JP5329534B2 - 医用画像処理装置、マルチエネルギー型x線ct装置、医用画像処理方法、プログラム - Google Patents

医用画像処理装置、マルチエネルギー型x線ct装置、医用画像処理方法、プログラム Download PDF

Info

Publication number
JP5329534B2
JP5329534B2 JP2010509180A JP2010509180A JP5329534B2 JP 5329534 B2 JP5329534 B2 JP 5329534B2 JP 2010509180 A JP2010509180 A JP 2010509180A JP 2010509180 A JP2010509180 A JP 2010509180A JP 5329534 B2 JP5329534 B2 JP 5329534B2
Authority
JP
Japan
Prior art keywords
identification
biological tissue
medical image
map
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010509180A
Other languages
English (en)
Other versions
JPWO2009131109A1 (ja
Inventor
卓是 角村
大雅 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2010509180A priority Critical patent/JP5329534B2/ja
Publication of JPWO2009131109A1 publication Critical patent/JPWO2009131109A1/ja
Application granted granted Critical
Publication of JP5329534B2 publication Critical patent/JP5329534B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/405Source units specially adapted to modify characteristics of the beam during the data acquisition process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/245Classification techniques relating to the decision surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/143Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10144Varying exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Pulmonology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Description

本発明は、X線CT装置等の医用画像撮影装置によって取得された医用画像情報を処理して表示する医用画像処理装置に関する。詳細には、2以上の異なるエネルギー強度に基づく医用画像情報を表示する医用画像処理装置に関する。
X線CT装置により撮影される医用画像は、フォトンノイズやシステムノイズ、ビームハードニング効果等の影響により、同じ種別の生体組織であってもCT値は一意の値をとらず、CT値のばらつきは平均CT値等の代表値を中心とした正規分布を呈する。
また、被検体にX線を照射する際の各生体組織におけるX線吸収率は、照射されるX線のエネルギー強度に依存する。従って、異なる種別の生体組織が、あるエネルギー強度のX線照射では同程度のX線吸収率を示しても、別のエネルギー強度のX線照射では異なるX線吸収率を示す。
生体組織の種別を識別するために、撮影管電圧を変えることによりエネルギー強度の異なるX線を照射して撮影する方法がある。例えば、管電圧を120kVにして撮影した場合に、異なる種別の生体組織が再構成画像上で同程度のCT値を示したとしても、管電圧80kVや140kVで撮影した場合に、再構成画像中におけるコントラスト差が広がり、個々の生体組織の種別の識別が可能となる。
マルチエネルギー型X線CT装置(MECT:Multi-Energy Computedd Tomography)は、1以上のX線源と、X線源に対向して配置される1以上のX線検出器とを回転させながら、X線源からX線を照射してX線検出器との間に配置された被検体を撮影する。マルチエネルギー型X線CT装置は、X線検出器によって2以上の異なるエネルギー強度の被検体透過X線を検出し、透過X線情報及び再構成画像情報を得る医用画像撮影装置である。
骨密度を測定する装置では、骨密度を求めるために2つの異なるエネルギー強度のX線を照射し、それらの差をとるDEXA(Dual Energy X-ray Absorptionmergy)法を用いる。また、X線CT装置においても、MECTで撮影した2以上の異なるエネルギー強度の被検体透過X線情報を用いて骨と造影血管や、造影血管と血管内の石灰化などの識別を行う方法がある(例えば、[特許文献1]、[特許文献2]参照。)。
また、マルチエネルギー撮影で得た画像情報に基づいて、X軸を高エネルギー時のCT値、Y軸を低エネルギー時のCT値としたマップを作成し、当該マップを参照して生体組織の種別を識別する方法がある(例えば、[非特許文献1]参照。)。例えば、骨と造影剤とを識別する場合、マップ上の骨の分布領域と造影剤の分布領域とが直線で区切られている。マルチエネルギー撮影で得られた再構成画像情報のCT値が当該マップに射影され、骨領域にある生体組織が「骨」、造影剤領域にある生体組織が「造影剤」として識別される。識別された生体組織は、生体組織別に色づけされて元の画像に重ねられて表示される。
また、高エネルギー強度の撮影による画像情報と、低エネルギー強度の撮影による画像情報とのCT値の比(低エネルギー強度によるCT値/高エネルギー強度によるCT値)に応じて色を割り当て、元画像に重ねて表示する方法がある(例えば、[非特許文献2]参照。)。
特開2004-174253号公報 特開2004-065975号公報
前述した目的を達成するための第1の発明は、X線を被検体に照射して得られる2以上の異なるエネルギー強度に基づく医用画像情報を、表示装置に表示させる医用画像処理装置であって、被検体の生体組織の種別に対応する統計量情報を、エネルギー強度毎に取得する統計量情報取得手段と、前記統計量情報に基づいて、生体組織の種別を識別するための識別マップを作成する識別マップ作成手段と、得られる医用画像情報中の生体組織の種別を、前記識別マップに基づいて識別する組織識別手段と、前記組織識別手段による識別結果を前記医用画像情報として表示装置に表示させる表示手段と、を具備することを特徴とする医用画像処理装置である。
第1の発明の医用画像処理装置は、被検体の生体組織の種別に対応する統計量情報を、エネルギー強度毎に取得して識別マップを作成し、得られる医用画像情報中の生体組織の種別を識別マップに基づいて識別し表示装置に表示させる。
医用画像情報は、X線CT装置等の医用画像撮影装置によって撮影された被検体の透過X線情報及び断層像を示す再構成画像情報である。
X線CT装置の撮影管電圧を変えることにより、X線源から異なるエネルギー強度のX線を発生させることができる。
統計量情報とは、所定の生体組織について透過X線情報として設定される平均CT値と、CT値の標準偏差である。統計量情報は、生体組織の種別及び照射するエネルギー強度の組み合わせ毎に設定される。
生体組織の種別とは、血管領域、骨領域、脂肪領域等である。
第1の発明では、医用画像処理装置は、被検体の生体組織の種別に対応する統計量情報に基づいて作成された識別マップにより、医用画像情報中の生体組織の種別を高精度に識別することができる。
また、医用画像処理装置は、統計量情報及び識別マップに基づいて生体組織の識別度合を示す識別確率マップを作成し、組織識別手段は、更に、識別確率マップに基づいて生体組織の識別確率値を求めることで、生体組織の識別度合を得るようにしてもよい。
これにより、生体組織の識別度合を表現する表示が可能になる。例えば、ノイズ等の影響による誤認識領域の表示方法や表示形態等を、識別度合の高い領域の表示方法と区別することができる。例えば識別度合の低い領域の明度を低く表示させるようにしてもよい。
また、2以上の異なるエネルギー強度のそれぞれの統計量情報の組み合わせに対応する領域毎に、最も高い存在確率値を有する生体組織の種別を選択して識別マップを作成するようにしてもよい。
また、識別マップは、領域毎に、選択された生体組織の種別を識別するための識別子が設定されることが望ましい。識別子は種別を識別するためのフラグ、数値、記号等のいずれであってもよい。
また、領域毎に、生体組織の存在確率値及び識別マップから求められる種別の境界から領域までの距離に基づいて識別確率値を設定して、識別確率マップを作成するようにしてもよい。
これにより、生体組織の識別度合を判定するための識別確率値は、種別の境界からの距離を考慮することで複数の種別の存在確率値と関連付けられ、高精度に算出される。
また、組織識別手段は、医用画像情報を取得し、識別マップに基づいて、領域毎に設定されている識別子を判別し、領域毎の生体組織の種別を識別してもよい。
また、組織識別手段は、医用画像情報を取得し、識別マップに基づいて、領域毎に生体組織の種別を識別し、更に識別確率マップに基づいて領域毎の生体組織の識別確率値を得てもよい。
また、組織識別手段によって識別された生体組織の種別を、生体組織の種別毎に異なる色を設定して表示させてもよい。
また、組織識別手段によって識別された生体組織の種別を、生体組織の種別毎に異なる色を設定し、更に組織識別手段によって得られた領域毎の生体組織の識別確率値に応じた階調を設定して表示させてもよい。
第2の発明は、X線を被検体に照射して得られる2以上の異なるエネルギー強度に基づく医用画像情報を、表示装置に表示させる医用画像処理装置における医用画像処理方法であって、被検体の生体組織の種別に対応する統計量情報を、エネルギー強度毎に取得する統計量情報取得ステップと、前記統計量情報に基づいて、生体組織の種別を識別するための識別マップを作成する識別マップ作成ステップと、得られる医用画像情報中の生体組織の種別を、前記識別マップに基づいて識別する組織識別ステップと、前記組織識別ステップによる識別結果を前記医用画像情報として表示装置に表示させる表示ステップと、を含むことを特徴とする医用画像処理方法である。
第2の発明は、第1の発明の医用画像処理装置における医用画像処理方法に関する発明である。
第3の発明は、コンピュータを、被検体の生体組織の種別に対応する統計量情報を、エネルギー強度毎に取得する統計量情報取得手段と、前記統計量情報に基づいて、生体組織の種別を識別するための識別マップを作成する識別マップ作成手段と、得られる医用画像情報中の生体組織の種別を、前記識別マップに基づいて識別する組織識別手段と、前記組織識別手段による識別結果を前記医用画像情報として表示装置に表示させる表示手段と、を具備する医用画像処理装置として機能させるプログラムである。
第3の発明は、コンピュータを第1の発明の医用画像処理装置として機能させるプログラムに関する発明である。
本発明によれば、マルチエネルギー撮影における医用画像情報について、生体組織の種別の高精度な識別、及び識別度合の表示を可能とする医用画像処理装置を提供することができる。
医用画像処理装置1のハードウェア構成図 医用画像撮影装置23のハードウェア構成図 医用画像処理装置1の全体動作を示すフローチャート 組織情報入力画面301を示す図 組織情報入力画面302を示す図 確率分布データと統計量情報との対応を説明する図 CT値に幅がある場合の確率分布データ作成方法を説明する図 組織の確率分布データを示す図 識別マップ81を示す図 識別確率マップ97の作成処理を示すフローチャート 境界算出処理を説明する図 識別境界85を示す図 距離マップ87を示す図 最大確率マップ89を示す図 注目座標93の位置を示す図 識別確率マップ97を示す図 CT値の識別マップ81への射影を示す図 生体組織の表示画面303を示す図 認識結果の表示を示す図 認識確率設定画面を示す図 認識確率と認識結果の表示画面を示す図
以下添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。尚、以下の説明及び添付図面において、同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略することにする。また、以下に説明する実施形態では、主として、X線CT装置による被検体のマルチエネルギー撮影を行い、得られる医用画像情報の画像処理を行うものとして説明する。
(1.医用画像処理装置1の構成)
最初に、図1を参照しながら、医用画像処理装置1の構成について説明する。
図1は、医用画像処理装置1のハードウェア構成図である。
医用画像処理装置1は、CPU3、主メモリ5、記憶装置7、表示メモリ9、表示装置11、コントローラ13に接続されたマウス15やキーボード17、ネットワークアダプタ19がシステムバス21によって接続されて構成される。医用画像処理装置1は、ネットワーク27を介して画像データベース25に接続される。また医用画像処理装置1は、医用画像撮影装置23とデータの送受信可能に接続される。医用画像撮影装置23は、ネットワーク27を介して医用画像処理装置1に接続されるようにしてもよい。
CPU3は、各構成要素の動作を制御する装置である。CPU3は、記憶装置7に格納されるプログラムやプログラム実行に必要なデータを主メモリ5にロードして実行する。記憶装置7は、医用画像撮影装置23により撮影された医用画像情報をLAN(ローカルエリアネットワーク)等のネットワーク27を介して取得して格納する装置である。また、記憶装置7には、CPU3が実行するプログラムやプログラム実行に必要なデータが格納される。主メモリ5は、CPU3が実行するプログラムや演算処理の途中経過を記憶するものである。
マウス15やキーボード17は、操作者が医用画像処理装置1に対して操作指示を行う操作デバイスである。表示メモリ9は、液晶ディスプレイやCRT等の表示装置11に表示するための表示データを格納するものである。コントローラ13は、マウス15の状態を検出して、表示装置11上のマウスポインタの位置を検出し、検出信号をCPU3へ出力するものである。ネットワークアダプタ19は、医用画像処理装置1をLAN、電話回線、インターネット等のネットワーク27に接続するためのものである。
医用画像撮影装置23は、被検体の断層画像等の医用画像情報を撮影する装置である。医用画像撮影装置23は、例えば、X線CT装置やX線透視撮影装置やMRI装置や超音波撮影装置である。画像データベース25は、医用画像撮影装置23によって撮影された医用画像情報を記憶するデータベースシステムである。画像データベース25は、ネットワーク27に接続される複数の他の医用画像撮影装置によって撮影された医用画像情報を蓄積するものであってもよい。
(2.医用画像撮影装置23の構成)
次に、図2を参照しながら、医用画像撮影装置23の構成について説明する。
図2は、医用画像撮影装置23のハードウェア構成図である。
医用画像撮影装置23として、マルチエネルギー型X線CT装置の構成について説明する。医用画像撮影装置23は、ガントリ29、ガントリ29に搭載されたX線源31とX線検出器39、被検体33を載せるテーブル35、照射X線37を制御するX線制御器41、ガントリ29を制御するガントリ制御器43、テーブル35を制御するテーブル制御器45、X線検出器39が検出した透過X線情報を収集するデータ収集回路47、収集データの再構成演算を行う再構成演算器49等から構成される。再構成演算器49で再構成された再構成画像情報は医用画像処理装置1に提供される。再構成画像情報は医用画像処理装置1の記憶装置7、或いはネットワーク27を介して画像データベース25に蓄積されてもよい。
X線源31は、被検体33を挟んで対向設置されるX線検出器39に向ってX線を照射する。X線検出器39は、被検体33を透過したX線を検出する。X線源31とX線検出器39は、1回の走査の間に被検体33の周りを回転する。
マルチエネルギー型X線CT装置では、同一被検体に2以上の異なるエネルギー強度のX線を照射した場合の透過X線情報が得られる。マルチエネルギー型X線CT装置は、ガントリ29内に2以上のX線源31とX線検出器39とを備え、それぞれのX線源31に異なる管電圧を印加することによりマルチエネルギー撮影を行う。マルチエネルギー撮影の詳細については後述する。
X線制御器41は、X線源31を制御するものである。X線制御器41は、X線源31に管電圧を制御する電力信号やX線発生タイミング信号等を供給する。
ガントリ制御器43は、ガントリ29に配置されるX線源31やX線検出器39の回転速度や位置等を制御する。
テーブル制御器45は、被検体33を載せるテーブル35の移動速度や位置を制御する。
データ収集回路47は、X線検出器39が検出した透過X線情報を収集し、アナログ信号からデジタル信号に変換して再構成演算器49に提供する。
再構成演算器49は、データ収集回路47から送られる透過X線情報に画像再構成処理を実行し、被検体の断層像画像(再構成画像)を作成する。再構成演算器49は、再構成画像を医用画像処理装置1に送る。
(3.医用画像処理装置1の動作)
次に、図3を参照しながら、マルチエネルギー撮影情報に基づいて複数の生体組織の種別を識別し、識別度合を組織ごとに可視化して表示する医用画像処理装置1の動作について説明する。
図3は、医用画像処理装置1の全体動作を示すフローチャートである。以下、マルチエネルギー撮影情報は、高エネルギー時は管電圧が140kVである場合の撮影情報、低エネルギー時は管電圧が80kVである場合の撮影情報として説明する。尚、管電圧の値はこれに限定されない。
(3-1.組織情報の取得)
医用画像処理装置1のCPU3は、操作者によるマウス15やキーボード17等のポインティングデバイスによる入力や外部入力装置から読み込むことにより、識別する生体組織に対応する統計量情報、即ち平均CT値やCT値のばらつきを示す標準偏差等の値を取得する(ステップ1001)。
図4は、生体組織に関する情報を操作者が入力するための組織情報入力画面301を示す図である。組織情報入力画面301は、表示装置11に表示される。組織情報入力画面301には、生体組織の組織名51-1、表示色53-1、低エネルギー時の管電圧55-1、高エネルギー時の管電圧61-1の入力枠が配置される。また、組織名51-1で入力される生体組織の統計量情報、即ち管電圧ごとの平均CT値57-1、及び平均CT値63-1、CT値の標準偏差59-1、及び標準偏差65-1の入力枠が配置される。
表示色53-1として、マルチエネルギー型X線CT装置で撮影する医用画像情報の組織名51-1に対応する領域を表示する色や模様の少なくともいずれかが設定される。
操作者は、組織情報入力画面301に、組織名51-1、生体組織毎に表示する際の表示色53-1、生体組織の統計量情報等を入力する。
「OK」ボタン67が押下されると、入力内容が決定される。「キャンセル」ボタン69が押下されると、入力内容がキャンセルされる。CPU3は決定された入力内容を記憶装置7等に記憶する。
図5は、造影剤等のように濃度によって平均CT値に幅のある組織情報を入力する場合の組織情報入力画面302を示す図である。組織情報入力画面302には、生体組織の組織名51-2、表示色53-2、低エネルギー時の管電圧55-2、高エネルギー時の管電圧61-2の入力枠が配置される。低エネルギー時の管電圧55-2における平均CT値57-2、及びCT値の標準偏差59-2と、高エネルギー時の管電圧61-2における平均CT値63-2、及び標準偏差65-2のそれぞれの上限値と下限値の入力枠が配置される。
図4、図5に示す組織情報入力画面は、生体組織に対応する情報入力のための画面構成の一例であって、これに限られるものではない。組織情報入力画面は、識別する生体組織の名称や平均CT値、CT値の標準偏差等の情報を入力する画面であればよい。
以上のように、医用画像処理装置1は、生体組織毎に、表示色と、所定のエネルギー強度のX線照射時の平均CT値やCT値の標準偏差等の統計量情報を取得する。尚、生体組織毎の表示色の設定や統計量情報は、予め医用画像処理装置1に登録されている情報を取得してもよいし、ネットワーク27を介して取得するようにしてもよい。
(3-2.識別マップ81の作成)
次に、医用画像処理装置1は、ステップ1001で取得した生体組織毎の組織情報に基づいて、識別マップを作成する(ステップ1002)。識別マップは、医用画像撮影装置23から取得する医用画像情報(透過X線情報又は再構成画像情報)の中から生体組織の種別を識別する際に利用される。
図6から図9を参照しながら、識別マップの作成について説明する。
図6は、確率分布データと統計量情報との対応を説明する図である。ステップ1001で取得した所定の生体組織の統計量情報に基づいて、確率分布データが算出される。図6では、X軸に管電圧80kV時のCT値、Y軸に管電圧140kV時のCT値を取る。確率分布データは、式(1)に示すように2次元ガウス分布で近似して算出される。
Figure 0005329534
但し、i,j:確率分布データ上のx座標、y座標
б80 :管電圧80kV時のCT値の標準偏差
б140 :管電圧140kV時のCT値の標準偏差
m80 :管電圧80kV時の平均CT値
m140 :管電圧140kV時の平均CT値
式(1)によって算出された値を画像化し、図6に示す確率分布データを得る。管電圧80kV時の平均CT値(m80)、管電圧140kV時の平均CT値(m140)の時の座標の値g(i,j)が最も高く、周辺になるに従って、座標の値g(i,j)はなだらかに値が小さくなる。座標の値g(i,j)は、存在確率値に相当する。図6では、存在確率値の等しい部分を線で結ぶことによって、分布状況を示している。
図6は、組織情報入力画面301(図4)のように平均CT値が1つ定まる場合の確率分布データである。
次に、組織情報入力画面302(図5)で入力した造影剤等のように濃度等の条件によってCT値に幅がある場合の確率分布データの作成方法について説明する。
図7は、CT値に幅がある場合の確率分布データ作成方法を説明する図である。図7では、組織情報入力画面302(図5)で入力された平均CT値の上限値と下限値とを図面上にとり、それぞれ平均CT値(上限)77-1、平均CT値(下限)77-2とする。平均CT値(上限)77-1と平均CT値(下限)77-2とを直線で結び、この直線上の所定数の補間点を平均CT値(補間)77-3、平均CT値(補間)77-4、平均CT値(補間)77-5として設定する。
平均CT値(上限)77-1、平均CT値(下限)77-2、平均CT値(補間)77-3、平均CT値(補間)77-4、平均CT値(補間)77-5についてそれぞれ上記式(1)によって確率分布を算出し、各座標について最大確率値を示すデータを選択して、確率分布データを作成する。得られる確率分布データは、例えば図8(a)に示すような棒状の形状になる。
図8は、組織の確率分布データを示す図である。図8(a)は組織Aの確率分布データ79-1、図8(b)は組織Bの確率分布データ79-2、図8(c)は組織Cの確率分布データ79-3を示す。組織A、組織B、組織Cは、それぞれ異なる種別の生体組織を表す。また、確率分布データが棒状の形状を示す組織Aと組織Bは、条件によってCT値に幅がある場合の組織である。図8では、存在確率値の等しい部分を線で結ぶことによって、分布状況を示している。
次に、医用画像処理装置1は、組織Aの確率分布データ79-1、組織Bの確率分布データ79-2、組織Cの確率分布データ79-3の共通の座標全てについて各組織の確率分布データを比較し、各座標に最も確率(存在確率値)の高い組織に対応する識別子(フラグ)を設定する。全ての座標について識別子(フラグ)を設定し、識別マップ81とする。尚、識別子は、組織の種別を識別するためのフラグ、数値、文字列等いずれであってもよい。
図9は、識別マップ81を示す図である。所定のCT値(管電圧80kV)とCT値(管電圧140kV)との組み合わせを呈する組織について、識別マップ81を参照することにより、該当する組織の種別(組織A又は組織B又は組織C)を識別することができる。
(3-3.識別確率マップ作成処理)
次に、医用画像処理装置1は、ステップ1001で取得した生体組織の統計量情報(平均CT値とCT値の標準偏差)、及びステップ1002で作成した識別マップ81に基づいて識別確率マップを作成する(ステップ1003)。識別確率マップは、所定のCT値(管電圧80kV)とCT値(管電圧140kV)との組み合わせを呈する組織について、識別度合を求めるために参照するマップである。識別確率マップ作成処理の詳細について、図10から図16を参照しながら説明する。
図10は、図16に示す識別確率マップ97の作成処理を示すフローチャートである。
以下、図10を参照しながら、識別確率マップ97の作成処理について説明する。
(3-3-1.識別境界算出処理)
医用画像処理装置1は、ステップ1002で作成した識別マップ81に基づいて、各組織領域の識別境界85を算出する(ステップ2001)。
図11は、境界算出処理を説明する図である。図11は、識別マップ81(図9)の中の一部の領域の座標を拡大して示したものである。所定の座標に注目し、中心座標(i,j)83-1とする。中心座標(i,j)83-1の上下左右の4近傍の座標(近傍座標上(i,j-1)83-2、近傍座標左(i-1,j)83-3、近傍座標下(i,j+1)83-4、近傍座標(i+1,j)83-5)の組織の識別子(フラグ)を参照する。
4近傍の座標の組織の識別子が、中心座標(i,j)83-1の識別子と1つでも異なっていれば、その中心座標を境界として認識する。識別マップ81の全ての座標について上記境界算出処理を行い、識別境界85を得る。
図12は、識別境界85を示す図である。例えば、図12の識別境界85に相当する座標には境界であることを示すフラグが設定される。
(3-3-2.距離マップ作成)
次に、医用画像処理装置1は、ステップ2001で求めた識別境界85に基づき、確率分布データ(例えば図6、図8)と同じ座標系において、識別境界85からの距離を算出し、距離マップ87を作成する(ステップ2002)。識別境界85から座標までの距離は、例えばユークリッド距離変換を用いて求める。全ての座標に対して、識別境界85からの距離が設定され、距離マップ87が作成される。
図13は、距離マップ87を示す図である。
識別境界85上にある座標には、距離「0」が設定される。図13では、識別境界85上からの距離が等しい部分を線で結んでいる。
(3-3-3.最大確率マップ89の作成)
次に、医用画像処理装置1は、確率分布データ79(図8)を参照して、最大確率マップ89を作成する(ステップ2003)。即ち、医用画像処理装置1は、生体組織毎の確率分布データ(組織Aの確率分布データ79-1、組織Bの確率分布データ79-2、組織Cの確率分布データ79-3)を比較し、同じ座標において最も高い存在確率値を示す組織の存在確率値を、その座標の最大確率値として選択する。生体組織の種別に係らず、各座標について最大確率値が設定され、最大確率マップ89が作成される。
図14は、最大確率マップ89を示す図である。最大確率マップ89は、各座標について存在確率値が設定されるものであり、生体組織の種別を識別することはできない。図14では、視認性を高める為に、生体組織の種別ごとに存在確率値の等しい部分を線で結んでいる。
(3-3-4.識別確率マップ97の作成)
次に、医用画像処理装置1は、ステップ2002で作成した距離マップ87と、ステップ2003で作成した最大確率マップ89とを用いて、識別確率マップ97を作成する(ステップ2004)。識別確率マップ97の各座標には、各座標の識別度合を示す値が設定される。識別確率マップ97の各座標には、色の階調と同様に「0」から「255」までの値が識別確率値rとして設定されるものとする。
距離マップ87と最大確率マップ89から、それぞれ同座標の値を取得する。距離マップ87からは、距離値d(i,j)を取得し、最大確率マップ89からは、存在確率値p(i,j)を取得する。距離値d(i,j)は、境界からの距離、存在確率値p(i,j)は生体組織の中心値(最大確率)を「1.0」とした時の確率値である。距離値d(i,j)と存在確率値p(i,j)に基づいて、注目する座標の識別確率値を算出する方法について説明する。
図15は、注目座標93の位置を示す図である。中心値91と注目座標93との距離をl1、境界95から注目座標93との距離をl2とする。中心値91は最大確率マップ89から求め、境界95は距離マップ87から求める。
ここで、
l1=1/p(i,j)-1 ・・・・・(2)
l2=d(i,j) ・・・・・(3)
である。
注目座標93の識別確率値r(i,j)は、以下の式(4)で算出される。
r(i,j)=255×l2/(l1+l2)
=255×d(i、j)/[{(1/p(i,j))-1}+d(i,j)] ・・・・・(4)
全ての座標について、識別確率値rが算出され設定されて、識別確率マップ97が得られる。
図16は、識別確率マップ97を示す図である。識別確率マップ97における識別確率値rは、中心値は最大値「255」を示し、識別確率値「0」を示す境界に近づくに従って値が減少する。識別確率マップ97は、各座標について識別確率値(0〜255の値)が設定されるものであり、生体組織の種別を識別することはできない。図16では、視認性を高める為に、生体組織の種別ごとに識別確率値の等しい部分を線で結んでいる。
識別確率マップ97の作成方法は、上述した方法に限定されない。例えば、最大確率マップ89による確率分布に基づいても算出するものであってもよい。
また、注目座標93の中心値91からの距離l1を、以下の式(5)としてもよい。
l1=ln(1/p(i,j)) ・・・・・(5)
以上述べたように、医用画像処理装置1は、マルチエネルギー撮影情報を取得する前に、予め生体組織毎の表示色設定や統計量情報を取得し、生体組織の種別を識別する際に参照する識別マップ81及び識別度合を求めるための識別確率マップ97を作成する(ステップ1001〜ステップ1003)。
(3-4.マルチエネルギー撮影情報の取得)
次に、医用画像処理装置1のCPU3は、医用画像撮影装置23によって撮影されたマルチエネルギー撮影情報を記憶装置7あるいは画像データベース25から取得して、主メモリ5に読み込む(ステップ1004)。マルチエネルギー撮影情報は、透過X線情報又は再構成画像情報である。
医用画像撮影装置23は、マルチエネルギー撮影情報として、高エネルギー時は管電圧が140kVである場合の撮影情報、低エネルギー時は管電圧が80kVである場合の撮影情報を取得するものとして説明する。
医用画像撮影装置23のマルチエネルギー撮影には様々な方法がある。例えば、ガントリ29内に2以上のX線源31とX線検出器39を備え、それぞれのX線源31に異なる管電圧を印加して異なるエネルギー強度のX線を被検体に照射することにより2以上の異なるエネルギー強度の透過X線情報を得る方法がある。また、異なる厚さ又は異なる材質のX線検出器39を多層に配置することにより、1つのエネルギー強度のX線を被検体に照射する場合であっても、異なるエネルギー強度の透過X線情報を得る方法がある。また、スキャン中にX線源31の撮影管電圧を高速に切り替えてガントリ29が1回転する毎に異なるエネルギー強度のX線を照射する方法がある。
本実施の形態では、2以上の異なるエネルギー強度の被検体透過X線情報が得られるものであれば、マルチエネルギー撮影の方法は限定されない。
(3-5.生体組織の識別)
次に、医用画像処理装置1は、ステップ1004で取得したマルチエネルギー撮影情報と、ステップ1002で作成した識別マップ81とに基づいて、マルチエネルギー撮影情報に含まれる生体組織の種別を識別する(ステップ1005)。
即ち、マルチエネルギー撮影情報として得た管電圧80kVの画像情報と、管電圧140kVの画像情報とから、注目画素についてそれぞれのCT値を取得する。例えば注目画素について、管電圧80kVの画像情報のCT値はCT80、管電圧140kVの画像情報のCT値はCT140を得る。
図17は、注目画素のCT値の識別マップ81への射影を示す図である。注目画素をCT値(CT80、CT140)に基づいて識別マップ81に射影し、射影位置の座標Pに設定されている識別子(フラグ)を得る。識別子によって、生体組織の種別を識別することができる。例えば座標Pは識別子を参照し、「組織A」と識別される。
医用画像処理装置1は、マルチエネルギー撮影情報として得た管電圧80kVの画像情報と、管電圧140kVの画像情報の全ての画素について上記生体組織の種別の識別処理を行う。
(3-6.識別結果表示)
医用画像処理装置1は、ステップ1005で識別した結果を表示装置11に表示する。画像情報の画素の識別結果は、組織情報入力時(ステップ1001)に生体組織毎に設定された表示色53と、生体組織の種別の識別処理(ステップ1005)で取得した生体組織の種別を示す識別子とが対応付けられて表示される。
例えば、取得したマルチエネルギー撮影情報について、骨、造影血管、軟部組織の3つの組織を識別して表示する場合、各々の表示色を「赤」、「緑」、「青」と割り当てると、識別結果が骨の場合は「赤」、造影血管の場合は「緑」、軟部組織の場合は「青」がそれぞれ元の画像に重ねて表示される。尚、表示色を重ねる画像は、管電圧80kVの画像、管電圧140kVの画像の何れでもよいし、両画像を加工して作成した画像に重ねてもよい。
図18は、生体組織の表示画面303を示す図である。
図18は、被検体33の断層像を示し、生体組織が識別マップ81に基づいて組織A、組織B、組織Cの種別に識別され、それぞれ異なる表示色で表示された表示画面303である。尚、図18に示す生体組織は、図17までの説明に係る生体組織とは異なるものである。また、図18では、表示色の違いを模様の違いで表現している。
(3-7.種別識別による表示の効果)
以上述べたように、本発明の医用画像処理装置1は、マルチエネルギー撮影情報として得られた被検体33の断層像画像を、生体組織の種別毎に識別し、種別毎に異なる色を重ねて表示するので、視認性の高い表示画面を得ることができる。本実施の形態によれば、表示画像の視認性が高まることで、医療従事者による医療診断の迅速化・高精度化を図り診断ミスを低減させる効果がある。
また、本発明の医用画像処理装置1は、医用画像撮影装置23等の撮影条件や設定条件が変わって、撮影する生体組織のCT値やCT値の分布が変化した場合であっても、組織情報を変更することで生体組織の識別性能を維持し、識別精度の劣化を防ぐことができる。
(3-8.識別度合を反映させた識別結果表示)
医用画像処理装置1は、更に識別確率マップ97(図16)に基づいて識別度合を反映させた識別結果を表示させてもよい(ステップ1006)。
医用画像処理装置1は、管電圧80kVの画像情報と、管電圧140kVの画像情報とから、注目画素についてそれぞれのCT値を取得する。
注目画素について、管電圧80kVの画像情報のCT値はCT80、管電圧140kVの画像情報のCT値はCT140を得て、識別確率マップ97に射影し、識別確率マップ97における射影先の座標に設定されている識別確率値(0〜255の値)を得る。
医用画像処理装置1は、マルチエネルギー撮影情報として得た管電圧80kVの画像情報と、管電圧140kVの画像情報の全ての画素について上記生体組織の識別確率値(0〜255の値)を取得する。
医用画像処理装置1は、取得した識別確率値(0〜255の値)に基づいて、ステップ1001で取得した生体組織毎の表示色53について、明度や彩度を変化させて生体組織の識別度合を表示方法に反映させて表現する。
識別度合を表示方法に反映させて表現する方法として、以下の方法がある。
(a)識別確率値に応じた明度変化
取得した識別確率値(0〜255の値)に応じて、表示色の明度を変化させる方法がある。例えば、表示色が「赤」に設定されている場合、識別確率値が小さくなるほど明度を下げる方法では、識別確率値が最大値「255」の時は表示色が「赤」である。識別確率値が低くなるにつれて表示色の明度が下がって黒色に近づき、識別確率値が最小値「0」の時は表示色が「黒」となる。
識別確率値が小さくなるほど明度を上げる方法では、識別確率値が最大値「255」の時は表示色が「赤」である。識別確率値が低くなるにつれて表示色の明度が上がって白に近づき、識別確率値が最小値「0」の時は表示色が「白」となる。
(b)識別確率値に応じた彩度変化
取得した識別確率値(0〜255の値)に応じて、表示色の彩度を変化させる方法がある。例えば、表示色が「赤」に設定されている場合、識別確率値が最大値「255」の時は表示色が「赤」である。識別確率値が低くなるにつれて表示色の彩度が下がって灰色に近づき、識別確率値が最小値「0」の時は表示色が「灰色」となる。
(c)識別確率値に応じた透明度の変化
取得した識別確率値(0〜255の値)に応じて、表示色の透明度を変化させる方法がある。例えば、表示色が「赤」に設定されている場合、識別確率値が最大値「255」の時は表示色が「赤」である。識別確率値が低くなるにつれて透明度を上げ、識別確率値が最小値「0」の時は完全に透明となる。
上記(a)〜(c)は、識別度合を表示方法に反映させて表現する方法の例であり、この方法に限定されない。また、上記の表示方法を組み合わせて識別度合を表現するようにしてもよい。また、上記のように識別度合と表示色を組み合わせた表示に限定されず、全ての生体組織について同一の表示色を用いて、識別度合のみを表現(明度、彩度、透明度等を表現)してもよい。
(3-9.識別度合を表示する効果)
以上述べたように、医用画像処理装置1は、ノイズ等の識別確率の低い領域と、組織が正常に認識された識別確率の高い領域を識別度合に応じて段階的に区別して表示するので、操作者による生体組織の正確な診断、及び迅速な診断を可能にする。
(3-10.画面の表示設定)
次に、図19から図21を参照しながら、表示装置11に表示される画面について説明する。
図19(a)は、生体組織の識別度合に関係なく表示した場合の画面304を示す図である。ノイズ等の影響により、識別確率値が低い領域(誤認識領域99-1)が、正常に認識した領域(正常認識領域101-1)と同様な表現で画面上に表示される。尚、図19(a)では、視認性を高める為に、誤認識領域99-1と正常認識領域101-1とを区別できるように図示しているが、実際の表示装置に表示された場合、誤認識領域99-1と正常認識領域101-1とは差別化して表示されない。
図19(b)は、本実施の形態の方法により、識別確率値(識別度合)に応じて表現方法を変える場合の画面305を示す図である。例えば、画面305は識別確率値が低い領域(誤認識領域99-2)の透明度を上げて表示し、正常に認識した領域(正常認識領域101-2)とは差別化して表示される。図19(b)では、実際の表示装置に表示された場合にも、誤認識領域99-1と正常認識領域101-1とを差別化して表示される。
図20及び図21は、操作者が、識別確率値の範囲を設定する画面である。
ステップ2004で算出された識別確率マップ97(図16)は、各座標に識別確率値として「0」から「255」の値が設定されるが、操作者が直感的に識別確率値を設定可能にするため、ここでは識別確率マップ97による識別確率値「0」を、図20及び図21では認識確率「0%」、識別確率値「255」を認識確率「100%」と表示する。
図20(a)は、操作者が認識確率中心値103と、認識確率幅105を入力することが可能な認識確率設定画面306である。操作者は、認識確率設定画面306にキーボード17から直接、認識確率値を入力してもよいし、バーをマウス15で操作することにより認識確率値を入力してもよい。
図20(b)は、操作者が認識確率上限値107と、認識確率下限値109を入力することが可能な認識確率設定画面307である。
図21(a)は、認識確率設定画面307において、認識確率上限値「100%」、認識確率下限値「0%」が設定された場合に、被検体33の生体組織が表示された画面308である。画面308は、低認識領域111-1と高認識領域113-1を含む認識した全ての組織が、認識確率に係らず同じ表現(明度、彩度、透明度等が同じ。)で表示される。
図21(b)は、認識確率設定画面307において、認識確率上限値「100%」、認識確率下限値「62%」が設定された場合に、被検体33の生体組織が表示された画面309である。画面309は、認識確率範囲外の低認識領域111-2は透明度を上げ、認識確率範囲の高認識領域113-2は認識確率に係らず同じ表現、或いは認識確率に応じた表現で表示される。
(3-11.画面の表示設定による効果)
以上述べたように、認識確率を指定して生体組織表示の表現方法の変更が可能であるので、操作者は、注目する組織を好みに合わせて強調して表示することができる。従って、操作者は生体組織を正確に診断することができるので、生体組織の誤認識による診断ミスを低減することができる。
(4.その他)
尚、生体組織の種別による表示方法の区別、生体組織の識別度合による表示方法、操作者による認識確率設定による表示方法を適宜組み合わせて、マルチエネルギー撮影による医用画像情報を表示させるようにしてもよい。異なる観点で医用画像情報を表示させることにより、生体組織の診断の迅速化を図り、より正確な診断を行うことができる。
上述の実施形態ではX線CT画像について説明したが、X線透視撮影装置、MRI装置、超音波診断装置等の医用画像撮影装置によって取得された医用画像情報の診断に適用することができる。
以上、本発明に係る医用画像処理装置の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
1 医用画像処理装置、3 CPU、5 主メモリ、7 記憶装置、9 表示メモリ、11 表示装置、13 コントローラ、15 マウス、17 キーボード、19 ネットワークアダプタ、21 システムバス、23 医用画像撮影装置、25 画像データベース、27 ネットワーク、29 ガントリ、31 X線源、33 被検体、35 テーブル、37 照射X線、39 X線検出器、41 X線制御器、43 ガントリ制御器、45 テーブル制御器、47 データ収集回路、49 再構成演算器、51-1、51-2 組織名、53-1、53-2 表示色、55-1、55-2、61-1、61-2 管電圧、57-1、57-2、63-1、63-2、75、77-1〜77-5 平均CT値、59-1、59-2、65-1、65-2 標準偏差、67 「OK」ボタン、69 「キャンセル」ボタン、71 CT値(管電圧80kV)、73 CT値(管電圧140kV)、79-1〜79-3 組織の確率分布データ、81 識別マップ、83-1〜83-5 座標、85 識別境界、87 距離マップ、89 最大確率マップ、91 中心値、93 注目座標、95 境界、97 識別確率マップ、99-1、99-2 誤認識領域、101-1、101-2 正常認識領域、103 認識確率中心値、105 認識確率幅、107 認識確率上限値、109 認識確率下限値、111-1、111-2 低認識確率領域、113-1、113-2 高認識確率領域、301〜309 画面

Claims (8)

  1. X線を被検体に照射して得られる2以上の異なるエネルギー強度に基づく医用画像情報を、表示装置に表示させる医用画像処理装置であって、
    被検体の生体組織の種別に対応する統計量情報を、エネルギー強度毎に取得する統計量情報取得手段と、
    前記統計量情報に基づいて、生体組織の種別を識別するための識別マップを作成する識別マップ作成手段と、
    得られる医用画像情報中の生体組織の種別を、前記識別マップに基づいて識別する組織識別手段と、
    前記識別マップ上の各生体組織に対応する領域毎に、生体組織の存在確率値と生体組織の種別の境界から各点までの距離とに基づいて各生体組織の識別確率値を設定して、生体組織の識別度合を示す識別確率マップを作成する識別確率マップ作成手段と、
    前記組織識別手段による識別結果を前記識別度合に基づき前記医用画像情報として表示装置に表示させる表示手段と、
    を具備することを特徴とする医用画像処理装置。
  2. 前記表示手段は、前記組織識別手段によって識別された生体組織の種別を、生体組織の種別毎に異なる色を設定し、更に前記組織識別手段によって得られた前記領域毎の生体組織の識別確率値に応じた階調を設定して表示させることを特徴とする請求項1に記載の医用画像処理装置。
  3. 前記識別マップ作成手段は、2以上の異なるエネルギー強度のそれぞれの統計量情報の組み合わせに対応する領域毎に、最も高い存在確率値を有する生体組織の種別を選択して識別マップを作成することを特徴とする請求項1に記載の医用画像処理装置。
  4. 前記識別マップは、前記領域毎に、選択された生体組織の種別を識別するための識別子が設定されることを特徴とする請求項3に記載の医用画像処理装置。
  5. 前記表示手段は、前記組織識別手段によって識別された生体組織の種別を、生体組織の種別毎に異なる色を設定して表示させることを特徴とする請求項4に記載の医用画像処理装置。
  6. 被検体に2以上の異なるエネルギー強度のX線を照射して透過X線情報を取得し、前記透過X線情報を用いて医用画像情報を作成するマルチエネルギー型X線CT装置であって、
    被検体の生体組織の種別に対応する統計量情報を、エネルギー強度毎に取得する統計量情報取得手段と、
    前記統計量情報に基づいて、生体組織の種別を識別するための識別マップを作成する識別マップ作成手段と、
    得られる医用画像情報中の生体組織の種別を、前記識別マップに基づいて識別する組織識別手段と、
    前記識別マップ上の各生体組織に対応する領域毎に、生体組織の存在確率値と生体組織の種別の境界から各点までの距離とに基づいて各生体組織の識別確率値を設定して、生体組織の識別度合を示す識別確率マップを作成する識別確率マップ作成手段と、
    前記組織識別手段による識別結果を前記識別度合に基づき前記医用画像情報として表示装置に表示させる表示手段と、
    を具備することを特徴とするマルチエネルギー型X線CT装置。
  7. X線を被検体に照射して得られる2以上の異なるエネルギー強度に基づく医用画像情報を、表示装置に表示させる医用画像処理装置における医用画像処理方法であって、
    被検体の生体組織の種別に対応する統計量情報を、エネルギー強度毎に取得する統計量情報取得ステップと、
    前記統計量情報に基づいて、生体組織の種別を識別するための識別マップを作成する識別マップ作成ステップと、
    得られる医用画像情報中の生体組織の種別を、前記識別マップに基づいて識別する組織識別ステップと、
    前記識別マップ上の各生体組織に対応する領域毎に、生体組織の存在確率値と生体組織の種別の境界から各点までの距離とに基づいて各生体組織の識別確率値を設定して、生体組織の識別度合を示す識別確率マップを作成する識別確率マップ作成ステップと、
    前記組織識別ステップによる識別結果を前記識別度合に基づき前記医用画像情報として表示装置に表示させる表示ステップと、
    を含むことを特徴とする医用画像処理方法。
  8. コンピュータを、
    被検体の生体組織の種別に対応する統計量情報を、エネルギー強度毎に取得する統計量情報取得手段と、
    前記統計量情報に基づいて、生体組織の種別を識別するための識別マップを作成する識別マップ作成手段と、
    得られる医用画像情報中の生体組織の種別を、前記識別マップに基づいて識別する組織識別手段と、
    前記識別マップ上の各生体組織に対応する領域毎に、生体組織の存在確率値と生体組織の種別の境界から各点までの距離とに基づいて各生体組織の識別確率値を設定して、生体組織の識別度合を示す識別確率マップを作成する識別確率マップ作成手段と、
    前記組織識別手段による識別結果を前記識別度合に基づき前記医用画像情報として表示装置に表示させる表示手段と、
    を具備する医用画像処理装置として機能させるプログラム。
JP2010509180A 2008-04-22 2009-04-21 医用画像処理装置、マルチエネルギー型x線ct装置、医用画像処理方法、プログラム Active JP5329534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010509180A JP5329534B2 (ja) 2008-04-22 2009-04-21 医用画像処理装置、マルチエネルギー型x線ct装置、医用画像処理方法、プログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008110918 2008-04-22
JP2008110918 2008-04-22
PCT/JP2009/057902 WO2009131109A1 (ja) 2008-04-22 2009-04-21 医用画像処理装置、医用画像処理方法、プログラム
JP2010509180A JP5329534B2 (ja) 2008-04-22 2009-04-21 医用画像処理装置、マルチエネルギー型x線ct装置、医用画像処理方法、プログラム

Publications (2)

Publication Number Publication Date
JPWO2009131109A1 JPWO2009131109A1 (ja) 2011-08-18
JP5329534B2 true JP5329534B2 (ja) 2013-10-30

Family

ID=41216841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010509180A Active JP5329534B2 (ja) 2008-04-22 2009-04-21 医用画像処理装置、マルチエネルギー型x線ct装置、医用画像処理方法、プログラム

Country Status (3)

Country Link
US (1) US8442289B2 (ja)
JP (1) JP5329534B2 (ja)
WO (1) WO2009131109A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144794A2 (en) * 2012-03-29 2013-10-03 Koninklijke Philips N.V. Visual suppression of selective tissue in image data
US20130322713A1 (en) * 2012-05-29 2013-12-05 Isis Innovation Ltd. Color map design method for assessment of the deviation from established normal population statistics and its application to quantitative medical images
US9014455B2 (en) * 2012-10-30 2015-04-21 Samsung Electronics Co., Ltd. X-ray imaging apparatus and X-ray image generating method
WO2015083065A1 (en) * 2013-12-06 2015-06-11 Koninklijke Philips N.V. Bone segmentation from image data
JP6313168B2 (ja) 2014-09-02 2018-04-18 キヤノンメディカルシステムズ株式会社 X線ct装置、画像処理装置及び画像処理プログラム
KR102372165B1 (ko) * 2015-01-22 2022-03-11 삼성전자주식회사 엑스선 영상 장치, 영상 처리 장치 및 영상 처리 방법
JP6595910B2 (ja) * 2015-12-28 2019-10-23 キヤノン株式会社 Ct装置、ct撮影方法及びプログラム
CN109690618B (zh) 2016-11-30 2020-08-07 皇家飞利浦有限公司 谱ct中的骨和硬斑块分割
US10580130B2 (en) 2017-03-24 2020-03-03 Curadel, LLC Tissue identification by an imaging system using color information
EP3404919A1 (en) * 2017-05-17 2018-11-21 Koninklijke Philips N.V. Vector-valued diagnostic image encoding
JP6555785B2 (ja) * 2017-05-26 2019-08-07 株式会社アルム 脳画像データ処理装置、脳画像データ処理方法、および脳画像データ処理プログラム
US10852236B2 (en) 2017-09-12 2020-12-01 Curadel, LLC Method of measuring plant nutrient transport using near-infrared imaging
CN108460753A (zh) * 2018-01-03 2018-08-28 沈阳东软医疗系统有限公司 双能量ct图像处理方法、装置以及设备
TWI697686B (zh) * 2019-06-20 2020-07-01 臺北榮民總醫院 基於磁振造影分析腦組織成分的系統與方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111526A (ja) * 2005-10-17 2007-05-10 Siemens Ag X線画像内の物質のセグメンテーション方法および装置
JP2007268273A (ja) * 2006-03-31 2007-10-18 Siemens Ag 骨または他のカルシウム含有物質と軟部組織内の造影剤との自動差別化方法および装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3453085B2 (ja) * 1998-07-23 2003-10-06 ジーイー横河メディカルシステム株式会社 X線ct装置
US7068826B2 (en) * 2002-01-28 2006-06-27 Ge Medical Systems Global Technology Company, Llc Automatic selection of the log-subtraction decomposition parameters for dual energy chest radiography
US7054406B2 (en) * 2002-09-05 2006-05-30 Kabushiki Kaisha Toshiba X-ray CT apparatus and method of measuring CT values
US7209536B2 (en) * 2004-11-19 2007-04-24 General Electric Company CT colonography system
US7599465B2 (en) * 2004-11-19 2009-10-06 General Electric Company Detection of thrombi in CT using energy discrimination
US7876874B2 (en) * 2005-05-18 2011-01-25 Hitachi Medical Corporation Radiographing apparatus and image processing program
DE102005037367B3 (de) * 2005-08-08 2007-04-05 Siemens Ag Verfahren für eine Röntgeneinrichtung
DE102007017629B4 (de) * 2007-04-12 2011-03-24 Siemens Ag Verfahren zur Zuordnung von Voxeln eines CT-Bilddatensatzes zu einer von zwei Materialmischungen jeweils bestehend aus zwei von vier unterschiedlichen Materialien
JP5042887B2 (ja) * 2008-03-06 2012-10-03 富士フイルム株式会社 放射線画像撮影装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111526A (ja) * 2005-10-17 2007-05-10 Siemens Ag X線画像内の物質のセグメンテーション方法および装置
JP2007268273A (ja) * 2006-03-31 2007-10-18 Siemens Ag 骨または他のカルシウム含有物質と軟部組織内の造影剤との自動差別化方法および装置

Also Published As

Publication number Publication date
US20110033099A1 (en) 2011-02-10
JPWO2009131109A1 (ja) 2011-08-18
WO2009131109A1 (ja) 2009-10-29
US8442289B2 (en) 2013-05-14

Similar Documents

Publication Publication Date Title
JP5329534B2 (ja) 医用画像処理装置、マルチエネルギー型x線ct装置、医用画像処理方法、プログラム
JP5162182B2 (ja) 異常陰影の検出のために放射線画像を処理するための方法
US6922462B2 (en) Method, system and computer product for plaque characterization
US8077939B2 (en) Methods and systems for enhanced plaque visualization
US7957574B2 (en) Methods and apparatus for generating a risk metric for soft plaque in vessels
JP2004174253A (ja) 軟組織空間の視覚化の方法及び装置
KR20040047561A (ko) 컴퓨터 보조 영상 세트 진단
JP2007325928A (ja) 放射線医学的徴候の検出のためのトモシンセシスにおける放射線画像の処理方法
JP2007151881A (ja) 血流動態解析装置
JP5954766B2 (ja) 医用画像表示装置
JP6526428B2 (ja) 医用画像処理装置、医用画像処理方法および医用画像診断装置
JP2017506938A (ja) 画像データにおける運動構造のセグメンテーション
JP2000287957A (ja) マンモグラム画像診断支援装置
US10922812B2 (en) Image processing apparatus, x-ray diagnostic apparatus, and image processing method
JP2007325641A (ja) 医用画像表示装置
RU2639022C2 (ru) Выявление буллезной эмфиземы и диффузной эмфиземы в, например, объемных изображениях компьютерной томографии легких
US20220101617A1 (en) 3-d virtual endoscopy rendering
EP3649957B1 (en) Device and method for editing a panoramic radiography image
JP2010131315A (ja) 医用画像処理装置及び医用画像処理プログラム
CN106557224A (zh) 一种ct图像显示方法及装置
EP3996050A1 (en) Image rendering method for tomographic image data
EP3161803B1 (en) Silhouette display for visual assessment of calcified rib-cartilage joints
JP6878074B2 (ja) 医用画像診断装置及び医用画像処理装置
WO2018159053A1 (ja) 画像表示制御装置、x線ct装置及び画像表示方法
US20240180510A1 (en) System and method for measuring vessels in a body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350