JP2000212557A - Luminous phosphor - Google Patents

Luminous phosphor

Info

Publication number
JP2000212557A
JP2000212557A JP11019817A JP1981799A JP2000212557A JP 2000212557 A JP2000212557 A JP 2000212557A JP 11019817 A JP11019817 A JP 11019817A JP 1981799 A JP1981799 A JP 1981799A JP 2000212557 A JP2000212557 A JP 2000212557A
Authority
JP
Japan
Prior art keywords
afterglow
phosphor
emission
phosphorescent phosphor
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11019817A
Other languages
Japanese (ja)
Inventor
Susumu Uehara
進 上原
Ketsu Fu
杰 傅
Yasuo Ochi
康雄 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP11019817A priority Critical patent/JP2000212557A/en
Publication of JP2000212557A publication Critical patent/JP2000212557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a luminous phosphor activated with bivalent europium, having a specific chemical compositional formula, thus attaining long afterglow time/high afterglow luminance compared to conventional silicate-based luminous phosphors, presenting diversified luminescent colors ranging from blue to yellowish green colors, therefore useful for e.g. night signs. SOLUTION: This luminous phosphor is such one as to be activated with bivalent europium and have a chemical composition of the formula (R is at least one element selected from the group consisting of Ca, Sr and Ba; M is a coactivator, being at least one element selected from the group consisting of Nb, Zr, Bi, Mn, Sn, In, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y; 0.4<=(a)<=0.9; 0.00001<=b<=0.30; 0.25<=c <=1.5; 0.00001<=d<=0.2; 0.00001<=e<=0.2; 0<=x<1.0; 0<=y< 1.0). This luminous phosphor is obtained by the following process: appropriate amounts of respective specified stocks are weighed, mixed together, put into an alumina crucible, and then burned at 950-1,500 deg.C for 1-12 h in a reductive atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は2価のユーロピウム
で賦活され、化学組成式がaRO・(1−a)(Mg
1-xZnx)O・bAl23・c(Si1-yGey)O2
dEu・eM(但し、RはBa,Sr,Caからなる群
から選ばれる少なくとも1種であり、Mは共賦活剤で、
Nb,Zr,Bi,Mn,Sn,In,La,Ce,P
r,Nd,Sm,Gd,Tb,Dy,Ho,Er,T
m,Yb,Lu,Sc、Yからなる群から選ばれる少な
くとも1種である)で示され、長残光時間・高残光輝度
で、発光波長の多様な蓄光性蛍光体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is activated by divalent europium and has a chemical composition formula of aRO. (1-a) (Mg
1-x Zn x ) O.bAl 2 O 3 .c (Si 1-y Ge y ) O 2.
dEu · eM (where R is at least one member selected from the group consisting of Ba, Sr, and Ca, M is a coactivator,
Nb, Zr, Bi, Mn, Sn, In, La, Ce, P
r, Nd, Sm, Gd, Tb, Dy, Ho, Er, T
at least one member selected from the group consisting of m, Yb, Lu, Sc, and Y), and has a long afterglow time, a high afterglow luminance, and various emission wavelengths.

【0002】[0002]

【従来の技術】蛍光は物質が外部からの刺激(励起)に
よって可視域付近の光を発する現象であり、蛍光灯・放
電ランプ・CRT(Cathode Ray Tube)いわゆるブラウン
管等の発光がこれである。蛍光を発する物質を蛍光体と
いうが、励起停止後に目に感じられる程度の時間(0.
1秒程度)の蛍光が続く場合、これを燐光と呼ぶ。ま
た、燐光の続く時間、すなわち残光時間が室温で数時間
に及ぶような長残光性を持つ蛍光体を、蓄光性蛍光体と
呼んでいる。
2. Description of the Related Art Fluorescence is a phenomenon in which a substance emits light in the vicinity of the visible region due to an external stimulus (excitation), such as light emitted from a fluorescent lamp, discharge lamp, CRT (Cathode Ray Tube), a so-called cathode ray tube, or the like. A substance that emits fluorescence is referred to as a phosphor.
When the fluorescence continues for about 1 second), this is called phosphorescence. Further, a phosphor having a long afterglow such that phosphorescence lasts for several hours at room temperature is called a phosphorescent phosphor.

【0003】蓄光性蛍光体として実用化され、現在主流
となっているのはZnS:Cuに代表される硫化物系蓄
光性蛍光体である。ZnS:Cu硫化物蓄光性蛍光体は
数十年前から実用化されているが、残光時間はせいぜい
3時間程度で短いという問題点がある。また、この蓄光
性蛍光体は日光に含まれる紫外線ならびに、大気中に含
まれる水分により、ZnS+H2O→Zn+H2Sなる分
解反応が生じて蓄光体自体が黒化し、短期間で残光機能
が著しく低下するという致命的な欠点を持っている。更
には、短い残光時間を補うために、放射性物質を含有さ
せる場合もあり、人体や環境に対して有害であるという
短所もあった。そのため、この種の蓄光性蛍光体は主に
夜光時計や屋内の夜間表示等、非常に限られた用途にし
か使用されていなかった。
[0003] A sulfide-based phosphorescent phosphor represented by ZnS: Cu, which has been put into practical use as a phosphorescent phosphor and is currently the mainstream, is used. The ZnS: Cu sulfide phosphorescent phosphor has been in practical use for several decades, but has a problem that the afterglow time is as short as about 3 hours at most. Further, the phosphorescent phosphor of the ultraviolet contained in sunlight and, due to moisture contained in the atmosphere, phosphorescent article itself is blackened ZnS + H 2 O → Zn + H 2 S becomes decomposition reaction occurs, the afterglow function in a short period of time It has the fatal drawback of being significantly reduced. Furthermore, in order to make up for the short afterglow time, a radioactive substance may be contained in some cases, which has a disadvantage that it is harmful to the human body and the environment. For this reason, this kind of phosphorescent phosphor has been mainly used for very limited applications such as luminous clocks and indoor nighttime displays.

【0004】最近、珪酸塩を主体にした新規な蓄光性蛍
光体(特開平9−194833号、特開平9−2416
31号)が開発された。この蓄光性蛍光体は従来の硫化
物系と比較して、高残光輝度で残光時間が長く、酸化物
であるために化学的耐久性にも優れるという特性を持ち
合わせている。このため、既存の夜光時計や屋内の夜間
表示等の用途に加えて、防災標識・位置認識用危険防止
の表示・装飾品等の幅広い用途が期待できる。
Recently, new phosphorescent phosphors mainly composed of silicates have been disclosed (JP-A-9-194833, JP-A-9-2416).
No. 31) was developed. Compared with the conventional sulfide-based phosphor, this phosphorescent phosphor has such characteristics that it has high afterglow luminance, a long afterglow time, and is excellent in chemical durability because it is an oxide. Therefore, in addition to the existing applications such as luminous clocks and indoor nighttime display, a wide range of applications such as disaster prevention signs, danger prevention displays for position recognition, and decorative articles can be expected.

【0005】[0005]

【発明が解決しようとする課題】このように蓄光性蛍光
体の応用分野が拡大するにつれて、要望に応じた特性の
改善が必要である。その中でも残光輝度と残光時間のさ
らなる向上が強く望まれている。
As the field of application of the phosphorescent phosphor has been expanded, it is necessary to improve the characteristics as required. Among them, further improvement in afterglow luminance and afterglow time is strongly desired.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、2価のユーロピウムで賦活され、その化学
組成式がaRO・(1−a)(Mg1-xZnx)O・bA
23・c(Si1-yGey)O2・dEu・eM(但
し、RはBa,Sr,Caからなる群から選ばれる少な
くとも1種であり、Mは共賦活剤で、Nb,Zr,B
i,Mn,Sn,In,La,Ce,Pr,Nd,S
m,Gd,Tb,Dy,Ho,Er,Tm,Yb,L
u,Sc,Yからなる群から選ばれる少なくとも1種で
ある)で示される蓄光性蛍光体を提供しようとするもの
である。
The present invention SUMMARY OF] In order to solve the above problems, activated with divalent europium, the chemical composition formula aRO · (1-a) ( Mg 1-x Zn x) O · bA
l 2 O 3 · c (Si 1 -y Ge y ) O 2 · dEu · eM (where R is at least one member selected from the group consisting of Ba, Sr and Ca, M is a coactivator and Nb , Zr, B
i, Mn, Sn, In, La, Ce, Pr, Nd, S
m, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
at least one member selected from the group consisting of u, Sc, and Y).

【0007】前記珪酸塩蓄光性蛍光体(特開平9−19
4833号)の主体となる結晶相はオケルマナイト(C
2Mg(Si27))と呼ばれる鉱物で、この結晶構
造はSi27の双ピラミッドとMgO4四面体がO共有
で(Si2MgO7)層を造り、層間にCaが8配位で入
っている。この層間のCa位置にはSr,Baが固溶で
き、オケルマナイトと同形の構造となる。一方、ゲーレ
ナイト(Ca2Al(AlSiO7))と呼ばれる鉱物が
一般に知られている。この結晶構造は、(Al,Si)
27の双ピラミッドとAlO4四面体がO共有で(Si
Al27)層を造り、層間にCaが8配位で入ってい
る。この層間のCa位置にもSr,Baが固溶でき、ゲ
ーレナイトと同形の構造となる。これら2つの結晶相を
端成分として、Alが連続的に固溶した結晶構造をメリ
ライトという。すなわち、(Al,Si)27の双ピラ
ミッドと(Mg,Al)O4四面体がO共有で((S
i,Al,Mg)37)層を造り、層間にCa,Sr,
Baが8配位で入る。我々は、このメリライト型構造を
母結晶とし、2価のユーロピウムを賦活剤とすることで
課題を解決することが可能な蓄光性蛍光体を見出し、本
発明を完成するに至った。
The silicate phosphorescent phosphor (JP-A-9-19)
No. 4833) is mainly composed of okermanite (C
mineral called a 2 Mg (Si 2 O 7 )), the crystal structure is made a double pyramid and MgO 4 tetrahedra with O share (Si 2 MgO 7) layer of Si 2 O 7, Ca between layers 8 It is in the configuration. Sr and Ba can form a solid solution at the Ca position between the layers, and have the same structure as that of akermanite. On the other hand, a mineral called gehlenite (Ca 2 Al (AlSiO 7 )) is generally known. This crystal structure is (Al, Si)
The two pyramids of 2 O 7 and the AlO 4 tetrahedron share O (Si
Al 2 O 7) layer structure, Ca is contained in 8 coordination between the layers. Sr and Ba can also form a solid solution at the Ca position between the layers, and have the same structure as that of gehlenite. A crystal structure in which Al is continuously dissolved as a solid with these two crystal phases as end components is called melilite. That is, the bipyramid of (Al, Si) 2 O 7 and the (Mg, Al) O 4 tetrahedron share O ((S
i, Al, Mg) 3 O 7 ) layers, and Ca, Sr,
Ba enters in 8-coordination. We have found a phosphorescent phosphor that can solve the problem by using this melilite-type structure as a mother crystal and divalent europium as an activator, and have completed the present invention.

【0008】すなわち、請求項1に記載の蓄光性蛍光体
は、2価のユーロピウムで賦活され、その化学組成式が
aRO・(1−a)(Mg1-xZnx)O・bAl23
c(Si1-yGey)O2・dEu・eM(但し、RはB
a,Sr,Caからなる群から選ばれる少なくとも1種
であり、Mは共賦活剤で、Nb,Zr,Bi,Mn,S
n,In,La,Ce,Pr,Nd,Sm,Gd,T
b,Dy,Ho,Er,Tm,Yb,Lu,Sc,Yか
らなる群から選ばれる少なくとも1種である)で示さ
れ、a,b,c,d,e,x,yはそれぞれ 0.4≦a≦0.9, 0.00001≦b<0.30, 0.25≦c≦1.5, 0.00001≦d≦0.2, 0.00001≦e≦0.2, 0≦x<1.0, 0≦y<1.0の範囲にあることを特徴とする蓄光性蛍
光体である。
That is, the phosphorescent phosphor according to claim 1 is activated by divalent europium, and its chemical composition is aRO · (1-a) (Mg 1-x Zn x ) O · bAl 2 O 3.
c (Si 1-y Ge y ) O 2 .dEu.eM (where R is B
a, Sr, and Ca are at least one selected from the group consisting of M, M is a co-activator, and Nb, Zr, Bi, Mn, S
n, In, La, Ce, Pr, Nd, Sm, Gd, T
b, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y). a, b, c, d, e, x, and y are each 0. 4 ≦ a ≦ 0.9, 0.00001 ≦ b <0.30, 0.25 ≦ c ≦ 1.5, 0.00001 ≦ d ≦ 0.2, 0.00001 ≦ e ≦ 0.2, 0 ≦ A phosphorescent phosphor characterized by being in the range of x <1.0, 0 ≦ y <1.0.

【0009】本発明の蓄光性蛍光体において、aはRO
(但し、RはBa,Sr,Caからなる群から選ばれる
少なくとも1種である)の組成比を、(1−a)はMg
Oおよび/またはZnOの組成比を、bはAl23の組
成比を、cはSiO2および/またはGeO2の組成比を
示すものである。a,b,cの範囲が、0.4≦a≦
0.9,0.00001≦b<0.30,0.25≦c
≦1.5においてメリライト型構造となり、高残光輝度
・長残光時間の蓄光性蛍光体を得ることができる。Rに
おいてBa,Sr,Caの比を変化させることにより、
青色〜黄緑色の幅広い発光色を有する蓄光性蛍光体とな
る。具体的には、Sr単独では青色発光であり、Srを
Caで徐々に置換することで発光波長は長波長側へシフ
トし、SrをBaで徐々に置換することで発光波長は短
波長側へシフトする。また、Al 23の組成比を変化さ
せることによっても発光波長をシフトさせることがで
き、所望の発光色を有する蓄光性蛍光体を得ることがで
きる。
In the phosphorescent phosphor of the present invention, a is RO
(Where R is selected from the group consisting of Ba, Sr, and Ca
(At least one type), and (1-a) is Mg
The composition ratio of O and / or ZnO, b is AlTwoOThreePair of
Where c is SiOTwoAnd / or GeOTwoThe composition ratio of
It is shown. When the range of a, b, c is 0.4 ≦ a ≦
0.9, 0.00001 ≦ b <0.30, 0.25 ≦ c
≦ 1.5, Merilite type structure, high afterglow brightness
A phosphorescent phosphor having a long afterglow time can be obtained. To R
By changing the ratio of Ba, Sr, and Ca,
Luminescent phosphor with a wide range of emission colors from blue to yellow-green
You. Specifically, Sr alone emits blue light, and Sr
By gradually substituting Ca, the emission wavelength shifts to the longer wavelength side.
The emission wavelength is shortened by gradually replacing Sr with Ba.
Shift to the wavelength side. Also, Al TwoOThreeThe composition ratio of
Can also shift the emission wavelength.
The phosphorescent phosphor having a desired emission color can be obtained.
Wear.

【0010】dは賦活剤の濃度を示すもので、0.00
001≦d≦0.2の範囲でなければならない。d<
0.00001では光吸収が悪くなり十分な残光輝度が
得られず、逆にd>0.2では濃度消光を起こし、残光
輝度が低下する。好ましくは、0.00005≦d≦
0.1、特に好ましくは、0.0001≦d≦0.05
の範囲である。
D indicates the concentration of the activator and is 0.00
001 ≦ d ≦ 0.2. d <
At 0.00001, light absorption becomes poor and sufficient afterglow luminance cannot be obtained. Conversely, when d> 0.2, concentration quenching occurs, and the afterglow luminance decreases. Preferably, 0.00005 ≦ d ≦
0.1, particularly preferably 0.0001 ≦ d ≦ 0.05
Range.

【0011】eは共賦活剤の濃度を示すもので、0.0
0001≦e≦0.2の範囲でなければならない。e<
0.00001では残光時間と残光輝度を増大させる効
果が乏しく、逆にe>0.2では残光輝度が次第に低下
する。好ましくは、0.0001≦e≦0.15、特に
好ましくは0.002≦e≦0.10の範囲である。
E represents the concentration of the co-activator, and is 0.0
0001 ≦ e ≦ 0.2. e <
At 0.00001, the effect of increasing the afterglow time and the afterglow luminance is poor. Conversely, when e> 0.2, the afterglow luminance gradually decreases. It is preferably in the range of 0.0001 ≦ e ≦ 0.15, particularly preferably in the range of 0.002 ≦ e ≦ 0.10.

【0012】xはMgをZnで置換するときの置換率を
示すもので、Mgの一部をZnに置換することによって
も、長残光時間・高残光輝度を実現できる。尚、Mgは
必須成分でZnによる置換は部分置換であるが、より良
好な前記特性を得ようとするならば、0≦x≦0.5の
範囲が好ましく、特に好ましくは0≦x≦0.2の範囲
である。
X represents the substitution rate when Mg is replaced with Zn. By replacing a part of Mg with Zn, a long afterglow time and high afterglow luminance can be realized. Mg is an essential component and the substitution with Zn is a partial substitution. However, in order to obtain better characteristics, the range of 0 ≦ x ≦ 0.5 is preferable, and the range of 0 ≦ x ≦ 0 is particularly preferable. .2.

【0013】yはSiをGeで置換するときの置換率を
示すもので、Siの一部をGeに置換することによって
も、長残光時間・高残光輝度を実現できる。尚、Siは
必須成分でGeによる置換は部分置換であるが、より良
好な前記特性を得ようとするならば、0≦y≦0.5の
範囲が好ましく、特に好ましくは0≦y≦0.2の範囲
である。
Y indicates the substitution rate when Si is replaced with Ge, and long afterglow time and high afterglow luminance can be realized by partially replacing Si with Ge. Note that Si is an essential component and the substitution with Ge is a partial substitution. However, in order to obtain better characteristics, the range of 0 ≦ y ≦ 0.5 is preferable, and the range of 0 ≦ y ≦ 0 is particularly preferable. .2.

【0014】また、本発明の蓄光性蛍光体を合成する際
に、フラックスとして硼酸,リン酸二水素アンモニウム
などのリン酸塩などを添加することができる。その最適
な添加量はmol%で0.05〜8%の範囲である。
Further, when synthesizing the phosphorescent phosphor of the present invention, a phosphate such as boric acid or ammonium dihydrogen phosphate can be added as a flux. The optimum addition amount is in the range of 0.05 to 8% in mol%.

【0015】[0015]

【発明の実施の形態】本発明の蓄光性蛍光体の原料は、
酸化物、炭酸塩、硝酸塩、水酸化物などを使用すること
ができる。これらの原料を所定量秤量しボールミルなど
で十分に混合した後、アルミナるつぼに入れて、水素ガ
スなどの還元雰囲気中、950〜1500℃で1〜12
時間焼成する。場合によっては、得られた焼成物を粉砕
し再焼成することもでき、これを2回以上繰り返すこと
もできる。その場合には、途中の焼成は酸化雰囲気でも
良く、最終の焼成において還元雰囲気であればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The raw material of the phosphorescent phosphor of the present invention comprises:
Oxides, carbonates, nitrates, hydroxides and the like can be used. After weighing these raw materials in a predetermined amount and sufficiently mixing them in a ball mill or the like, the raw materials are placed in an alumina crucible and placed in a reducing atmosphere such as hydrogen gas at 950 to 1500 ° C. for 1 to 12 hours.
Bake for hours. In some cases, the obtained fired product can be pulverized and refired, and this can be repeated two or more times. In that case, the baking in the middle may be in an oxidizing atmosphere, and may be in a reducing atmosphere in the final baking.

【0016】セラミックス粉体の合成方法は、ゾルゲル
法、湿式合成法(共沈法)などが知られている。本発明
の蓄光性蛍光体もこれらの方法で合成することが可能で
あり、本発明の請求項に記載された組成範囲内であれば
一般的なセラミックス粉体の合成法により作ることがで
き、上述した固相反応法に限定されるものではない。以
下、本発明を具体的な実施例により説明するが、本発明
はこれらの実施例にのみ限定されるものではない。
Known methods for synthesizing ceramic powders include a sol-gel method and a wet synthesis method (coprecipitation method). The phosphorescent phosphor of the present invention can also be synthesized by these methods, and can be produced by a general method of synthesizing a ceramic powder as long as it is within the composition range described in the claims of the present invention. It is not limited to the solid-phase reaction method described above. Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples.

【0017】[0017]

【実施例】【Example】

【実施例1】 SrCO3 6.194g MgO 0.761g Al23 0.214g SiO2 2.395g H3BO3 0.259g Eu23 0.015g Tm23 0.162g 上記の配合組成の原料を十分混合し、アルミナるつぼに
入れて97%N2+3%H2の混合ガス気流中で1350
℃で3時間焼成し、化学組成式0.690SrO・0.
310MgO・0.0345Al23・0.656Si
2・0.0345B23・0.00138Eu・0.
0138Tmとなる蓄光性蛍光体を得た。
Example 1 SrCO 3 6.194 g MgO 0.761 g Al 2 O 3 0.214 g SiO 2 2.395 g H 3 BO 3 0.259 g Eu 2 O 3 0.015 g Tm 2 O 3 0.162 g The raw materials of the composition were thoroughly mixed, put in an alumina crucible, and mixed in a mixed gas stream of 97% N 2 + 3% H 2 at 1350.
C. for 3 hours at a chemical composition of 0.690 SrO.
310MgO · 0.0345Al 2 O 3 · 0.656Si
O 2 · 0.0345B 2 O 3 · 0.00138Eu · 0.
A phosphorescent phosphor having 0138 Tm was obtained.

【0018】この蓄光性蛍光体を蛍光灯の光で励起し、
照射停止1分後における発光スペクトルを図1に示す。
測定は、分光蛍光光度計を用いて行った。発光ピーク波
長は480nm付近にあり、目視で青色の発光が観察さ
れた。また、発光波長480nmにおいて測定した励起
スペクトルを図2に示す。このスペクトルから、励起波
長が可視域まで広がっており、太陽光や蛍光灯などの光
で容易に励起されることが分かる。
This phosphorescent phosphor is excited by the light of a fluorescent lamp,
FIG. 1 shows the emission spectrum one minute after the irradiation was stopped.
The measurement was performed using a spectrofluorometer. The emission peak wavelength was around 480 nm, and blue light emission was visually observed. FIG. 2 shows an excitation spectrum measured at an emission wavelength of 480 nm. From this spectrum, it can be seen that the excitation wavelength extends to the visible region and is easily excited by light such as sunlight or a fluorescent lamp.

【0019】実施例1および比較例Aの蓄光性蛍光体を
蛍光灯を用いて200lxで20分間励起し、励起停止
直後からの残光輝度の経時変化を図3に示す。測定は輝
度計(LS−100,ミノルタ株式会社)を用いて行っ
た。この図より、実施例1の蓄光性蛍光体は比較例Aよ
りも高輝度で残光時間が長いことが分かる。なお、比較
例Aはオケルマイト組成の蓄光性蛍光体である。
The phosphorescent phosphors of Example 1 and Comparative Example A were excited with a fluorescent lamp at 200 lx for 20 minutes, and the change with time of the afterglow luminance immediately after the excitation was stopped is shown in FIG. The measurement was performed using a luminance meter (LS-100, Minolta Co., Ltd.). From this figure, it can be seen that the phosphorescent phosphor of Example 1 has higher luminance and longer afterglow time than Comparative Example A. Comparative Example A is a phosphorescent phosphor having an okermite composition.

【0020】実施例1と同様の発光色を示す実施例2〜
5と比較例Aを、実施例1と同様の方法で作製した。こ
れらの組成を表1に示す。組成式は各実施例について2
通り示しており、上段が化学組成式、下段が結晶構造と
対応した形で書かれている。各々の蓄光性蛍光体に対し
て蛍光灯を用いて200lxで20分間励起し、励起停
止直後からの残光輝度を輝度計で測定した。表1に示し
た相対残光輝度は、励起停止10分後の残光輝度におい
て、比較例Aの残光輝度を100として表した相対値で
ある。
Examples 2 to 2 exhibiting the same luminescent color as in Example 1
5 and Comparative Example A were produced in the same manner as in Example 1. Table 1 shows their compositions. The composition formula is 2 for each example.
The upper row is written in a form corresponding to the chemical composition formula, and the lower row is written in a form corresponding to the crystal structure. Each phosphorescent phosphor was excited at 200 lx for 20 minutes using a fluorescent lamp, and the afterglow luminance immediately after the excitation was stopped was measured with a luminance meter. The relative afterglow luminance shown in Table 1 is a relative value when the afterglow luminance of Comparative Example A is set to 100 in the afterglow luminance after 10 minutes from the stop of the excitation.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例5および比較例Aについて、X線回
折測定を行い、得られたスペクトルを図4に示す。この
図から、実施例5の回折角度は比較例Aと明瞭に異なっ
ており、比較例Aとは別の構造、すなわちメリライト型
構造となっていることが分かる。
X-ray diffraction measurement was performed on Example 5 and Comparative Example A, and the obtained spectrum is shown in FIG. From this figure, it can be seen that the diffraction angle of Example 5 is clearly different from that of Comparative Example A, and has a different structure from Comparative Example A, that is, a melilite type structure.

【0023】表1に示した各実施例および比較例Aにお
いて、結晶構造で表した組成式をSr2Mg1-nAl2n
2-n7・0.1B23・0.004Eu・0.040
Tmとして一般化して示し、このnに対して相対残光輝
度をプロットしたものを図5に示す。このnは、オケル
マナイト組成に対するゲーレナイト組成の置換率を表し
ている。この図から明らかなように、オケルマナイト
(n=0)組成の残光輝度よりメリライト組成(0<n
<1)の残光輝度が高くなっており、n=0.2で最大
の3.75倍、n=0.4においてもなお2倍高い残光
輝度になっている。
In each of Examples and Comparative Examples A shown in Table 1, the composition formula represented by the crystal structure was represented by Sr 2 Mg 1-n Al 2n S
i 2-n O 7 , 0.1B 2 O 3 , 0.004 Eu, 0.040
FIG. 5 shows a generalized representation of Tm, and a plot of relative afterglow luminance versus n. This n represents the replacement ratio of the gehlenite composition to the akermanite composition. As is clear from this figure, the afterglow luminance of the akermanite (n = 0) composition indicates that the melilite composition (0 <n
The afterglow luminance of <1) is high, and is 3.75 times the maximum when n = 0.2, and is twice as high even when n = 0.4.

【0024】[0024]

【実施例6】 SrCO3 4.889g CaCO3 1.105g MgO 0.801g Al23 0.225g SiO2 2.521g H3BO3 0.273g Eu23 0.016g Tm23 0.170g 上記の配合組成の原料を十分混合し、アルミナるつぼに
入れて97%N2+3%H2の混合ガス気流中で1300
℃で3時間焼成し、化学組成式0.518SrO・0.
173CaO・0.310MgO・0.0345Al2
3・0.656SiO2・0.0345B23・0.0
0138Eu・0.0138Tmとなる蓄光性蛍光体を
得た。
Example 6 SrCO 3 4.889 g CaCO 3 1.105 g MgO 0.801 g Al 2 O 3 0.225 g SiO 2 2.521 g H 3 BO 3 0.273 g Eu 2 O 3 0.016 g Tm 2 O 30 .170 g The raw materials having the above composition were sufficiently mixed, placed in an alumina crucible, and placed in a mixed gas stream of 97% N 2 + 3% H 2 for 1300 g.
C. for 3 hours at a chemical composition of 0.518SrO.
173CaO.0.310MgO.0.0345Al 2
O 3 · 0.656SiO 2 · 0.0345B 2 O 3 · 0.0
A phosphorescent phosphor having 0138Eu · 0.0138Tm was obtained.

【0025】この蓄光性蛍光体を蛍光灯の光で励起し、
励起停止1分後における発光スペクトルを図6に示す。
測定は、分光蛍光光度計を用いて行った。発光ピーク波
長は490nm付近にあり、目視で青緑色の発光が観察
された。
The phosphorescent phosphor is excited by light from a fluorescent lamp,
FIG. 6 shows the emission spectrum one minute after stopping the excitation.
The measurement was performed using a spectrofluorometer. The emission peak wavelength was around 490 nm, and blue-green emission was visually observed.

【0026】実施例6と同様の方法で実施例7〜14を
作製した。これらの組成を表2に示す。各々の蓄光性蛍
光体に対して蛍光灯を用いて200lxで20分間励起
し、励起停止直後からの残光輝度を輝度計で測定した。
表に示した相対残光輝度は、励起停止10分後の残光輝
度において、比較例Bの残光輝度を100として表した
相対値である。
Examples 7 to 14 were produced in the same manner as in Example 6. Table 2 shows their compositions. Each phosphorescent phosphor was excited at 200 lx for 20 minutes using a fluorescent lamp, and the afterglow luminance immediately after the excitation was stopped was measured with a luminance meter.
The relative afterglow luminance shown in the table is a relative value in which the afterglow luminance of Comparative Example B is set to 100 in the afterglow luminance 10 minutes after the stop of the excitation.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例10,12,14の蓄光性蛍光体に
ついて測定した発光スペクトルをそれぞれ図7,8,9
に示す。測定は蛍光灯で励起し、励起停止1分後の発光
スペクトルを分光蛍光光度計により行った。図7では発
光ピーク波長が505nmにあり、目視で緑色発光が観
察された。図8では発光ピーク波長が520nmにあ
り、目視で黄緑色発光が観察された。図9では発光ピー
ク波長が468nmにあり、目視で濃青色発光が観察さ
れた。このように、SrをCa,Baで置換することに
より、青色から黄緑色までの多様な発光を実現できる。
The emission spectra measured for the phosphorescent phosphors of Examples 10, 12, and 14 are shown in FIGS.
Shown in The measurement was excited by a fluorescent lamp, and the emission spectrum one minute after stopping the excitation was measured by a spectrofluorometer. In FIG. 7, the emission peak wavelength was at 505 nm, and green light emission was visually observed. In FIG. 8, the emission peak wavelength was at 520 nm, and yellow-green emission was visually observed. In FIG. 9, the emission peak wavelength was at 468 nm, and dark blue emission was visually observed. Thus, by replacing Sr with Ca and Ba, it is possible to realize various light emission from blue to yellow-green.

【0029】[0029]

【発明の効果】本発明は上述したように構成され、以下
に記載される効果がある。本発明による蓄光性蛍光体
は、従来の珪酸塩蓄光性蛍光体に比べて長残光時間・高
残光輝度を実現し、青色から黄緑色までの多様な発光色
を有しているため、幅広い用途に提供可能である。
The present invention is configured as described above and has the following effects. The phosphorescent phosphor according to the present invention realizes a long afterglow time and a high persistence luminance as compared with the conventional silicate phosphorescent phosphor, and has various emission colors from blue to yellow-green, It can be provided for a wide range of applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の光励起停止1分後における発光スペ
クトルである。
FIG. 1 is an emission spectrum one minute after stopping light excitation in Example 1.

【図2】実施例1の発光波長480nmにおける励起ス
ペクトルである。
FIG. 2 is an excitation spectrum at an emission wavelength of 480 nm in Example 1.

【図3】実施例1および比較例Aの残光輝度の経時変化
を示したグラフである。
FIG. 3 is a graph showing a change over time in afterglow luminance of Example 1 and Comparative Example A.

【図4】実施例5および比較例AのX線回折図である。FIG. 4 is an X-ray diffraction chart of Example 5 and Comparative Example A.

【図5】Sr2Mg1-nAl2nSi2-n7・0.1B23
・0.004Eu・0.040Tmにおけるnに対して
励起停止10分後の相対残光輝度をプロットしたグラフ
である。
FIG. 5: Sr 2 Mg 1-n Al 2n Si 2-n O 7 · 0.1B 2 O 3
It is the graph which plotted the relative afterglow luminance 10 minutes after stopping excitation with respect to n in 0.004Eu0.040Tm.

【図6】実施例6の光励起停止1分後における発光スペ
クトルである。
FIG. 6 is an emission spectrum one minute after stopping light excitation in Example 6.

【図7】実施例10の光励起停止1分後における発光ス
ペクトルである。
FIG. 7 is an emission spectrum one minute after stopping light excitation in Example 10.

【図8】実施例12の光励起停止1分後における発光ス
ペクトルである。
FIG. 8 is an emission spectrum one minute after stopping light excitation in Example 12.

【図9】実施例14の光励起停止1分後における発光ス
ペクトルである。
FIG. 9 is an emission spectrum one minute after stopping light excitation in Example 14.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越智 康雄 神奈川県相模原市小山1丁目15番30号 株 式会社オハラ内 Fターム(参考) 4H001 CA04 XA08 XA12 XA13 XA14 XA20 XA30 XA32 XA38 XA56 YA21 YA25 YA39 YA40 YA41 YA49 YA50 YA57 YA58 YA59 YA60 YA62 YA63 YA64 YA65 YA66 YA67 YA68 YA69 YA70 YA71 YA83  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuo Ochi 1-15-30 Koyama, Sagamihara-shi, Kanagawa F-term in Ohara Co., Ltd. 4H001 CA04 XA08 XA12 XA13 XA14 XA20 XA30 XA32 XA38 XA56 YA21 YA25 YA39 YA39 YA40 YA41 YA49 YA50 YA57 YA58 YA59 YA60 YA62 YA63 YA64 YA65 YA66 YA67 YA68 YA69 YA70 YA71 YA83

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2価のユーロピウムで賦活され、化学組
成式がaRO・(1−a)(Mg1-xZnx)O・bAl
23・c(Si1-yGey)O2・dEu・eM(但し、
RはBa,Sr,Caからなる群から選ばれる少なくと
も1種であり、Mは共賦活剤で、Nb,Zr,Bi,M
n,Sn,In,La,Ce,Pr,Nd,Sm,G
d,Tb,Dy,Ho,Er,Tm,Yb,Lu,S
c,Yからなる群から選ばれる少なくとも1種である)
で示され、a,b,c,d,e,x,yはそれぞれ 0.4≦a≦0.9, 0.00001≦b<0.30, 0.25≦c≦1.5, 0.00001≦d≦0.2, 0.00001≦e≦0.2, 0≦x<1.0, 0≦y<1.0の範囲にあることを特徴とする蓄光性蛍
光体。
1. A activated with divalent europium, the chemical composition formula aRO · (1-a) ( Mg 1-x Zn x) O · bAl
2 O 3 · c (Si 1 -y Ge y ) O 2 · dEu · eM (however,
R is at least one selected from the group consisting of Ba, Sr and Ca, M is a coactivator, and Nb, Zr, Bi, M
n, Sn, In, La, Ce, Pr, Nd, Sm, G
d, Tb, Dy, Ho, Er, Tm, Yb, Lu, S
at least one member selected from the group consisting of c and Y)
Where a, b, c, d, e, x, and y are 0.4 ≦ a ≦ 0.9, 0.00001 ≦ b <0.30, 0.25 ≦ c ≦ 1.5, 0, respectively. 0.0001 ≦ d ≦ 0.2, 0.00001 ≦ e ≦ 0.2, 0 ≦ x <1.0, 0 ≦ y <1.0.
JP11019817A 1999-01-28 1999-01-28 Luminous phosphor Pending JP2000212557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11019817A JP2000212557A (en) 1999-01-28 1999-01-28 Luminous phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11019817A JP2000212557A (en) 1999-01-28 1999-01-28 Luminous phosphor

Publications (1)

Publication Number Publication Date
JP2000212557A true JP2000212557A (en) 2000-08-02

Family

ID=12009884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11019817A Pending JP2000212557A (en) 1999-01-28 1999-01-28 Luminous phosphor

Country Status (1)

Country Link
JP (1) JP2000212557A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064638A (en) * 1999-08-25 2001-03-13 Agency Of Ind Science & Technol Stress luminescent material and its production
JP2001303039A (en) * 2000-04-18 2001-10-31 Konica Corp Inorganic fluorescent substance and method for producing the same
WO2004087833A1 (en) * 2003-03-14 2004-10-14 Sakai Chemical Industry Co. Ltd. Phosphor and method for producing same
EP1584671A1 (en) * 2004-04-08 2005-10-12 Shin-Etsu Chemical Co., Ltd. Zirconium or hafnium-containing oxides
WO2006004021A1 (en) * 2004-06-30 2006-01-12 Media Com International Co., Ltd. Light-storing compound and method for producing same
WO2007018345A1 (en) * 2005-08-05 2007-02-15 Alti-Electronics Co., Ltd. Yellow phosphor and white light emitting device comprising it
JP2009256555A (en) * 2008-04-21 2009-11-05 National Institute Of Advanced Industrial & Technology Accumulative phosphor and method for producing the same
WO2011078161A1 (en) * 2009-12-25 2011-06-30 株式会社ネモト・ルミマテリアル Fluorescent material for authenticity assessment, and authenticity assessment means
JP2013203784A (en) * 2012-03-27 2013-10-07 Nihon Univ Fluorescent substance and method for producing fluorescent substance
WO2014171985A3 (en) * 2013-01-23 2014-12-31 University Of Tennessee Research Foundation Codoping method for modifying the scintillation and optical properties of garnet-type scintillators

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064638A (en) * 1999-08-25 2001-03-13 Agency Of Ind Science & Technol Stress luminescent material and its production
JP2001303039A (en) * 2000-04-18 2001-10-31 Konica Corp Inorganic fluorescent substance and method for producing the same
JP4544155B2 (en) * 2003-03-14 2010-09-15 堺化学工業株式会社 Phosphor and method for producing the same
WO2004087833A1 (en) * 2003-03-14 2004-10-14 Sakai Chemical Industry Co. Ltd. Phosphor and method for producing same
JPWO2004087833A1 (en) * 2003-03-14 2006-07-06 堺化学工業株式会社 Phosphor and method for producing the same
US8580148B2 (en) 2003-03-14 2013-11-12 Sakai Chemical Industry Co., Ltd. Phosphor and method for producing same
EP1584671A1 (en) * 2004-04-08 2005-10-12 Shin-Etsu Chemical Co., Ltd. Zirconium or hafnium-containing oxides
US7390436B2 (en) 2004-04-08 2008-06-24 Shin-Etsu Chemical Co., Ltd Zirconium or hafnium-containing oxides
WO2006004021A1 (en) * 2004-06-30 2006-01-12 Media Com International Co., Ltd. Light-storing compound and method for producing same
WO2007018345A1 (en) * 2005-08-05 2007-02-15 Alti-Electronics Co., Ltd. Yellow phosphor and white light emitting device comprising it
JP2009256555A (en) * 2008-04-21 2009-11-05 National Institute Of Advanced Industrial & Technology Accumulative phosphor and method for producing the same
WO2011078161A1 (en) * 2009-12-25 2011-06-30 株式会社ネモト・ルミマテリアル Fluorescent material for authenticity assessment, and authenticity assessment means
JP5464613B2 (en) * 2009-12-25 2014-04-09 株式会社ネモト・ルミマテリアル Authenticity determination phosphor and authentication means
JP2013203784A (en) * 2012-03-27 2013-10-07 Nihon Univ Fluorescent substance and method for producing fluorescent substance
WO2014171985A3 (en) * 2013-01-23 2014-12-31 University Of Tennessee Research Foundation Codoping method for modifying the scintillation and optical properties of garnet-type scintillators
CN104937074A (en) * 2013-01-23 2015-09-23 田纳西大学研究基金会 Codoping method for modifying the scintillation and optical properties of garnet-type scintillators
US11584885B2 (en) 2013-01-23 2023-02-21 University Of Tennessee Research Foundation Codoping method for modifying the scintillation and optical properties of garnet-type scintillators

Similar Documents

Publication Publication Date Title
KR100338860B1 (en) Photostimulable phosphor
EP0877071B1 (en) Long-lasting phosphor
JPH08170076A (en) Long-lasting afterglow fluorescent substance
JP2000159543A (en) Luminous fluorescent glass and glass ceramic
JP2000281382A (en) Luminous fluorescent glass ceramics
JP3232548B2 (en) Afterglow phosphor
US6190577B1 (en) Indium-substituted aluminate phosphor and method for making the same
JP2000212557A (en) Luminous phosphor
JP5593394B2 (en) Borate luminescent material and method for producing the same
CN100386405C (en) Red long afterglow luminescent material and its prepn
JP2000144130A (en) Red light-emitting fluorescent material and luminous screen using the same
JP2009509009A (en) Long afterglow luminescent material and method for producing the same
JP3826210B2 (en) Rare earth complex oxide phosphor
JP2979984B2 (en) Afterglow phosphor
EP2565253B1 (en) Silicate luminescent material and production method thereof
JP4105759B2 (en) Phosphorescent phosphor
JP3928684B2 (en) Red phosphorescent phosphor
CN108865138A (en) A kind of borate fluorescent powder and preparation method thereof
JP2000034480A (en) Phosphorescent phosphor
JP2000345154A (en) Red light emitting alterglow photoluminescent phosphor
JP2000309775A (en) Phosphorescent phosphor
JP3268761B2 (en) High brightness and long afterglow aluminate phosphor with excellent heat and weather resistance
JP3790854B2 (en) Strontium titanate phosphor
JP2863160B1 (en) Phosphorescent phosphor
JP3193677B2 (en) Phosphorescent phosphor