WO2018159053A1 - 画像表示制御装置、x線ct装置及び画像表示方法 - Google Patents

画像表示制御装置、x線ct装置及び画像表示方法 Download PDF

Info

Publication number
WO2018159053A1
WO2018159053A1 PCT/JP2017/043694 JP2017043694W WO2018159053A1 WO 2018159053 A1 WO2018159053 A1 WO 2018159053A1 JP 2017043694 W JP2017043694 W JP 2017043694W WO 2018159053 A1 WO2018159053 A1 WO 2018159053A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
images
unit
display control
feature amount
Prior art date
Application number
PCT/JP2017/043694
Other languages
English (en)
French (fr)
Inventor
中山 正人
後藤 大雅
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018159053A1 publication Critical patent/WO2018159053A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to an image display control apparatus, an X-ray CT apparatus, and an image display method for displaying various images acquired by multi-energy imaging in which a subject is irradiated with X-rays having two or more different energy intensities.
  • the X-ray tube is rotated around the body axis of the subject, irradiated with X-rays, and the tomogram of the subject is reconstructed by reconstructing projection data from a plurality of angles obtained by detecting the X-rays transmitted through the subject.
  • an X-ray CT apparatus that reconstructs an image and displays a reconstructed tomographic image.
  • the image displayed by the X-ray CT apparatus describes the shape of an organ in the subject and is used for image diagnosis.
  • Patent Document 1 discloses an X-ray CT apparatus that visualizes a desired tissue based on a CT value map in which CT values at each energy are plotted on a two-dimensional graph. Has been.
  • the material discrimination technique based on multi-energy imaging is used, for example, to identify the components of kidney stones by irradiating two different energies, ie, X-rays with two high and low tube voltages.
  • imaging is performed under conventional imaging conditions (for example, 120 kV), and a dual energy (for example, 140 kV) of a high tube voltage and a low tube voltage is used only for a necessary cross section, using an image generated thereby as a reference. , 80 kV), and ROI is drawn on the obtained high tube voltage image and low tube voltage image, and the difference in CT value is generally confirmed on a graph.
  • a reference image In this kidney stone photography, three types of images are generated: a reference image, a high tube voltage image, and a low tube voltage image, and the region (ROI) of the kidney stone for which the component is to be identified can be specified on the reference image.
  • Energy-captured images are limited to the necessary range.
  • identification processing is performed based on a CT value map in which the horizontal axis represents the CT value at the time of the low tube voltage and the vertical axis represents the CT value at the time of the high tube voltage. But only display the results. For this reason, in order to show the basis of the identification result, that is, the CT value at each energy and the ratio of the CT values, it is necessary to display the CT value map itself as a feature quantity for identifying the substance.
  • the present invention has been made in view of the above circumstances, and an object thereof is to improve the legibility of feature values in various images obtained by multi-energy imaging.
  • One aspect of the present invention is a storage unit that stores various images obtained by irradiating two or more X-rays having different energy intensities and associated information that associates the various images according to a predetermined condition.
  • a region setting unit that sets a region of interest for each arbitrary image and an image associated with the image by the association information, and a pixel value in each region of interest.
  • a feature amount calculation unit that calculates a feature amount indicating a characteristic for each region of interest; a graphic processing unit that generates a shaded figure in which each calculated feature amount is represented by a predetermined color change or shade;
  • an image display control device comprising: a display control unit that displays a gray scale figure on a display unit together with at least one of the image and an image associated with the image.
  • FIG. 1 is a block diagram showing an outline of an X-ray CT apparatus to which an image display control apparatus according to a first embodiment of the present invention is applied. It is a table
  • 2 is a flowchart showing a flow of processing for acquiring an image by dual energy imaging in the X-ray CT apparatus of FIG. 1. It is a reference figure showing an example of a display screen displayed on a display part of an image display control device concerning a 1st embodiment of the present invention.
  • FIG. 5 is a reference diagram showing details by enlarging a graphic display area of the display screen of FIG. 4.
  • FIG. 11 is a reference diagram illustrating another example of the grayscale graphic displayed on the display unit in the image display control device according to the modification of the first embodiment of the present invention.
  • (A) is a reference figure which shows an example of the data registered beforehand in order to display the light and shade figure of FIG. 8,
  • (b) is an example of the menu screen displayed on a display part.
  • FIG. 11 is a reference diagram illustrating another example of the grayscale graphic displayed on the display unit in the image display control device according to the modification of the first embodiment of the present invention.
  • FIG. 11 is a reference diagram illustrating another example of the grayscale graphic displayed on the display unit in the image display control device according to the modification of the first embodiment of the present invention.
  • (A) And (b) is a reference figure which shows the other example of the gray scale figure displayed on a display part in the image display control apparatus which concerns on the modification of the 1st Embodiment of this invention.
  • (A) And (b) is a reference figure which shows the other example of the gray scale figure displayed on a display part in the image display control apparatus which concerns on the modification of the 1st Embodiment of this invention.
  • An image display control device includes a storage unit that stores various images obtained by irradiating two or more X-rays having different energy intensities, and association information that associates the various images according to a predetermined condition; A region setting unit that sets a region of interest for an arbitrary image and an image associated with the image by association information, and a pixel value in each region of interest.
  • a feature amount calculation unit that calculates a feature amount indicating a characteristic for each region of interest; a graphic processing unit that generates a shaded figure in which each calculated feature amount is represented by a predetermined color change or shade; an image;
  • An image display control apparatus comprising: a display control unit configured to display a grayscale figure on a display unit together with at least one image among images associated with the image.
  • each feature amount in the region of interest of each associated image is expressed by a gray figure, so that not only the feature amount itself but also each feature amount difference or the like can be grasped. Therefore, it is possible to improve the legibility of feature amounts in various images obtained by multi-energy imaging.
  • FIG. 1 is a block diagram showing the overall configuration of the X-ray CT apparatus 1.
  • the X-ray CT apparatus 1 includes a scan gantry unit 100 and an operation unit 200 as an image display control device.
  • the scan gantry unit 100 includes an X-ray tube 101, a rotating disk 102, a collimator 103, a bed 105, an X-ray detector 106, a data collection unit 107, a gantry control unit 108, a bed control unit 109, and an X-ray control unit 110. ing.
  • the X-ray tube 101 irradiates the subject placed on the bed 105 with X-rays.
  • the collimator 103 limits the radiation range of X-rays emitted from the X-ray tube 101.
  • the rotating disk 102 includes an opening 104 through which a subject placed on a bed 105 enters, and an X-ray tube 101 and an X-ray detector 106 are mounted to rotate around the subject.
  • the X-ray detector 106 is a device that is arranged opposite to the X-ray tube 101 and measures the spatial distribution of transmitted X-rays by detecting X-rays transmitted through the subject.
  • the rotating disk 102 is arranged in the rotating direction, or the rotating disk 102 is arranged two-dimensionally in the rotating direction and the rotating shaft direction.
  • the data collection unit 107 collects the X-ray dose detected by the X-ray detector 106 as digital data.
  • the gantry control unit 108 controls the rotation and inclination of the rotating disk 102.
  • the bed control unit 109 controls the vertical movement, left-right movement, and left-right movement of the bed 105.
  • the X-ray control unit 110 controls power input to the X-ray tube 101.
  • the operation unit 200 includes a calculation unit 120, an input unit 121, and a display unit 125.
  • the computing unit 120 includes an image processing unit 122, a storage unit 123, a graphics processing unit 126, and a system control unit 124.
  • the image processing unit 122 performs arithmetic processing on the measurement data sent from the data collecting unit 107 to reconstruct a CT image, and generates an image for each energy intensity and a material discrimination image.
  • the storage unit 123 includes various data storage areas 22 that store measurement data and image data, and an association database 21 that stores image data and various information related to the image data in association with each other. Specifically, an HDD (Hard Disk Drive) or the like can be applied as the storage unit 123.
  • the various data storage area 22 includes images related to various multi-energy images including measurement data collected by the data collection unit 107 and CT images reconstructed by the image processing unit 122 as well as images for each energy intensity and substance discrimination images. Store the data.
  • the association database 21 associates information stored in the various data storage area 22 with the ID, image type, imaging conditions, and the like for identifying the image, as well as the association between the images. Save the flag as
  • association database 21 in addition to an ID for specifying a captured image, various data relating to the image are recorded in association with each other.
  • the Study UID, Series UID, and SOP UID are unique IDs for specifying the study, series, and image, respectively.
  • image type 1 indicates the type of image as main classification information of the image such as Scan (scanogram image), Scan (scanned image), Recon (reconstructed (recon) image).
  • image type 2 indicates auxiliary image classification information such as AX (axial image).
  • the tube voltage is a tube voltage that is set as a photographing condition and applied during photographing.
  • FOV, FOV-X, and FOV-Y are a field of view (image reconstruction field of view in the XY direction) and FOV center coordinates set in the scanned image and the reconstructed (recon) image.
  • Position is a position in the Z direction and indicates the position of the image.
  • the shading graphics association flag is association information for associating images with each other, and when performing the shading graphics processing described later, the same number (identifier) is assigned to the related images to create shading graphics. This is a flag for handling as a processing target image.
  • a simple image shot and a dual energy shot image generated by specifying a shooting range using the simple shot image as a reference automatically assigns the same number to the shaded graphic processing association flag.
  • the user can designate the association information in advance or later. Note that since the scanogram image is not used for the shading graphic processing in this embodiment, the shading graphic association flag cannot be set in the example of FIG.
  • the graphic processing unit 126 (feature amount calculation unit, graphic processing unit) is a region of interest (hereinafter referred to as an “image”) designated by the user among the image data stored in the storage unit 123 and an image related to the image. (Hereinafter simply referred to as “ROI”), and a shaded figure in which feature amounts between related images are expressed by a predetermined color change or shade is generated. Details of the processing in the graphics processing unit 126 will be described later.
  • the system control unit 124 controls the input unit 121, the image processing unit 122, the storage unit 123, the display unit 124, and the graphic processing unit 126, and the gantry control unit 108, the bed control unit 109, and the X-ray control unit 110 described above. To control.
  • the input unit 121 inputs the subject name, examination date and time, imaging conditions, etc., and selects a display image to the calculation unit 120.
  • the input unit 121 sets a region of interest for each of the image and the image associated with the image by the association information. Specifically, a keyboard, a pointing device, a touch panel, or the like can be applied.
  • the display unit 125 displays the imaging conditions input by the input unit 121 and the CT image created by the image processing unit 122. Specifically, a CRT (Cathode-Ray Tube), a liquid crystal display, or the like can be applied as the display unit 125.
  • a CRT Cathode-Ray Tube
  • a liquid crystal display or the like can be applied as the display unit 125.
  • imaging is generally performed as follows. That is, the X-ray control unit 110 controls the power input to the X-ray tube 101 based on the imaging conditions input from the input unit 121, in particular, the X-ray tube voltage and the X-ray tube current. The tube 101 irradiates the subject with X-rays according to imaging conditions.
  • X-rays irradiated from the X-ray tube 101 and transmitted through the subject are detected by a number of X-ray detection elements of the X-ray detector 106, and the distribution of transmitted X-rays is measured.
  • the rotating disk 102 is controlled by the gantry control unit 108 and rotates based on the photographing conditions input from the input unit 121, particularly the rotation speed.
  • the bed 105 is controlled by the bed control unit 109 and operates based on the imaging conditions input from the input unit 121, particularly the helical pitch.
  • X-ray irradiation from the X-ray tube 101 and transmission X-ray distribution measurement by the X-ray detector 106 are repeated with the rotation of the rotating disk 102, whereby projection data from various angles is acquired.
  • the acquired projection data from various angles is transmitted to the image processing unit 122.
  • the image processing unit 122 reconstructs the CT image by performing back projection processing on the transmitted projection data from various angles.
  • the CT image obtained by reconstruction is displayed on the display unit 125.
  • the arithmetic unit 120 described above can be partially or wholly constructed as a system including a CPU (Central Processing Unit), a memory, and a main storage unit 109.
  • the functions of the units constituting the arithmetic unit 120 are stored in advance in the storage unit.
  • the program stored in 123 can be realized by loading the CPU into the memory and executing it. Also, some or all of the functions can be configured by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • step S301 first, a scanogram for determining an imaging range is imaged by an X-ray CT apparatus. Specifically, when a scanogram is shot according to the shooting conditions and shooting range specified by the user via the input unit 121, the scanogram image is stored in the storage unit 123 as various data 22, and various data relating to the scanogram image is stored. Register in the association table of the association database 21.
  • step S302 a shooting range is set based on the scanogram image generated in step S301, and simple shooting is performed.
  • simple imaging is performed according to the imaging conditions designated by the user via the input unit 121 and the imaging range planned on the scanogram image generated in step S301, and the generated scan image and RawData are used as various data.
  • the information is stored in the storage area 22, and the association information about these images is stored in the association database.
  • the Study UID is ST-i
  • the Series UID is SE-2
  • the SOP UID is b001 to b100
  • the image type 1 Scan
  • the image type 2 AX (axial image)
  • the tube voltage 120 kV
  • FOV 350 mm
  • (FOV ⁇ X, FOV ⁇ Y) (0, 0)
  • Position stored as an image of 0 to 495 mm.
  • the shaded graphic processing association flag is not set.
  • step S303 a necessary shooting range is set with reference to the scan image of simple shooting generated in step S302, and dual energy shooting is performed. That is, the user designates via the input unit 121 that a simple photographing scan image generated in step S302 is used as a reference to obtain a necessary photographing range, in this case, an image with a Position: 400 to 435 mm.
  • dual energy imaging is performed in accordance with an input instruction by the user, and dual energy imaging images (images for each energy intensity) and RawData (two types of images of tube voltage 140 kV and 80 kV, RawData) are stored in various data storage areas.
  • the association information about these images is registered in the association database 21.
  • the graphic processing unit 126 performs graphic processing based on the images associated with the association information among the images stored in the storage unit 123. That is, the graphic processing unit 126 first searches the association database 21 of the storage unit 123 for the image specified by the input unit 121 and other images related to the image, and based on the result, Images are acquired from the various data storage areas 22 of the storage unit 123 and displayed on the display unit 125, for example, as shown in FIG.
  • the feature quantities in the ROI set by the user using the input unit 121 are acquired, and based on these feature quantities, graphic processing, that is, for example, a shaded figure as shown in FIG. 5 is generated.
  • the generated shading graphic is displayed on the display unit 125 via the system control unit 124.
  • the graphic processing that is, the shading graphic generation processing, can optimize the expression format based on the type and number of selected images, and determines the expression format based on preset information. You can also.
  • the graphic processing in the graphic processing unit 126 will be described more specifically with reference to the flowchart of FIG.
  • the CT value and the CT value are used as the feature amount in the ROI. A process for calculating the ratio and generating a gray figure representing these will be described.
  • step S601 an energy image designated by the user via the input unit 121 and other energy images related to the image are obtained by searching the association database 21.
  • a case where the user designates display of a simple captured image an image with a tube voltage of 120 kV
  • a simple captured image an image with a tube voltage of 120 kV
  • the graphics processing unit 126 searches the association database for the shaded graphics processing association flag of those images, and the number of associated images is determined. An image having the same number (identifier) as the largest number (identifier) is displayed on the display unit 125.
  • the shading graphic processing related flag: 1 corresponds to c001 to c008 and d001 to d008 which are dual energy photographed images.
  • options may be displayed on the screen and the user may select which image grayscale to create.
  • FIG. 2 there is also a shading graphic processing related flag: 2, and when this is selected by the user, a recon image (e 001 and f 001) of dual energy shooting is displayed together with a simple captured image.
  • the FOV and FOV center coordinates are the same as the simple photographed image, but in the recon images e001 and f001, the FOV and FOV centers are simply photographed images. In this case, based on these values, in the ROI setting process in the next processing step S602, the ROI size and coordinate values are adjusted so as to match between the images.
  • the ROI is set by the user via the input unit 121 for each energy image acquired by the processing in step S601 and displayed on the display unit 125.
  • FIG. 4 shows a display screen in a state where an ROI is set for an image for each energy intensity, that is, an image for each applied tube voltage, as an example of a display screen displayed on the display unit 125.
  • the image is converted into an image with a tube voltage of 140 kV or 80 kV based on Poison, FOV, FOV-X, or FOV-Y.
  • the ROI is automatically drawn.
  • the ROI can be manually adjusted as necessary.
  • the ROI is displayed as a default on the image for each other associated tube voltage regardless of whether the ROI is drawn on a 140 kV or 80 kV image. It is supposed to be.
  • step S603 the graphic processing unit 126 calculates the CT value in the ROI set in step S602. Specifically, an average value of CT values is calculated for each ROI of each image for each energy intensity as the CT value in the ROI drawn in step S602.
  • step S604 the graphics processing unit 126 calculates a CT value ratio based on the intra-ROI CT value of each energy image calculated in step S603. That is, according to the following equation (1), calculates the tube voltage 120 kV, 140 kV, the CT value ratio CT Ri in the image of 80 kV.
  • step S605 the graphics processing unit 126 converts the CT values in the ROI and the CT value ratios of the various images acquired in steps S603 and S604 into shaded graphics (for example, FIG. 5) and displays them on the display unit 125.
  • the circle is divided into three equal parts with three energies of tube voltages 120 kV, 140 kV, and 80 kV, and information on each tube voltage is shown in a 120 ° fan shape.
  • the outer periphery shows energy intensity (kind), that is, the magnitude (kind) of tube voltage.
  • the sector radius indicates the CT value ratio.
  • the CT value of the 80 kV image is the maximum value
  • the CT value of the 80 kV image is 1.0. Since the radius indicates the CT value ratio, the fan-shaped area can also be used as a guide for comparison of the CT value ratio.
  • the shade of the fan-shaped region is indicated by a CT value, and the CT values in the ROI of each tube voltage can be compared. As shown in FIG. 4, the shaded graphic is displayed in the graphic display area together with an image for each applied tube voltage.
  • the CT value in the ROI designated for these images, the ratio of the CT values, and the energy intensity can be visualized at a time. It can be displayed so that it can be understood. Therefore, the feature amount in the ROI can be easily grasped. That is, in various images obtained by multi-energy imaging, the CT values in the ROI designated in these images, the ratio of CT values, and the energy intensity are graphically displayed, thereby improving the legibility of the feature amount. For example, it can support the interpretation of substance discrimination.
  • the sector area is the same for each energy (tube voltage), and a line indicating the CT value ratio is provided at the center of each sector area.
  • the CT value ratio is large between the energies (tube voltages)
  • the regions showing the density of the CT values are equal, and therefore, comparison is easy.
  • FIG. 7 (b) shows the CT value ratio in terms of angle, with the sector angle not being the same for each energy (tube voltage). This corresponds to a general pie chart, and if the energy to be compared is 2, it is simple and easy to understand.
  • FIG. 7C as in FIG. 7A, the sector area is the same for each energy (tube voltage).
  • a line indicating the CT value ratio is shown at the center of the area.
  • the CT value ratio is indicated by the length of the arc.
  • FIG. 7D and FIG. 7E are both represented by a rectangle and a triangle, respectively, instead of a circular expression.
  • an image with more energy can be shown by, for example, a 3 ⁇ 3 matrix.
  • a part or all of each pixel value in the ROI is directly or enlarged, reduced, extracted, or duplicated. It can also be displayed in shades.
  • Modification 2 When displaying a gray scale figure, as shown in FIG. 8, the CT value and CT value ratio of the components that are used as a reference during substance discrimination can be displayed as a reference value.
  • the user when the user operates the menu shown in FIG. 9B via the input unit 120 and selects, for example, “calcium”, it is registered in “calcium” in the table of FIG. 9A.
  • the CT values within the reference range centered on the CT value of each tube voltage are displayed in gradation in the CT value reference shading region in the shading diagram of FIG. 8, and the CT value ratio registered in the database and its reference The ranges are shown as the CT value ratio reference marker and the CT value ratio reference range of the shading figure in FIG.
  • FIG. 10 shows a shaded figure in the figure display area of the display screen including one image display area and one figure display area.
  • FIG. 11 shows a display format in which an image and a shaded figure are displayed together in one image display area, and the shaded figure is displayed as a thumbnail and the image display area is given the highest priority. It is also possible to provide a switching mode for displaying a shaded figure large and thumbnailing the image.
  • FIG. 12A first, an image with a tube voltage of 120 kV is displayed, and the 140 kV and 80 kV images related to the image are set in a non-display state and ROI is set.
  • shading figures based on CT value information in the ROI of these images are displayed in thumbnails.
  • the left button of the mouse with the input device 121 for example, the region of the tube voltage 140 kV of the gray figure is dragged and rotated to the left, and the 140 kV region of the gray figure is positioned at the top. .
  • a 140 kV image of the same or closest position as the 120 kV image as shown in FIG. 12B is displayed on the display unit 125.
  • the window value is a parameter for displaying an image by converting only a specific density range into the density range of the display system, and the display unit 125 displays a certain width, that is, the shade of the window width range with the window value as the center. It is shown in
  • the window value and window width of the image of each energy (tube voltage) are usually set to the same value.
  • FIG. 13 is an example in which the CT value information in the ROI is displayed as thumbnails in a thumbnail pattern on an image with a tube voltage of 120 kV, as in FIG.
  • the ROI is set to another part. For example, if the region of the tube voltage 140 kV of the gray scale figure is dragged and rotated to the left while the right button of the mouse is clicked by the input unit 121 and the region of 140 kV is positioned at the top, the same image as the 120 kV image is obtained. Alternatively, the 140 kV image of the nearest Position is displayed on the display unit 125. At this time, the window value is automatically set based on the value calculated by the following equation (2).
  • the configuration itself of the X-ray CT apparatus is the same as that of the first embodiment and the modification thereof, and the description thereof is omitted.
  • the substance discrimination image is obtained from the data obtained by multi-energy imaging. From these substance discrimination images, the pixel value, that is, the product of the substance density and the mass attenuation coefficient, which is the linear attenuation coefficient of the substance discrimination image, is displayed in grayscale as a feature value.
  • the CT value can be obtained from the sum of the linear attenuation coefficients of the substance discrimination images.
  • a CT image can be obtained by converting the linear attenuation coefficient of the substance discrimination image so that the CT value of water is 0 and the CT value of air is ⁇ 1000 regardless of the tube voltage. Note that a specific method for generating a substance discrimination image is well-known, and a description thereof will be omitted here.
  • step S1401 the image specified by the input unit 121 and the substance discrimination image related to the image are acquired by searching the association database 21.
  • An example will be described in which the user designates display of a simple captured image (an image with a tube voltage of 120 kV).
  • An example of the internal configuration of the association database in this embodiment is shown in FIG.
  • FIG. 16 shows an example of a display screen on the display unit 125 in a state where the ROI is set in the simple captured image and the substance discrimination image displayed in step S1401.
  • step S1402 specifically, when the user draws the ROI on the image of the tube voltage 120 kV with the input unit 121, for example, the mouse, the calcium image and the uric acid are based on the Poison, FOV, FOV-X, and FOV-Y.
  • the ROI is automatically drawn on the material discrimination image of the image. If necessary, the ROI can be adjusted manually.
  • the ROI is displayed as a default in other related images regardless of whether the ROI is drawn on the calcium image or the uric acid image.
  • step S1403 the graphics processing unit 126 acquires the pixel value in the ROI of the substance discrimination image set in step S1402. Specifically, the pixel values in the ROI drawn in step S1402 are averaged in the substance discrimination image.
  • the image of each tube voltage is the target of the shading graphic processing, but the meaning of the pixel value of the image differs between the simple captured image and the substance discrimination image. For this reason, the averaging process is performed only on the substance discrimination image whose image type 1 in the association database in FIG. 15 is dcmp (substance discrimination image). That is, only images with SOP UIDs: g001 and h001 in FIG. 15 are subjected to averaging processing.
  • step S1404 the graphic processing unit 126 calculates a pixel value ratio based on the pixel value in ROI of the substance discrimination image obtained in step S1403. Specifically, the pixel value ratio D Ri in the substance discrimination image is calculated based on the following equation (3).
  • the ratio between the CT value in ROI of the image of each tube voltage and the maximum value of the CT value in ROI of the total energy image is calculated.
  • the substance discrimination image in this embodiment the substance The component ratio is shown.
  • step S1405 the graphics processing unit 126 converts the pixel values and pixel value ratios in the ROI of the various images obtained in steps S1403 and S1404 into shades and displays them on the display unit 125.
  • FIG. 17 (a) shows an example of a shaded figure.
  • the angle is divided by the ratio of the pixel values of the two substance discrimination images of the calcium image and the uric acid image, and the ratio of the pixel values, that is, the component ratio is shown in a fan shape.
  • the outer periphery indicates the type of material discrimination image. Further, the shade of the fan-shaped area is indicated by the pixel value of the substance discrimination image, and this shade figure is displayed in the figure display area of FIG.
  • FIG. 17B is an example of a gray scale graphic display method different from that in FIG. 17A.
  • Water images, calcium images, and fat images are created as substance discrimination images, and the degree pixels in the ROI of these images are created. The ratio of values is displayed in shades.
  • the pixel value of the multi-energy image and the ratio of the pixel value can be displayed so as to be visually grasped.
  • the multi-energy CT for irradiating X-rays having different energy intensities has been described.
  • the RawData having different energy and the photon counting CT for obtaining an image the two-layer detector CT. PET may also be used.
  • the example using the CT value of the multi-energy image and the ratio thereof, the pixel value of the substance discrimination image and the ratio thereof as the feature amount has been described, but the pixel value of the substance density image and the ratio thereof as the other feature amount. May be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

マルチエネルギー撮影によって得られた各種画像において、特徴量の判読性を向上させる。2以上の異なるエネルギー強度のX線を照射して得られた各種画像及び当該各種画像を所定の条件に従って関連付けた関連付け情報を記憶した記憶部(123)と、前記記憶部(123)に記憶された画像のうち、任意の画像及び当該画像と前記関連付け情報によって関連付けられた画像に対して関心領域を設定する領域設定部と、各前記関心領域内の画素値から、当該画像の特性を示す特徴量を関連付けられた画像毎に算出する特徴量算出部と、関連付けられた前記画像間の各前記特徴量の差を、所定の色の変化又は濃淡にて表現した濃淡図形を生成する図形化処理部(126)と、前記画像及び当該画像と関連付けられた画像のうち少なくとも一の画像と共に濃淡図形を表示部(125)に表示させる画像表示制御装置(200)を提供する。

Description

画像表示制御装置、X線CT装置及び画像表示方法
 本発明は、2以上の異なるエネルギー強度のX線を被検体に照射するマルチエネルギー撮影によって取得した各種画像を表示する画像表示制御装置、X線CT装置及び画像表示方法に関する。
 X線管を被検体の体軸回りに回転させながらX線を照射し、被検体を透過したX線を検出して得られた複数角度からの投影データを再構成することにより被検体の断層画像を再構成し、再構成された断層画像を表示するX線CT装置が知られている。X線CT装置で表示される画像は、被検体の中の臓器の形状を描写するものであり、画像診断に供される。
 このようなX線CT装置において、2以上の異なるエネルギー強度のX線を被検体に照射することで、エネルギー強度の違いによるCT値の差から物質の弁別を行う技術が提案されている。X線のエネルギー強度の違いによるCT値の差は、物質固有のものであり、同じ物質では濃度が変化してもCT値の比に変化はない。したがって、各エネルギーにおけるCT値の比は物質を識別するための特徴量となる。
 マルチエネルギー撮影を行うX線CT装置の例として、特許文献1には、各エネルギーにおけるCT値を2次元グラフ上にプロットしたCT値マップに基づいて所望の組織を可視化するX線CT装置が開示されている。
 マルチエネルギー撮影による物質弁別の技術は、例えば、高低2つの異なるエネルギー、すなわち高低2つの管電圧のX線を照射することで腎結石の成分同定などに用いられている。腎結石の検査では、初めに従来の撮影条件(例えば120kV)で撮影し、それにより生成された画像をリファレンスとして、必要とする断面のみ、高管電圧、低管電圧のデュアルエネルギー(例えば、140kV、80kV)で撮影し、得られた高管電圧画像、低管電圧画像にROIを描画し、CT値の差をグラフ上で確認するのが一般的である。この腎結石の撮影では、リファレンス画像、高管電圧画像、低管電圧画像の3種類の画像が生成され、成分を同定したい腎結石の領域(ROI)はリファレンス画像上で特定でき、更に、デュアルエネルギー撮影画像は必要範囲のみに限定される。
特許第519187号公報
 ところで、特許文献1のX線CT装置では、物質識別のために、横軸を低管電圧時のCT値、縦軸を高管電圧時のCT値としたCT値マップを基にして識別処理し結果を表示するにすぎない。このため、その識別結果の根拠、すなわち、各エネルギーにおけるCT値及びそれらのCT値の比を示すにはCT値マップそのものを、物質を識別するための特徴量として表示する必要がある。
 しかしながら、CT値マップを表示するのみでは、CT値の比が直感的に把握しづらく、特にエネルギー数が3以上の場合、各エネルギーにおけるCT値及びそれらCT値の比を示すのには適していない。一方、横軸をエネルギー(管電圧)、縦軸をCT値として表現するHU Attenuation Curveがあり、この方法によればエネルギー数3以上の場合も表現可能であるものの、単純な曲線グラフでは注目部位におけるCT値の比を直感的に把握するのは難しく、特にサムネール表示など、限られた領域に表示する場合にその判読性が低下する。物質弁別のためには、各エネルギー画像のCT値及びそれらCT値の比が、リファレンス画像を参照しながら確認可能であることが、読影における操作の煩雑さを軽減する目的からは望ましい。
 本発明は上記実情に鑑みてなされたものであり、マルチエネルギー撮影によって得られた各種画像において、特徴量の判読性を向上させることを目的とする。
 上記課題を解決するために、本発明は以下の手段を提供する。
 本発明の一態様は、2以上の異なるエネルギー強度のX線を照射して得られた各種画像及び当該各種画像を所定の条件に従って関連付けた関連付情報を記憶した記憶部と、前記記憶部に記憶された画像のうち、任意の画像及び当該画像と前記関連付情報によって関連付けられた画像に対して夫々関心領域を設定する領域設定部と、各前記関心領域内の画素値から、当該画像の特性を示す特徴量を前記関心領域毎に算出する特徴量算出部と、算出された各前記特徴量を、所定の色の変化又は濃淡にて表現した濃淡図形を生成する図形化処理部と、前記画像及び当該画像と関連付けられた画像のうち少なくとも一の画像と共に濃淡図形を表示部に表示させる表示制御部と、を備えた画像表示制御装置を提供する。
 本発明によれば、マルチエネルギー撮影によって得られた各種画像において、特徴量の判読性を向上させることができる。
本発明の第1の実施形態に係る画像表示制御装置を適用したX線CT装置の概略を示すブロック図である。 本発明の第1の実施形態に係る画像表示制御装置の記憶部に記憶された関連付けデータベースの内部構成の一例を示す表である。 図1のX線CT装置において、デュアルエネルギー撮影により画像を取得する処理の流れを示すフローチャートである。 本発明の第1の実施形態に係る画像表示制御装置の表示部に表示される表示画面の一例を示す参考図である。 図4の表示画面の図形表示領域を拡大して詳細を示す参考図である。 本発明の第1の実施形態に係る画像表示制御装置における図形化処理の流れを示すフローチャートである。 (a)~(e)は、本発明の第1の実施形態の変形例に係る画像表示制御装置において、表示部に表示される濃淡図形の他の例を示す参考図である。 本発明の第1の実施形態の変形例に係る画像表示制御装置において、表示部に表示される濃淡図形の他の例を示す参考図である。 (a)は図8の濃淡図形を表示するために予め登録するデータの一例を示す参考図であり、(b)は表示部に表示されるメニュー画面の一例である。 本発明の第1の実施形態の変形例に係る画像表示制御装置において、表示部に表示される濃淡図形の他の例を示す参考図である。 本発明の第1の実施形態の変形例に係る画像表示制御装置において、表示部に表示される濃淡図形の他の例を示す参考図である。 (a)及び(b)は、本発明の第1の実施形態の変形例に係る画像表示制御装置において、表示部に表示される濃淡図形の他の例を示す参考図である。 (a)及び(b)は、本発明の第1の実施形態の変形例に係る画像表示制御装置において、表示部に表示される濃淡図形の他の例を示す参考図である。 本発明の第2の実施形態に係る画像表示制御装置における図形化処理の流れを示すフローチャートである。 本発明の第2の実施形態に係る画像表示制御装置の記憶部に記憶された関連付けデータベースの内部構成の一例を示す表である。 本発明の第2の実施形態に係る画像表示制御装置の表示部に表示される表示画面の一例を示す参考図である。 (a)は図16の表示画面の図形表示領域を拡大して詳細を示す参考図であり、(b)は(a)図16の表示画面の図形表示領域に表示される濃淡図形の他の例を示す参考図である。
 本発明の一実施形態について、図面を参照して説明する。
 本発明に係る画像表示制御装置は、2以上の異なるエネルギー強度のX線を照射して得られた各種画像及び当該各種画像を所定の条件に従って関連付けた関連付情報を記憶した記憶部と、記憶部に記憶された画像のうち、任意の画像及び当該画像と関連付情報によって関連付けられた画像に対して夫々関心領域を設定する領域設定部と、各関心領域内の画素値から、当該画像の特性を示す特徴量を関心領域毎に算出する特徴量算出部と、算出された各特徴量を所定の色の変化又は濃淡にて表現した濃淡図形を生成する図形化処理部と、画像及び当該画像と関連付けられた画像のうち少なくとも一の画像と共に濃淡図形を表示部に表示させる表示制御部と、を備えた画像表示制御装置である。
 このような画像表示制御装置によれば、関連付けられた各画像の関心領域内の夫々の特徴量を濃淡図形によって表現することで、特徴量そのものだけでなく、各特徴量差等を把握することができるため、マルチエネルギー撮影によって得られた各種画像において、特徴量の判読性を向上させることができる。
 以下、より具体的に本発明の実施形態について説明する。
<第1の実施形態>
 以下、本発明の第1の実施形態に係る画像処理装置を備えたX線CT装置について図面を参照して説明する。
 図1は、X線CT装置1の全体構成を示すブロック図である。図1に示すように、X線CT装置1はスキャンガントリ部100、画像表示制御装置としての操作ユニット200を備える。
 スキャンガントリ部100は、X線管101、回転円盤102、コリメータ103、寝台105、X線検出器106、データ収集部107、ガントリ制御部108、寝台制御部109、及びX線制御部110を備えている。
 X線管101は、寝台105上に載置された被検体にX線を照射する。コリメータ103はX線管101から照射されるX線の放射範囲を制限する。
 回転円盤102は、寝台105上に載置された被検体が入る開口部104を備えるとともに、X線管101とX線検出器106を搭載し、被検体の周囲を回転する。
 X線検出器106は、X線管101と対向配置され、被検体を透過したX線を検出することにより透過X線の空間的な分布を計測する装置であり、多数のX線検出素子を回転円盤102の回転方向に配列したもの、若しくは回転円盤102の回転方向と回転軸方向との2次元に配列したものである。
 データ収集部107は、X線検出器106により検出されたX線量をデジタルデータとして収集する。
 ガントリ制御部108は、回転円盤102の回転及び傾斜を制御する。寝台制御部109は、寝台105の上下前後動左右動を制御する。X線制御部110は、X線管101に入力される電力を制御する。
 操作ユニット200は、演算部120、入力部121、及び表示部125を備えている。演算部120は、画像処理部122、記憶部123、図形化処理部126及びシステム制御部124を備えている。
 画像処理部122は、データ収集部107から送出される計測データを演算処理してCT画像の再構成を行ったり、エネルギー強度毎の画像や物質弁別画像を生成したりする。記憶部123は、記憶部123は計測データ及び画像データを記憶する各種データ保存領域22及び画像データと当該画像データに関連する種々の情報を関連付けて保存する関連付データベース21を有している。記憶部123として、具体的にはHDD(Hard Disk Drive)等を適用することができる。
 各種データ保存領域22は、データ収集部107で収集した計測データ及び画像処理部122により再構成されたCT画像の他、エネルギー強度毎の画像や物質弁別画像を含む各種のマルチエネルギー画像に係る画像データを記憶する。
 関連付データベース21は、各種データ保存領域22に保存された画像に対して、当該画像を特定するためのID、画像の種類、撮像条件等の他、各画像同士の関連性を示す関連付情報としてフラグを保存する。
 ここで、図2に関連付けデータベース21の内部構成の一例を示す。関連付データベース21には、撮影した画像を特定するためのIDの他、当該画像に関する種々のデータが関連付けられて記録される。具体的には、図2に示す関連付テーブル中、Study UID、Series UID、SOP UIDは、それぞれ、スタディー、シリーズ、画像を特定するためのユニークIDである。
 また、図2中、画像種1はScano(スキャノグラム像)、Scan(スキャン画像)、Recon(再構成(リコン)画像)など、画像の主分類情報として画像の種類を示す。画像種2は、AX(アキシャル画像)等、補助的な画像の分類情報を示す。管電圧は、撮影条件として設定され、撮影時に印加された管電圧である。FOV、FOV-X, FOV-Yは、スキャン画像及び再構成(リコン)画像に設定されるField Of View(X-Y方向の画像再構成視野領域)及びFOV中心座標である。PositionはZ方向の位置であり、画像の位置を示している。
 濃淡図形化処理関連付フラグは、各画像同士を関連付けるための関連付情報であり、後述する濃淡図形化処理を行うに際し、関連がある画像同士に同一番号(識別子)を付与し、濃淡図形化処理の対象画像として扱われるようにするためのフラグである。
 例えば、単純画像撮影と、その単純撮影画像をリファレンスとして撮影範囲指定し生成されたデュアルエナジー撮影画像は、自動的に濃淡図形化処理関連付フラグに同一番号を付与するが、関連付設定用のユーザインターフェースを設けることで、ユーザは予め、または後から、関連付情報を指定することも可能である。
 なお、スキャノグラム像は本実施形態における濃淡図形化処理に用いないため、図2の例では濃淡図形化関連付フラグは設定不可としている。
 図形化処理部126(特徴量算出部、図形化処理部)は、記憶部123に記憶された画像データのうち、ユーザにより指定された画像及び当該画像に関連する画像の夫々の関心領域(以下、単に「ROI」という)の特徴量を算出し、関連する画像間の特徴量を所定の色の変化又は濃淡で表現した濃淡図形を生成する。図形化処理部126における処理の詳細は後述する。
 システム制御部124は、入力部121、画像処理部122、記憶部123、表示部124及び図形化処理部126を制御すると共に、上述したガントリ制御部108、寝台制御部109及びX線制御部110を制御する。
 入力部121は、演算部120に対して、被検体氏名、検査日時、撮影条件などの入力や、表示画像の選択を行う。また、入力部121は、画像及びこの画像と関連付情報によって関連付けられた画像に対して夫々関心領域を設定する。具体的には、キーボードやポインティングデバイス、タッチパネル等を適用することができる。
 表示部125は、入力部121によって入力された撮影条件や画像処理部122で作成されたCT画像を表示する。表示部125として、具体的にはCRT(Cathode-Ray Tube)や液晶ディスプレイ等を適用することができる。
 このように構成されたX線CT装置1では、概ね以下のように撮影が行われる。すなわち、入力部121から入力された撮影条件、特にX線管電圧やX線管電流などに基づいて、X線制御部110がX線管101に入力される電力を制御することにより、X線管101は撮影条件に応じたX線を被検体に照射する。
 X線管101から照射され被検体を透過したX線はX線検出器106の多数のX線検出素子により検出し、透過X線の分布を計測する。回転円盤102はガントリ制御部108により制御され、入力部121から入力された撮影条件、特に回転速度などに基づいて回転する。寝台105は寝台制御部109によって制御され、入力部121から入力された撮影条件、特にらせんピッチなどに基づいて動作する。
 X線管101からのX線照射とX線検出器106による透過X線分布の計測が回転円盤102の回転とともに繰り返されることにより、様々な角度からの投影データが取得される。取得された様々な角度からの投影データは画像処理部122に送信される。画像処理部122は送信された様々な角度からの投影データを逆投影処理することによりCT画像を再構成する。再構成して得られたCT画像は表示部125に表示される。
 上述した演算部120は、その一部又は全部をCPU(中央処理装置)、メモリ及び主記憶部109を含むシステムとして構築することができ、演算部120を構成する各部の機能は、予め記憶部123に格納されたプログラムをCPUがメモリにロードし、実行することにより実現することができる。また機能の一部または全部は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードウェアで構成することも可能である。
 このように構成されたX線CT装置において、例として、腎結石の成分同定のための検査においてデュアルエネルギー撮影を行って画像を取得するまでの処理の流れを図3のフローチャートに従って説明する。
 ステップS301において、まず、X線CT装置において、撮影範囲を定めるためのスキャノグラムを撮影する。具体的には、ユーザにより入力部121を介して指定された撮影条件及び撮影範囲に従ってスキャノグラムが撮影されると、スキャノグラム像が各種データ22として記憶部123に保存され、スキャノグラム像に関する種々のデータを関連付データベース21の関連付テーブルに登録する。
 次に、ステップS302では、ステップS301で生成されたスキャノグラム像に基づいて撮影範囲を設定し、単純撮影を実施する。X線CT装置では、ユーザにより入力部121を介して指定された撮影条件及びステップS301で生成されたスキャノグラム像上で計画した撮影範囲に従って単純撮影を実施し、生成したスキャン画像及びRawDataを各種データ保存領域22に保存し、これら画像についての関連付情報を関連付データベースに保存する。
 図2の例では、Study UIDがST-i、Series UIDがSE-2、SOP UIDがb001~b100として、画像種1:Scan、画像種2:AX(アキシャル画像)、管電圧:120kV、FOV:350mm、(FOV-X,FOV-Y)=(0,0)、Position:0~495mmの画像として記憶されている。この時点では、濃淡図形化処理関連付フラグが未設定の状態となる。
 ステップS303では、ステップS302で生成された単純撮影のスキャン画像をリファレンスとして、必要とする撮影範囲を設定し、デュアルエネルギー撮影を実施する。すなわち、ユーザが入力部121を介してステップS302で生成された単純撮影のスキャン画像をリファレンスとして必要な撮影範囲、ここではPosition:400~435mmの画像が得られるように指定する。
 X線CT装置では、ユーザによる入力指示に従ってデュアルエネルギー撮影を実施し、デュアルエネルギー撮影画像(エネルギー強度毎の画像)及びRawData(管電圧140kVと80kVの2種の画像、RawData)を各種データ保存領域22に保存し、これら画像についての関連付情報を関連付データベース21に登録する。
 図2では、管電圧140kVの画像が、Study UID:ST-i、Series UID:SE-3、SOP UID:c001~c008、画像種1:Scan(スキャン画像)、画像種2:AX(アキシャル画像)、管電圧:140kV、FOV:350mm、(FOV-X,FOV-Y)=(0,0)、Position:400~435mmの画像として登録されている。
 また、管電圧80kVの画像が、Study UID:ST-i、Series UID:SE-4、SOP UID:d001~d008、画像種1:Scan(スキャン画像)、画像種2:AX(アキシャル画像)、管電圧:80kV、FOV:350mm、(FOV-X,FOV-Y)=(0,0)、Position:400~435mmの画像として登録されている。
 ここで、デュアルエネルギー撮影範囲のリファレンスとした単純撮影画像の同一範囲の画像(SOP UID:b081~b088)及びデュアルエネルギー撮影画像(SOP UID:c001~c008、d001~d008)の濃淡図形化処理関連付フラグに、同一番号(識別子)である“1”が設定される。これにより、単純撮影とデュアルエネルギー撮影画像が関連付けられ、濃淡図形化処理の対象として扱われるようになる。
 また、図2の関連付データベースには、SOP UID:e001及びf001、画像種1:Recon(リコン画像)、画像種2:AX(アキシャル画像)の2つの画像が登録されている。これはSOP UID:b081の画像をリファレンスとして、片方の腎臓領域を拡大した画像を再構成(リコン)したものであり、それら画像の濃淡図形化処理関連付フラグには“2”が付与されている。
 このようにして、以後に行われる図形化処理に必要な画像及び関連付け情報が記憶部123に記憶される。
 (図形化処理部126における処理について)
 図形化処理部126は、記憶部123に記憶された画像のうち、関連付け情報によって関連付けられた画像に基づいて、図形化処理を行う。
 すなわち、図形化処理部126は、まず、入力部121により指定された画像及びその画像に関連する他の画像について記憶部123の関連付データベース21を検索し、その結果を基に関連する全種画像を記憶部123の各種データ保存領域22から取得し、例えば図4に示すように表示部125に表示させる。
 そして、ユーザが入力部121によって各種画像に設定したROI内の特徴量を取得し、これら特徴量に基づいて、図形化処理、すなわち、例えば図5に示すような濃淡図形を生成する。生成された濃淡図形は、システム制御部124を介して表示部125に表示する。
 なお、図形化処理、すなわち、濃淡図形生成処理は、選択された画像の種類及びその数を基に表現形式を最適化することができる他、予め設定された情報に基づいて表現形式を決定することもできる。
 以下、より具体的に、図形化処理部126における図形化処理について図6のフローチャートに従って、説明する。以下の処理においては、上記した図3のフローチャートで示す処理に従って生成されたエネルギー強度毎の画像及び、当該画像について記憶された関連付情報に基づいて、ROI内の特徴量としてCT値及びCT値の比を算出し、これらを表した濃淡図形を生成する処理について説明する。
 ステップS601において、ユーザにより入力部121を介して指定されたエネルギー画像及びその画像に関連する他のエネルギー画像を、関連付データベース21を検索することにより取得する。ここでは、ユーザが単純撮影画像(管電圧120kVの画像)を表示指定した場合を例として説明する。
 例えば、ユーザにより単純撮影画像の全ての画像が表示指定された場合、図形化処理部126は、それら画像の濃淡図形化処理関連付フラグについて関連付データベース内を検索し、関連付けられた画像数が一番多い番号(識別子)と同一の番号(識別子)を持つ画像を表示部125に表示させる。この処理により、図2では、濃淡図形化処理関連付フラグ:1が該当し、デュアルエネルギー撮影画像であるc001~c008及びd001~d008が併せて表示される。
 または、ユーザが表示指定した画像に複数の濃淡図形化処理関連付フラグが存在した場合、選択肢を画面表示し、ユーザにどの画像の濃淡図形を作成したいかを選択させても良い。図2には、濃淡図形化処理関連付フラグ:2も存在しており、これがユーザに選択された場合は、デュアルエネルギー撮影のリコン画像(e001及びf001)が単純撮影画像とともに表示される。
 デュアルエネルギー撮影画像のSOP UID:c001~c008及びd001~d008では、FOV及びFOV中心座標が単純撮影画像と同一となっているが、リコン画像であるe001及びf001ではFOV及びFOV中心が単純撮影画像と異なっており、この場合、それらの値に基づいて、次処理ステップS602のROI設定処理において、ROIの大きさ、座標値が、各画像間で一致する様に調整される。
 次のステップS602では、ステップS601における処理で取得され、表示部125に表示された各エネルギー画像に対して、ユーザにより入力部121を介してROIを設定する。図4に、表示部125に表示される表示画面の一例として、エネルギー強度毎の画像、すなわち印加した管電圧毎の画像にROIを設定した状態の表示画面を示した。
 具体的には、ユーザが、管電圧120kVの画像に入力部121、例えば、マウスによりROIを描画すると、Positon、FOV,FOV-X,FOV-Yを基に、管電圧140kV、80kVの画像に自動でROIが描画されるようになっている。必要に応じて手動でROIを調整することもできる。なお、ここでは120kVの画像上にROIを描画した例を示したが、140kV、80kV画像のいずれにROIを描画しても、関連付されている他の管電圧毎の画像にROIをデフォルト表示するようになっている。
 ステップS603では、図形化処理部126が、ステップS602で設定したROI内のCT値を算出。具体的には、ステップS602で描画したROI内のCT値として、エネルギー強度毎の画像夫々のROIについてCT値の平均値を算出する。
 ステップS604では、図形化処理部126が、ステップS603で算出した各エネルギー画像のROI内CT値を基にCT値比を算出する。すなわち、以下の式(1)に従って、管電圧120kV、140kV、80kVの画像におけるCT値比CTRiを算出する。
Figure JPOXMLDOC01-appb-M000001
 ステップS605では、図形化処理部126は、ステップS603及びステップS604において取得した各種画像のROI内CT値及びCT値比を濃淡図形化(例えば、図5)し、表示部125に表示させる。
 図5の例では、管電圧120kV、140kV、80kVの3つのエネルギーで円を3等分し、120°の扇形で各管電圧の情報を示している。外周は、エネルギー強度(種類)、すなわち、管電圧の大きさ(種類)を示している。扇形の半径はCT値比を示しており、この例では80kV画像のCT値が最大値であり、この80kV画像のCT値を1.0とした場合の比となる。半径がCT値比を示すことから、扇形の面積もCT値比の比較の目安とすることができる。また、扇形の領域の濃淡はCT値で示しており、各管電圧のROI内のCT値を比較することができる。この濃淡図形は、図4に示すように、印加した管電圧毎の画像と共に、図形表示領域に表示される。
 このように、本実施形態によれば、マルチエネルギー撮影によって得られた各種画像と共に、これらの画像に指定したROI内のCT値、CT値の比及びエネルギー強度を一時に、かつ、視覚的に把握できるように表示することができる。したがって、ROI内の特徴量を容易に把握することができる。つまり、マルチエネルギー撮影によって得られた各種画像において、これらの画像に指定したROI内のCT値、CT値の比及びエネルギー強度図形化して表示することで、特徴量の判読性を向上させることができ、例えば、物質弁別の判読を支援することができる。
 (変形例1)
 上述した第1の実施形態における濃淡図形では、管電圧120kV、140kV、80kVの3つのエネルギーで円を3等分し、120°の扇形の濃淡で管電圧毎のCT値を、また扇形の半径でCT値比を表現し、外周の破線の種類を異ならせて管電圧の大きさを示している。
 濃淡図形は上述した例に限られず、図7に示すような種々の表現形式が考えられる。
 図7(a)は、扇形の面積を各エネルギー(管電圧)で同一とし、各扇形領域の中央にCT値比を示す線を設けている。この表現方法では、各エネルギー(管電圧)間でCT値比が大きな場合もCT値の濃淡を示す領域が等しくなるため、比較がしやすい。
 図7(b)は、扇形の角度を各エネルギー(管電圧)間で同一とせず、角度にてCT値比を示している。これは一般的な円グラフに相当し、比較するエネルギーが2であればシンプルで分かりやい。図7(c)は、図7(a)と同様に、扇形の面積は各エネルギー(管電圧)で同一としており、図7(a)では、その面積の中央にCT値比を示す線を設けているが、図7(c)では、CT値比を円弧の長さで示している。
 図7(d)、図7(e)は、共に円形表現に代えて、それぞれ、矩形、三角形で表したものである。特に、矩形で表現する場合は、例えば、3x3マトリックスにするなどで、より多くのエネルギーの画像を示すことができる。
 なお、上述したいずれの表現形式においても、濃淡をROI内のCT値の平均値で示す代わりに、ROI内の各画素値の一部またはすべてをそのまま、あるいは拡大、縮小、抜粋、複製して、濃淡図形に表示することもできる。
 (変形例2)
 濃淡図形の表示の際に、図8に示すように、物質弁別の際に参考となる成分のCT値及びCT値比を基準値として表示することもできる。基準値を表示するために、予め、例えば図9に示す、成分名、各管電圧におけるCT値及びCT値比とそれらの基準範囲を記録したテーブルを記憶部123に記憶しておく。
 例えば、ユーザが、入力部120を介して、図9(b)に示すメニューを操作し、例えば、“カルシウム”を選択すると、図9(a)のテーブル内の“カルシウム”に登録されている各管電圧のCT値を中心とした基準範囲内のCT値を、図8の濃淡図形において、CT値基準濃淡領域にグラデーション表示し、また、それらデータベースに登録されているCT値比及びその基準範囲を、図8の濃淡図形のCT値比基準マーカー及びCT値比基準範囲として示す。これらにより、ユーザによる成分同定を補助することができる。
 (変形例3)
 表示画面の他の例として、図10に示すように、1つの画像表示領域と1つの図形表示領域からなる表示画面の、図形表示領域に濃淡図形を表示することもできる。この場合、各管電圧の画像を同時に確認することはできないものの、限られた画面領域において、比較的大きく画像及び濃淡図形を確認できるという利点がある。
 また、図11は、1つの画像表示領域に画像と濃淡図形を併せて表示するものであり、濃淡図形をサムネール表示した、画像表示領域を最優先とする場合の表示形式である。なお、濃淡図形を大きく表示し、画像をサムネール化させる切替えモードを設けることもできる。
 (変形例4)
 上述した例では、エネルギー画像のROI内CT値及び基準CT値との比を濃淡図形表示するに留まるものであったが、本変形例では、ユーザが入力部121により、この濃淡図形を操作することで、表示部125に表示するエネルギー画像の種類(シリーズ)を切り換えることができるようにしている。
 すなわち、図12(a)では、まず、管電圧120kVの画像が表示されており、それに関連した140kV、80kV画像は非表示状態としてROIが設定されている。また、それらの画像のROI内のCT値情報を基にした濃淡図形がサムネール表示されている。この状態で、ユーザが入力装置121により、例えばマウスの左ボタンをクリックしながら、濃淡図形の管電圧140kVの領域をドラッグし左方向に回転させ、濃淡図形の140kVの領域を最上段に位置させる。これにより、図12(b)に示すような120kVの画像と同一の、あるいは一番近いPositionの140kVの画像が表示部125に表示されるようになっている。
 (変形例5)
 上述の図12に示す濃淡図形を操作し、画像を切り換えた際にウィンドウ値を自動調整することもできる。ウィンドウ値とは、画像をある特定の濃度域のみ表示系の濃度域に変換し表示するためのパラメータであり、ウィンドウ値を中心として、ある幅、すなわち、ウィンドウ幅の範囲の濃淡を表示部125に示させるものである。
 マルチエネルギー撮影が成分同定を目的として実施された場合、各エネルギー(管電圧)の画像のウィンドウ値及びウィンドウ幅は、同一の値が設定されるのが通常であるが、成分同定する領域以外の部位を確認する際は、各ネルギー(管電圧)の画像の確認に適したウィンドウ値を設定したい場合がある。
 図13は、図12と同様に、管電圧120kVの画像上にROI内のCT値情報を濃淡図形としてサムネール表示している例である。但し、図13ではROIを他の部位に設定している。入力部121により、例えば、マウスの右ボタンをクリックしながら、濃淡図形の管電圧140kVの領域をドラッグし左方向に回転させ、140kVの領域を最上段に位置させると、120kVの画像と同一の、あるいは一番近いPositionの140kVの画像が表示部125に表示される。この際、ウィンドウ値は、以下の式(2)により算出した値を基に自動設定する。
Figure JPOXMLDOC01-appb-M000002
 (第2の実施形態)
 続いて、本発明の第2の実施形態について説明する。本実施形態において、X線CT装置の構成そのものは上述した第1の実施形態及びその変形例と同一の構成であるので、その説明を省略する。第1の実施形態及び各変形例では、特徴量としてCT値及びCT値の比を濃淡図形表示する場合について説明したが、本実施形態では、マルチエネルギー撮影によって得られたデータから物質弁別画像を生成し、これらの物質弁別画像から、その画素値、すなわち、物質弁別画像の線減弱係数となる、物質の密度と質量減弱係数の乗算値を特徴量として濃淡図形表示する。
 なお、物質弁別画像は、例えば、2つの物質に弁別した場合、それら物質弁別画像の線減弱係数の和からCT値を求めることができる。具体的には、管電圧によらず、水のCT値が0、空気のCT値が-1000となる様に物質弁別画像の線減弱係数を変換することでCT画像を得ることができる。なお、物質弁別画像の具体的な生成方法については、公知であるのでここでの説明は省略する。
 以下、マルチエネルギー撮影データから生成された物質弁別画像及び物質弁別画像に関する関連付け情報を保存した関連付データベースを基に、特徴量として物質弁別画像の画素値及びその比を用いた濃淡図形生成処理について、図14のフローチャートに従って説明する。
 ステップS1401において、入力部121により指定された画像及びその画像に関連する物質弁別画像を、関連付データベース21を検索することで、取得する。ユーザが単純撮影画像(管電圧120kVの画像)を表示指定した場合を例として説明する。本実施形態における関連付けデータベースの内部構成の一例を図15に示す。
 単純撮影画像が表示指定されると、関連付データベースには、画像に係る情報及び関連付情報としてそれら画像の濃淡図形化処理関連付フラグが複数存在するため(1~3)、選択肢が画面に表示される。ユーザが関連付フラグ3を選択すると、関連付フラグ3が設定されている、SOP UID:g001(画像種1:dcmp(物質弁別画像)、画像種2:CA(カルシウム))及びSOP UID:h001(画像種1:dcmp(物質弁別画像)、画像2:UA(尿酸画像))の2つの物質弁別画像が読み出される。
 次のステップS1402では、ステップS1401において取得され、表示部125に表示された画像に、ユーザがROIを設定する。図16に、ステップS1401において表示された単純撮影画像および物質弁別画像に、ROIが設定された状態の表示部125における表示画面の例を示す。
 ステップS1402では、具体的には、管電圧120kVの画像に、ユーザが入力部121、例えば、マウスによりROIを描画すると、Positon、FOV,FOV-X,FOV-Yを基に、カルシウム画像及び尿酸画像の物質弁別画像に自動でROIが描画される。必要な場合はマニュアルでROIを調整することもできる。なお、ここでは120kVの画像上にROIを描画した例を示したが、カルシウム画像、尿酸画像のいずれにROIを描画しても、関連付されている他の画像にROIがデフォルト表示される。
 ステップS1403では、図形化処理部126が、ステップS1402で設定された物質弁別画像のROI内の画素値を取得する。具体的には、ステップS1402で描画されたROI内の画素値を、物質弁別画像において平均化する。上述した第1の実施形態で、各管電圧の画像を濃淡図形化処理の対象としているが、単純撮影画像と物質弁別画像ではその画像の画素値が持つ意味が異なる。このため、図15の関連付データベースの画像種1がdcmp(物質弁別画像)である物質弁別画像のみで平均化処理を行う。すなわち、図15のSOP UID:g001及びh001の画像のみが平均化処理の対象となる。
 ステップS1404では、図形化処理部126が、ステップS1403で得られた物質弁別画像のROI内画素値を基に画素値比を算出する。具体的には、次の(3)式に基づいて物質弁別画像にける画素値比DRiを算出する。
Figure JPOXMLDOC01-appb-M000003
 第1の実施形態において、各管電圧の画像のROI内CT値と、全エネルギー画像のROI内CT値の最大値との比を算出しているが、本実施形態における物質弁別画像では、物質の成分比を示すようにしている。
 ステップS1405において、図形化処理部126は、ステップS1403及びステップS1404で得られた各種画像のROI内画素値及び画素値比を濃淡図形化し、表示部125に表示する。
 図17(a)に濃淡図形の一例を示す。カルシウム画像と尿酸画像の2つの物質弁別画像の画素値の比で角度を分割し扇形で画素値の比、すなわち、成分比を示している。外周は、物質弁別画像の種類を示している。また、扇形の領域の濃淡は物質弁別画像の画素値で示しており、この濃淡図形は図16の図形表示領域に表示される。
 図17(b)は、図17(a)とは異なる表現方法の濃淡図形表示例であり、物質弁別画像として、水画像、カルシウム画像、脂肪画像を作成し、それら画像のROI内の度画素値の比を濃淡図形表示している。
 このように本実施形態によれば、マルチエネルギー画像の画素値及び当該画素値の比を視覚的に把握できるように表示することができる。
 以上、本発明の各実施形態及び各変形例において、異なるエネルギー強度のX線を照射するマルチエネルギーCTについて記載したが、異なるエネルギーを有するRawData及び画像が得られるフォトンカウンティングCT、2層検出器CT、PETを用いても良い。また、特徴量として、マルチエネルギー撮影画像のCT値及びその比、物質弁別画像の画素値及びその比を用いた例について説明したが、その他の特徴量として、物質密度画像の画素値及びその比を用いても良い。
1・・・X線CT装置、100・・・スキャンガントリ部、101・・・X線管、102・・・回転円盤、103・・・コリメータ、104・・・開口部、105・・・寝台、106・・・X線検出器、107・・・データ収集部、108・・・ガントリ制御部、109・・・寝台制御部、110:X線制御部、120・・・演算部、121・・・入力部、122・・・画像処理部、123・・・記憶部、124・・・システム制御部、125・・・表示部、126・・・図形化処理部、200・・・操作ユニット(画像表示制御装置)、21・・・関連付データベース、22・・・各種データ

Claims (8)

  1.  2以上の異なるエネルギー強度のX線を照射して得られた各種画像及び当該各種画像を所定の条件に従って関連付けた関連付情報を記憶した記憶部と、
     前記記憶部に記憶された画像のうち、任意の画像及び当該画像と前記関連付情報によって関連付けられた画像に対して夫々関心領域を設定する領域設定部と、
     各前記関心領域内の画素値から、当該画像の特性を示す特徴量を前記関心領域毎に算出する特徴量算出部と、
     算出された各前記特徴量を、所定の色の変化又は濃淡にて表現した濃淡図形を生成する図形化処理部と、
     前記画像及び当該画像と関連付けられた画像のうち少なくとも一の画像と共に濃淡図形を表示部に表示させる表示制御部と、を備えた画像表示制御装置。
  2.  前記表示制御部により制御され、前記画像及び当該画像と関連付けられた画像のうち少なくとも一の画像と共に濃淡図形を表示する表示部を備えた請求項1記載の画像表示制御装置。
  3.  前記図形化処理部が、前記濃淡図形に各前記特徴量と所定の基準値との比を、面積、線長、又は角度の何れか一により示す請求項1又は請求項2記載の画像表示制御装置。
  4.  前記特徴量が、前記関心領域の画素値の平均値である請求項1乃至請求項3の何れか1項記載の画像表示制御装置。
  5.  前記基準値が、前記関心領域の画素値の最大値である請求項3記載の画像表示制御装置。
  6.  前記各種画像が、エネルギー強度毎の画像、物質弁別画像、又は物質密度画像である請求項1乃至請求項5の何れか1項記載の画像表示制御装置。
  7.  請求項1乃至請求項6の何れか1項記載の画像表示制御装置を備えたX線CT装置。
  8.  2以上の異なるエネルギー強度のX線を照射して得られた各種画像及び当該各種画像を所定の条件に従って関連付けた関連付け情報を記憶し、
     前記記憶部に記憶された画像のうち、任意の画像及び当該画像と前記関連付け情報によって関連付けられた画像に対して関心領域を設定し、
     各前記関心領域内の画素値から、当該画像の特性を示す特徴量を関連付けられた画像毎に算出し、
     関連付けられた前記画像間の各前記特徴量の差を、所定の色の変化又は濃淡にて表現した濃淡図形を生成し、
     前記画像及び当該画像と関連付けられた画像のうち少なくとも一の画像と共に濃淡図形を表示部に表示させる画像表示方法。
PCT/JP2017/043694 2017-03-01 2017-12-05 画像表示制御装置、x線ct装置及び画像表示方法 WO2018159053A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038580A JP2018143287A (ja) 2017-03-01 2017-03-01 画像表示制御装置、x線ct装置及び画像表示方法
JP2017-038580 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159053A1 true WO2018159053A1 (ja) 2018-09-07

Family

ID=63369890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043694 WO2018159053A1 (ja) 2017-03-01 2017-12-05 画像表示制御装置、x線ct装置及び画像表示方法

Country Status (2)

Country Link
JP (1) JP2018143287A (ja)
WO (1) WO2018159053A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013489A (ja) * 2019-07-11 2021-02-12 キヤノンメディカルシステムズ株式会社 X線ctシステム及び医用処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119831A (ja) * 2008-10-24 2010-06-03 Toshiba Corp 画像表示装置、画像表示方法および磁気共鳴イメージング装置
JP2010284301A (ja) * 2009-06-11 2010-12-24 Toshiba Corp 医用画像表示装置およびx線ct装置
JP2011110245A (ja) * 2009-11-27 2011-06-09 Ge Medical Systems Global Technology Co Llc 画像表示装置、x線ct装置およびプログラム
JP2011244875A (ja) * 2010-05-24 2011-12-08 Ge Medical Systems Global Technology Co Llc 画像処理装置、画像表示装置およびプログラム並びにx線ct装置
JP2015112232A (ja) * 2013-12-11 2015-06-22 株式会社東芝 画像解析装置、及び、x線診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119831A (ja) * 2008-10-24 2010-06-03 Toshiba Corp 画像表示装置、画像表示方法および磁気共鳴イメージング装置
JP2010284301A (ja) * 2009-06-11 2010-12-24 Toshiba Corp 医用画像表示装置およびx線ct装置
JP2011110245A (ja) * 2009-11-27 2011-06-09 Ge Medical Systems Global Technology Co Llc 画像表示装置、x線ct装置およびプログラム
JP2011244875A (ja) * 2010-05-24 2011-12-08 Ge Medical Systems Global Technology Co Llc 画像処理装置、画像表示装置およびプログラム並びにx線ct装置
JP2015112232A (ja) * 2013-12-11 2015-06-22 株式会社東芝 画像解析装置、及び、x線診断装置

Also Published As

Publication number Publication date
JP2018143287A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
US7142633B2 (en) Enhanced X-ray imaging system and method
JP5484788B2 (ja) X線ct装置
JP5442530B2 (ja) 画像処理装置、画像表示装置およびプログラム並びにx線ct装置
JP4105176B2 (ja) 画像処理方法および画像処理プログラム
JP2005510279A (ja) 多数の画像を有する断層撮影スキャンの再検討方法
EP3061073B1 (en) Image visualization
US20070053478A1 (en) X-ray ct apparatus and x-ray radiographic method
JP2005161054A (ja) コンピュータ支援ターゲットの方法及びシステム
JP2004105731A (ja) コンピュータを利用した医療用画像の処理
JP2008080121A (ja) 画像内の領域を識別する方法及びシステム
KR101971625B1 (ko) Ct 영상을 처리하는 장치 및 방법
CN108601570B (zh) 断层摄影图像处理设备和方法以及与方法有关的记录介质
JP5631580B2 (ja) 画像表示装置、x線ct装置およびプログラム
JP2005103263A (ja) 断層撮影能力のある画像形成検査装置の作動方法およびx線コンピュータ断層撮影装置
CN112168196B (zh) 用于高分辨率能谱计算机断层摄影成像的系统和方法
KR20180047401A (ko) 의료 영상 장치 및 의료 영상 처리 방법
JP7242622B2 (ja) コンピュータ断層撮影のためのセグメント化された光子計数検出器を使用するコヒーレント散乱撮像のためのシステムおよび方法
WO2018159053A1 (ja) 画像表示制御装置、x線ct装置及び画像表示方法
CN1711562A (zh) 用于显示以立体数据组成像的对象的方法
US20230334732A1 (en) Image rendering method for tomographic image data
EP3809376A2 (en) Systems and methods for visualizing anatomical structures
US20240249414A1 (en) 3d interactive annotation using projected views
US20240193763A1 (en) System and Method for Projection Enhancement for Synthetic 2D Image Generation
JP6643019B2 (ja) 画像処理装置、画像処理方法およびプログラム
WO2021252751A1 (en) Systems and methods for generating synthetic baseline x-ray images from computed tomography for longitudinal analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899080

Country of ref document: EP

Kind code of ref document: A1