JP2008037883A - Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same - Google Patents

Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same Download PDF

Info

Publication number
JP2008037883A
JP2008037883A JP2006209791A JP2006209791A JP2008037883A JP 2008037883 A JP2008037883 A JP 2008037883A JP 2006209791 A JP2006209791 A JP 2006209791A JP 2006209791 A JP2006209791 A JP 2006209791A JP 2008037883 A JP2008037883 A JP 2008037883A
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent lamp
rare earth
range
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006209791A
Other languages
Japanese (ja)
Inventor
Wataru Harada
渡 原田
Seiji Yoshida
征司 吉田
Tomokazu Yoshida
智一 吉田
Yukikazu Fukuya
之和 福家
Masayoshi Terai
正芳 寺井
Tadashi Maruta
忠 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2006209791A priority Critical patent/JP2008037883A/en
Publication of JP2008037883A publication Critical patent/JP2008037883A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth phosphovanadate salt fluorescent material excited by ultraviolet light in a good efficiency to emit red-colored light and having a high light-emitting intensity, and further a fluorescent lamp having a high lamp light flux and having a wide red color-reproducing range. <P>SOLUTION: This fluorescent material expressed by general formula: (R<SB>1-a</SB>Eu<SB>a</SB>)MO<SB>4</SB>-bCaO [wherein, R is at least 1 kind of an element selected from Y, Gd; M is at least 1 kind of an element selected from V, P; 0.001≤a≤0.2; and 5×10<SP>-7</SP>≤b≤3×10<SP>-5</SP>] is the rare earth phosphovanadate fluorescent material excited by the ultraviolet light in the high efficiency, emitting red colored light and having the high light-emitting intensity, and the fluorescent lamp by using the same has the high lamp light flux and the wide red color-reproducing range. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紫外線により効率よく励起され赤色発光する希土類燐バナジン酸塩蛍光体及びそれを用いた蛍光ランプに関し、特に液晶表示装置のバックライトに使用される冷陰極蛍光ランプに関する。   The present invention relates to a rare earth phosphor vanadate phosphor that is excited efficiently by ultraviolet rays and emits red light, and a fluorescent lamp using the same, and more particularly to a cold cathode fluorescent lamp used for a backlight of a liquid crystal display device.

従来から、紫外線で励起され赤色発光する蛍光ランプ用蛍光体として、主にY:Eu蛍光体が使用されているが、この蛍光体は深赤色域の発光強度が低く、ラップトップパーソナルコンピュータ等の液晶表示のバックライトに使用される冷陰極蛍光ランプに用いた場合、赤色の色再現範囲が狭いという問題があった。 Conventionally, Y 2 O 3 : Eu phosphors are mainly used as phosphors for fluorescent lamps that are excited by ultraviolet rays and emit red light. However, this phosphor has a low emission intensity in the deep red region, and is a laptop personal computer. When used in a cold cathode fluorescent lamp used for a backlight of a liquid crystal display such as a computer, there is a problem that a red color reproduction range is narrow.

冷陰極蛍光ランプに用いられる赤色蛍光体として、特開2002−184357号公報に、Y:Euの他にY(P,V)O:Eu、3.5MgO・0.5MgF・GeO:Mn、(Sr,Mg)(PO:Sn、CaSiO:Pb,Mnが挙げられているが、いずれもランプ光束、色再現範囲をともに満足するものではなかった。 As a red phosphor used in a cold cathode fluorescent lamp, JP 2002-184357 A discloses Y (P, V) O 4 : Eu, 3.5MgO · 0.5MgF 2 · in addition to Y 2 O 3 : Eu. GeO 2 : Mn, (Sr, Mg) 3 (PO 4 ) 2 : Sn, CaSiO 3 : Pb, Mn are mentioned, but none of them satisfies both the lamp luminous flux and the color reproduction range.

なかでも、Y:Eu蛍光体に代えてY(P,V)O:Eu蛍光体を液晶表示装置に使用される冷陰極蛍光ランプに用いた場合、Y(P,V)O:Eu蛍光体の深赤色域の発光により、赤色の色再現範囲は拡大するものの、Y:Eu蛍光体に比べて発光強度が低いため、ランプ光束が低下するという問題があった。
特開2002−184357号公報
In particular, when Y (P, V) O 4 : Eu phosphor is used in a cold cathode fluorescent lamp used in a liquid crystal display device instead of Y 2 O 3 : Eu phosphor, Y (P, V) O 4 : Although the red color reproduction range is expanded by light emission in the deep red region of the Eu phosphor, there is a problem in that the luminous flux of the lamp decreases because the emission intensity is lower than that of the Y 2 O 3 : Eu phosphor. .
JP 2002-184357 A

本発明は、このような問題点を解決するためになされたものである。本発明の目的は、紫外線により効率よく励起され赤色発光する発光強度の高い希土類燐バナジン酸塩蛍光体を提供することであり、さらにはランプ光束が高く赤色の色再現範囲の広い蛍光ランプを提供することである。   The present invention has been made to solve such problems. An object of the present invention is to provide a rare earth phosphovanadate phosphor that emits red light efficiently when excited by ultraviolet rays, and further provides a fluorescent lamp with a high lamp luminous flux and a wide red color reproduction range. It is to be.

上記目的を達成するために本発明者らは鋭意検討を重ねた結果、特定の組成を有する希土類燐バナジン酸塩蛍光体は発光強度が高く、この蛍光体を用いた蛍光ランプはランプ光束が高く赤色の色再現範囲が広いことを新たに見いだし本発明を完成させるに至った。   In order to achieve the above object, the present inventors have intensively studied. As a result, rare earth phosphor vanadate phosphors having a specific composition have high emission intensity, and fluorescent lamps using this phosphor have high lamp luminous flux. A new red color reproduction range was found and the present invention was completed.

(1)本発明の蛍光体は、一般式が次式で表されることを特徴とする。
(R1−aEu)MO・bCaO
(但し、RはY、Gdから選択される少なくとも1種の元素、MはV、Pから選択される少なくとも1種の元素、0.001≦a≦0.2、5×10−7≦b≦3×10−5
付活剤元素であるEuの量を示すa値は0.001より小さくても、逆に0.2より大きくても紫外線励起による発光輝度は低下してしまう。特に好ましい範囲は0.03≦a≦0.1である。また、蛍光体中に含まれるCa量を示すb値は5×10−7より小さくても、逆に3×10−5より大きくても紫外線励起による発光輝度は低下してしまう。より好ましい範囲は1×10−6≦b≦2.5×10−5である。
(1) The phosphor of the present invention is characterized in that the general formula is represented by the following formula.
(R 1-a Eu a ) MO 4 · bCaO
(However, R is at least one element selected from Y and Gd, M is at least one element selected from V and P, 0.001 ≦ a ≦ 0.2, 5 × 10 −7 ≦ b. ≦ 3 × 10 −5 )
Even if the a value indicating the amount of Eu as an activator element is smaller than 0.001 or larger than 0.2, the light emission luminance due to ultraviolet excitation is lowered. A particularly preferred range is 0.03 ≦ a ≦ 0.1. Even if the b value indicating the amount of Ca contained in the phosphor is smaller than 5 × 10 −7 or larger than 3 × 10 −5 , the light emission luminance due to ultraviolet excitation is lowered. A more preferable range is 1 × 10 −6 ≦ b ≦ 2.5 × 10 −5 .

(2)本発明の蛍光ランプは、透光性気密容器と、透光性気密容器内に形成された蛍光体層と、透光性気密容器内に封入された放電媒体と、電極とを具備する蛍光ランプにおいて、
前記蛍光体層は請求項1に記載の希土類燐バナジン酸塩蛍光体を含むことを特徴とする。
(2) A fluorescent lamp of the present invention includes a light-transmitting airtight container, a phosphor layer formed in the light-transmitting airtight container, a discharge medium sealed in the light-transmitting airtight container, and an electrode. Fluorescent lamp
The phosphor layer includes the rare earth phosphor vanadate phosphor according to claim 1.

(3)本発明の蛍光ランプは、前記蛍光体の平均粒径が5.0〜12.0μmの範囲にあり、中央粒径が6.0〜20.0μmの範囲にあり、且つ分散度が0.40〜1.0の範囲にあることを特徴とする(2)に記載の蛍光ランプである。ここで、平均粒径は空気透過法によるフィッシャー・サブ・シーブ・サイザー(F.S.S.S)を用いて測定した値であり、一次粒子の大きさを示す。中央粒径は電気抵抗法のコールターマルチサイザーII(コールター社製)を用いて測定し、50%粒子径(体積基準)を示す。この場合、粒子が強く凝集していると一次粒子にまで分散させることは難しく、凝集した二次粒子が測定にかかる。また、分散度は平均粒径を中央粒径で除した値であり、これを分散度と定義する。この値が大きいほど蛍光体の分散性が良いと評価できる。 (3) In the fluorescent lamp of the present invention, the average particle size of the phosphor is in the range of 5.0 to 12.0 μm, the median particle size is in the range of 6.0 to 20.0 μm, and the dispersity is It is the range of 0.40-1.0, It is a fluorescent lamp as described in (2) characterized by the above-mentioned. Here, the average particle diameter is a value measured using a Fischer sub-sieve sizer (FSSS) by the air permeation method, and indicates the size of primary particles. The median particle diameter is measured by using an electric resistance method Coulter Multisizer II (manufactured by Coulter), and indicates a 50% particle diameter (volume basis). In this case, if the particles are strongly aggregated, it is difficult to disperse them to the primary particles, and the aggregated secondary particles are taken for measurement. The dispersity is a value obtained by dividing the average particle diameter by the median particle diameter, and this is defined as the dispersity. It can be evaluated that the larger the value, the better the dispersibility of the phosphor.

本発明に用いられる蛍光体の平均粒径は5.0〜12.0μmの範囲が好ましく、6.0〜10.0μmの範囲がより好ましい。平均粒径が5.0μmより小さいと発光効率が低下し、逆に、12.0μmより大きいと蛍光ランプの塗布量が多くなってしまう。中央粒径は6.0〜20.0μmの範囲が好ましく、7.0〜15.0μmの範囲がより好ましい。中央粒径が20.0μmより大きいと、塗布特性が悪くなる。また、分散度は0.40〜1.0の範囲が好ましく、0.50〜1.0の範囲がより好ましい。分散度が0.40より小さいと、凝集粒子が多いため、塗布特性が低下してしまう。 The average particle size of the phosphor used in the present invention is preferably in the range of 5.0 to 12.0 μm, and more preferably in the range of 6.0 to 10.0 μm. If the average particle size is smaller than 5.0 μm, the luminous efficiency is lowered. Conversely, if the average particle size is larger than 12.0 μm, the coating amount of the fluorescent lamp is increased. The median particle size is preferably in the range of 6.0 to 20.0 μm, and more preferably in the range of 7.0 to 15.0 μm. When the median particle size is larger than 20.0 μm, the coating properties are deteriorated. Further, the degree of dispersion is preferably in the range of 0.40 to 1.0, and more preferably in the range of 0.50 to 1.0. If the degree of dispersion is less than 0.40, there are many agglomerated particles, so that the coating properties are deteriorated.

(4)本発明の蛍光ランプは、前記蛍光ランプが冷陰極蛍光ランプであることを特徴とする(2)乃至(3)に記載の蛍光ランプである。冷陰極蛍光ランプは、カラー液晶ディスプレイのバックライトとして用いられており、管径が1〜4mmと細く、工程にあった粒径選択が必要である。本発明に用いられる蛍光体は、冷陰極ランプ用赤色発光蛍光体として好ましい粒径を有している。 (4) The fluorescent lamp according to any one of (2) to (3), wherein the fluorescent lamp is a cold cathode fluorescent lamp. The cold cathode fluorescent lamp is used as a backlight of a color liquid crystal display, and the tube diameter is as thin as 1 to 4 mm, and it is necessary to select a particle size suitable for the process. The phosphor used in the present invention has a particle size preferable as a red light emitting phosphor for a cold cathode lamp.

本発明の蛍光体は、紫外線により効率よく励起され赤色発光する発光強度の高い希土類燐バナジン酸塩蛍光体であり、本発明の蛍光体を用いることによってランプ光束が高く赤色の色再現範囲の広い蛍光ランプを提供することができる。   The phosphor of the present invention is a rare earth phosphor vanadate phosphor that is excited efficiently by ultraviolet rays and emits red light and has high emission intensity. By using the phosphor of the present invention, the lamp luminous flux is high and the red color reproduction range is wide. A fluorescent lamp can be provided.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための希土類燐バナジン酸塩蛍光体及びそれを用いた蛍光ランプを例示するものであって、本発明は希土類燐バナジン酸塩蛍光体及びそれを用いた蛍光ランプを以下のものに特定しない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a rare earth phosphorus vanadate phosphor for embodying the technical idea of the present invention and a fluorescent lamp using the same, and the present invention is a rare earth phosphor vanadate. The salt phosphor and the fluorescent lamp using the same are not specified as follows.

ここで、本発明の一実施の形態に係る希土類燐バナジン酸塩蛍光体の製造方法について詳細に説明する。蛍光体原料として、イットリウム及びガドリニウムから選択される少なくとも1種の元素の化合物と、ユーロピウム化合物と、バナジウム及び燐から選択される少なくとも1種の元素の化合物と、カルシウム化合物を用い、各化合物について、一般式
(R1−aEu)MO・bCaO(但し、RはY、Gdから選択される少なくとも1種の元素、MはV、Pから選択される少なくとも1種の元素、0.001≦a≦0.2、5×10−7≦b≦3×10−5)の割合になるように秤取し、混合するか、又はこれら蛍光体原料にフラックスを加えて混合し、原料混合物を得る。この原料混合物をルツボに充填後、炉内に入れ、空気中、900〜1500℃で焼成する。冷却後、焼成品を湿式で分散処理した後、分離乾燥して本発明の希土類燐バナジン酸塩蛍光体を得る。
Here, the manufacturing method of the rare earth phosphorus vanadate phosphor according to one embodiment of the present invention will be described in detail. As the phosphor material, using at least one elemental compound selected from yttrium and gadolinium, a europium compound, at least one elemental compound selected from vanadium and phosphorus, and a calcium compound, for each compound, General formula (R 1-a Eu a ) MO 4 .bCaO (where R is at least one element selected from Y and Gd, M is at least one element selected from V and P, 0.001 ≦ a ≦ 0.2, 5 × 10 −7 ≦ b ≦ 3 × 10 −5 ) and mixed, or these phosphor materials are mixed by adding flux to the raw material mixture Get. After filling this raw material mixture into a crucible, it is put in a furnace and fired at 900-1500 ° C. in air. After cooling, the fired product is wet-dispersed and then separated and dried to obtain the rare earth phosphor vanadate phosphor of the present invention.

蛍光体原料として、酸化物又は熱分解により酸化物となる化合物が好ましく用いられる。例えば、炭酸塩、水酸化物、硝酸塩、シュウ酸塩などの高温で分解し酸化物となる化合物が好ましい。また、蛍光体を構成する元素を全部又は一部含む共沈物やこれらを仮焼して得られる酸化物を用いることもできる。例えばイットリウム及びガドリニウムから選択される少なくとも1種の元素の化合物、ユーロピウム化合物としては、これら希土類元素の酸化物、又は炭酸塩、水酸化物、硝酸塩、シュウ酸塩などが使用できる。バナジウム及び燐から選択される少なくとも1種の元素の化合物としては、これら元素の酸化物、水酸化物などが使用できる。また、フラックスとしてはアルカリ土類化合物、ホウ素化合物等が好ましく、蛍光体原料100重量部に対し0.01〜1.0重量部の範囲で添加する。蛍光体原料をボールミル、V型混合機などで混合した後、アルミナ、石英、炭化珪素などのルツボに充填し、空気中、900〜1500℃で1〜20時間焼成することが好ましい。   As the phosphor material, an oxide or a compound that becomes an oxide by thermal decomposition is preferably used. For example, a compound which decomposes at a high temperature and becomes an oxide such as carbonate, hydroxide, nitrate, oxalate is preferable. Further, a coprecipitate containing all or part of the elements constituting the phosphor or an oxide obtained by calcining these can be used. For example, as a compound of at least one element selected from yttrium and gadolinium, a europium compound, oxides of these rare earth elements, carbonates, hydroxides, nitrates, oxalates, or the like can be used. As the compound of at least one element selected from vanadium and phosphorus, oxides, hydroxides, and the like of these elements can be used. Moreover, as a flux, an alkaline earth compound, a boron compound, etc. are preferable, and it adds in 0.01-1.0 weight part with respect to 100 weight part of fluorescent substance raw materials. It is preferable to mix the phosphor raw material with a ball mill, a V-type mixer or the like, and then fill the crucible with alumina, quartz, silicon carbide or the like, and fire in air at 900-1500 ° C. for 1-20 hours.

次に、本発明の希土類燐バナジン酸塩蛍光体を用いて冷陰極ランプを作製する。先ず、蛍光体とピロリン酸カルシウム、カルシウムバリウムボレート等の結着剤をニトロセルロース/酢酸ブチル溶液に添加し、これらを混合し懸濁させて蛍光体塗布懸濁液を調製する。得られた蛍光体塗布懸濁液をガラス管の内面に流し込み、その後これに温風を通じることで乾燥させ、ベーキング、排気、フィラメントの装着、口金の取り付けを行い、冷陰極ランプを得る。本発明の蛍光体は254nm紫外線励起による発光輝度が高く、管径が1〜4mmと細い冷陰極ランプに適した粒径範囲であるため、発光特性の優れた冷陰極ランプを得ることができる。   Next, a cold cathode lamp is produced using the rare earth phosphor vanadate phosphor of the present invention. First, a phosphor and a binder such as calcium pyrophosphate and calcium barium borate are added to a nitrocellulose / butyl acetate solution, and these are mixed and suspended to prepare a phosphor-coated suspension. The obtained phosphor-coated suspension is poured into the inner surface of the glass tube, and then dried by passing warm air through the glass tube, followed by baking, exhausting, attaching a filament, and attaching a base to obtain a cold cathode lamp. Since the phosphor of the present invention has a high emission luminance by 254 nm ultraviolet excitation and a tube diameter of 1 to 4 mm, which is a particle size range suitable for a thin cold cathode lamp, a cold cathode lamp having excellent emission characteristics can be obtained.

次に、本発明の希土類燐バナジン酸塩蛍光体の特性について図を用いて説明する。図1に、本発明の実施の形態に係る(Y1−aEu)VO・1.5×10−5CaO蛍光体について、254nm紫外線励起による相対輝度(%)とa値との関係を示した。ここで、相対輝度は、浜松ホトニクス(株)の低圧水銀灯を用いて蛍光体に254nm紫外線を照射し、日立分光光度計を用いて測定したものであり、(Y0.95Eu0.05)VO蛍光体の発光輝度を100%にしたときの相対値を示す。この図から、相対輝度はa値の増加とともに高くなり、a値が0.05付近を越えると徐々に低下していることがわかる。また、相対輝度はa値が0.001≦a≦0.2の範囲で高く、0.01≦a≦0.2の範囲でより高く、0.03≦a≦0.1の範囲でさらに高くなっていることがわかる。 Next, the characteristics of the rare earth phosphor vanadate phosphor of the present invention will be described with reference to the drawings. FIG. 1 shows the relationship between the relative luminance (%) due to 254 nm ultraviolet excitation and the a value for the (Y 1-a Eu a ) VO 4 · 1.5 × 10 −5 CaO phosphor according to the embodiment of the present invention. showed that. Here, the relative luminance was measured using a Hitachi spectrophotometer by irradiating the phosphor with 254 nm ultraviolet rays using a low-pressure mercury lamp manufactured by Hamamatsu Photonics Co., Ltd. (Y 0.95 Eu 0.05 ) The relative value is shown when the emission brightness of the VO 4 phosphor is 100%. From this figure, it can be seen that the relative luminance increases as the value a increases and gradually decreases when the value a exceeds 0.05. The relative luminance is high in the range of a value of 0.001 ≦ a ≦ 0.2, higher in the range of 0.01 ≦ a ≦ 0.2, and further in the range of 0.03 ≦ a ≦ 0.1. You can see that it is getting higher.

図2に、本発明の実施の形態に係る(Y0.95Eu0.05)VO・bCaO蛍光体について、254nm紫外線励起による相対輝度(%)とb値との関係を示した。ここで、相対輝度は、上記同様に測定したものであり、(Y0.95Eu0.05)VO蛍光体の発光輝度を100%にしたときの相対値を示す。この図から、相対輝度はb値の増加とともに高くなり、b値が1.5×10−5付近を越えると急激に低下していることがわかる。また、相対輝度はb値が5×10−7≦b≦3×10−5の範囲で高く、1×10−6≦b≦2.5×10−5の範囲でより高くなっていることがわかる。 FIG. 2 shows the relationship between the relative luminance (%) by the 254 nm ultraviolet excitation and the b value for the (Y 0.95 Eu 0.05 ) VO 4 .bCaO phosphor according to the embodiment of the present invention. Here, the relative luminance is measured in the same manner as described above, and indicates a relative value when the emission luminance of the (Y 0.95 Eu 0.05 ) VO 4 phosphor is 100%. From this figure, it can be seen that the relative luminance increases with an increase in the b value and rapidly decreases when the b value exceeds about 1.5 × 10 −5 . In addition, the relative luminance is high in the range of b value 5 × 10 −7 ≦ b ≦ 3 × 10 −5 , and higher in the range of 1 × 10 −6 ≦ b ≦ 2.5 × 10 −5 . I understand.

図1及び図2から明らかなように、一般式(R1−aEu)MO・bCaOにおいて、a値が0.001≦a≦0.2の範囲であり、b値が5×10−7≦b≦3×10−5の範囲にある本発明の蛍光体は、紫外線励起による発光輝度が高く、蛍光ランプに用いた場合、ランプ光束の高い蛍光ランプが得られる。また、本発明の蛍光体は深赤色域の発光強度が高いため、液晶表示装置のバックライトに使用される冷陰極蛍光ランプに用いた場合、Y:Eu蛍光体よりも赤色の色再現範囲を広くすることができる。 As apparent from FIGS. 1 and 2, in the general formula (R 1−a Eu a ) MO 4 · bCaO, the a value is in the range of 0.001 ≦ a ≦ 0.2, and the b value is 5 × 10 5. The phosphor of the present invention in the range of −7 ≦ b ≦ 3 × 10 −5 has high emission luminance due to ultraviolet excitation, and when used in a fluorescent lamp, a fluorescent lamp having a high lamp luminous flux can be obtained. In addition, since the phosphor of the present invention has a high emission intensity in the deep red region, when used in a cold cathode fluorescent lamp used for a backlight of a liquid crystal display device, the phosphor has a red color more than that of a Y 2 O 3 : Eu phosphor. The reproduction range can be widened.

以下、本発明の実施例について説明するが、本発明は具体的実施例のみに限定されるものではないことは言うまでもない。   Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to specific examples.

[実施例1]
<蛍光体>
・・・・・・・・・0.475mol(107.3g)
Eu・・・・・・・・0.025mol(8.80g)
NHVO・・・・・・・1.000mol(117.0g)
CaCO ・・・・・・・1.5×10−5mol(0.00015g)
上記蛍光体原料を湿式混合後、乾燥し、アルミナ坩堝に充填して、空気中にて、室温から1250℃まで300℃/hrで昇温し、1250℃で5時間焼成する。得られた焼成品を水中でボールミルし、水洗、分離、乾燥して、篩を通し、平均粒径が7.2μm、中央粒径が8.1μmであり、分散度が0.89である本発明の(Y0.95Eu0.05)VO・1.5×10−5CaO蛍光体を得る。蛍光体の組成を表1に示す。この蛍光体は、254nm紫外線励起により、618nmに発光ピークを有し、発光色は赤色で、色度座標値はx=0.665、y=0.333である。
[Example 1]
<Phosphor>
Y 2 O 3 ... 0.475 mol (107.3 g)
Eu 2 O 3 ... 0.025 mol (8.80 g)
NH 4 VO 3 ... 1.000 mol (117.0 g)
CaCO 3 ······ 1.5 × 10 −5 mol (0.00015 g)
The phosphor raw material is wet-mixed, dried, filled in an alumina crucible, heated from room temperature to 1250 ° C. at 300 ° C./hr in air, and fired at 1250 ° C. for 5 hours. The obtained fired product is ball-milled in water, washed with water, separated, dried, passed through a sieve, and has an average particle size of 7.2 μm, a median particle size of 8.1 μm, and a dispersity of 0.89. The inventive (Y 0.95 Eu 0.05 ) VO 4 · 1.5 × 10 −5 CaO phosphor is obtained. Table 1 shows the composition of the phosphor. This phosphor has an emission peak at 618 nm when excited with UV light at 254 nm, the emission color is red, and the chromaticity coordinate values are x = 0.665 and y = 0.333.

<赤色蛍光ランプ>
このようにして得られる赤色発光の希土類燐バナジン酸塩蛍光体とニトロセルロース/酢酸ブチルバインダーを磁製ポット中で十分混合し、蛍光体塗布スラリーを調製する。これを管径が3mmのガラス管に流し込み、その内面に塗布し、温風を通じて乾燥し、580℃で15分間塗布バルブをベーキングして、蛍光膜を形成する。その後、通常の方法に従い、排気、電極のマウント、口金の取り付けを行い、赤色の冷陰極蛍光ランプを得る。この赤色蛍光ランプの色度座標値はx=0.591、y=0.321、ランプ光束は115ルーメンである。
<Red fluorescent lamp>
The red light emitting rare earth phosphor vanadate phosphor thus obtained and the nitrocellulose / butyl acetate binder are sufficiently mixed in a porcelain pot to prepare a phosphor-coated slurry. This is poured into a glass tube having a tube diameter of 3 mm, applied to the inner surface thereof, dried through warm air, and baked at 580 ° C. for 15 minutes to form a fluorescent film. Thereafter, exhaust, electrode mounting, and attachment of a base are performed according to a normal method to obtain a red cold cathode fluorescent lamp. The chromaticity coordinate values of this red fluorescent lamp are x = 0.491, y = 0.321, and the lamp luminous flux is 115 lumens.

<白色蛍光ランプ>
次に、赤色発光の上記希土類燐バナジン酸塩蛍光体と、BaMgAl1017:Eu,Mn緑色発光蛍光体と、(Sr,Ca,Ba)10(POCl:Eu青色発光蛍光体を重量比で赤色:緑色:青色=35:25:40の割合で混合する。この混合蛍光体とニトロセルロース/酢酸ブチルバインダーを磁製ポット中で十分混合し、蛍光体塗布スラリーを調製する。これを管径が3mmのガラス管に流し込み、その内面に塗布し、温風を通じて乾燥し、580℃で15分間塗布バルブをベーキングして、蛍光膜を形成する。その後、通常の方法に従い、排気、電極のマウント、口金の取り付けを行い、白色の冷陰極蛍光ランプを得る。この白色蛍光ランプの色度座標値はx=0.251,y=0.201、ランプ光束は220ルーメンである。
<White fluorescent lamp>
Next, the rare earth phosphor vanadate phosphor emitting red light, a BaMgAl 10 O 17 : Eu, Mn green light emitting phosphor, and (Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu blue light emitting fluorescence. The body is mixed in a weight ratio of red: green: blue = 35: 25: 40. This mixed phosphor and nitrocellulose / butyl acetate binder are sufficiently mixed in a porcelain pot to prepare a phosphor coating slurry. This is poured into a glass tube having a tube diameter of 3 mm, applied to the inner surface thereof, dried through warm air, and baked at 580 ° C. for 15 minutes to form a fluorescent film. Then, according to a normal method, exhaust, electrode mounting, and attachment of a base are performed to obtain a white cold cathode fluorescent lamp. The chromaticity coordinate values of this white fluorescent lamp are x = 0.251, y = 0.201, and the lamp luminous flux is 220 lumens.

Figure 2008037883
Figure 2008037883

[実施例2〜7]
上記蛍光体原料を表1に示した蛍光体組成の割合で混合する以外は実施例1と同様にして蛍光体を作製する。
[Examples 2 to 7]
A phosphor is produced in the same manner as in Example 1 except that the phosphor raw materials are mixed in the proportion of the phosphor composition shown in Table 1.

[実施例8]
蛍光体原料として、NHPOを加えて、表1に示した蛍光体組成の割合で混合する以外は実施例1と同様にして蛍光体を作製する。
[Example 8]
A phosphor is produced in the same manner as in Example 1 except that NH 4 H 2 PO 4 is added as a phosphor material and mixed at the ratio of the phosphor composition shown in Table 1.

[実施例9]
蛍光体原料として、Gdを加えて、表1に示した蛍光体組成の割合で混合する以外は実施例1と同様にして蛍光体を作製する。
[Example 9]
A phosphor is produced in the same manner as in Example 1 except that Gd 2 O 3 is added as a phosphor material and mixed at the ratio of the phosphor composition shown in Table 1.

[実施例10]
蛍光体原料として、Yの代わりにGdを使用し、表1に示した蛍光体組成の割合で混合する以外は実施例1と同様にして蛍光体を作製する。
[Example 10]
A phosphor is produced in the same manner as in Example 1 except that Gd 2 O 3 is used in place of Y 2 O 3 as a phosphor material, and mixing is performed at the ratio of the phosphor composition shown in Table 1.

[比較例1]
蛍光体原料として、CaCOを添加せずに、表1に示した蛍光体組成の割合で混合する以外は実施例1と同様にして、(Y0.95Eu0.05)VO蛍光体を作製する。
[Comparative Example 1]
(Y 0.95 Eu 0.05 ) VO 4 phosphor as in Example 1 except that CaCO 3 is not added as a phosphor raw material and is mixed in the proportion of the phosphor composition shown in Table 1. Is made.

[比較例2〜4]
蛍光体原料を表1に示した蛍光体組成の割合で混合する以外は実施例1と同様にして蛍光体を作製する。
[Comparative Examples 2 to 4]
A phosphor is produced in the same manner as in Example 1 except that the phosphor material is mixed in the proportion of the phosphor composition shown in Table 1.

実施例1〜10及び比較例1〜4で得られる希土類燐バナジン酸塩蛍光体について、254nm紫外線で励起したときの発光輝度と色度座標値を表2に示す。なお、この表に示した発光輝度は比較例1の(Y0.95Eu0.05)VO蛍光体の発光輝度を100%にしたときの相対輝度である。表2から、本発明の実施例の蛍光体は、比較例の蛍光体に比べて紫外線励起による発光輝度が高いことがわかる。また、本発明の蛍光体の色度座標値は、x値が0.630≦x≦0.690の範囲、y値が0.310≦y≦0.360の範囲にあって、赤色発光することがわかる。本発明の蛍光体において、色度座標値は、x値が0.650≦x≦0.680の範囲、y値が0.320≦y≦0.350の範囲が好ましく、x値が0.650≦x≦0.670の範囲、y値が0.330≦y≦0.340の範囲がより好ましい。 Table 2 shows the luminance and chromaticity coordinate values of the rare earth phosphovanadate phosphors obtained in Examples 1 to 10 and Comparative Examples 1 to 4 when excited with 254 nm ultraviolet light. The emission luminance shown in this table is relative luminance when the emission luminance of the (Y 0.95 Eu 0.05 ) VO 4 phosphor of Comparative Example 1 is set to 100%. From Table 2, it can be seen that the phosphors of the examples of the present invention have higher emission luminance due to ultraviolet excitation than the phosphors of the comparative examples. The chromaticity coordinate value of the phosphor of the present invention is such that the x value is in the range of 0.630 ≦ x ≦ 0.690 and the y value is in the range of 0.310 ≦ y ≦ 0.360, and emits red light. I understand that. In the phosphor of the present invention, the chromaticity coordinate value is preferably in the range of x value of 0.650 ≦ x ≦ 0.680, y value of 0.320 ≦ y ≦ 0.350, and x value of 0.00. A range of 650 ≦ x ≦ 0.670 and a range of y value of 0.330 ≦ y ≦ 0.340 are more preferable.

Figure 2008037883
Figure 2008037883

実施例1〜10及び比較例1〜4で得られる希土類燐バナジン酸塩蛍光体を用い実施例1と同様にして作製した冷陰極蛍光ランプについて、色度座標値とランプ光束を表3及び表4に示す。表3に示した赤色蛍光ランプの色度座標値及びランプ光束の値から、本発明の蛍光ランプは比較例の蛍光ランプに比べてランプ光束が高く、赤色の色再現範囲が拡大することがわかる。本発明の赤色蛍光ランプの色度座標値は、x値が0.570≦x≦0.600の範囲、y値が0.310≦y≦0.330の範囲が好ましく、x値が0.565≦x≦0.595の範囲、y値が0.315≦y≦0.325の範囲がより好ましい。また、表4に示した白色蛍光ランプのデータからも、本発明の蛍光ランプは比較例の蛍光ランプに比べてランプ光束が高いことがわかる。このように、本発明によりランプ光束及び色再現範囲の広い蛍光ランプを得ることができる。 For the cold cathode fluorescent lamps produced in the same manner as in Example 1 using the rare earth phosphor vanadate phosphors obtained in Examples 1 to 10 and Comparative Examples 1 to 4, the chromaticity coordinate values and the lamp luminous flux are shown in Table 3 and Table 3. 4 shows. From the chromaticity coordinate values and the lamp luminous flux values of the red fluorescent lamp shown in Table 3, it can be seen that the fluorescent lamp of the present invention has a higher luminous flux than the fluorescent lamp of the comparative example and the red color reproduction range is expanded. . As for the chromaticity coordinate value of the red fluorescent lamp of the present invention, the x value is preferably in the range of 0.570 ≦ x ≦ 0.600, the y value is preferably in the range of 0.310 ≦ y ≦ 0.330, and the x value is 0.00. A range of 565 ≦ x ≦ 0.595 and a range of y value of 0.315 ≦ y ≦ 0.325 are more preferable. Also, from the data of the white fluorescent lamp shown in Table 4, it can be seen that the fluorescent lamp of the present invention has a higher lamp luminous flux than the fluorescent lamp of the comparative example. Thus, a fluorescent lamp with a wide lamp luminous flux and color reproduction range can be obtained according to the present invention.

Figure 2008037883
Figure 2008037883

Figure 2008037883
Figure 2008037883

以上に述べたように、本発明の蛍光体は、紫外線により効率よく励起され赤色発光し、発光強度が高いことから、一般照明用蛍光ランプや冷陰極蛍光ランプなどに好適に用いることができる。特に液晶表示装置のバックライトに使用される冷陰極蛍光ランプに用いた場合、ランプ光束が高く赤色の色再現範囲の広い冷陰極蛍光ランプを提供することができる。   As described above, since the phosphor of the present invention is efficiently excited by ultraviolet rays and emits red light and has high emission intensity, it can be suitably used for general illumination fluorescent lamps, cold cathode fluorescent lamps, and the like. In particular, when used in a cold cathode fluorescent lamp used for a backlight of a liquid crystal display device, a cold cathode fluorescent lamp having a high lamp luminous flux and a wide red color reproduction range can be provided.

本発明の蛍光体の254nm紫外線励起による相対輝度(%)とa値との関係を示す図である。It is a figure which shows the relationship between the relative luminance (%) by 254 nm ultraviolet excitation of the fluorescent substance of this invention, and a value. 本発明の蛍光体の254nm紫外線励起による相対輝度(%)とb値との関係を示す図である。It is a figure which shows the relationship between the relative luminance (%) by 254 nm ultraviolet excitation of the fluorescent substance of this invention, and b value.

Claims (4)

一般式が次式で表されることを特徴とする希土類燐バナジン酸塩蛍光体。
(R1−aEu)MO・bCaO
(但し、RはY、Gdから選択される少なくとも1種の元素、MはV、Pから選択される少なくとも1種の元素、0.001≦a≦0.2、5×10−7≦b≦3×10−5
A rare earth phosphor vanadate phosphor characterized by the following general formula:
(R 1-a Eu a ) MO 4 · bCaO
(However, R is at least one element selected from Y and Gd, M is at least one element selected from V and P, 0.001 ≦ a ≦ 0.2, 5 × 10 −7 ≦ b. ≦ 3 × 10 −5 )
透光性気密容器と、透光性気密容器内に形成された蛍光体層と、透光性気密容器内に封入された放電媒体と、電極とを具備する蛍光ランプにおいて、前記蛍光体層は請求項1に記載の希土類燐バナジン酸塩蛍光体を含むことを特徴とする蛍光ランプ。   In a fluorescent lamp comprising a translucent airtight container, a phosphor layer formed in the translucent airtight container, a discharge medium enclosed in the translucent airtight container, and an electrode, the phosphor layer is A fluorescent lamp comprising the rare earth phosphor vanadate phosphor according to claim 1. 前記蛍光体の平均粒径が5.0〜12.0μmの範囲にあり、中央粒径が6.0〜20.0μmの範囲にあり、且つ分散度が0.40〜1.0の範囲にあることを特徴とする請求項2に記載の蛍光ランプ。   The average particle size of the phosphor is in the range of 5.0 to 12.0 μm, the median particle size is in the range of 6.0 to 20.0 μm, and the dispersity is in the range of 0.40 to 1.0. The fluorescent lamp according to claim 2, wherein the fluorescent lamp is provided. 前記蛍光ランプが冷陰極蛍光ランプであることを特徴とする請求項2乃至3に記載の蛍光ランプ。
4. The fluorescent lamp according to claim 2, wherein the fluorescent lamp is a cold cathode fluorescent lamp.
JP2006209791A 2006-08-01 2006-08-01 Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same Pending JP2008037883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209791A JP2008037883A (en) 2006-08-01 2006-08-01 Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209791A JP2008037883A (en) 2006-08-01 2006-08-01 Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same

Publications (1)

Publication Number Publication Date
JP2008037883A true JP2008037883A (en) 2008-02-21

Family

ID=39173303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209791A Pending JP2008037883A (en) 2006-08-01 2006-08-01 Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same

Country Status (1)

Country Link
JP (1) JP2008037883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018870A (en) * 2011-07-11 2013-01-31 Tokai Rika Co Ltd Method for manufacturing phosphor
JP2013018869A (en) * 2011-07-11 2013-01-31 Tokai Rika Co Ltd Phosphor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018870A (en) * 2011-07-11 2013-01-31 Tokai Rika Co Ltd Method for manufacturing phosphor
JP2013018869A (en) * 2011-07-11 2013-01-31 Tokai Rika Co Ltd Phosphor

Similar Documents

Publication Publication Date Title
US5350971A (en) Blue-emitting phosphor for use in fluorescent lamps and fluorescent lamp employing the same
TWI408210B (en) Green fluorescent materials, methods of fabricating the same and emission devices using the green fluorescent materials
JP2008202044A (en) Deep red phosphor and method for production thereof
JP4561194B2 (en) Alkaline earth aluminate phosphor for cold cathode fluorescent lamp and cold cathode fluorescent lamp
JP2006299207A (en) Green phosphor, white led, back light using it, and liquid crystal display device
JP4269880B2 (en) Fluorescent lamp and phosphor for fluorescent lamp
JP2001172623A (en) Fluorescent substance and fluorescent lamp using the same
JP2002249766A (en) Method for manufacturing aluminate fluorescent substance
JP4702565B2 (en) Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same
JP5912895B2 (en) Phosphor, manufacturing method thereof, and light emitting device using the same
JP4770160B2 (en) Phosphor for UV-excited light emitting device
JP2008037883A (en) Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same
JP4329651B2 (en) Fluorescent lamp
JP5380790B2 (en) Alkaline earth metal aluminate phosphor and fluorescent lamp using the same
JP4517783B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
JP2843648B2 (en) Blue light emitting phosphor
JP2002003837A (en) Phosphor and fluorescent lamp obtained by using the same
JP2001172625A (en) Vacuum ultraviolet excitable fluorescent substance and light emitting device using the same
JPS6399287A (en) Production of luminescent composition
JP2004231786A (en) Phosphor and light-emitting device
JP2005023306A (en) Phosphor for ultraviolet excitation luminescent element
JP4517781B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
JPH05302082A (en) Luminescent composition and fluorescent lamp
JPH0570774A (en) Phosphor and fluorescent lamp
JP3360901B2 (en) Phosphors and fluorescent lamps