JP3826210B2 - Rare earth complex oxide phosphor - Google Patents

Rare earth complex oxide phosphor Download PDF

Info

Publication number
JP3826210B2
JP3826210B2 JP20325198A JP20325198A JP3826210B2 JP 3826210 B2 JP3826210 B2 JP 3826210B2 JP 20325198 A JP20325198 A JP 20325198A JP 20325198 A JP20325198 A JP 20325198A JP 3826210 B2 JP3826210 B2 JP 3826210B2
Authority
JP
Japan
Prior art keywords
phosphor
rare earth
group
raw material
activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20325198A
Other languages
Japanese (ja)
Other versions
JP2000034479A (en
Inventor
俊一 窪田
誠 泉
久典 山根
昌彦 島田
悦雄 清水
Original Assignee
化成オプトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 化成オプトニクス株式会社 filed Critical 化成オプトニクス株式会社
Priority to JP20325198A priority Critical patent/JP3826210B2/en
Publication of JP2000034479A publication Critical patent/JP2000034479A/en
Application granted granted Critical
Publication of JP3826210B2 publication Critical patent/JP3826210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線、電子線、X線等の電磁波、特に紫外線による励起により、近紫外域ないし青、緑、赤色の可視域の発光を呈する新規な希土類複合酸化物蛍光体に関する。
【0002】
【従来の技術】
一般に、蛍光体は紫外線、電子線、X線等の電磁波による励起によって近紫外光〜可視光を発し、蛍光ランプ、CRT、PDP等のディスプレイ、放射線増感紙、屋内外装飾用の蛍光性タイル等に幅広く実用されており、既に種々の蛍光体が開発されているが、蛍光体の用途の多様化、高機能化に伴い、蛍光体も発光色の多色化、高輝度化、耐候性のほか、諸特性の安定性等が求められているが、従来の実用蛍光体は発光色の種類が限定されているため、安定的に種々の色に発光する蛍光体の開発が望まれている。
【0003】
従来の実用蛍光体としては、硫化物、酸硫化物、ハロゲン化物、酸化物等を母体結晶とする蛍光体が種々知られており、その使用環境にもよるが、一般的には酸化物を母体とする酸化物系蛍光体が、比較的化学的に安定で耐久性も良い傾向にある。
【0004】
【発明が解決しようとする課題】
本発明は、上記の状況に鑑みてなされたもので、化学的に安定で種々の色に発光する新しい酸化物系の蛍光体を提供しようとするものである。
【0005】
【課題が解決するための手段】
本発明者等は、上記課題を達成するため、種々の無機酸化物結晶について、それぞれに希土類元素を付活する試みを行った結果、アルカリ土類金属等の2価金属元素と、希土類元素(ランタニド元素)及び IIIB族元素からなるメリライト型構造の複合酸化物結晶にランタニド元素を付活剤としてドープすることにより、紫外線励起下で付活剤元素の種類に応じた固有の発光色を呈する蛍光体が得られることを見いだし本発明に至った。本発明の構成は次のとおりである。
【0006】
(1) 下記組成式で表される希土類複合酸化物蛍光体。
M(Ln1-x ,Ln’x )R3 7
(式中、MはCa、Sr、Ba、Mg及びZnの群から選択された一種以上の2価金属元素であり、LnはLa、Y、Gd及びLuの群から選択された一種以上の希土類元素であり、Ln’はTb、Tm、Eu、Sm、Pr、Dy、Ho及びErの群から選択された一種以上のランタニド族元素であり、RはGa、Al及びInの群から選択された一種以上の IIIB族系元素をそれぞれ示し、xは3×10-2≦x≦1の範囲の数である。)
【0007】
(2) 上記組成式の中のx値が5×10-2≦x≦9×10-1の範囲の数である上記(1) 記載の希土類複合酸化物蛍光体。
(3) 上記組成式の中のMがCa、Sr及びBaの群から選択された一種以上の2価金属元素であり、Ln’はTb、Tm及びEuの群から選択された一種以上のランタニド族元素であり、RはGa及び/又はAlである上記(1) 又は(2) 記載の希土類複合酸化物蛍光体。
(4) 上記組成式の中のLn’がTb及び/又はTmである上記(1) 〜(3) のいずれか1つに記載の希土類複合酸化物蛍光体。
【0008】
【発明の実施の形態】
従来、アルカリ土類金属と希土類元素(ランタニド元素)と IIIB族元素とからなるメリライト型の結晶構造を有する複合酸化物結晶に対し、ランタニド元素を付活剤としてドープした複合酸化物蛍光体は、“Materials Chemistry and Physics ”,15(1986) pp.537 〜544 の“Luminescnce Properties of BaLaGa3 7 " なる報文中にBaLa0.98Tb0.02Ga3 7 組成の蛍光体が記載されており、また、“J. Phys. Chem. Solids ” Vol.58, No.4, pp.639 〜645 (1997)の“Investigation of Eu3+ Sites in SrLaGa3 7 ,SrLaGaO4 and SrLaAlO4 Crystals”なる報文中に、1原子%のEuを含むSrLaGa3 7 ,SrLaGaO4 及びSrLaAlO4 なる組成の蛍光体がそれぞれ記載されている。ここに記載の蛍光体の付活剤であるTbやEuの濃度が0.5〜1原子%程度であるのに対し、本発明の蛍光体は、付活剤であるランタニド元素(Ln’)の濃度が上記公知の蛍光体よりも高濃度であって、既知の概念では、蛍光体としては濃度消光による発光効率の低下が認められる濃度域において、意外にも上記の公知の蛍光体に比べて大幅に発光強度の高い蛍光体を見いだし本発明に至ったのである。
【0009】
本発明の蛍光体組成の具体例を示すと下記の通りである。
Ca(La,Tb)Ga3 7 、 Ca(Y,Tm)Ga3 7
Sr(La,Tb)Ga3 7 、 Sr(Y,Tm)Ga3 7
Ba(La,Tb)Ga3 7 、 Ba(Y,Tm)Ga3 7
Mg(La,Tb)Ga3 7 、 Mg(Y,Tm)Ga3 7
Zn(La,Tb)Ga3 7 、 Zn(Y,Tm)Ga3 7
Ca(Gd,Tb)Ga3 7 、 Ca(Gd,Tm)Ga3 7
Sr(Gd,Tb)Ga3 7 、 Sr(Gd,Tm)Ga3 7
Ba(Gd,Tb)Ga3 7 、 Ba(Gd,Tm)Ga3 7
Mg(Gd,Tb)Ga3 7 、 Mg(Gd,Tm)Ga3 7
Zn(Gd,Tb)Ga3 7 、 Zn(Gd,Tm)Ga3 7
Ca(Y,Tb)Ga3 7 、 Ca(La,Eu)Ga3 7
Sr(Y,Tb)Ga3 7 、 Sr(La,Eu)Ga3 7
Ba(Y,Tb)Ga3 7 、 Ba(La,Eu)Ga3 7
Mg(Y,Tb)Ga3 7 、 Mg(La,Eu)Ga3 7
Zn(Y,Tb)Ga3 7 、 Zn(La,Eu)Ga3 7
Ca(Lu,Tb)Ga3 7 、 Ca(Gd,Eu)Ga3 7
Sr(Lu,Tb)Ga3 7 、 Sr(Gd,Eu)Ga3 7
Ba(Lu,Tb)Ga3 7 、 Ba(Gd,Eu)Ga3 7
Mg(Lu,Tb)Ga3 7 、 Mg(Gd,Eu)Ga3 7
Zn(Lu,Tb)Ga3 7 、 Zn(Gd,Eu)Ga3 7
(Ca,Sr)(La,Tb)Ga3 7 、Ca(Gd,Sm)Ga3 7
(Sr,Ba)(Gd,Tb)Ga3 7 、Ca(Y,Dy)Ga3 7
Ca(La,Tb)Al3 7 、 Ca(Y,Pr)Ga3 7
Sr(La,Tb)Al3 7 、 Ca(Y,Ho)Ga3 7
Ba(La,Tb)Al3 7 、 Ca(Y,Er)Ga3 7
Mg(La,Tb)Al3 7
Sr(La,Tb)(Al,Ga)3 7
Zn(La,Tb)Al3 7
Sr(Ga,Eu)(Al,Ga)3 7
Ca(La,Tb)(In,Al)3 7
Ca(Y,Eu)(Ga,In)3 7
等である。
【0010】
本発明の希土類複合酸化物蛍光体は次の蛍光体原料を用いて製造される。
(1) 母体を構成するM元素の酸化物もしくはM元素の炭酸塩、硝酸塩、硫酸塩、ハロゲン化物等、高温で容易にM元素の酸化物に変わり得るM元素の化合物、
(2) 母体を構成するLn元素の酸化物もしくはLn元素の炭酸塩、硝酸塩、硫酸塩、ハロゲン化物等、高温で容易にLn元素の酸化物に変わり得るLn元素の化合物、
(3) 母体を構成するR元素の酸化物もしくはR元素の炭酸塩、硝酸塩、硫酸塩、ハロゲン化物等、高温で容易にR元素の酸化物に変わり得るR元素の化合物、及び
(4) 付活剤となるLn’元素の酸化物もしくは、Ln’元素の炭酸塩、硝酸塩、硫酸塩、ハロゲン化物など、高温で容易にLn’元素の酸化物に変わることのできるLn’元素の化合物
【0011】
即ち、上記の蛍光体原料を化学量論的に、組成式がM(Ln1-x ,Ln’x )R3 7 (式中、MはCa、Sr、Ba、Mg及びZnの群から選択された一種以上の2価金属元素であり、LnはLa、Y、Gd及びLuの群から選択された一種以上の希土類元素であり、Ln’はTb、Tm、Eu、Sm、Pr、Dy、Ho及びErの群から選択された一種以上のランタニド族元素であり、RはGa、Al及びInの群から選択された一種以上の IIIB族系元素であり、xは3×10-2≦x≦1の範囲の数である)となるような割合で秤量し、乾式混合機などを用いて充分混合する。
【0012】
上記蛍光体の中でも、上記組成式においてM元素がCa、Sr及びBaの中の少なくとも1種のアルカリ土類金属であり、LnはLa,Y,Gd及びLuの群から選択された一種以上の希土類元素であり、付活剤のLn’元素がTb、Tm及びEuの中の少なくとも1種であるランタニド族元素であり、RがGa及び/又はAlの組み合わせからなる複合酸化物蛍光体が、他の組み合わせからなる複合酸化物蛍光体よりも発光輝度が高く、特に、付活剤のLn’元素がTb又はTmの場合で、M元素がCa、Sr及びBaの中の少なくとも1種のアルカリ土類金属、LnはLa,Y,Gd及びLuの群から選択された一種以上の希土類元素、RがGa及び/又はAlの組み合わせからなる複合酸化物蛍光体が一層高輝度の発光を呈する。
【0013】
なお、各蛍光体原料の混合の均一度合を上げるため、水又はエチルアルコールを用いて各蛍光体原料を湿式で混合し、その後、乾燥することが好ましい。また、上記蛍光体原料中、希土類原料(Lnの化合物及びLn’の化合物)はこれを予め塩酸又は硝酸などの鉱酸に溶解し、その混合溶液中に蓚酸、アルカリ等を加えて両者を蓚酸塩、水酸化物等として共沈させ、その後加熱して、均一に混合した原料酸化物を調製し、これに希土類原料以外の残りの蛍光体原料を加えて混合して蛍光体原料としてもよい。
【0014】
さらに、上記の蛍光体原料混合物に該原料の1〜10重量%のアルカリ金属もしくはアルカリ土類金属のハロゲン化物、アンモニウム塩等の比較的低融点化合物を融剤として予め添加、混合しても良い。
これらの蛍光体原料混合物をアルミナルツボ等の耐熱容器に充填し、空気中又は不活性ガス雰囲気中で焼成する。蛍光体原料中、上記(4) のLn’元素がTb、Pr等の場合には、水素ガスを1〜5%の範囲で少量含有する還元性雰囲気の不活性ガス中で焼成することが好ましい。なお、上記蛍光体原料混合物は、予めペレット状等に加圧成型しておき、そのペレットを焼成しても良い。
【0015】
焼成の温度と時間は原料の充填量により異なるが、700〜1600℃の温度で2〜50時間焼成すればよく、好ましくは1000〜1400℃で5〜30時間焼成すればよい。焼成の回数は1回でもよいが、順次、焼成温度を上げて複数回焼成、冷却、粉砕する工程を繰り返す方が発光輝度を上げることができる。
この焼成物は冷却後、粉砕、水洗、乾燥、篩い分けを行い、本発明の蛍光体を得る。
【0016】
なお、付活元素Ln’の量(x値)は得られる蛍光体の発光輝度の点で3×10-2≦x≦1、より好ましくは5×10-2≦x≦9×10-1とするのが良い。
本発明の蛍光体においては、意外にも、付活元素Ln’の量(x値)が母体を構成する希土類元素Lnの量より多くても、従来の公知の同類の蛍光体のように、付活剤を高濃度化した場合、濃度消光による発光強度の急激な低下が認められないという特徴がある。
【0017】
図1及び図2は、本発明のSrLa0.2 Tb0.8 Ga3 7 蛍光体及びCaLa0.1 Eu0.9 Ga3 7 蛍光体についてX線回折装置で得たX線回折パターンを示したグラフである。図1及び図2から、結晶構造が共にメリライト型構造の化合物の単一相からなることが確認された。なお、これら以外にも、本発明の蛍光体の組成の多くは図1、図2に例示したようなX線回折パターンを示す。
【0018】
図3は、本発明のSrLa0.2 Tb0.8 Ga3 7 蛍光体を、波長254nmの紫外線で励起した時の発光スペクトルであり、緑色発光を示す。
また、図4は、本発明のCaLa0.1 Eu0.9 Ga3 7 蛍光体を波長360nmの紫外線で励起した時の発光スペクトルであり、赤色発光を示す。
【0019】
なお、本発明の蛍光体において、母体を構成する元素Mとして、Sr、Caの代わりに、Ba、Mg又はZnを用いても、また、母体を構成する元素LnとしてLaの代わりにY、Gd又はLuを用いても、付活剤元素Ln’がTbである場合は、図3に類似した緑色発光を示し、また、付活剤元素Ln’がEuである場合は、図3と類似した赤色発光を示すことが確認された。
さらに、付活剤元素Ln’として、Tm,Pr,Sm,Dy,Ho又はErを用いると、その付活剤元素に固有の発光色を示す蛍光体が得られた。
【0020】
図5は、図1に例示したSrLa0.2 Tb0.8 Ga3 7 蛍光体について、付活剤である、Tbの濃度(x値)を変化(La濃度も同時に変化)させて複数の蛍光体を調製し、それぞれを波長254nmの紫外線で励起した時の蛍光体の発光強度(輝度)を測定してプロットした蛍光体発光強度の付活剤濃度依存性を示すグラフである。
【0021】
また、この蛍光体は、波長146nmの真空紫外線で励起してもよく発光し、その時の発光強度の付活剤濃度依存性(図示せず)は254nmの紫外線励起による蛍光体発光強度の付活剤濃度依存性を示した図5と同様な傾向を示すことを確認している。
【0022】
図6は、図2に例示したCaLa0.1 Eu0.9 Ga3 7 蛍光体について、付活剤であるEuの濃度(x値)を変化(La濃度も同時に変化)させた複数の蛍光体を調製し、それぞれを波長360nmの紫外線で励起した時の発光強度(輝度)を測定してプロットした、蛍光体発光強度の付活剤濃度依存性を示すグラフである。
【0023】
図5及び図6から分かるように、Tb濃度(x値)及びEu(x値)濃度がそれぞれおよそ3×10-2より大きくなると、本発明の希土類複合酸化物蛍光体の発光輝度は著しく向上し、x値が1に近づくと発光輝度は逆に低下する傾向がある。
また、上述のようにして得られた希土類酸化物蛍光体は紫外線、電子線,X線等の電磁波を反復照射しても、特に組成的にも発光強度にも大きな変化はなく、化学的に安定であった。
【0024】
【実施例】
(実施例1)
SrCO3 73.8g
La2 3 16.3g
Tb4 7 74.8g
Ga2 3 140.6g
上記の各蛍光体原料を秤量し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、ガス雰囲気型電気炉にて焼成した。焼成は5%の水素(H2 )を含有するアルゴン(Ar)ガスの雰囲気中で1100℃で10時間焼成した。この焼成物を粉砕し、篩い分けを行ってSrLa0.2 Tb0.8 Ga3 7 組成の蛍光体を得た。
【0025】
蛍光体組成の確認は、X線回折装置で得たX線回折線図と化学分析の結果から行った(以下の実施例においても同様である)。得られた蛍光体のX線回折線図は図1の通りであり、この蛍光体を254nmの紫外線で励起した時の発光スペクトルは図3に示すとおりであり、緑色発光を呈した。
この蛍光体は、電子線励起やX線励起においても、紫外線で励起した場合と同様に緑色発光を呈した。
【0026】
(実施例2)
CaCO3 50.1g
La2 3 8.2g
Eu2 3 79.2g
Ga2 3 140.6g
上記の各蛍光体原料を秤量し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、高温電気炉にて焼成した。焼成は空気中で1400℃で8時間焼成した。この焼成物を粉砕し、純水にて洗浄し、脱水の後、乾燥し、篩い分けを行ってCaLa0.1 Eu0.9 Ga3 7 蛍光体を得た。
【0027】
このようにして得た蛍光体のX線回折線図は図2の通りであり、この蛍光体を360nmの紫外線で励起した時の発光スペクトルは図4に示すとおりであり、赤色発光を呈した。
この蛍光体は、電子線励起やX線励起においても、紫外線で励起した場合と同様に赤色発光を呈した。
【0028】
(実施例3)
SrCO3 73.8g
La2 3 77.4g
Tm2 3 4.8g
Ga2 3 140.6g
上記の各蛍光体原料を秤量し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、高温電気炉にて焼成した。焼成は空気中で1300℃で10時間焼成した。この焼成物を粉砕し、純水にて洗浄し、脱水の後、乾燥し、篩い分けを行い、SrLa0.95Tm0.05Ga3 7 蛍光体を得た。
【0029】
この蛍光体を360nmの紫外線で励起した時の発光スペクトルは図7に示すとおりであり、青色発光を呈した。
この蛍光体は電子線励起やX線励起においても紫外線で励起した場合と同様に青色発光を呈した。
【0030】
(実施例4)
BaCO3 98.7g
2 3 50.8g
Sm2 3 8.7g
Ga2 3 140.6g
NH4 F(融剤) 10.0g
上記の各蛍光体原料を秤取し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、高温電気炉にて焼成した。焼成は空気中で1400℃で15時間焼成した。この焼成物を粉砕し、純水にて洗浄し、脱水の後、乾燥し、篩い分けを行い、BaY0.9 Sm0.1 Ga3 7 蛍光体を得た。
この蛍光体は紫外線、電子線励起及びX線励起により橙赤色発光を呈した。
【0031】
(実施例5)
CaCO3 50.1g
Lu2 3 49.7g
Dy2 3 46.7g
Ga2 3 140.6g
上記の各蛍光体原料を秤取し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、高温電気炉にて焼成した。焼成は空気中で1400℃で12時間焼成した。この焼成物を粉砕し、純水にて洗浄し、脱水の後、乾燥し、篩い分けを行い、CaLu0.5 Dy0.5 Ga3 7 蛍光体を得た。
を得た。
この蛍光体は紫外線、電子線励起及びX線励起により黄色発光を呈した。
【0032】
(実施例6)
CaCO3 50.1g
2 3 50.8g
Pr6 11 8.4g
Ga2 3 140.6g
上記の各蛍光体原料を秤取し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、高温電気炉にて焼成した。焼成は2%の水素を含有する窒素ガス気流中、1300℃で10時間焼成した。この焼成物を粉砕し、純水にて洗浄し、脱水の後、乾燥し、篩い分けを行い、CaY0.9 Pr0.1 Ga3 7 蛍光体を得た。
この蛍光体は紫外線、電子線励起及びX線励起により緑色発光を呈した。
【0033】
(実施例7)
ZnO 40.7g
Gd2 3 72.5g
Ho2 3 18.9g
Ga2 3 140.6g
上記の各蛍光体原料を秤取し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、高温電気炉にて焼成した。焼成は空気中で1200℃で10時間焼成した。この焼成物を粉砕し、純水にて洗浄し、脱水の後、乾燥し、篩い分けを行い、ZnGd0.8 Ho0.2 Ga3 7 蛍光体を得た。
この蛍光体は紫外線、電子線励起及びX線励起により黄緑色発光を呈した。
【0034】
(実施例8)
Sr(NO3 2 105.8g
La2 3 48.8g
Tb4 7 37.4g
Al2 3 76.5g
上記の各蛍光体原料を秤取し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、高温電気炉にて焼成した。焼成は5%の水素を含有するアルゴンガス気流中、1300℃で10時間焼成した。この焼成物を粉砕し、純水にて洗浄し、脱水の後、乾燥し、篩い分けを行い、SrLa0.6 Tb0.4 Al3 7 蛍光体を得た。
この蛍光体は紫外線、電子線励起及びX線励起により緑色発光を呈した。
【0035】
(実施例9)
CaCO3 50.1g
2 3 28.2g
Eu2 3 44.0g
Ga2 3 70.3g
In2 3 85.4g
上記の各蛍光体原料を秤取し、乾式混合機にて充分混合した。この混合物をアルミナ性の耐熱容器に堅く充填し、高温電気炉にて焼成した。焼成は空気中で1300℃で8時間焼成した。この焼成物を粉砕し、純水にて洗浄し、脱水の後、乾燥し、篩い分けを行い、Ca(Y0.5 Eu0.5 )(Ga0.5 In0.5 3 7 蛍光体を得た。
この蛍光体は紫外線、電子線励起及びX線励起により赤色発光を呈した。
【0036】
【発明の効果】
本発明は、上記の構成を採用することにより、紫外線、電子線、X線等の電磁波、特に紫外線によって励起すると添加される付活剤である希土類元素の種類に応じてその付活剤に固有の、近紫外域から可視域に発光する新規な酸化物蛍光体の提供を可能にした。
【図面の簡単な説明】
【図1】実施例1で得た蛍光体のX線回折線図である。
【図2】実施例2で得た蛍光体のX線回折線図である。
【図3】実施例1で得た蛍光体の発光スペクトルのグラフである。
【図4】実施例2で得た蛍光体の発光スペクトルのグラフである。
【図5】実施例1の蛍光体について付活剤のTb濃度(x値)を変化させたときの蛍光体の発光強度の変化を示したグラフである。
【図6】実施例2の蛍光体について付活剤のEu濃度(x値)を変化させたときの蛍光体の発光強度の変化を示したグラフである。
【図7】実施例3で得た蛍光体の発光スペクトルのグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel rare earth composite oxide phosphor that emits light in the near ultraviolet region or the visible region of blue, green, and red when excited by electromagnetic waves such as ultraviolet rays, electron beams, and X-rays, particularly ultraviolet rays.
[0002]
[Prior art]
In general, phosphors emit near-ultraviolet to visible light when excited by electromagnetic waves such as ultraviolet rays, electron beams, and X-rays, and display such as fluorescent lamps, CRTs, PDPs, radiation intensifying screens, fluorescent tiles for indoor and outdoor decorations. Various phosphors have already been developed, but with the diversification and high functionality of phosphors, phosphors also have multiple colors, high brightness, and weather resistance. In addition, the stability of various characteristics is required, but since the types of luminescent colors of conventional practical phosphors are limited, the development of phosphors that stably emit light in various colors is desired. Yes.
[0003]
Various conventional phosphors having a host crystal of sulfide, oxysulfide, halide, oxide, and the like are known. Depending on the use environment, oxides are generally used. Oxide-based phosphors that serve as a matrix tend to be relatively chemically stable and durable.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and aims to provide a new oxide-based phosphor that is chemically stable and emits light in various colors.
[0005]
[Means for solving the problems]
In order to achieve the above-mentioned problems, the present inventors have tried to activate rare earth elements in various inorganic oxide crystals, and as a result, divalent metal elements such as alkaline earth metals and rare earth elements ( Fluorescence exhibiting a unique emission color according to the type of activator element under ultraviolet excitation by doping a complex oxide crystal of lanthanide element) and IIIB group element as a lanthanide element as an activator It was found that a body was obtained, and reached the present invention. The configuration of the present invention is as follows.
[0006]
(1) A rare earth composite oxide phosphor represented by the following composition formula.
M (Ln 1-x , Ln ′ x ) R 3 O 7
Wherein M is one or more divalent metal elements selected from the group of Ca, Sr, Ba, Mg and Zn, and Ln is one or more rare earth elements selected from the group of La, Y, Gd and Lu. Ln ′ is one or more lanthanide group elements selected from the group of Tb, Tm, Eu, Sm, Pr, Dy, Ho and Er, and R is selected from the group of Ga, Al and In Each represents one or more group IIIB elements, and x is a number in the range of 3 × 10 −2 ≦ x ≦ 1.)
[0007]
(2) The rare earth composite oxide phosphor according to (1), wherein the x value in the composition formula is a number in the range of 5 × 10 −2 ≦ x ≦ 9 × 10 −1 .
(3) M in the above composition formula is one or more divalent metal elements selected from the group of Ca, Sr and Ba, and Ln ′ is one or more lanthanides selected from the group of Tb, Tm and Eu. The rare earth composite oxide phosphor according to the above (1) or (2), which is a group element and R is Ga and / or Al.
(4) The rare earth composite oxide phosphor according to any one of (1) to (3), wherein Ln ′ in the composition formula is Tb and / or Tm.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Conventionally, a complex oxide phosphor doped with a lanthanide element as an activator to a complex oxide crystal having a melilite type crystal structure composed of an alkaline earth metal, a rare earth element (lanthanide element) and a group IIIB element, “Materials Chemistry and Physics”, 15 (1986) pp. 537-544, “Luminescnce Properties of BaLaGa 3 O 7 ” describes a phosphor with a BaLa 0.98 Tb 0.02 Ga 3 O 7 composition, In the report “Investigation of Eu 3+ Sites in SrLaGa 3 O 7 , SrLaGaO 4 and SrLaAlO 4 Crystals” in “J. Phys. Chem. Solids” Vol.58, No.4, pp.639-645 (1997) Phosphors having a composition of SrLaGa 3 O 7 , SrLaGaO 4 and SrLaAlO 4 containing 1 atomic% of Eu are described. Whereas the concentration of Tb and Eu, which are phosphor activators described herein, is about 0.5 to 1 atomic%, the phosphor of the present invention is a lanthanide element (Ln ′) that is an activator. Compared with the above-mentioned known phosphors, the concentration is higher than that of the above-mentioned known phosphors. As a result, the present inventors have found a phosphor having a significantly high emission intensity and have reached the present invention.
[0009]
Specific examples of the phosphor composition of the present invention are as follows.
Ca (La, Tb) Ga 3 O 7 , Ca (Y, Tm) Ga 3 O 7 ,
Sr (La, Tb) Ga 3 O 7 , Sr (Y, Tm) Ga 3 O 7 ,
Ba (La, Tb) Ga 3 O 7 , Ba (Y, Tm) Ga 3 O 7 ,
Mg (La, Tb) Ga 3 O 7 , Mg (Y, Tm) Ga 3 O 7 ,
Zn (La, Tb) Ga 3 O 7 , Zn (Y, Tm) Ga 3 O 7 ,
Ca (Gd, Tb) Ga 3 O 7 , Ca (Gd, Tm) Ga 3 O 7 ,
Sr (Gd, Tb) Ga 3 O 7 , Sr (Gd, Tm) Ga 3 O 7 ,
Ba (Gd, Tb) Ga 3 O 7 , Ba (Gd, Tm) Ga 3 O 7 ,
Mg (Gd, Tb) Ga 3 O 7 , Mg (Gd, Tm) Ga 3 O 7 ,
Zn (Gd, Tb) Ga 3 O 7 , Zn (Gd, Tm) Ga 3 O 7 ,
Ca (Y, Tb) Ga 3 O 7 , Ca (La, Eu) Ga 3 O 7 ,
Sr (Y, Tb) Ga 3 O 7 , Sr (La, Eu) Ga 3 O 7 ,
Ba (Y, Tb) Ga 3 O 7 , Ba (La, Eu) Ga 3 O 7 ,
Mg (Y, Tb) Ga 3 O 7 , Mg (La, Eu) Ga 3 O 7 ,
Zn (Y, Tb) Ga 3 O 7 , Zn (La, Eu) Ga 3 O 7 ,
Ca (Lu, Tb) Ga 3 O 7 , Ca (Gd, Eu) Ga 3 O 7 ,
Sr (Lu, Tb) Ga 3 O 7 , Sr (Gd, Eu) Ga 3 O 7 ,
Ba (Lu, Tb) Ga 3 O 7 , Ba (Gd, Eu) Ga 3 O 7 ,
Mg (Lu, Tb) Ga 3 O 7 , Mg (Gd, Eu) Ga 3 O 7 ,
Zn (Lu, Tb) Ga 3 O 7 , Zn (Gd, Eu) Ga 3 O 7 ,
(Ca, Sr) (La, Tb) Ga 3 O 7 , Ca (Gd, Sm) Ga 3 O 7 ,
(Sr, Ba) (Gd, Tb) Ga 3 O 7 , Ca (Y, Dy) Ga 3 O 7 ,
Ca (La, Tb) Al 3 O 7 , Ca (Y, Pr) Ga 3 O 7 ,
Sr (La, Tb) Al 3 O 7 , Ca (Y, Ho) Ga 3 O 7 ,
Ba (La, Tb) Al 3 O 7 , Ca (Y, Er) Ga 3 O 7 ,
Mg (La, Tb) Al 3 O 7 ,
Sr (La, Tb) (Al, Ga) 3 O 7 ,
Zn (La, Tb) Al 3 O 7 ,
Sr (Ga, Eu) (Al, Ga) 3 O 7 ,
Ca (La, Tb) (In, Al) 3 O 7 ,
Ca (Y, Eu) (Ga, In) 3 O 7 ,
Etc.
[0010]
The rare earth composite oxide phosphor of the present invention is manufactured using the following phosphor raw materials.
(1) M element compounds that can easily be converted to M element oxides at high temperatures, such as M element oxides or M element carbonates, nitrates, sulfates, halides, etc. constituting the matrix,
(2) Ln element compounds that can be easily converted to Ln element oxides at high temperatures, such as oxides of Ln elements or carbonates, nitrates, sulfates, halides, etc. constituting the matrix,
(3) R element compounds that can be easily converted to R element oxides at high temperatures, such as R element oxides or R element carbonates, nitrates, sulfates, halides, and the like constituting the matrix, and
(4) Ln ′ element oxides or Ln ′ elements that can easily be converted to Ln ′ element oxides at high temperatures, such as Ln ′ element carbonates, nitrates, sulfates, halides, etc. Compound of
That is, the above phosphor raw material is stoichiometrically expressed by the composition formula M (Ln 1-x , Ln ′ x ) R 3 O 7 (wherein M is a group of Ca, Sr, Ba, Mg and Zn). One or more selected divalent metal elements, Ln is one or more rare earth elements selected from the group of La, Y, Gd and Lu, and Ln ′ is Tb, Tm, Eu, Sm, Pr, Dy , Ho and Er are one or more lanthanide group elements, R is one or more Group IIIB elements selected from the group of Ga, Al and In, and x is 3 × 10 −2 ≦ x ≦ 1) and weigh well with a dry mixer or the like.
[0012]
Among the phosphors, M element in the composition formula is at least one alkaline earth metal in Ca, Sr and Ba, and Ln is one or more selected from the group of La, Y, Gd and Lu. A complex oxide phosphor, which is a rare earth element, the Ln ′ element of the activator is a lanthanide group element that is at least one of Tb, Tm, and Eu, and R is a combination of Ga and / or Al, The emission brightness is higher than that of other complex oxide phosphors, particularly when the activator Ln ′ element is Tb or Tm, and the M element is at least one alkali among Ca, Sr and Ba. An earth metal, Ln is one or more rare earth elements selected from the group consisting of La, Y, Gd, and Lu, and a composite oxide phosphor in which R is a combination of Ga and / or Al exhibits higher luminance emission.
[0013]
In addition, in order to raise the uniformity of mixing of each phosphor raw material, it is preferable to mix each phosphor raw material wet using water or ethyl alcohol, and then dry. In the phosphor raw material, the rare earth raw material (the compound of Ln and the compound of Ln ′) is dissolved in a mineral acid such as hydrochloric acid or nitric acid in advance, and oxalic acid, alkali, etc. are added to the mixed solution to oxalic acid. It may be coprecipitated as a salt, hydroxide, etc., and then heated to prepare a uniformly mixed raw material oxide, and the remaining phosphor raw material other than the rare earth raw material may be added and mixed to form a phosphor raw material. .
[0014]
Further, a relatively low melting point compound such as an alkali metal or alkaline earth metal halide or ammonium salt of 1 to 10% by weight of the raw material may be previously added and mixed as a flux to the phosphor raw material mixture. .
These phosphor raw material mixtures are filled in a heat-resistant container such as an alumina crucible and fired in air or in an inert gas atmosphere. In the phosphor raw material, when the Ln ′ element of (4) is Tb, Pr or the like, it is preferable to fire in an inert gas in a reducing atmosphere containing a small amount of hydrogen gas in the range of 1 to 5%. . In addition, the said phosphor raw material mixture may be previously pressure-molded into a pellet form or the like, and the pellet may be fired.
[0015]
Although the firing temperature and time vary depending on the amount of the raw material, it may be fired at a temperature of 700 to 1600 ° C. for 2 to 50 hours, preferably at 1000 to 1400 ° C. for 5 to 30 hours. The number of times of firing may be one, but the emission brightness can be increased by sequentially repeating the steps of firing, cooling, and grinding a plurality of times by sequentially raising the firing temperature.
The fired product is cooled, crushed, washed with water, dried, and sieved to obtain the phosphor of the present invention.
[0016]
The amount (x value) of the activator element Ln ′ is 3 × 10 −2 ≦ x ≦ 1, more preferably 5 × 10 −2 ≦ x ≦ 9 × 10 −1 in terms of light emission luminance of the obtained phosphor. It is good to do.
In the phosphor of the present invention, surprisingly, even if the amount (x value) of the activating element Ln ′ is larger than the amount of the rare earth element Ln constituting the matrix, like the conventionally known similar phosphors, When the concentration of the activator is increased, there is a feature that no rapid decrease in emission intensity due to concentration quenching is observed.
[0017]
1 and 2 are graphs showing X-ray diffraction patterns obtained with an X-ray diffractometer for the SrLa 0.2 Tb 0.8 Ga 3 O 7 phosphor and the CaLa 0.1 Eu 0.9 Ga 3 0 7 phosphor of the present invention. From FIG. 1 and FIG. 2, it was confirmed that the crystal structure is composed of a single phase of a compound having a melilite structure. In addition to these, many of the compositions of the phosphor of the present invention exhibit X-ray diffraction patterns as exemplified in FIGS.
[0018]
FIG. 3 shows an emission spectrum when the SrLa 0.2 Tb 0.8 Ga 3 O 7 phosphor of the present invention is excited with ultraviolet light having a wavelength of 254 nm, and shows green light emission.
Further, FIG. 4 is a emission spectrum when excited with CaLa 0.1 Eu 0.9 Ga 3 0 7 phosphor of the present invention at a wavelength 360nm UV, exhibits red light emission.
[0019]
In the phosphor of the present invention, Ba, Mg or Zn may be used instead of Sr and Ca as the element M constituting the matrix, and Y and Gd may be substituted for La as the element Ln constituting the matrix. Even when Lu is used, when the activator element Ln ′ is Tb, green light emission similar to FIG. 3 is exhibited, and when the activator element Ln ′ is Eu, similar to FIG. It was confirmed that red light was emitted.
Furthermore, when Tm, Pr, Sm, Dy, Ho or Er was used as the activator element Ln ′, a phosphor exhibiting a light emission color specific to the activator element was obtained.
[0020]
FIG. 5 shows the SrLa 0.2 Tb 0.8 Ga 3 O 7 phosphor illustrated in FIG. 1 by changing the concentration (x value) of Tb, which is an activator (La concentration is also changed at the same time). It is a graph which shows the activator density | concentration dependence of the fluorescent substance emitted intensity which prepared and measured and plotted the luminous intensity (luminance) of the fluorescent substance when each was excited with the ultraviolet-ray of wavelength 254nm.
[0021]
In addition, this phosphor may emit light even when excited by vacuum ultraviolet light having a wavelength of 146 nm, and the activator concentration dependency (not shown) of the light emission intensity at that time is the activation of the phosphor emission intensity by ultraviolet excitation at 254 nm. It has been confirmed that the same tendency as in FIG. 5 showing the agent concentration dependency is shown.
[0022]
FIG. 6 shows the preparation of a plurality of phosphors in which the concentration (x value) of Eu as an activator was changed (La concentration was changed at the same time) for the CaLa 0.1 Eu 0.9 Ga 3 0 7 phosphor illustrated in FIG. 2 is a graph showing the activator concentration dependence of the phosphor emission intensity, plotted by measuring the emission intensity (luminance) when excited with ultraviolet rays having a wavelength of 360 nm.
[0023]
As can be seen from FIGS. 5 and 6, when the Tb concentration (x value) and Eu (x value) concentration are each greater than about 3 × 10 −2 , the emission luminance of the rare earth composite oxide phosphor of the present invention is remarkably improved. However, when the x value approaches 1, the emission luminance tends to decrease.
In addition, the rare earth oxide phosphor obtained as described above does not change significantly in composition and emission intensity even when repeatedly irradiated with electromagnetic waves such as ultraviolet rays, electron beams, and X-rays. It was stable.
[0024]
【Example】
Example 1
SrCO 3 73.8 g
La 2 O 3 16.3 g
74.8 g of Tb 4 O 7
Ga 2 O 3 140.6g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a gas atmosphere type electric furnace. Firing was performed at 1100 ° C. for 10 hours in an atmosphere of argon (Ar) gas containing 5% hydrogen (H 2 ). The fired product was pulverized and sieved to obtain a phosphor having a composition of SrLa 0.2 Tb 0.8 Ga 3 O 7 .
[0025]
The phosphor composition was confirmed from the X-ray diffraction diagram obtained by the X-ray diffractometer and the result of chemical analysis (the same applies to the following examples). The X-ray diffraction diagram of the obtained phosphor is as shown in FIG. 1, and the emission spectrum when this phosphor is excited by ultraviolet light of 254 nm is as shown in FIG.
This phosphor exhibited green light emission in the electron beam excitation and the X-ray excitation as in the case of excitation with ultraviolet rays.
[0026]
(Example 2)
CaCO 3 50.1g
La 2 O 3 8.2g
Eu 2 O 3 79.2 g
Ga 2 O 3 140.6g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a high-temperature electric furnace. Firing was performed in air at 1400 ° C. for 8 hours. The calcined product was pulverized, washed with pure water, after dehydration and dried to give the CaLa 0.1 Eu 0.9 Ga 3 0 7 phosphor was sieved.
[0027]
The X-ray diffraction diagram of the phosphor thus obtained is as shown in FIG. 2, and the emission spectrum when the phosphor is excited by ultraviolet rays of 360 nm is as shown in FIG. .
This phosphor exhibited red light emission in the electron beam excitation and X-ray excitation as in the case of excitation with ultraviolet rays.
[0028]
Example 3
SrCO 3 73.8 g
La 2 O 3 77.4 g
Tm 2 O 3 4.8 g
Ga 2 O 3 140.6g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a high-temperature electric furnace. Firing was performed in air at 1300 ° C. for 10 hours. This fired product was pulverized, washed with pure water, dehydrated, dried and sieved to obtain a SrLa 0.95 Tm 0.05 Ga 3 O 7 phosphor.
[0029]
The emission spectrum when this phosphor was excited by ultraviolet rays of 360 nm was as shown in FIG. 7, and emitted blue light.
This phosphor exhibited blue light emission as in the case of excitation with ultraviolet rays in electron beam excitation and X-ray excitation.
[0030]
Example 4
BaCO 3 98.7 g
Y 2 O 3 50.8g
Sm 2 O 3 8.7 g
Ga 2 O 3 140.6g
NH 4 F (flux) 10.0 g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a high-temperature electric furnace. Firing was performed in air at 1400 ° C. for 15 hours. This fired product was pulverized, washed with pure water, dehydrated, dried and sieved to obtain a BaY 0.9 Sm 0.1 Ga 3 O 7 phosphor.
This phosphor exhibited orange-red emission by ultraviolet light, electron beam excitation and X-ray excitation.
[0031]
(Example 5)
CaCO 3 50.1g
Lu 2 O 3 49.7g
Dy 2 O 3 46.7g
Ga 2 O 3 140.6g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a high-temperature electric furnace. Firing was performed in air at 1400 ° C. for 12 hours. The fired product was pulverized, washed with pure water, dehydrated, dried, and sieved to obtain a CaLu 0.5 Dy 0.5 Ga 3 O 7 phosphor.
Got.
This phosphor exhibited yellow emission by ultraviolet rays, electron beam excitation and X-ray excitation.
[0032]
(Example 6)
CaCO 3 50.1g
Y 2 O 3 50.8g
Pr 6 O 11 8.4 g
Ga 2 O 3 140.6g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a high-temperature electric furnace. Firing was performed at 1300 ° C. for 10 hours in a nitrogen gas stream containing 2% hydrogen. The fired product was pulverized, washed with pure water, dehydrated, dried, and sieved to obtain a CaY 0.9 Pr 0.1 Ga 3 O 7 phosphor.
This phosphor exhibited green light emission by ultraviolet light, electron beam excitation and X-ray excitation.
[0033]
(Example 7)
ZnO 40.7g
Gd 2 O 3 72.5 g
Ho 2 O 3 18.9g
Ga 2 O 3 140.6g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a high-temperature electric furnace. Firing was performed in air at 1200 ° C. for 10 hours. The fired product was pulverized, washed with pure water, dehydrated, dried, and sieved to obtain a ZnGd 0.8 Ho 0.2 Ga 3 O 7 phosphor.
This phosphor exhibited yellowish green light emission by ultraviolet light, electron beam excitation and X-ray excitation.
[0034]
(Example 8)
Sr (NO 3 ) 2 105.8 g
La 2 O 3 48.8g
Tb 4 O 7 37.4 g
Al 2 O 3 76.5 g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a high-temperature electric furnace. Firing was performed at 1300 ° C. for 10 hours in an argon gas stream containing 5% hydrogen. The fired product was pulverized, washed with pure water, dehydrated, dried and sieved to obtain a SrLa 0.6 Tb 0.4 Al 3 O 7 phosphor.
This phosphor exhibited green light emission by ultraviolet light, electron beam excitation and X-ray excitation.
[0035]
Example 9
CaCO 3 50.1g
Y 2 O 3 28.2g
Eu 2 O 3 44.0 g
Ga 2 O 3 70.3g
In 2 O 3 85.4 g
Each phosphor raw material was weighed and sufficiently mixed with a dry mixer. This mixture was tightly filled into an alumina heat-resistant container and fired in a high-temperature electric furnace. Firing was performed in air at 1300 ° C. for 8 hours. The fired product was pulverized, washed with pure water, dehydrated, dried, and sieved to obtain a Ca (Y 0.5 Eu 0.5 ) (Ga 0.5 In 0.5 ) 3 O 7 phosphor.
This phosphor exhibited red emission by ultraviolet light, electron beam excitation and X-ray excitation.
[0036]
【The invention's effect】
By adopting the above configuration, the present invention is specific to the activator depending on the type of rare earth element which is an activator added when excited by electromagnetic waves such as ultraviolet rays, electron beams, and X-rays, particularly ultraviolet rays. This makes it possible to provide a novel oxide phosphor that emits light from the near ultraviolet region to the visible region.
[Brief description of the drawings]
1 is an X-ray diffraction diagram of the phosphor obtained in Example 1. FIG.
2 is an X-ray diffraction diagram of the phosphor obtained in Example 2. FIG.
3 is a graph of the emission spectrum of the phosphor obtained in Example 1. FIG.
4 is a graph of an emission spectrum of the phosphor obtained in Example 2. FIG.
5 is a graph showing changes in the emission intensity of the phosphor when the Tb concentration (x value) of the activator is changed in the phosphor of Example 1. FIG.
6 is a graph showing changes in the emission intensity of the phosphor when the Eu concentration (x value) of the activator is changed in the phosphor of Example 2. FIG.
7 is a graph of an emission spectrum of the phosphor obtained in Example 3. FIG.

Claims (4)

下記組成式で表される希土類複合酸化物蛍光体。
M(Ln1-x ,Ln’x )R3 7
(式中、MはCa、Sr、Ba、Mg及びZnの群から選択された一種以上の2価金属元素であり、LnはLa、Y、Gd及びLuの群から選択された一種以上の希土類元素であり、Ln’はTb、Tm、Eu、Sm、Pr、Dy、Ho及びErの群から選択された一種以上のランタニド族元素であり、RはGa、Al及びInの群から選択された一種以上の IIIB族系元素をそれぞれ示し、xは3×10-2≦x≦1の範囲の数である。)
A rare earth composite oxide phosphor represented by the following composition formula.
M (Ln 1-x , Ln ′ x ) R 3 O 7
Wherein M is one or more divalent metal elements selected from the group of Ca, Sr, Ba, Mg and Zn, and Ln is one or more rare earth elements selected from the group of La, Y, Gd and Lu. Ln ′ is one or more lanthanide group elements selected from the group of Tb, Tm, Eu, Sm, Pr, Dy, Ho and Er, and R is selected from the group of Ga, Al and In Each represents one or more group IIIB elements, and x is a number in the range of 3 × 10 −2 ≦ x ≦ 1.)
上記組成式の中のx値が5×10-2≦x≦9×10-1の範囲の数である請求項1記載の希土類複合酸化物蛍光体。2. The rare earth composite oxide phosphor according to claim 1, wherein the x value in the composition formula is a number in the range of 5 × 10 −2 ≦ x ≦ 9 × 10 −1 . 上記組成式の中のMがCa、Sr及びBaの群から選択された一種以上の2価金属元素であり、Ln’はTb、Tm及びEuの群から選択された一種以上のランタニド族元素であり、RはGa及び/又はAlである請求項1又は2記載の希土類複合酸化物蛍光体。M in the above composition formula is one or more divalent metal elements selected from the group of Ca, Sr and Ba, and Ln ′ is one or more lanthanide group elements selected from the group of Tb, Tm and Eu. The rare earth composite oxide phosphor according to claim 1, wherein R is Ga and / or Al. 上記組成式の中のLn’がTb及び/又はTmである請求項1〜3項のいずれか1項に記載の希土類複合酸化物蛍光体。4. The rare earth composite oxide phosphor according to claim 1, wherein Ln ′ in the composition formula is Tb and / or Tm. 5.
JP20325198A 1998-07-17 1998-07-17 Rare earth complex oxide phosphor Expired - Fee Related JP3826210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20325198A JP3826210B2 (en) 1998-07-17 1998-07-17 Rare earth complex oxide phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20325198A JP3826210B2 (en) 1998-07-17 1998-07-17 Rare earth complex oxide phosphor

Publications (2)

Publication Number Publication Date
JP2000034479A JP2000034479A (en) 2000-02-02
JP3826210B2 true JP3826210B2 (en) 2006-09-27

Family

ID=16470939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20325198A Expired - Fee Related JP3826210B2 (en) 1998-07-17 1998-07-17 Rare earth complex oxide phosphor

Country Status (1)

Country Link
JP (1) JP3826210B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273317B2 (en) * 1999-08-25 2002-04-08 独立行政法人産業技術総合研究所 Stress-stimulated luminescent material and method of manufacturing the same
KR100393046B1 (en) * 2000-12-29 2003-07-31 삼성에스디아이 주식회사 Phosphors
KR100393045B1 (en) * 2000-12-29 2003-07-31 삼성에스디아이 주식회사 Phosphors
KR20030086117A (en) * 2002-05-03 2003-11-07 한국화학연구원 Composition of Tb-activated green phosphor for vacuum ultraviolet excitation
US20060055307A1 (en) * 2003-01-23 2006-03-16 Ryo Yoshimatsu Green light-emitting fluorescent material and fluorescent lamp using same
JP2005064189A (en) * 2003-08-11 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, lighting device and image display device
CN103849394A (en) * 2012-11-29 2014-06-11 海洋王照明科技股份有限公司 Lanthanum gallate luminescent material and preparation method thereof
CN115785955B (en) * 2022-12-09 2024-01-05 山东省科学院新材料研究所 Bi (Bi) 3+ Ion doped full spectrum white light fluorescent material and preparation and application thereof
CN116769485A (en) * 2023-06-19 2023-09-19 北京印刷学院 Rare earth luminescent material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2000034479A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
KR100338860B1 (en) Photostimulable phosphor
KR100760882B1 (en) Fluorescent substances for vacuum ultraviolet radiation excited light-emitting devices
US6190577B1 (en) Indium-substituted aluminate phosphor and method for making the same
JP3826210B2 (en) Rare earth complex oxide phosphor
JPH0625356B2 (en) Light emitting screen and low pressure mercury vapor discharge lamp provided with the same
JP3488602B2 (en) Blue to blue-green luminous aluminum silicate phosphor and method for producing the same
JPH09194833A (en) Photostimulable phosphor
JPH0685313B2 (en) Luminescent aluminate for light-emitting screen and method for producing the same
JP2003105334A (en) Phosphor
JP3883296B2 (en) Luminescent oxide and oxide phosphor with stuffed tridymite structure
JP2000144130A (en) Red light-emitting fluorescent material and luminous screen using the same
JP2000212557A (en) Luminous phosphor
JP3559210B2 (en) Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same
JP2000017257A (en) Fluorescent substance and luminous screen using the same
JP3268760B2 (en) High brightness strontium aluminate phosphor
JP3268761B2 (en) High brightness and long afterglow aluminate phosphor with excellent heat and weather resistance
JP2851006B2 (en) Phosphor
JP2000345154A (en) Red light emitting alterglow photoluminescent phosphor
JP2000034480A (en) Phosphorescent phosphor
JP4219518B2 (en) Europium-activated composite oxide phosphor
JPH09157644A (en) Aluminate fluorescent substance, its production and discharge apparatus using the same fluorescent substance
KR100267510B1 (en) A preparing process of green fluorescent body based zinc silicate
JP3770524B2 (en) Terbium and samarium co-activated alkaline earth metal rare earth oxide phosphors
JPH11286681A (en) Divalent metal titanate phosphor
JPH10279935A (en) Fluorescent substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees