KR100267510B1 - A preparing process of green fluorescent body based zinc silicate - Google Patents

A preparing process of green fluorescent body based zinc silicate Download PDF

Info

Publication number
KR100267510B1
KR100267510B1 KR1019980040033A KR19980040033A KR100267510B1 KR 100267510 B1 KR100267510 B1 KR 100267510B1 KR 1019980040033 A KR1019980040033 A KR 1019980040033A KR 19980040033 A KR19980040033 A KR 19980040033A KR 100267510 B1 KR100267510 B1 KR 100267510B1
Authority
KR
South Korea
Prior art keywords
phosphor
zinc silicate
green phosphor
carbon powder
added
Prior art date
Application number
KR1019980040033A
Other languages
Korean (ko)
Other versions
KR20000021095A (en
Inventor
손기선
박희동
조봉현
Original Assignee
김충섭
한국화학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구소 filed Critical 김충섭
Priority to KR1019980040033A priority Critical patent/KR100267510B1/en
Publication of KR20000021095A publication Critical patent/KR20000021095A/en
Application granted granted Critical
Publication of KR100267510B1 publication Critical patent/KR100267510B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • C09K11/595Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/42Fluorescent layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

본 발명은 아연실리케이트계 녹색 형광체의 제조방법에 관한 것으로서, 더욱 상세하게는 아연실리케이트를 형광체 모체로 하고 여기에 부활제로 산화망간이 포함된 녹색형광체의 환원처리시 탄소분말을 사용하여 열처리함으로써 진공자외선에서 발광 효율이 뛰어나고 고진공에서도 안정한 물성을 가지며 잔광시간이 짧아 플라즈마 디스플레이 패널(plasma display panel, PDP)에 적합한 다음 화학식 1로 표시되는 아연실리케이트계 녹색 형광체의 제조방법에 관한 것이다.The present invention relates to a method for producing a zinc silicate-based green phosphor, and more particularly, vacuum ultraviolet radiation by heat treatment using a carbon powder during the reduction treatment of a green phosphor containing zinc silicate as a phosphor matrix and manganese oxide as an activator. The present invention relates to a method for producing a zinc silicate-based green phosphor represented by the following Chemical Formula 1 having excellent luminous efficiency, stable physical properties even in high vacuum, and short afterglow time, which is suitable for a plasma display panel (PDP).

Zn2-xSiO4:xMnZn 2-x SiO 4 : x Mn

상기 화학식 1에서 x는 0.001 ∼ 0.2이다.In Formula 1, x is 0.001 to 0.2.

Description

아연실리케이트계 녹색 형광체의 제조방법Manufacturing method of zinc silicate green phosphor

본 발명은 아연실리케이트계 녹색 형광체의 제조방법에 관한 것으로서, 더욱 상세하게는 아연실리케이트를 형광체 모체로 하고 여기에 부활제로 산화망간이 포함된 녹색형광체의 환원처리시 탄소분말을 사용하여 열처리함으로써 진공자외선에서 발광 효율이 뛰어나고 고진공에서도 안정한 물성을 가지며 잔광시간이 짧아 플라즈마 디스플레이 패널(plasma display panel, PDP)에 적합한 다음 화학식 1로 표시되는 아연실리케이트계 녹색 형광체의 제조방법에 관한 것이다.The present invention relates to a method for producing a zinc silicate-based green phosphor, and more particularly, vacuum ultraviolet radiation by heat treatment using a carbon powder during the reduction treatment of a green phosphor containing zinc silicate as a phosphor matrix and manganese oxide as an activator. The present invention relates to a method for producing a zinc silicate-based green phosphor represented by the following Chemical Formula 1 having excellent luminous efficiency, stable physical properties even in high vacuum, and short afterglow time, which is suitable for a plasma display panel (PDP).

화학식 1Formula 1

Zn2-xSiO4:xMnZn 2-x SiO 4 : x Mn

상기 화학식 1에서 x는 0.001 ∼ 0.2이다.In Formula 1, x is 0.001 to 0.2.

현재까지 정보표시용 디스플레이로 가장 많이 사용되고 있는 음극선관(CRT)의 단점을 보완, 대체할 수 있는 차세대 평판 디스플레이의 하나로 각광받고 있는 플라즈마 디스플레이 패널(PDP)는 진공에서 불활성 가스들의 방전에 의해 생성되는 자외선에 의해 형광체가 빛을 내는 형태의 디스플레이로서, 이는 진공자외선 여기를 기본으로 한다. 그러나, 종래에는 대표적인 PDP용 녹색 형광체로 망간이 도핑된 아연실리케이트(Zn2SiO4)가 사용되고 있으나, 혼합가스 분위기를 이용한 환원 과정을 수행하여야 함으로써 형광체 제조시 처리하기 불편한 단점이 있고, 만일 환원 과정을 수행하지 않을 경우에는 발광효율이 급격하게 저하되어 PDP용 형광체로는 적합치 못한 단점이 있다. 또한, 혼합 가스에 의한 환원처리를 거치면 녹색 형광체가 잔광시간이 길어지는 단점을 갖게 되어 PDP용 형광체로서의 성능이 저하되는 단점을 갖고 있다.Plasma Display Panel (PDP) is one of the next generation flat panel displays that can supplement and replace the shortcomings of cathode ray tube (CRT), which is the most used for information display. A display in which a phosphor emits light by ultraviolet rays, which is based on vacuum ultraviolet excitation. However, conventionally, a manganese-doped zinc silicate (Zn 2 SiO 4 ) is used as a representative green phosphor for PDP. However, the reduction process using a mixed gas atmosphere has to be performed. If it is not performed, the luminous efficiency is sharply lowered, which is not suitable as a phosphor for PDP. In addition, the green phosphor has a disadvantage that the afterglow time is long when the reduction treatment with the mixed gas is performed, and thus the performance as a phosphor for PDP is deteriorated.

이에 본 발명자들은 산화아연(ZnO) 및 이산화규소(SiO2)를 원료로하는 아연실리케이트(Zn2SiO4)를 형광체 모체로 하고, 여기에 부활제로 망간이 도핑된 녹색 형광체의 환원처리시 탄소분말을 사용하여 열처리함으로써 형광체의 성능을 향상시킬 수 있음을 알게 되어 본 발명을 완성하였다.Accordingly, the present inventors made zinc silicate (Zn 2 SiO 4 ), which is based on zinc oxide (ZnO) and silicon dioxide (SiO 2 ), as a phosphor matrix, and carbon powder during the reduction treatment of green phosphors doped with manganese as an activator. It was found that the performance of the phosphor can be improved by heat treatment using to complete the present invention.

따라서, 본 발명은 진공자외선에서 발광 효율이 뛰어나며 잔광기간이 짧은 상기 화학식 1로 표시되는 새로운 아연실리케이트계 녹색 형광체의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing a novel zinc silicate-based green phosphor represented by Chemical Formula 1, which has excellent luminous efficiency in vacuum ultraviolet rays and has a short afterglow period.

도 1은 본 발명에 따라 제조된 녹색 형광체 및 종래의 녹색 형광체의 빛 발광 스펙트럼을 나타낸 그래프이고,1 is a graph showing the light emission spectrum of the green phosphor prepared according to the present invention and the conventional green phosphor,

도 2는 본 발명에 따라 제조된 Zn1.92SiO4:0.08Mn 형광체 및 종래의 Zn1.92SiO4:0.08Mn 형광체의 잔광시간을 나타낸 그래프이고,Is a graph showing the decay time of the phosphor 0.08Mn: Figure 2 is a Zn 1.92 SiO 4 produced according to the present invention: 0.08Mn phosphor and conventional Zn 1.92 SiO 4

도 3은 탄소분말의 첨가량에 따른 본 발명의 Zn1.92SiO4:0.08Mn 녹색 형광체의 빛 발광 스펙트럼을 나타낸 그래프이다.3 is a graph showing the light emission spectrum of the Zn 1.92 SiO 4 : 0.08Mn green phosphor of the present invention according to the amount of carbon powder added.

본 발명은 아연실리케이트 모체와 산화망간 부활제의 환원처리에 의한 녹색 형광체의 제조방법에 있어서, 상기 환원처리는 탄소분말을 사용하여 1,100 ∼ 1,350℃의 온도범위에서 열처리하는 다음 화학식 1로 표시되는 아연실리케이트계 녹색 형광체의 제조방법을 그 특징으로 한다.The present invention provides a method for producing a green phosphor by a reduction treatment of a zinc silicate matrix and a manganese oxide activator, wherein the reduction treatment is performed by heat treatment at a temperature in the range of 1,100 to 1,350 ° C. using carbon powder. It is characterized by a method for producing a silicate green phosphor.

화학식 1Formula 1

Zn2-xSiO4:xMnZn 2-x SiO 4 : x Mn

상기 화학식 1에서 x는 0.001 ∼ 0.2이다.In Formula 1, x is 0.001 to 0.2.

본 발명에 따른 제조방법에서는 통상적인 망간이 도핑된 아연실리케이트계 녹색 형광체를 혼합가스 분위기에서 환원처리를 수행하는 방법 대신에 탄소분말을 첨가하여 환원처리를 수행함으로써 종래의 혼합가스를 사용한 환원처리와는 달리 형광체 제조시 처리하기가 쉽고, 형광체의 제조공정을 단순화할 수 있으며, 특히 형광체의 발광효율을 향상시켜 PDP용 형광체로 적합할 뿐만 아니라 잔광시간이 짧아지는 효과를 얻을 수 있다.In the manufacturing method according to the present invention, the reduction process using a conventional mixed gas by performing a reduction treatment by adding a carbon powder instead of a method of performing a reduction treatment in a mixed gas atmosphere of a conventional manganese-doped zinc silicate-based green phosphor; Unlike the above, it is easy to process during the manufacture of the phosphor, it is possible to simplify the manufacturing process of the phosphor, in particular to improve the luminous efficiency of the phosphor can be suitable as a phosphor for PDP as well as to shorten the afterglow time.

본 발명의 제조방법에 의거하여 환원처리시 첨가되는 탄소분말은 통상적으로 사용되는 어느 것이라도 사용할 수 있고, 바람직하기로는 그 입도가 0.05 ∼ 5㎛인 것을 사용하는 것이 좋다.According to the production method of the present invention, the carbon powder added during the reduction treatment may be any one commonly used, and it is preferable to use a particle having a particle size of 0.05 to 5 µm.

본 발명에서는 이러한 탄소분말을 사용하여 형광체를 환원처리할 때, 탄소분말의 사용시기를 달리하여 형광체의 환원처리시 2회에 걸쳐 열처리하도록 할 수 있고, 1회에 열처리하도록 할 수 있는데, 보다 구체적으로는 아연실리케이트 모체에 산화망간을 혼합하고 소성, 분쇄한 다음에 탄소분말을 첨가하거나 아연실리케이트 모체에 산화망간과 탄소분말을 함께 사용하여 환원처리를 수행할 수도 있다.In the present invention, when the phosphor is reduced by using the carbon powder, the carbon powder can be heat treated twice during the reduction treatment of the phosphor by varying the use time of the carbon powder, and can be heat treated once. For example, the zinc silicate matrix may be mixed with manganese oxide, calcined and pulverized, and carbon powder may be added, or the zinc silicate matrix may be mixed with manganese oxide and carbon powder.

이와 같은 본 발명에 따른 녹색 형광체의 제조방법을 상세하게 설명하면 다음과 같다.Referring to the manufacturing method of the green phosphor according to the present invention in detail as follows.

본 발명에 따른 제조방법에서는 산화아연(ZnO) 및 이산화규소(SiO2)를 형광체 원료로 사용하여 제조한 아연실리케이트(Zn2SiO4) 모체에 부활제로서 산화망간(MnO)을 혼합한다. 이때, 산화아연(ZnO) 및 이산화규소(SiO2)의 함량은 형광체의 Zn/Si 비율로 화학양론적인 비율인 2 : 1의 몰비로 함유시키는 것이 바람직하다.In the production method according to the present invention, a zinc silicate (Zn 2 SiO 4 ) matrix prepared using zinc oxide (ZnO) and silicon dioxide (SiO 2 ) as a phosphor raw material is mixed with manganese oxide (MnO) as an activator. At this time, the content of zinc oxide (ZnO) and silicon dioxide (SiO 2 ) is preferably contained in a molar ratio of 2: 1, which is a stoichiometric ratio in the Zn / Si ratio of the phosphor.

그리고, 부활제로서 사용되는 산화망간은 형광체 원료물질중 산화아연 1㏖에 대하여 0.001 ∼ 0.2㏖로 첨가하는데, 만일 그 사용량이 0.001㏖ 미만이면 제조하고자 하는 형광체에 충분히 도핑되지 않는 문제가 있고, 0.2㏖을 초과하면 발광효율이 매우 감소하는 문제가 있다.Manganese oxide used as an activator is added in an amount of 0.001 to 0.2 mol with respect to 1 mol of zinc oxide in the phosphor raw material. If the amount is less than 0.001 mol, there is a problem that the phosphor to be manufactured is not sufficiently doped. If it exceeds mol, there is a problem that the luminous efficiency is greatly reduced.

상기와 같은 형광체 원료물질과 부활제를 원하는 조성에 따른 각각의 소정비가 되도록 평량하고 보다 효과적인 혼합을 위해 아세톤 용매 하에서 볼밀링(ball milling) 또는 마노 유발과 같은 혼합기를 이용하여 고르게 혼합한다.The phosphor raw material and the activator are mixed evenly using a mixer such as ball milling or agate induction in acetone solvent for a balanced and more effective mixing in a predetermined ratio according to the desired composition.

그리고, 혼합물을 고순도 알루미나 도가니에 넣은 후, 뚜껑을 덮은 상태로 공기중에서 1,100 ∼ 1,350℃로 2 ∼ 24 시간동안 소성한다. 이때, 소성 온도는 매우 중요한 바, 만일 소성 온도가 1,100℃ 미만이면 녹색 형광체가 충분하게 형성되지 않으며, 1,350℃를 초과하면 휘발에 의한 무게 감소가 생긴다.The mixture is placed in a high-purity alumina crucible and then calcined in air at 1,100 to 1,350 ° C. for 2 to 24 hours with the lid closed. At this time, the firing temperature is very important. If the firing temperature is less than 1,100 ° C., the green phosphor is not sufficiently formed. If the firing temperature is higher than 1,350 ° C., the weight decreases due to volatilization.

그리고, 소성하고난 후 발광효율이 높은 형광체를 얻기 위하여 이미 형성된 형광체를 고르고 미세하게 분쇄한 후, 탄소분말을 첨가하고 탄소분말이 형광체와 잘 섞이도록 아세톤 용매 하에서 볼밀링(ball milling) 또는 마노 유발과 같은 혼합기를 이용하여 고르게 혼합한다. 이때, 첨가되는 탄소분말은 전체 형광체 원료의 총합량에 대하여 5 ∼ 20 중량%로 첨가한다. 만일, 탄소분말의 첨가량이 5 중량% 미만이면 환원이 골고루 되지 않고, 20 중량%를 초과하면 환원처리에 사용하고도 여분의 탄소가 남는 상태이므로 좋지 않다. 상기 혼합된 분말을 다시 질소 분위기 하에서 1,100 ∼ 1,300℃에서 1 ∼ 2 시간동안 환원시킨다. 그런다음, 이를 충분히 분쇄한다.After firing, in order to obtain a phosphor having high luminous efficiency, the formed phosphor is evenly pulverized and finely pulverized. Then, carbon powder is added and the ball powder or agate is induced in acetone solvent so that the carbon powder is well mixed with the phosphor. Mix evenly using a mixer such as At this time, the carbon powder to be added is added at 5 to 20% by weight based on the total amount of the entire phosphor raw material. If the added amount of the carbon powder is less than 5% by weight, the reduction is not even, and if it exceeds 20% by weight, it is not good because excess carbon remains even in the reduction treatment. The mixed powder is further reduced for 1 to 2 hours at 1,100 to 1,300 ° C. under a nitrogen atmosphere. Then it is crushed sufficiently.

본 발명에서는 상기와 같이 탄소분말을 형광체의 소성 후에 첨가하여 2회에 걸쳐 열처리함으로써 형광체를 환원처리할 수 있고, 경우에 따라서는 탄소분말을 부활제로 첨가되는 산화망간과 함께 첨가하고 이를 질소분위기 하에서 1,100 ∼ 1,350℃에서 2 ∼ 24 시간동안 소성하고 분쇄하는 1회에 걸친 열처리과정으로도 녹색 형광체를 제조할 수 있다.In the present invention, as described above, the carbon powder may be added after firing of the phosphor and subjected to heat treatment twice to reduce the phosphor. In some cases, the carbon powder may be added together with manganese oxide to be added as an activator and then, under a nitrogen atmosphere. The green phosphor can also be produced by a single heat treatment process which is calcined and pulverized for 2 to 24 hours at 1,100 to 1,350 ° C.

한편, 상기와 같은 방법에 의해 얻어진 형광체를 발광 광도계(luminescence spectrometer, LS)를 이용하여 200 ㎚의 파장으로 여기시킨다. 여기 과정을 수행한 다음, 형광체에 대하여 빛 발광(photoluminescence, PL)을 측정한 결과, 500 ∼ 550 ㎚ 영역의 강한 발광 스펙트럼을 나타내는 아연실리케이트계 녹색 형광체를 얻는다.On the other hand, the phosphor obtained by the above method is excited at a wavelength of 200 nm using a luminescence spectrometer (LS). After performing the excitation process, photoluminescence (PL) of the phosphor was measured to obtain a zinc silicate-based green phosphor having a strong emission spectrum in the region of 500 to 550 nm.

본 발명에서 제조한 녹색 형광체는 망간 첨가량에 따라서 빛 발광 스펙트럼이 달리 나타나는데, 망간의 첨가량이 0.05 ∼ 0.15㏖인 범위내에서 최대의 발광 휘도를 보이며, 상기 범위를 벗어난 경우 발광 휘도가 크게 감소한다.According to the green phosphor produced in the present invention, the light emission spectrum is different depending on the amount of manganese added, and the maximum amount of emitted light is exhibited within the range of 0.05 to 0.15 mol of manganese.

상기와 같은 방법으로 제조된 녹색 형광체중 산화망간이 0.12㏖ 첨가되었을때 가장 발광휘도가 높게 나왔으며, 초기 발광의 10%까지 감소되는데 걸리는 잔광시간도 약 8 ms로 기존의 혼합 가스에 의해 환원된 녹색 형광체보다 약 20% 가량 짧은 경향을 나타내었다. 상기와 같은 방법으로 탄소분말에 의해 환원/제조된 녹색 형광체는 혼합 가스에 의해 환원된 녹색 형광체보다 발광휘도는 약 5% 정도의 감소를 보이고 있으나, 실제 PDP 환경에서의 최적 잔광시간 조건을 고려한다면 전체적인 성능면에서는 매우 큰 진전을 얻은 것으로 볼 수 있다.Among the green phosphors prepared by the above method, when 0.12 mol of manganese oxide was added, the luminescence brightness was the highest, and the afterglow time required to decrease up to 10% of the initial luminescence was also reduced to about 8 ms by the existing mixed gas. It was about 20% shorter than the green phosphor. The green phosphor reduced / manufactured by carbon powder in the above manner shows about 5% lower luminous luminance than the green phosphor reduced by mixed gas. However, considering the optimum afterglow time conditions in a PDP environment, In terms of overall performance, it can be seen that significant progress has been made.

상술한 바와 같이, 본 발명에 따라 제조된 녹색 형광체는 발광효율이 높고, 잔광시간이 짧아 플라즈마 디스플레이 패널(PDP)용 녹색 형광체로 사용할 수 있다.As described above, the green phosphor manufactured according to the present invention can be used as a green phosphor for plasma display panel (PDP) because of high luminous efficiency and short afterglow time.

이와 같은 본 발명을 실시예에 의거하여 상세하게 설명하겠는 바, 본 발명이 실시예에 한정되는 것은 아니다.Although this invention is demonstrated in detail based on an Example, this invention is not limited to an Example.

실시예 1Example 1

산화아연 4.14g(1.88㏖), 이산화규소 1.63g(1.0㏖)를 칭량하고, 여기에 산화망간 0.23g(산화아연의 5.56 중량%)를 칭량하여 마노 유발을 사용하여 고르게 혼합하였다. 이때, 비산 방지와 보다 효과적인 혼합을 위해 아세톤을 첨가하며 융제(flux)는 따로 사용하지 않았다. 혼합한 시료를 고순도 알루미나 도가니에 넣은 후, 뚜껑을 덮은 상태로 전기로를 사용하여 대기하에서 1,300℃로 4시간동안 소성하였다. 소성 후 시간당 50℃ 정도로 냉각시킨 다음 충분히 분쇄하고, 다시 이 형광체를 입도가 0.05 ∼ 5㎛인 탄소분말 0.6g(전체 형광체 분말의 10 중량%)과 마노 유발에서 아세톤을 첨가한 후 질소 분위기 하에서 1,300℃로 2시간동안 환원시킨 후에 다시 분쇄하여 아연실리케이트계 녹색 형광체를 얻었다.4.14 g (1.88 mol) of zinc oxide and 1.63 g (1.0 mol) of silicon dioxide were weighed, and 0.23 g of manganese oxide (5.56% by weight of zinc oxide) was weighed and mixed evenly using agate mortar. At this time, acetone was added to prevent scattering and more effective mixing, and no flux was used separately. The mixed samples were placed in a high purity alumina crucible, and then fired at 1,300 ° C. for 4 hours in an atmosphere using an electric furnace with a lid covered. After firing, the mixture was cooled to about 50 ° C. per hour and then sufficiently pulverized. The phosphor was further added with 0.6 g of carbon powder having a particle size of 0.05 to 5 μm (10% by weight of the entire phosphor powder) and acetone in agate mortar, and then 1,300 under nitrogen atmosphere After reduction for 2 hours at ℃ was pulverized again to obtain a zinc silicate-based green phosphor.

이와 같은 공정에 의해 얻어진 녹색 형광체의 빛 발광(PL) 스펙트럼과 잔광시간을 측정하였다. 얻어진 녹색 형광체의 빛발광(PL) 스펙트럼을 측정한 결과를 도 1에 나타내었고, 잔광시간을 측정한 결과를 도 2에 나타내었다.The light emission (PL) spectrum and the afterglow time of the green phosphor obtained by such a process were measured. The result of measuring the light emission (PL) spectrum of the obtained green phosphor is shown in FIG. 1, and the result of measuring the afterglow time is shown in FIG. 2.

실시예 2Example 2

산화아연 4.14g(1.88㏖), 이산화규소 1.63g(1.0㏖)를 칭량하고, 여기에 산화망간 0.23g(산화아연의 5.56 중량%)과 입도가 0.05 ∼ 5㎛인 탄소분말 0.6g(전체 형광체 분말의 10 중량%)를 칭량하여 마노 유발을 사용하여 고르게 혼합하였다. 이때, 비산 방지와 보다 효과적인 혼합을 위해 아세톤을 첨가하며 융제(flux)는 따로 사용하지 않았다. 혼합한 시료를 고순도 알루미나 도가니에 넣은 후, 뚜껑을 덮은 상태로 전기로를 사용하여 대기하에서 1,300℃로 4시간동안 소성하였다. 소성 후 시간당 50℃ 정도로 냉각시킨 다음 충분히 분쇄하고, 다시 이 형광체를 마노 유발에서 다시 분쇄하여 아연실리케이트계 녹색 형광체를 얻었다.4.14 g (1.88 mol) of zinc oxide and 1.63 g (1.0 mol) of silicon dioxide were weighed, and 0.23 g of manganese oxide (5.56 wt% of zinc oxide) and 0.6 g of carbon powder having a particle size of 0.05 to 5 µm (total phosphors) were weighed. 10% by weight of powder) was weighed and mixed evenly using agate mortar. At this time, acetone was added to prevent scattering and more effective mixing, and no flux was used separately. The mixed samples were placed in a high purity alumina crucible, and then fired at 1,300 ° C. for 4 hours in an atmosphere using an electric furnace with a lid covered. After firing, the mixture was cooled to about 50 ° C. per hour, then sufficiently pulverized, and again, the phosphor was pulverized again in an agate mortar to obtain a zinc silicate-based green phosphor.

실시예 3 ∼ 5Examples 3 to 5

상기 실시예 1과 동일한 방법으로 수행하되, 입도가 0.05 ∼ 5㎛인 탄소분말을 실시예 3에서는 0.3g(전체 형광체 분말의 5 중량%), 실시예 4에서는 0.9g(전체 형광체 분말의 15 중량%), 실시예 5에서는 1.2g(전체 형광체 분말의 20 중량%) 첨가하여 아연실리케이트계 녹색 형광체를 얻었다. 얻어진 녹색 형광체의 빛발광(PL) 스펙트럼을 측정한 결과를 도 3에 나타내었다.In the same manner as in Example 1, except that the carbon powder having a particle size of 0.05 ~ 5㎛ 0.3g in Example 3 (5% by weight of the total phosphor powder), 0.9g in Example 4 (15% of the total phosphor powder %), And in Example 5, 1.2g (20% by weight of the total phosphor powder) was added to obtain a zinc silicate-based green phosphor. The result of measuring the light emission (PL) spectrum of the obtained green phosphor is shown in FIG. 3.

비교예 1Comparative Example 1

상기 실시예 1의 조성으로 된 원료 분말들을 공기중에서 합성하되, 환원처리를 수행하지 않았다. 얻어진 형광체의 빛발광(PL) 스펙트럼을 측정한 결과를 도 1에 나타내었다.Raw material powders having the composition of Example 1 were synthesized in air, but the reduction treatment was not performed. The result of measuring the light emission (PL) spectrum of the obtained phosphor is shown in FIG. 1.

비교예 2Comparative Example 2

상기 비교예 1에서 제조한 형광체를 5% 수소와 95% 질소 분위기에서 900℃로 환원처리하였다. 얻어진 형광체의 빛발광(PL) 스펙트럼을 측정한 결과를 도 1에 나타내었고, 잔광시간을 측정한 결과를 도 2에 나타내었다.The phosphor prepared in Comparative Example 1 was reduced to 900 ° C. in a 5% hydrogen and 95% nitrogen atmosphere. The result of measuring the light emission (PL) spectrum of the obtained phosphor is shown in FIG. 1, and the result of measuring the afterglow time is shown in FIG. 2.

상술한 바와 같이, 본 발명에 따른 아연실리케이트계 녹색 형광체는 아연실리케이트에 망간이 도핑됨으로써 진공자외선 여기하에서 500 ∼ 550㎚ 영역의 색순도가 우수한 녹색 발광을 나타내고, 특히 기존의 혼합가스를 이용한 환원처리 대신에 탄소분말에 의한 환원처리를 수행함으로써 공정상으로도 상당히 간편할 뿐만 아니라 종래의 형광체와 거의 같은 수준의 발광강도를 유지하면서 잔광시간을 약 20% 정도 단축하여 앞으로 PDP에 적용할 수 있는 가능성이 매우 큰 효과가 있다.As described above, the zinc silicate-based green phosphor according to the present invention exhibits green luminescence excellent in color purity in the region of 500 to 550 nm under vacuum ultraviolet excitation by manganese doping in the zinc silicate, and in particular, instead of the reduction treatment using a conventional mixed gas. In addition, the reduction process using carbon powders is very easy in the process, and it is possible to reduce the afterglow time by about 20% and apply it to PDP in the future while maintaining the same emission intensity as the conventional phosphor. It is very effective.

Claims (4)

아연실리케이트 모체와 산화망간 부활제의 환원처리에 의한 녹색 형광체의 제조방법에 있어서, 상기 환원처리는 탄소분말을 사용하여 1,100 ∼ 1,300℃의 온도범위에서 열처리하는 것을 특징으로 하는 다음 화학식 1로 표시되는 아연실리케이트계 녹색 형광체의 제조방법.In the method for producing a green phosphor by the reduction treatment of the zinc silicate matrix and the manganese oxide activator, the reduction treatment is represented by the following formula 1, characterized in that the heat treatment at a temperature range of 1,100 ~ 1,300 ℃ using carbon powder Method for producing zinc silicate-based green phosphor. 화학식 1Formula 1 Zn2-xSiO4:xMnZn 2-x SiO 4 : x Mn 상기 화학식 1에서 x는 0.001 ∼ 0.2이다.In Formula 1, x is 0.001 to 0.2. 제 1 항에 있어서, 상기 탄소분말은 전체 형광체 원료의 총합량에 대하여 5 ∼ 20 중량%의 범위로 첨가되는 것을 특징으로 하는 아연실리케이트계 녹색 형광체의 제조방법.The method of claim 1, wherein the carbon powder is added in the range of 5 to 20% by weight based on the total amount of the entire phosphor raw material. 제 1 항 또는 제 2 항에 있어서, 상기 탄소분말은 아연실리케이트 모체와 산화망간의 혼합물을 1,100 ∼ 1,350℃에서 소성 및 분쇄한 다음에 첨가하고 열처리하는 것을 특징으로 하는 아연실리케이트계 녹색 형광체의 제조방법.The method according to claim 1 or 2, wherein the carbon powder is calcined and pulverized at 1,100 to 1,350 DEG C at a mixture of zinc silicate matrix and manganese oxide, and then added and heat treated. . 제 1 항 또는 제 2 항에 있어서, 상기 탄소분말은 아연실리케이트 모체와 산화망간의 혼합물과 함께 첨가하고 열처리하는 것을 특징으로 하는 아연실리케이트계 녹색 형광체의 제조방법.The method of claim 1 or 2, wherein the carbon powder is added with a mixture of zinc silicate matrix and manganese oxide and heat treated.
KR1019980040033A 1998-09-25 1998-09-25 A preparing process of green fluorescent body based zinc silicate KR100267510B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980040033A KR100267510B1 (en) 1998-09-25 1998-09-25 A preparing process of green fluorescent body based zinc silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980040033A KR100267510B1 (en) 1998-09-25 1998-09-25 A preparing process of green fluorescent body based zinc silicate

Publications (2)

Publication Number Publication Date
KR20000021095A KR20000021095A (en) 2000-04-15
KR100267510B1 true KR100267510B1 (en) 2000-11-01

Family

ID=19552007

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980040033A KR100267510B1 (en) 1998-09-25 1998-09-25 A preparing process of green fluorescent body based zinc silicate

Country Status (1)

Country Link
KR (1) KR100267510B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385702B1 (en) * 2001-02-12 2003-05-27 주식회사 엘지화학 Process for preparing zinc orthosilicate green phosphor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706750B1 (en) * 2000-08-10 2007-04-11 삼성전자주식회사 Fluorescent lamp and liquid crystal display device using the same
KR100456982B1 (en) * 2002-02-28 2004-11-10 한국과학기술연구원 Preparation of Green Phosphors for Plasma Display Panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385702B1 (en) * 2001-02-12 2003-05-27 주식회사 엘지화학 Process for preparing zinc orthosilicate green phosphor

Also Published As

Publication number Publication date
KR20000021095A (en) 2000-04-15

Similar Documents

Publication Publication Date Title
KR100319488B1 (en) Green fluorescent body based zinc silicate
CN100386405C (en) Red long afterglow luminescent material and its prepn
JP3826210B2 (en) Rare earth complex oxide phosphor
JP2003105334A (en) Phosphor
KR100267510B1 (en) A preparing process of green fluorescent body based zinc silicate
JP3559210B2 (en) Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same
JP2000026854A (en) Liminous oxide having stuffed tridymite type or kaliphilite type structure and oxide luminophor
KR100285273B1 (en) A green fluorescent body based Zn2SiO4 and process for preparing them
JP2012528902A (en) Green light emitting material and preparation method thereof
KR101162063B1 (en) Green emitting phosphor for vacuum ultraviolet excited light emitting device, preparation method thereof and light emitting device having the same
JP3268761B2 (en) High brightness and long afterglow aluminate phosphor with excellent heat and weather resistance
KR100265035B1 (en) A green fluorescent body based zn2sio4 and its preparing method
KR100285274B1 (en) A green fluorescent body based gadolinium aluminate and process for preparing them
JP3264045B2 (en) Phosphor manufacturing method
KR100456982B1 (en) Preparation of Green Phosphors for Plasma Display Panel
US9045690B2 (en) Silicate luminescent material and production method thereof
KR100666210B1 (en) Green phosphor based on magnesium thiogallate and preparation method thereof
CN1212367C (en) Red RE oxide luminophor and its prepn
CN113736460B (en) High-thermal-stability infrared fluorescent powder and preparation method thereof
KR100726140B1 (en) The process of a fluorescent substance based on Zinc Silicate
CN110951489B (en) Europium-activated silicate blue-light fluorescent powder and preparation method thereof
KR20010026774A (en) A red fluorescent body based SrTiO3 used in low voltage and process for preparing them
KR100424864B1 (en) Process for preparing GdOBr green phosphor
KR930005691B1 (en) Red-luminous phosphor
KR100669372B1 (en) A preparation method of green emitting phosphor for vuvvacuum ultraviolet excited light emitting device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030407

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee