JP2003105334A - Phosphor - Google Patents

Phosphor

Info

Publication number
JP2003105334A
JP2003105334A JP2001301649A JP2001301649A JP2003105334A JP 2003105334 A JP2003105334 A JP 2003105334A JP 2001301649 A JP2001301649 A JP 2001301649A JP 2001301649 A JP2001301649 A JP 2001301649A JP 2003105334 A JP2003105334 A JP 2003105334A
Authority
JP
Japan
Prior art keywords
phosphor
emission
excitation
range
nepheline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001301649A
Other languages
Japanese (ja)
Inventor
Shoichi Yamauchi
正一 山内
Atsushi Yamada
敦司 山田
Tsutomu Takahata
努 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2001301649A priority Critical patent/JP2003105334A/en
Publication of JP2003105334A publication Critical patent/JP2003105334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemically stable new phosphor which emits yellow light having high luminance under various excitation conditions, especially UV light excitation condition. SOLUTION: This phosphor comprises an aluminosilicate compound of the following composition formula having a nephelite type crystal structure activated with divalent europium. a(Na1-x-2y , Kx , Euy )2 O.bAl2 O3 .2SiO2 [(a), (b), (x) and (y) are the numbers of 0<=(x)<=0.8, 0.005<=(y)<=0.1, 0<(x)+2(y)<=0.8, 0.8<=(a)<=1.2, 0.8<=(b)<=1.2].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は紫外線、真空紫外
線、電子線、X線、特に紫外線励起により、高輝度の黄
色発光を呈するユーロピウム付活酸化物蛍光体とその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a europium-activated oxide phosphor that emits yellow light with high brightness when excited by ultraviolet rays, vacuum ultraviolet rays, electron beams, and X-rays, and particularly ultraviolet rays, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、蛍光体は蛍光ランプ、CRT、P
DP等のディスプレイ、放射線増感紙、屋内外装飾用に
幅広く実用化されている。これらの蛍光体は励起源であ
る紫外線、真空紫外線、電子線、X線により、近紫外光
から可視光の発光を呈するものである。これらの蛍光体
の構成は金属の酸化物、硫化物、酸硫化物、ハロゲン化
物等の母材結晶中にEu、Mn等の発光イオンを少量添
加したものである。一般に蛍光体には発光色、発光強度
に加え、励起波長との適合性、安定性等の種々の特性が
求められるが、本発明が対象とする黄色発光蛍光体の中
で、それらを全て満足するものは得られていない。
2. Description of the Related Art Conventionally, fluorescent materials are fluorescent lamps, CRTs and Ps.
It has been widely put to practical use for displays such as DPs, radiographic intensifying screens, and indoor and outdoor decorations. These phosphors emit near-ultraviolet light to visible light when excited by ultraviolet rays, vacuum ultraviolet rays, electron beams, and X-rays. The structure of these phosphors is such that a small amount of light emitting ions such as Eu and Mn are added to a base material crystal such as a metal oxide, a sulfide, an oxysulfide and a halide. Generally, phosphors are required to have various characteristics such as emission color, emission intensity, compatibility with excitation wavelength, stability, etc., but all of them are satisfied in the yellow light-emitting phosphor targeted by the present invention. There is nothing to do.

【0003】[0003]

【発明が解決しようとする課題】本発明は各種励起下、
特に紫外線励起において高輝度な黄色発光を呈する化学
的に安定な新規な蛍光体を提供するものである。
DISCLOSURE OF THE INVENTION The present invention, under various excitations,
In particular, the present invention provides a novel chemically stable phosphor that emits yellow light with high brightness when excited by ultraviolet rays.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を重ねた結果、ナトリウムまた
はナトリウムとカリウム、アルミニウム、シリコンから
なり、霞石型の結晶構造を有する酸化物に2価のユーロ
ピウムを付活した化合物が黄色発光を呈することを見出
し、本発明を完成させた。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that an oxide composed of sodium or sodium and potassium, aluminum or silicon and having a nepheline type crystal structure. It was found that a compound in which divalent europium was activated exhibited yellow emission, and the present invention was completed.

【0005】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0006】本発明の蛍光体は、2価のユーロピウムで
付活された霞石型の結晶構造を有するアルミノ珪酸塩化
合物からなる蛍光体であり、霞石構造を有する化合物か
らなることが必須である。なお、霞石(ネフェリン)は
天然にも産する六方晶系の化合物であり、典型組成Na
AlSiO4のNa席の一部をKが置換固溶することが
知られている。
The phosphor of the present invention is a phosphor composed of an aluminosilicate compound having a nepheline-type crystal structure activated by divalent europium, and is essentially composed of a compound having a nepheline structure. is there. Nepheline is a naturally occurring hexagonal compound with a typical composition of Na.
It is known that K replaces a part of the Na seat of AlSiO 4 to form a solid solution.

【0007】本発明の蛍光体は下記組成式で表される。 a(Na1-x-2y,Kx,Euy2O・bAl23・2S
iO2 (但し、a、b、x及びyはそれぞれ、0≦x≦0.
8、0.005≦y≦0.1、0<x+2y≦0.8、
0.8≦a≦1.2、0.8≦b≦1.2の範囲の数で
ある。) 本発明の蛍光体中のKの含有量は0≦x≦0.8が好ま
しい。この範囲内では、主に霞石構造の(Na1-m
m)AlSiO4が生成し、紫外線、電子線、X線等に
よる励起で510から540nmにピークを有する黄色
発光を呈する。発光ピーク波長はK量の増加に伴ない短
波長側にシフトする。
The phosphor of the present invention is represented by the following composition formula. a (Na 1-x-2y , K x , Eu y ) 2 O ・ bAl 2 O 3・ 2S
iO 2 (where a, b, x and y are respectively 0 ≦ x ≦ 0.
8, 0.005 ≦ y ≦ 0.1, 0 <x + 2y ≦ 0.8,
It is a number in the range of 0.8 ≦ a ≦ 1.2 and 0.8 ≦ b ≦ 1.2. ) The content of K in the phosphor of the present invention is preferably 0 ≦ x ≦ 0.8. Within this range, the predominant nepheline structure (Na 1-m ,
K m ) AlSiO 4 is produced, and yellow emission having a peak at 510 to 540 nm is exhibited by excitation with ultraviolet rays, electron beams, X-rays and the like. The emission peak wavelength shifts to the short wavelength side as the K amount increases.

【0008】xが0.8を越えると霞石構造の(Na
1-m、Km)AlSiO4がほとんど生成せず、黄色の発
光が見られなくなるため、好ましくない。
When x exceeds 0.8, the nepheline structure (Na
1-m , K m ) AlSiO 4 is hardly generated, and yellow luminescence is not observed, which is not preferable.

【0009】また、0≦x≦0.8であっても、K含有
量の多い領域では霞石とは異なる結晶構造を有するKA
lSiO4が副生し、発光スペクトルには、この化合物
に由来する概ね415nmの青色発光成分が混在する。
Further, even if 0 ≦ x ≦ 0.8, KA having a crystal structure different from nepheline in a region having a large K content.
lSiO 4 is produced as a by-product, and a blue emission component of about 415 nm derived from this compound is mixed in the emission spectrum.

【0010】すなわち、より鮮やかな黄色発光が望まれ
る場合には、xの範囲は0≦x≦0.25であることが
好ましい。この範囲ではKが完全に固溶した化合物、
(Na 1-m、Km)AlSiO4がほぼ単相で得られ、発
光効率が高く、最大発光波長が510から540nmで
ある黄色発光体が得られる。
That is, brighter yellow emission is desired.
The range of x is 0 ≦ x ≦ 0.25,
preferable. In this range, K is a completely solid-solved compound,
(Na 1-m, Km) AlSiOFourIs obtained in almost a single phase,
High light efficiency and maximum emission wavelength of 510 to 540 nm
A yellow illuminant is obtained.

【0011】この蛍光体中の好ましいEu量は0.00
5≦y≦0.1であり、かつ0<x+2y≦0.8の範
囲内である。
The preferable amount of Eu in this phosphor is 0.00.
5 ≦ y ≦ 0.1 and 0 <x + 2y ≦ 0.8.

【0012】Eu量yが0.005未満であるとEu量
不足により十分な発光が得られないため好ましくない。
また、yが0.1を超えると濃度消光のため、発光効率
が低下し、好ましくない。
If the Eu amount y is less than 0.005, sufficient light emission cannot be obtained due to insufficient Eu amount, which is not preferable.
On the other hand, when y exceeds 0.1, concentration quenching occurs, so that the luminous efficiency decreases, which is not preferable.

【0013】また、K量とEu量の和である、x+2y
が0.8を超えると霞石構造の(Na1-m、Km)AlS
iO4が得られなくなるため好ましくない。
Also, x + 2y, which is the sum of the K amount and the Eu amount.
When the value exceeds 0.8, nepheline structure (Na 1-m , K m ) AlS
It is not preferable because iO 4 cannot be obtained.

【0014】この蛍光体中のアルカリ金属量は0.8≦
a≦1.2の範囲内である。この範囲内では、(Na
1-m、Km)AlSiO4が主に生成し、発光効率の高い
黄色蛍光体が得られる。
The amount of alkali metal in this phosphor is 0.8 ≦
It is within the range of a ≦ 1.2. Within this range, (Na
1-m , K m ) AlSiO 4 is mainly produced, and a yellow phosphor having high luminous efficiency is obtained.

【0015】アルカリ金属量aが0.8未満では副生成
物の生成量が増加し、発光効率が低下するため、好まし
くない。また、aが1.2を越えても副生成物の生成量
が増加し、発光効率が低下するため、好ましくない。
If the amount of alkali metal a is less than 0.8, the amount of by-products produced increases and the luminous efficiency decreases, which is not preferable. Further, even if a exceeds 1.2, the amount of by-products generated increases and the luminous efficiency decreases, which is not preferable.

【0016】さらに好ましくは、アルカリ金属量は0.
9≦a≦1.1である。この範囲内では霞石構造の(N
1-a、Ka)AlSiO4がほぼ単相で生成し、発光効
率の高い黄色蛍光体が得られる。
More preferably, the amount of alkali metal is 0.
9 ≦ a ≦ 1.1. Within this range, the nepheline structure (N
a 1-a , K a ) AlSiO 4 is produced in a substantially single phase, and a yellow phosphor having high luminous efficiency is obtained.

【0017】この蛍光体中のAl量は0.8≦b≦1.
2の範囲内である。この範囲内では、(Na1-m、Km
AlSiO4が主に生成し、発光効率の高い黄色蛍光体
が得られる。
The amount of Al in this phosphor is 0.8 ≦ b ≦ 1.
It is within the range of 2. Within this range, (Na 1-m , K m )
AlSiO 4 is mainly produced, and a yellow phosphor with high luminous efficiency is obtained.

【0018】Al量bが0.8未満では長石類等の副生
成物の生成量が増加し、発光効率が低下するため、好ま
しくない。また、bが1.2を越えると、遊離Al23
の残存量が増加し、発光効率が低下するため、好ましく
ない。
If the Al amount b is less than 0.8, the amount of by-products such as feldspars increases and the luminous efficiency decreases, which is not preferable. When b exceeds 1.2, free Al 2 O 3
Is increased, and the luminous efficiency is reduced, which is not preferable.

【0019】さらに好ましくは、Al量は0.9≦b≦
1.1である。この範囲内では霞石構造の(Na1-a
a)AlSiO4がほぼ単相で生成し、発光効率の高い
黄色蛍光体が得られる。
More preferably, the Al content is 0.9 ≦ b ≦
1.1. Within this range, the nepheline structure (Na 1-a ,
K a ) AlSiO 4 is produced in a substantially single phase, and a yellow phosphor having high luminous efficiency is obtained.

【0020】次に本発明の蛍光体の製造方法の一例を示
す。
Next, an example of the method for producing the phosphor of the present invention will be described.

【0021】本発明の蛍光体の原料は酸化物、あるいは
炭酸塩、硝酸塩、硫酸塩、ハロゲン化物、水酸化物など
焼成処理中に容易に酸化物になるものを使用することが
できる。
As the raw material of the phosphor of the present invention, an oxide, or a carbonate, a nitrate, a sulfate, a halide, a hydroxide or the like which easily becomes an oxide during the firing treatment can be used.

【0022】ナトリウム原料としては、例えば、炭酸ナ
トリウム、炭酸水素ナトリウム、硝酸ナトリウム、ナト
リウムのアルコキシドを使用することができる。
As the sodium raw material, for example, sodium carbonate, sodium hydrogen carbonate, sodium nitrate, and sodium alkoxide can be used.

【0023】カリウム原料としては、例えば、炭酸カリ
ウム、硝酸カリウム、硫酸カリウム、カリウムのアルコ
キシドを使用することができる。
As the potassium raw material, for example, potassium carbonate, potassium nitrate, potassium sulfate, and an alkoxide of potassium can be used.

【0024】アルミニウム原料としては、例えば、α―
アルミナ、β―アルミナ、γ―アルミナ、水酸化アルミ
ニウム、硝酸アルミニウム、フッ化アルミニウム、アル
ミニウムのアルコキシドを使用することができる。
As the aluminum raw material, for example, α-
Alumina, β-alumina, γ-alumina, aluminum hydroxide, aluminum nitrate, aluminum fluoride, and aluminum alkoxide can be used.

【0025】シリコン原料としては、例えば、石英、ク
リストバライト等の二酸化珪素、シリコンのアルコキシ
ドを使用することができる。
As the silicon raw material, for example, quartz, silicon dioxide such as cristobalite, and silicon alkoxide can be used.

【0026】ユーロピウム原料としては、例えば、酸化
ユーロピウム、塩化ユーロピウム、フッ化ユーロピウム
を使用することができる。
As the europium raw material, for example, europium oxide, europium chloride or europium fluoride can be used.

【0027】これらの原料を所定量秤量し、混合する。
混合方法は湿式混合、乾式混合のどちらでもよい。
A predetermined amount of these raw materials are weighed and mixed.
The mixing method may be either wet mixing or dry mixing.

【0028】また、ゾルゲル法、共沈法などの化学反応
を利用して原料を調製することもできる。
Further, the raw materials can be prepared by utilizing a chemical reaction such as a sol-gel method and a coprecipitation method.

【0029】なお、結晶成長を促進させ、発光輝度を向
上させるために、蛍光体原料に対して0.1から10重
量%のアルカリ金属のハロゲン化物、硼素化合物等の比
較的低融点化合物を融剤として添加、混合しても良い。
In order to promote the crystal growth and improve the emission brightness, 0.1 to 10% by weight of a phosphor material is used to melt a relatively low melting point compound such as an alkali metal halide or a boron compound. You may add and mix as an agent.

【0030】この原料混合物を乾燥後、アルミナるつぼ
等の耐熱容器に入れて、不活性ガス中または、水素ガス
などの還元雰囲気中、1000〜1500℃で1乃至5
0時間焼成する。特に、体積比で1乃至5%の水素を含
有する不活性ガスを用いると、付活剤であるEuが2価
の状態に良好に保持され、発光強度の強い蛍光体が得ら
れるため好ましい。得られた焼成物を粉砕し、再焼成を
繰り返すことも、均質な蛍光体粉末を得るために有効で
ある。その場合は、最終の焼成において、還元雰囲気で
あればよい。
After the raw material mixture is dried, it is put in a heat-resistant container such as an alumina crucible and placed in an inert gas or a reducing atmosphere such as hydrogen gas at 1000 to 1500 ° C. for 1 to 5 ° C.
Bake for 0 hours. In particular, it is preferable to use an inert gas containing 1 to 5% by volume of hydrogen, because the activator Eu is favorably held in a divalent state and a phosphor having a high emission intensity is obtained. It is also effective to pulverize the obtained fired product and repeat the re-firing to obtain a uniform phosphor powder. In that case, a reducing atmosphere may be used in the final firing.

【0031】本発明の組成範囲では、約1255℃以上
で高温型のカーネギー石(Carnegieite)が
安定であることが知られているが、焼成後の冷却過程で
大部分は霞石に可逆的に相転移するため、焼成温度につ
いては上記範囲内を選択すれば特に問題を生じることは
ない。
In the composition range of the present invention, it is known that high-temperature type Carnegieite is stable at about 1255 ° C. or higher, but most of them are reversibly converted to nepheline during the cooling process after firing. Since the phase transition occurs, no particular problem occurs if the firing temperature is selected within the above range.

【0032】次に、この焼成物を目的の純度、粒度に調
整するために必要に応じ、粉砕、水洗、乾燥、篩い分け
を行い、本発明の蛍光体を得ることができる。
Next, the phosphor of the present invention can be obtained by crushing, washing with water, drying, and sieving, if necessary, to adjust the purity and particle size of the fired product.

【0033】[0033]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれら実施例のみに限定されるものでは
ない。 (1)結晶構造 粉末の結晶構造は粉末X線回折装置(マック・サイエン
ス社製MPX3)により同定した。X線源としてはCu
−Kα線を使用した。 (2)蛍光評価 蛍光評価は日本分光社製蛍光分光評価装置により測定し
た。励起波長を254nmとし、300から780nm
までの発光スペクトルを測定した。また、励起波長が2
20から400nmでの励起スペクトルを測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. (1) Crystal structure The crystal structure of the powder was identified by a powder X-ray diffractometer (MPX3 manufactured by Mac Science Co.). Cu as an X-ray source
-Kα radiation was used. (2) Fluorescence evaluation Fluorescence evaluation was measured by a fluorescence spectroscopy evaluation device manufactured by JASCO Corporation. Excitation wavelength is 254 nm, 300 to 780 nm
The emission spectrum up to was measured. Also, the excitation wavelength is 2
The excitation spectrum from 20 to 400 nm was measured.

【0034】(実施例1) NaHCO3 5.75g Al23 3.56g SiO2 4.20g Eu23 0.12g 蛍光体原料として上記各原料を秤量し、混合した。この
混合物をアルミナ製容器に入れ、電気炉に導入し、5v
ol%の水素ガスを含有した窒素ガスの雰囲気中で12
00℃で6時間焼成した。
(Example 1) NaHCO 3 5.75 g Al 2 O 3 3.56 g SiO 2 4.20 g Eu 2 O 3 0.12 g The above raw materials were weighed and mixed as phosphor raw materials. This mixture was placed in an alumina container, introduced into an electric furnace,
12 in an atmosphere of nitrogen gas containing ol% hydrogen gas
It was baked at 00 ° C. for 6 hours.

【0035】この焼成物を粉砕し、組成がNa0.98Eu
0.01AlSiO4の蛍光体を得た。得られた蛍光体の粉
末X線回折結果を図1に示す(図1中、下段の1と付さ
れたパターン)。得られた蛍光体は六方晶の霞石構造を
有することが確認された。
The fired product was crushed to have a composition of Na 0.98 Eu.
A phosphor of 0.01 AlSiO 4 was obtained. The result of powder X-ray diffraction of the obtained phosphor is shown in FIG. 1 (the pattern marked with 1 in the lower part of FIG. 1). It was confirmed that the obtained phosphor had a hexagonal nepheline structure.

【0036】254nmの紫外線励起による発光スペク
トルを図2に示す(図2中、1と付された曲線)。53
8nmに発光ピークを有する黄色の発光を示した。
The emission spectrum of 254 nm ultraviolet excitation is shown in FIG. 2 (the curve labeled 1 in FIG. 2). 53
Yellow emission having an emission peak at 8 nm was exhibited.

【0037】また、発光波長が538nmでの励起スペ
クトルを図3に示す。220から400nmまでの幅広
い波長域の紫外線により効率的に励起がなされている。
FIG. 3 shows an excitation spectrum at an emission wavelength of 538 nm. Excitation is efficiently performed by ultraviolet rays in a wide wavelength range from 220 to 400 nm.

【0038】(実施例2) NaHCO3 4.02g K2CO3 1.21g Al23 3.44g SiO2 4.07g Eu23 0.24g 蛍光体原料として上記各原料を秤量し、混合した。この
混合物をアルミナ製容器に入れ、電気炉に導入し、5v
ol%の水素ガスを含有した窒素ガスの雰囲気中で13
00℃で6時間焼成した。
(Example 2) NaHCO 3 4.02 g K 2 CO 3 1.21 g Al 2 O 3 3.44 g SiO 2 4.07 g Eu 2 O 3 0.24 g The above raw materials were weighed as phosphor raw materials, Mixed. This mixture was placed in an alumina container, introduced into an electric furnace,
13 in an atmosphere of nitrogen gas containing ol% hydrogen gas
It was baked at 00 ° C. for 6 hours.

【0039】この焼成物を粉砕し、組成がNa0.71
0.25Eu0.02AlSiO4の蛍光体を得た。
The fired product was crushed to have a composition of Na 0.71 K.
A phosphor of 0.25 Eu 0.02 AlSiO 4 was obtained.

【0040】得られた蛍光体の粉末X線回折結果を図1
に示す(図1中、上段の2と付されたパターン)。得ら
れた蛍光体は六方晶の霞石構造を有することが確認され
た。
The powder X-ray diffraction result of the obtained phosphor is shown in FIG.
(The pattern marked with 2 in the upper part of FIG. 1). It was confirmed that the obtained phosphor had a hexagonal nepheline structure.

【0041】254nmの紫外線励起による発光スペク
トルを図2に示す(図2中、2と付された曲線)。53
5nmに発光ピークを有する黄色の発光を示した。
The emission spectrum of 254 nm ultraviolet excitation is shown in FIG. 2 (curve marked with 2 in FIG. 2). 53
Yellow emission having an emission peak at 5 nm was exhibited.

【0042】また、発光波長が535nmでの励起スペ
クトル測定で、220から400nmまで幅広い波長域
の紫外線により効率的に励起がなされていた。
Further, in the excitation spectrum measurement at the emission wavelength of 535 nm, it was found that the excitation was efficiently performed by the ultraviolet light having a wide wavelength range from 220 to 400 nm.

【0043】(実施例3) NaHCO3 2.45g K2CO3 2.08g Al23 2.97g SiO2 3.90g Eu23 0.57g 蛍光体原料として上記各原料を秤量し、混合した。この
混合物をアルミナ製容器に入れ、電気炉に導入し、2v
ol%の水素ガスを含有した窒素ガスの雰囲気中で13
00℃で6時間焼成した。
[0043] (Example 3) as NaHCO 3 2.45g K 2 CO 3 2.08g Al 2 O 3 2.97g SiO 2 3.90g Eu 2 O 3 0.57g phosphor materials were weighed each raw material, Mixed. This mixture was placed in an alumina container, introduced into an electric furnace,
13 in an atmosphere of nitrogen gas containing ol% hydrogen gas
It was baked at 00 ° C. for 6 hours.

【0044】この焼成物を粉砕し、組成がNa0.45
0.45Eu0.05Al0.9SiO3.85の蛍光体を得た。
The calcined product was crushed to have a composition of Na 0.45 K.
A phosphor of 0.45 Eu 0.05 Al 0.9 SiO 3.85 was obtained.

【0045】得られた蛍光体は六方晶の霞石構造を有す
ることが粉末X線回折により確認された。
It was confirmed by powder X-ray diffraction that the obtained phosphor had a hexagonal nepheline structure.

【0046】254nmの紫外線励起による発光スペク
トルを図2に示す(図2中、3と付された曲線)。52
0nmに発光ピークを有する黄色の発光を示した。
The emission spectrum of 254 nm ultraviolet ray excitation is shown in FIG. 2 (the curve labeled 3 in FIG. 2). 52
It exhibited yellow emission having an emission peak at 0 nm.

【0047】また、発光波長が535nmでの励起スペ
クトル測定で、220から400nmまで幅広い波長域
の紫外線により効率的に励起がなされていた。
Also, in the excitation spectrum measurement at the emission wavelength of 535 nm, it was found that the excitation was efficiently performed by the ultraviolet light having a wide wavelength range from 220 to 400 nm.

【0048】(実施例4) NaHCO3 1.08g K2CO3 3.58g Al23 3.60g SiO2 4.26g Eu23 0.11g H3BO3 0.20g 蛍光体原料として上記各原料を秤量し、混合した。この
混合物をアルミナ製容器に入れ、電気炉に導入し、2v
ol%の水素ガスを含有した窒素ガスの雰囲気中で14
00℃で2時間焼成した。
(Example 4) NaHCO 3 1.08 g K 2 CO 3 3.58 g Al 2 O 3 3.60 g SiO 2 4.26 g Eu 2 O 3 0.11 g H 3 BO 3 0.20 g As a phosphor raw material The above raw materials were weighed and mixed. This mixture was placed in an alumina container, introduced into an electric furnace,
14 in an atmosphere of nitrogen gas containing ol% hydrogen gas
It was baked at 00 ° C. for 2 hours.

【0049】この焼成物を粉砕し、組成がNa0.2
0.78Eu0.01Al1.1Si1.14.35の蛍光体を得た。
The fired product was crushed to have a composition of Na 0.2 K.
A phosphor of 0.78 Eu 0.01 Al 1.1 Si 1.1 O 4.35 was obtained.

【0050】得られた蛍光体は六方晶の霞石構造を有す
ることが粉末X線回折により確認された。
It was confirmed by powder X-ray diffraction that the resulting phosphor had a hexagonal nepheline structure.

【0051】254nmの紫外線励起による発光スペク
トルを図2に示す(図2中、4と付された曲線)。51
5nmに発光ピークを有する黄色の発光を示した。
The emission spectrum of 254 nm ultraviolet light excitation is shown in FIG. 2 (curve labeled 4 in FIG. 2). 51
Yellow emission having an emission peak at 5 nm was exhibited.

【0052】また、発光波長が535nmでの励起スペ
クトル測定で、220から400nmまで幅広い波長域
の紫外線により効率的に励起がなされていた。
Further, in the excitation spectrum measurement at the emission wavelength of 535 nm, it was found that the excitation was efficiently performed by the ultraviolet light having a wide wavelength range from 220 to 400 nm.

【0053】(実施例5) 熱安定性試験 実施例1〜4の蛍光体をアルミナ容器に入れ、箱型電気
炉に導入した。大気雰囲気中、600℃で2時間保持し
た。この熱処理後の蛍光体の発光特性を評価した。25
4nmの紫外線励起による発光強度は熱処理前と変化は
なく、熱処理に対し安定であることが確認された。
(Example 5) Thermal stability test The phosphors of Examples 1 to 4 were placed in an alumina container and introduced into a box-type electric furnace. It was kept at 600 ° C. for 2 hours in the air atmosphere. The emission characteristics of the phosphor after this heat treatment were evaluated. 25
It was confirmed that the emission intensity due to 4 nm ultraviolet excitation did not change from that before the heat treatment and was stable to the heat treatment.

【0054】[0054]

【発明の効果】本発明によれば、高効率かつ化学的に安
定性にすぐれた新規な黄色発光酸化物蛍光体を提供でき
る。
According to the present invention, it is possible to provide a novel yellow light-emitting oxide phosphor having high efficiency and excellent chemical stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、実施例2で得られた蛍光体粉末のX
線回折を示す図である。
FIG. 1 shows X of phosphor powders obtained in Examples 1 and 2.
It is a figure which shows a line diffraction.

【図2】実施例1から4で得られた蛍光体粉末の254
nmの紫外線励起による発光スペクトルを示す図であ
る。
FIG. 2 shows 254 of the phosphor powder obtained in Examples 1 to 4.
It is a figure which shows the emission spectrum by ultraviolet excitation of nm.

【図3】実施例1で得られた蛍光体粉末の535nm発
光の励起スペクトルを示す図である。
FIG. 3 is a diagram showing an excitation spectrum of 535 nm emission of the phosphor powder obtained in Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2価のユーロピウムで付活された霞石型
の結晶構造を有するアルミノ珪酸塩化合物からなる蛍光
体。
1. A phosphor comprising an aluminosilicate compound having a nepheline-type crystal structure activated by divalent europium.
【請求項2】 下記組成式で表されることを特徴とする
請求項1記載の蛍光体。 a(Na1-x-2y,Kx,Euy2O・bAl23・2S
iO2 (但し、a、b、x及びyはそれぞれ、0≦x≦0.
8、0.005≦y≦0.1、0<x+2y≦0.8、
0.8≦a≦1.2、0.8≦b≦1.2の範囲の数で
ある。)
2. The phosphor according to claim 1, which is represented by the following composition formula. a (Na 1-x-2y , K x , Eu y ) 2 O ・ bAl 2 O 3・ 2S
iO 2 (where a, b, x and y are respectively 0 ≦ x ≦ 0.
8, 0.005 ≦ y ≦ 0.1, 0 <x + 2y ≦ 0.8,
It is a number in the range of 0.8 ≦ a ≦ 1.2 and 0.8 ≦ b ≦ 1.2. )
【請求項3】 xの範囲が0≦x≦0.25であること
を特徴とする請求項2記載の蛍光体。
3. The phosphor according to claim 2, wherein the range of x is 0 ≦ x ≦ 0.25.
JP2001301649A 2001-09-28 2001-09-28 Phosphor Pending JP2003105334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301649A JP2003105334A (en) 2001-09-28 2001-09-28 Phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301649A JP2003105334A (en) 2001-09-28 2001-09-28 Phosphor

Publications (1)

Publication Number Publication Date
JP2003105334A true JP2003105334A (en) 2003-04-09

Family

ID=19122027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301649A Pending JP2003105334A (en) 2001-09-28 2001-09-28 Phosphor

Country Status (1)

Country Link
JP (1) JP2003105334A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812896B2 (en) 2006-09-08 2010-10-12 Au Optronics Corp. Liquid crystal display and driving method thereof
KR20130063412A (en) * 2011-12-06 2013-06-14 엘지이노텍 주식회사 Phosphor and method of fabricating phosphor
CN105647524A (en) * 2016-01-25 2016-06-08 深圳市聚飞光电股份有限公司 Method for preparing silicate fluorescent powder for LED
CN105694876A (en) * 2016-01-25 2016-06-22 深圳市聚飞光电股份有限公司 Preparation method of MAlSiO4:Dy<3+>,Mn<4+> single matrix white phosphor for LEDs
CN105694875A (en) * 2016-01-25 2016-06-22 深圳市聚飞光电股份有限公司 Preparation method of MAlSiO4:Er<3+> green phosphor for LEDs
CN105713604A (en) * 2016-01-25 2016-06-29 深圳市聚飞光电股份有限公司 Preparation method of silicate fluorescent powder for LEDs
CN105713606A (en) * 2016-01-25 2016-06-29 深圳市聚飞光电股份有限公司 Preparation method of MAlSiO4:Eu3+ red-light fluorescent powder for high-color-gamut LED (light emitting diode)
CN105713605A (en) * 2016-01-25 2016-06-29 深圳市聚飞光电股份有限公司 Preparation method of MAlSiO4: Pr3+red-light fluorescent powder for LEDs
CN108841381A (en) * 2018-07-24 2018-11-20 江西理工大学 A kind of synthetic method of kaliophilite fluorescent material
JP2019196441A (en) * 2018-05-09 2019-11-14 株式会社日立ハイテクノロジーズ Fluophor, light source and biochemical analyzer
WO2020100473A1 (en) * 2018-11-15 2020-05-22 株式会社日立ハイテク Wide-band light source device, and biochemical analysis device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812896B2 (en) 2006-09-08 2010-10-12 Au Optronics Corp. Liquid crystal display and driving method thereof
US7898607B2 (en) 2006-09-08 2011-03-01 Au Optronics Corp. Liquid crystal display and driving method thereof
KR20130063412A (en) * 2011-12-06 2013-06-14 엘지이노텍 주식회사 Phosphor and method of fabricating phosphor
KR101905547B1 (en) * 2011-12-06 2018-11-30 엘지이노텍 주식회사 Phosphor and method of fabricating phosphor
CN105713605B (en) * 2016-01-25 2017-12-12 深圳市聚飞光电股份有限公司 A kind of LED MAlSiO4:Pr3+The preparation method of red light fluorescent powder
CN105647524A (en) * 2016-01-25 2016-06-08 深圳市聚飞光电股份有限公司 Method for preparing silicate fluorescent powder for LED
CN105713604A (en) * 2016-01-25 2016-06-29 深圳市聚飞光电股份有限公司 Preparation method of silicate fluorescent powder for LEDs
CN105713606A (en) * 2016-01-25 2016-06-29 深圳市聚飞光电股份有限公司 Preparation method of MAlSiO4:Eu3+ red-light fluorescent powder for high-color-gamut LED (light emitting diode)
CN105713605A (en) * 2016-01-25 2016-06-29 深圳市聚飞光电股份有限公司 Preparation method of MAlSiO4: Pr3+red-light fluorescent powder for LEDs
CN105694876B (en) * 2016-01-25 2017-12-12 深圳市聚飞光电股份有限公司 A kind of LED MAlSiO4:Dy3+, Mn4+The preparation method of single-matrix white fluorescent powder
CN105694876A (en) * 2016-01-25 2016-06-22 深圳市聚飞光电股份有限公司 Preparation method of MAlSiO4:Dy<3+>,Mn<4+> single matrix white phosphor for LEDs
CN105694875A (en) * 2016-01-25 2016-06-22 深圳市聚飞光电股份有限公司 Preparation method of MAlSiO4:Er<3+> green phosphor for LEDs
JP2019196441A (en) * 2018-05-09 2019-11-14 株式会社日立ハイテクノロジーズ Fluophor, light source and biochemical analyzer
WO2019216083A1 (en) * 2018-05-09 2019-11-14 株式会社日立ハイテクノロジーズ Fluorescent body, light source, and biochemical analyzer
CN112041412A (en) * 2018-05-09 2020-12-04 株式会社日立高新技术 Phosphor, light source, and biochemical analyzer
CN108841381A (en) * 2018-07-24 2018-11-20 江西理工大学 A kind of synthetic method of kaliophilite fluorescent material
WO2020100473A1 (en) * 2018-11-15 2020-05-22 株式会社日立ハイテク Wide-band light source device, and biochemical analysis device
JP2020087974A (en) * 2018-11-15 2020-06-04 株式会社日立ハイテク Broadband light source device and biochemical analyzer
CN113016080A (en) * 2018-11-15 2021-06-22 株式会社日立高新技术 Broadband light source device and biochemical analysis device
JP7102321B2 (en) 2018-11-15 2022-07-19 株式会社日立ハイテク Broadband light source device and biochemical analyzer
US11754493B2 (en) 2018-11-15 2023-09-12 Hitachi High-Tech Corporation Broadband light source device and biochemical analyzing device
CN113016080B (en) * 2018-11-15 2024-04-16 株式会社日立高新技术 Broadband light source device and biochemical analysis device

Similar Documents

Publication Publication Date Title
KR100760882B1 (en) Fluorescent substances for vacuum ultraviolet radiation excited light-emitting devices
JP3985478B2 (en) Phosphor for vacuum ultraviolet light-excited light emitting device
JPWO2012033122A1 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JP2004143408A (en) Alkaline earth metal silicate phosphor and light emitting element
JP2003105334A (en) Phosphor
JP2010209206A (en) Blue light-emitting phosphor
JP3826210B2 (en) Rare earth complex oxide phosphor
JP2013525525A (en) Silicate luminescent material and method for producing the same
JP4032173B2 (en) Phosphor and light emitting device
JP5775742B2 (en) Method for producing blue-emitting phosphor
JP2000017257A (en) Fluorescent substance and luminous screen using the same
JP4702565B2 (en) Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same
JP4572588B2 (en) Phosphor for UV-excited light emitting device
JPH09157644A (en) Aluminate fluorescent substance, its production and discharge apparatus using the same fluorescent substance
JP2004231786A (en) Phosphor and light-emitting device
JP5735014B2 (en) Method for manufacturing phosphor
JPS59128211A (en) Phosphor
JP2001172625A (en) Vacuum ultraviolet excitable fluorescent substance and light emitting device using the same
JP2003105335A (en) Phosphor
JP4244265B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
KR100267510B1 (en) A preparing process of green fluorescent body based zinc silicate
CN113736460B (en) High-thermal-stability infrared fluorescent powder and preparation method thereof
JP4219518B2 (en) Europium-activated composite oxide phosphor
JP2004091538A (en) Vacuum ultraviolet light-exciting fluorescent substance and light-emitting element
JP2008037883A (en) Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same