化マグネシム分として42.0質量%、平均粒子径:15.3μm)に変える以外は、実施例1と同じ操作を行なって、焼成物を製造した。
[Comparative Example 1]
Except for changing the magnesium oxide in Example 1 to basic magnesium carbonate (purity: 42.0% by mass as magnesium oxide, average particle size: 15.3 μm), the same operation as in Example 1 was performed to obtain the fired product. Manufactured.

上記の焼成物のX線回折パターンを前記の条件にて測定したところ、得られたX線回折パターンから、ディオプサイドとオケルマナイトのX線回折パターンとがそれぞれ確認され、Ca0.98Eu0.02MgSi26とオケルマナイトとが生成していることが確認された。また、オケルマナイトの(211)面に相当するX線回折ピークの高さはディオプサイドの(−221)面に相当するX線回折ピークの高さの15/100であった。
上記の焼成物の発光スペクトルを実施例1と同じ条件で測定した。その結果を図1に示す。
When the X-ray diffraction pattern of the fired product was measured under the above conditions, the X-ray diffraction pattern of diopside and akermanite was confirmed from the obtained X-ray diffraction pattern, respectively, and Ca 0.98 Eu 0.02 MgSi 2. It was confirmed that O 6 and kermanite were formed. The height of the X-ray diffraction peak corresponding to the (211) plane of the akermanite was 15/100 of the height of the X-ray diffraction peak corresponding to the (-221) plane of the diopside.
The emission spectrum of the fired product was measured under the same conditions as in Example 1. The result is shown in FIG.

[参考例1]
市販のBAM:Eu2+の発光スペクトルを実施例1と同じ条件で測定した。その結果を図1に示す。
[Reference Example 1]
The emission spectrum of commercially available BAM: Eu 2+ was measured under the same conditions as in Example 1. The result is shown in FIG.

図1において、横軸は、発光した光の波長を、縦軸は、発光強度であり、BAM:Eu2+の最大発光強度を1.0としたときの相対発光強度を示す。図1の結果から、オケルマナイトの混在量が多くなると、発光強度が低下することがわかる。特に、オケルマナイトのX線回折パターンが検出されなかったCa0.98Eu0.02MgSi26(実施例1)はBAM:Eu2+に対する相対発光強度が約85%であり、従来より知られているCMS:Eu2+と比べて高い発光強度を示すことがわかる。 In FIG. 1, the horizontal axis indicates the wavelength of emitted light, the vertical axis indicates the emission intensity, and the relative emission intensity when the maximum emission intensity of BAM: Eu 2+ is 1.0. From the results shown in FIG. 1, it can be seen that the emission intensity decreases as the amount of kermanite mixed increases. In particular, Ca 0.98 Eu 0.02 MgSi 2 O 6 (Example 1), in which the X-ray diffraction pattern of akermanite was not detected, has a relative emission intensity of about 85% with respect to BAM: Eu 2+ , and the conventionally known CMS : It turns out that it shows high luminescence intensity compared with Eu < 2+ >.

実施例1及び比較例1にて製造した焼成物(Ca0.98Eu0.02MgSi26)及びBAM:Eu2+の発光スペクトルである。It is an emission spectrum of the baked product (Ca 0.98 Eu 0.02 MgSi 2 O 6 ) and BAM: Eu 2+ produced in Example 1 and Comparative Example 1.

Claims (3)

ディオプサイドと同じ結晶構造を有し、基本組成式がCa p Eu q Mg x Si y z (pは、0.90〜0.985、qは、0.1〜0.015、xは、0.95〜1.05、yは1.90〜2.10、zは、p+q+x+2yであり、そしてq/(p+q)は0.015〜0.10)で表される青色蛍光体であって、下記の測定条件で測定されたX線回折パターンからオケルマナイトのX線回折パターンが検出されない青色蛍光体
X線回折パターンの測定条件]
測定:連続測定
X線源:CuKα
管電圧:50kV
管電流:150mA
発散スリット幅:1/2deg
散乱スリット幅:1/2deg
受光スリット幅:0.15mm
スキャンスピード:5deg/分
スキャンステップ:0.02deg。
Have the same crystal structure as diopside, the basic compositional formula Ca p Eu q Mg x Si y O z (p, 0.90~0.985, q is, from .1 to .015, x is 0.95 to 1.05, y is 1.90 to 2.10, z is p + q + x + 2y, and q / (p + q) is 0.015 to 0.10). In addition, a blue phosphor in which an akermanite X-ray diffraction pattern is not detected from an X-ray diffraction pattern measured under the following measurement conditions :
[ X-ray diffraction pattern measurement conditions]
Measurement: Continuous measurement
X-ray source: CuKα
Tube voltage: 50 kV
Tube current: 150 mA
Divergent slit width: 1/2 deg
Scattering slit width: 1/2 deg
Light receiving slit width: 0.15 mm
Scan speed: 5 deg / min
Scan step: 0.02 deg.
炭酸カルシウム粉末、ユウロピウム化合物粉末、酸化マグネシウム粉末及び二酸化珪素粉末を、Ca:Eu:Mg:Siのモル比が0.90〜0.985:0.1〜0.015:0.95〜1.05:1.90〜2.10(但し、Eu/(Ca+Eu)=0.015〜0.10)となる量にて含む混合粉末を1000〜1500℃の温度で焼成することからなる、ディオプサイドと同じ結晶構造を有し、基本組成式がCa p Eu q Mg x Si y z (pは、0.90〜0.985、qは、0.1〜0.015、xは、0.95〜1.05、yは1.90〜2.10、zは、p+q+x+2yであり、そしてq/(p+q)は0.015〜0.10)で表される青色蛍光体であって、オケルマナイトの(211)面に相当するX線回折ピークの高さがディオプサイドの(−211)面に相当するX線回折ピークの高さの1/50以下である青色蛍光体の製造方法。 A calcium carbonate powder, a europium compound powder, a magnesium oxide powder and a silicon dioxide powder are mixed at a Ca: Eu: Mg: Si molar ratio of 0.90 to 0.985: 0.1 to 0.015: 0.95 to 1.50. 05: 1.90 to 2.10 (however, Eu / (Ca + Eu) = 0.015~0.10) consists of calcining a mixed powder containing at become amounts at a temperature of 1000 to 1500 ° C., have the same crystal structure as diopside, the basic compositional formula Ca p Eu q Mg x Si y O z (p, 0.90~0.985, q is, from .1 to .015, x is 0.95 to 1.05, y is 1.90 to 2.10, z is p + q + x + 2y, and q / (p + q) is 0.015 to 0.10). The height of the X-ray diffraction peak corresponding to the (211) plane of ochermanite The manufacturing method of the blue fluorescent substance whose length is 1/50 or less of the height of the X-ray-diffraction peak corresponding to the (-211) plane of a diopside . 酸化マグネシウム粉末の平均粒子径が0.1〜3.0μmの範囲にある請求項2に記載の青色蛍光体の製造方法。   The method for producing a blue phosphor according to claim 2, wherein the average particle diameter of the magnesium oxide powder is in the range of 0.1 to 3.0 µm.
JP2004304593A 2004-10-19 2004-10-19 Blue phosphor Expired - Fee Related JP4440068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304593A JP4440068B2 (en) 2004-10-19 2004-10-19 Blue phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304593A JP4440068B2 (en) 2004-10-19 2004-10-19 Blue phosphor

Publications (2)

Publication Number Publication Date
JP2006117725A JP2006117725A (en) 2006-05-11
JP4440068B2 true JP4440068B2 (en) 2010-03-24

Family

ID=36535916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304593A Expired - Fee Related JP4440068B2 (en) 2004-10-19 2004-10-19 Blue phosphor

Country Status (1)

Country Link
JP (1) JP4440068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274244A (en) * 2005-03-01 2006-10-12 Ube Material Industries Ltd Blue light-emitting phosphor powder and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274244A (en) * 2005-03-01 2006-10-12 Ube Material Industries Ltd Blue light-emitting phosphor powder and method for producing the same

Also Published As

Publication number Publication date
JP2006117725A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP2005112922A (en) Oxynitride phosphor
JP5154481B2 (en) Blue light emitting phosphor
KR100990699B1 (en) Method for production of blue-light-emitting fluorescent material
JP4269880B2 (en) Fluorescent lamp and phosphor for fluorescent lamp
JP2003096448A (en) Fluorescent substance for vacuum ultraviolet-excited light-emitting element
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
JP2007063365A (en) Yellow fluorophor and method for producing the same, and yellow light-emitting device
JP2003105334A (en) Phosphor
JP4440068B2 (en) Blue phosphor
JP4861722B2 (en) Blue light emitting phosphor powder and method for producing the same
JP4639125B2 (en) Method for producing blue-emitting phosphor
JP5330684B2 (en) Blue-emitting phosphor particles
JP2006002043A (en) Fluorescent substance to be excited by vacuum ultraviolet rays, method for producing the same, and vacuum ultraviolet ray-excited light-emitting element
JP4325364B2 (en) Method for manufacturing phosphor
JP2007217510A (en) Blue light-emitting phosphor
JPWO2016111200A1 (en) Phosphor, light emitting device, and method of manufacturing phosphor
JP4622135B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4533781B2 (en) Method for producing phosphor powder
JP2004231786A (en) Phosphor and light-emitting device
JP5066104B2 (en) Blue phosphor
JP3915508B2 (en) Compact fluorescent lamp
JPS61118489A (en) Calcium halophosphate and its production
KR101256782B1 (en) Blue color luminous fluorescent body powder and manufacturing method thereof
JP4147915B2 (en) Blue phosphor for vacuum ultraviolet light-emitting device
JP4232559B2 (en) Phosphor for vacuum ultraviolet light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees