JP5317624B2 - 保持装置、望遠鏡および光学装置 - Google Patents

保持装置、望遠鏡および光学装置 Download PDF

Info

Publication number
JP5317624B2
JP5317624B2 JP2008268866A JP2008268866A JP5317624B2 JP 5317624 B2 JP5317624 B2 JP 5317624B2 JP 2008268866 A JP2008268866 A JP 2008268866A JP 2008268866 A JP2008268866 A JP 2008268866A JP 5317624 B2 JP5317624 B2 JP 5317624B2
Authority
JP
Japan
Prior art keywords
lens
holding device
optical element
linear expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008268866A
Other languages
English (en)
Other versions
JP2010097069A (ja
Inventor
幸男 竹村
浩平 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008268866A priority Critical patent/JP5317624B2/ja
Priority to US12/580,193 priority patent/US8243378B2/en
Publication of JP2010097069A publication Critical patent/JP2010097069A/ja
Application granted granted Critical
Publication of JP5317624B2 publication Critical patent/JP5317624B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0852Catadioptric systems having a field corrector only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Telescopes (AREA)

Description

本発明は、光学素子を保持する保持装置、当該保持装置を含む望遠鏡、および当該保持装置を含む光学装置に関する。
従来の望遠鏡の光学素子の保持機構としては、特許文献1に記載されたものがある。特許文献1によれば、光学素子である反射鏡とこれを支持する金属製の鏡筒との間に、金属よりも熱膨張率が高い部材であるところの結晶性プラスチック製の支持体が配置されている。
通常の温度の時に、反射鏡と金属鏡筒との間に、結晶性プラスチックを入れる。高温の際は、反射鏡の直径よりも、熱膨張率が高い材質の鏡筒の直径が大きくなる。この結果、反射鏡の外径と鏡筒の内径とに差が生じ、結果的に隙間が生じてしまう。特許文献1では、この隙間を、鏡筒の熱膨張係数よりも大きな熱膨張係数を有する結晶性プラスチックがふさぐように保持機構を構成している。
特公平05−036766号公報
特許文献1には、「主反射鏡3の周辺温度が急激に低下し、支持体9が強い力で主反射鏡3の外側面に押しつけられるような状況になっても、支持体9がたわみ変形し易く、主反射鏡3の歪み変形や破損を回避することができる」との記載がある。一般に望遠鏡の光学系は 反射鏡やレンズなどの複数の光学素子で構成されている。これら光学素子は、それぞれの光軸が一直線状に並んでいないと、偏芯収差といわれる収差が生じ、画質(光学性能)が低下するのは常識である。特許文献1では、反射鏡を保持している部材は「変形しやす」いとの記載があり、このことは当該保持部材にレンズの荷重がかかったときには偏芯収差が発生する恐れがあることを示唆している。
特に、地平線近傍の天体を観察する際、望遠鏡の光軸は水平となり、望遠鏡の内部のレンズの重量は、その外周部を介して鏡筒の下部にのしかかる。この下部にある保持部材は、柔らかいプラスチック等の材料であると、変形してレンズを下方向に偏芯させかねない。レンズの重量は、レンズが大口径化すればするほど重くなる。このため、レンズを支持する部分に変形し易い材質を使えば、少なからず変形し、偏芯による光学性能の低下を引き起こしかねない。
上述の課題を考慮してなされた本発明の一側面としての保持装置は、光学素子(1)を保持する保持装置であって、
前記光学素子を収容し、側面に穴(18)を有する鏡筒(11)と、
前記鏡筒に一端が固定され、前記鏡筒の軸に直交する方向に前記一端から離れて前記鏡筒の外側に他端を有する第1の部材(21)と、
前記穴を貫通する第2の部材であって、前記第1の部材の前記他端に一端が固定され、前記第1の部材の前記他端から前記方向に離れて前記鏡筒の内側に他端を有する第2の部材(22)と、
を有し、
前記第2の部材の前記他端が前記光学素子の側面に接触し且つ温度変化による前記光学素子の側面の変位量と前記第2の部材の前記他端の変位量とが一致するように、前記鏡筒の線膨張係数、前記第1の部材の線膨張係数、前記第2の部材の線膨張係数、前記方向における前記鏡筒の寸法、前記方向における前記第1の部材の寸法、および前記方向における前記第2の部材の寸法が設定されている、
ことを特徴とする保持装置である。
本発明の他の側面は、『特許請求の範囲』や、『発明を実施するための最良の形態』、添付した図面等に記載したとおりである。
本発明によれば、光学素子を含む装置の温度変化および姿勢変化に対して安定した光学性能を維持できる保持装置を提供することができる。
(実施形態1)
図1、図2、図3および図4を参照して、本発明の実施形態1を説明する。
図1は、望遠鏡を構成する複数のレンズのうち1枚のレンズが鏡筒に収容されている場合の断面図である。図1において、円形の凹レンズ1は、その外周部において、光軸2と直交する面と平行になるように、上面部4と下面部5とが平面に加工されている。
鏡筒11は、リング状であり、円形のレンズ1の外周部を囲んでいる。鏡筒11のレンズ受け部分6は、平面に加工され、第1図の矢印Sの方向にスムーズにレンズ1がシフトするのを許容する。鏡筒11の上部には、ビス13とナット12とを介してレンズ押さえリング14を配置し、さらに、その内側には、先端にレンズ押さえパッド15をつけたビス16をリング14に、ナット17で押さえ固定している。押さえパッド15は、凹レンズ1の上面部4を押さえている。押さえパッド15を介して押さえリング14がレンズを押さえる力は、図1の鏡筒11を上下逆にしても鏡筒11からレンズが落下しないような力としている。ただし、その力は、鏡筒のどの姿勢においても、鏡筒11の中でレンズが半径方向(矢印Sの方向)にシフトすることを制限しない値に設定しておく。
鏡筒11の円周上(側面)には、等角度間隔で穴18が8個あけられている。開口側の一端の外径が大きくなったコップ状の部品であるアウター21(第1の部材ともいう)が鏡筒11の穴18の内側からはめ込まれて固定されている。これを光軸方向から見た様子を図4に示す。図4において、アウター21が鏡筒の周囲に放射状に配置されている。
図1において、アウター21の外周の太い部分は、鏡筒11の外周にあけられた穴18の直径より少し大きく、この部分で鏡筒11の直径方向においてアウター21が鏡筒11の外側に抜けないように位置決めされている。すなわち、アウター21は、鏡筒11に一端が固定され、鏡筒11の軸(光軸)に直交する方向に当該一端から離れて鏡筒11の外側に他端を有している。
アウター21にはロッド22が挿入されており、アウター21のレンズの光軸から遠い側の他端(底部)にはロッド22(第2の部材ともいう)の一端が突き当たっている。ロッド22は、アウター21の内壁にガイドされ、ロッド22の他端はレンズ1の外周(側面)に軽い圧力で接触している。すなわち、ロッド22は、穴18を貫通し、アウター21の上記他端に一端が固定され、アウター21の上記他端から鏡筒11の軸に直交する方向に離れて鏡筒11の内側に他端を有している。図1、図2および図3では、レンズの外周部とロッド22の先端部分との間には隙間がある。しかし、隙間が無くて軽く接触していてもよい。
この構成の詳細をさらに説明する。アウター21・ロッド22の材質(線膨張係数)や長さ(寸法)は、レンズ1の材質すなわち線膨張係数や半径(寸法)、アウターを固定する鏡筒の材質(線膨張係数)や半径(寸法)などにより適切に決定すればよく、次の関係式で決定される。
Figure 0005317624
以下に、構成部材の材料・特性・寸法の例を示す。レンズ1は、株式会社オハラのBSL7Yを使用し、レンズ外周部の半径Lr(20℃)は、400mm、オハラ社のカタログから線膨張係数αは、6.8×10−6[1/K]である。
鏡筒は、京セラ株式会社のコージライトとし、鏡筒におけるアウター突き当て部の半径BOr(20℃)は、420mm、京セラ株式会社のカタログから線膨張係数αは、0.1×10−6 [1/K]である。
アウターは、亜鉛合金とし、ジンクエクセル株式会社のWebで公開されているデータから線膨張係数αOUは、28×10−6[1/K]である。
ロッドは、新報国製鉄株式会社のスーパーインバーとし、新報国製鉄株式会社のカタログから線膨張係数αLOは、1.0×10−6[1/K]である。
ロッドの長さLOは、アウターの長さOU、レンズ半径Lr、および鏡筒突き当て部の半径Brから次の関係式で決定される。
Figure 0005317624
式1および式2からアウターの長さは次式で表される。
Figure 0005317624
上記物性値と寸法のとき、
OU(計算値)=99.5926mm
となり、アウターの加工寸法は、
OU=99.6000mm
とする。
また、ロッドの長さは、式2から、
LO(計算値)=109.5926mm
となり、ロッド加工寸法は、
LO=109.6000mm
とする。
以上の構成で、ユニットが置かれている環境の温度が(A)20℃から30℃まで10℃上昇した場合と、(B)20℃から10℃まで10℃低下した場合の挙動を図2および図3を参照して説明する。
〈(A)20℃から30℃への10℃の温度上昇の場合〉
図2において、レンズの半径Lr(30℃)は、
Lr(30℃)=Lr(20℃)×(1+(α×10℃))
=400×(1+(6.8×10−6×10))
=400.0272mm−−−−(A)
となる。
次に、レンズの外周部に接触しているロッドの先端の位置の半径に相当する量Br(30℃)は、鏡筒、アウターおよびロッドの寸法から、
Br(30℃)=BOr(30℃)+OU(30℃)−LO(30℃)
と表される。
まず、鏡筒のアウターが接触している部分の半径BOr(30℃)は、
BOr(30℃)=BOr(20℃)×(1+(α×10℃))
=410×(1+(0.1×10−6×10))
=410.0005mm
となる。
アウターの鏡筒に固定している部分から、光軸より遠い側のロッドの先端が突き当たっている底の部分までの寸法OU(30℃)は、
OU(30℃)=OU(20℃)×(1+(αOU×10℃))
=99.6000×(1+(28×10−6×10))
=99.6279mm
となる。
ロッド22の長さLO(30℃)は、
LO(30℃)=LO(20℃)×(1+(αLO×10℃))
=109.6000×(1+(1.0×10−6×10))
=109.6011mm
となる。
これより、レンズの外周に接触しているロッドの先端部分の半径相当の寸法Br(30℃)は、
Br(30℃)=BOr(30℃)+OU(30℃)−LO(30℃)
=410.0005+99.6279−109.6011
=400.0273mm−−−−(B)
となる。
したがって、10℃の温度上昇によるレンズの半径(A)とロッド先端の半径(B)との間の膨張誤差は0.0001mmとなる。この膨張誤差はレンズの膨張量に対して1/200程度であり、この膨張誤差の分レンズが偏心しても光学性能に与える影響は十分に小さい。また、レンズに対してロッド先端が0.0001mmだけ外に膨張していることから、温度上昇によってもレンズを締め付けることがないためレンズに応力が生じない。
式3・式2によるアウターの寸法OU(計算値)およびロッドの寸法LO(計算値)を用いて膨張誤差を計算すると、0になる。膨張誤差は、アウターおよびロッドの寸法(計算値)を「加工寸法」へとまるめることによって生じる数値誤差である。つまり、上記設計手順に従い、式1によって求められた各部品の材質や寸法から、アウターやロッドの加工寸法を微調整することで、膨張誤差は自由に設定することができる。この場合、別の部品の寸法を微調整したり、各部品の線膨張係数を調整したりすることによっても同様に膨張誤差を設定できることは明らかである。膨張誤差は、部品の加工誤差や線膨張係数の誤差などを吸収できるように、かつ光学性能に影響がでない程度に設けることが望ましい。すなわち、膨張誤差は微小量に抑え、温度変化(膨張・収縮)による光学素子の側面の変位量とロッド(第2の部材)の先端(上記他端)の変位量とを一致させるようにする。ここで、「一致」とは、要求される光学性能に影響がでない範囲内の差を許容して実質的に等しいことをいう。
次に、アウターとロッドとは、観察する天体が地平線近くにある場合、レンズの重量がかかり変形する。その変形量を計算により以下に求める。
本実施形態の各部材の寸法や物性値は、以下のとおりである。レンズは、直径がφ800mm、肉厚が約60mm、重量が約80kgである。ロッドは、直径がφ16mm、材質がスーパーインバー、ヤング率が114.7GPaである。アウター(ここでは円筒)は、外径がφ40mm、内径がφ20mm、材質が亜鉛合金、ヤング率が91GPaである。鏡筒が水平状態で重力方向下方の2組のアウター・ロッドがレンズを支える場合、アウター・ロッドはレンズ重量によって約0.002mm変形する。しかし、この変形量はレンズの温度変形に対して十分に小さく、光学性能への影響は許容できるレベルである。
一方、特許文献1記載の材質はジュラコンで、そのヤング率はポリプラスチックス株式会社のカタログから7.9GPaである。このジュラコンでロッドを製作すると、レンズ重量によってアウター・ロッドは約0.028mm変形する。この変形量はレンズの膨張量に近く、本実施形態の保持機構を設ける意味が無くなる。また、ジュラコンを用いて、本実施形態のアウター・ロッドの変形量(約0.002mm)と同等の変形量を達成するためには、φ64mm以上のロッド径が必要になり、このロッド径はレンズの肉厚よりも大きくなってしまう。このため、レンズの間隔を大きく取る必要性があり、これは望遠鏡等の光学装置の大型化につながり、好ましくない。よって、ヤング率の低いジュラコンは、本実施形態に適用することが現実的でないことは明らかである。
材料の線膨張係数が温度によって変動する温度依存性を示す場合がある。この場合、材料の線膨張係数の変動を定式化し、式1の線膨張係数に代入すればよい。このため、寸法をある値に決定したロッドとアウターとは、温度の上昇・下降の一方においてレンズとの間に隙間ができ、上昇・下降の他方においてレンズを締め付ける可能性がある。そこで、温度依存性を示す材料を用いる場合、ロッド・アウターの寸法は、使用する環境の平均温度と温度変化幅とを考慮して、上記の隙間とレンズの締め付けとによる光学性能の変動が少なくなるように設定することが望ましい。
〈(B)20℃から10℃への10℃の温度低下の場合〉
望遠鏡の置かれている環境の温度が低下した場合の挙動を図3を参照して説明する。
20℃から10℃まで10℃の温度低下が生じた場合のレンズの半径Lr(10℃)は、
Lr(10℃)=Lr(20℃)×(1+(α×−10℃))
=400×(1+(6.8×10−6×−10))
=399.9728mm−−−−−−−(C)
となる。
鏡筒のアウターが接触している部分の半径BOr(10℃)は、
BOr(10℃)=BOr(20℃)×(1+(α×−10℃))
=410×(1+(0.1×10−6×−10))
=409.9996mm
となる。
アウターの鏡筒に固定している部分から、光軸より遠い側のロッドの先端が突き当たっている底の部分までの寸法OU(10℃)は、
OU(10℃)=OU(20℃)×(1+(αOU×−10℃))
=99.6000×(1+(28×10−6×−10))
=99.5722mm
となる。
ロッド22の長さLO(10℃)は、
LO(10℃)=LO(20℃)×(1+(αLO×−10℃))
=109.6000×(1+(1.0×10−6×−10))
=109.5990mm
となる。
これより、レンズの外周に接触しているロッドの先端部分の半径相当の寸法Br(10℃)は、
Br(10℃)=BOr(10℃)+OU(10℃)−LO(10℃)
=409.9996+99.5722−109.5990
=399.9728mm−−−−−−(D)
となる。
10℃の温度低下よるレンズの半径(C)とロッド先端の半径(D)との間の収縮誤差は、ほぼ0mmとなり、レンズ偏心やレンズの応力は十分に小さく、光学性能への影響は無視できるレベルとなり、高画質が維持できる。
(実施形態2)
図5・図6を参照して実施形態2を説明する。実施形態1で参照した図の符号と同様または類似の符号は、同様または類似の部材を表し、説明を適宜省略する。レンズ1bを押さえる部品の構成は、図1と同様のため、図から省略した。
本実施形態において、レンズ1bは線膨張係数が低い材質で、鏡筒は線膨張率が高い金属等の材質で構成されている。この構成では、アウターには、線膨張係数が低い材質を使い、ロッドには、線膨張係数の高い材質を使う。
この構成においても、式1の関係が成立し、アウターとロッドとの材質や長さは、レンズ1bの材質すなわち線膨張係数や半径、アウターを固定する鏡筒の材質などに応じて適切に決定すればよい。以下に、構成部材の材料・特性・寸法の例を示す。
レンズ1bは、コーニングジャパン株式会社の合成石英材料HPFS Fused Silicaを使用し、その線膨張係数αは、コーニングジャパン株式会社のカタログより、0.5×10−6[1/K]である。レンズの半径Lr(20℃)は、400mmとする。
鏡筒11bは、炭素鋼を使用し、その線膨張係数αは、理科年表2000年版より、10.7×10−6[1/K]である。そして、鏡筒におけるアウター突き当て部の半径BOr(20℃)は、410mmとする。
アウター21bの材質は、新報国製鉄株式会社のスーパーインバーとし、その線膨張係数αOUは、新報国製鉄株式会社のカタログから、1.0×10−6[1/K]である。
ロッドの材質は亜鉛合金とし、その線膨張係数αLOは、ジンクエクセル株式会社のWebで公開されているデータから、28×10−6[1/K]である。
実施形態1と同様に、アウターの長さOUは、式3の関係より、レンズ半径Lrおよび鏡筒突き当て部の半径BOrから決定される。すなわち、OU(計算値)=144.7037mm
となり、アウターの加工寸法は、
OU=144.8000mm
とする。
また、同様にロッドの長さも、式2の関係より、
LO(計算値)=154.7037mm
となり、ロッドの加工寸法は、
LO=154.8000mm
とする。
このユニット構成で、ユニットがおかれている環境の温度が(A)20℃から30℃まで10℃の温度上昇が生じた場合と、(B)20℃から10℃まで10℃の温度低下が生じた場合の挙動説明する。
〈(A)20℃から30℃への10℃の温度上昇の場合〉
レンズの半径Lr(30℃)は、
Lr(30℃)=Lr(20℃)×(1+(α×10℃))
=400×(1+(0.5×10−6×10))
=400.0020mm−−−−−−−(E)
となる。
次に、レンズの外周部に接触しているロッドの先端の位置の半径に相当する量Br(30℃)は、鏡筒、アウターおよびロッドの寸法から、
Br(30℃)=BOr(30℃)+OU(30℃)−LO(30℃)
と表される。
まず、鏡筒のアウターが接触している部分の半径BOr(30℃)は、
BOr(30℃)=Br(20℃)×(1+(α×10℃))
=410×(1+(10.7×10−6×10))
=410.0439mm
となる。
アウターの鏡筒に固定している部分から、光軸より遠い側のロッドの先端が突き当たっている底の部分までの寸法OU(30℃)は、
OU(30℃)=OU(20℃)×(1+(αOU×10℃))
=144.8000×(1+(1.0×10−6×10))
=144.8015mm
となる。
ロッド22の長さLO(30℃)は、
LO(30℃)=LO(20℃)×(1+(αLO×10℃))
=154.8000×(1+(28.0×10−6×10))
=154.8434mm
となる。
これより、レンズの外周に接触しているロッドの先端部分の半径相当の寸法Br(30℃)は、次のようになる。
Br(30℃)=BOr(30℃)+OU(30℃)−LO(30℃)
=410.0439+144.8015−154.8434
=400.0020mm−−−−−−(F)
10℃の温度上昇よるレンズの半径(E)とロッド先端の半径(F)との膨張誤差はほぼ0mmとなり、レンズ偏心やレンズの応力は十分に小さく、光学性能への影響は無視できるレベルである。
〈(B)20℃から10℃への10℃の温度低下の場合〉
望遠鏡の置かれている環境の温度が低下した場合の挙動を説明する。
20℃から10℃まで10℃の温度低下が生じた場合のレンズの半径Lr(0℃)は、
Lr(10℃)=Lr(20℃)×(1+(α×−10℃))
=400×(1+(0.5×10−6× 10))
=399.9980mm−−−−−−−−(G)
となる。
鏡筒のアウターが接触している部分の半径Br(10℃)は、
Br(10℃)=Br(20℃)×(1+(α×−10℃))
=410×(1+(10.7×10−6×−10))
=409.9562mm
となる。
アウターの鏡筒に固定している部分から、光軸より遠い側のロッドの先端が突き当たっている底の部分までの寸法OU(10℃)は、
OU(10℃)=OU(20℃)×(1+(αOU×−10℃))
=144.8000×(1+(1.0×10−6×−10))
=144.7986mm
となる。
ロッド22の長さLO(10℃)は、
LO(10℃)=LO(20℃)×(1+(αLO×−10℃))
=154.8000×(1+(28.0×10−6×−10))
=154.7567mm
となる。
これより、レンズの外周に接触しているロッドの先端部分の半径相当の寸法Br(10℃)は、次のようになる。
Br(10℃)=BOr(10℃)+OU(10℃)−LO(10℃)
=409.9562+144.7986−154.7567
=399.9981mm−−−−−−−−(H)
10℃の温度低下よるレンズの半径(G)とロッド先端の半径(H)との収縮誤差は0.0001mmとなり、光学性能に与える影響は十分に小さい。また、レンズに対してロッド先端の収縮量が0.0001mmだけ少なく、温度下降によってもレンズを締め付けることがないためレンズに応力が生じない。
(実施形態3)
図8乃至図11を参照して実施形態3を説明する。
図8のレンズ101は、図7のように外周の一部に平面部Fが形成されている。図7の(a)(b)ともに、101はレンズで、(a)は、レンズを正面から見た図で、外周部のFの部分が平面に加工されている。(b)は、レンズを側方から見た図で、F部が平面に加工された外周部である。平面部(F部)は、光学素子の側面に複数配置し、図7の例では、15度ピッチで12個配置した。
図8において、鏡筒111の外周部の一部には平面に加工したフランジ部分111aを配置している。ここに、アウターパッド120・パッドガイド113を介してアウター121を固定する。アウター121を鏡筒111へ固定するネジ121Cは、4箇所あり、アウター121は外周部にすり割121a、121bを有している。アウター121のレンズの光軸より遠い側の先にはリング状のスペーサー123を介してキャップ124(蓋部材ともいう)を配置している。
キャップ124は、ロッド122をビス122aで中央に固定している。ロッド122のレンズに近い端面は、スペーサー123、アウター121、アウターパッド120、鏡筒111、パッドガイド113を介して、パッド112の光軸と反対側の面に突き当てる。その後、キャップ124は、その穴と123の穴とを経由してビス124aを締めこんで、アウター121に固定する。なお、当該固定のための固定部材は、ビスに限定されるものではなく、キャップを着脱自在とする他の周知の固定部材で置換可能である。
ロッド122先端は、凸の球面形状をなしており、パッドガイド113の中央の穴を貫通し、パッド112を押している。パッド112(第3の部材ともいう)は、レンズ101の外周部の平面部Fに当接している。
こうすることで、レンズ101の線膨張係数を鏡筒111のそれより小さく構成し、線膨張係数の高い材質でアウター121を構成し、線膨張係数の小さい材質でロッド122を構成する。この構成のレンズユニットがおかれている環境の温度が変化すると、線膨張係数が高い材質で構成されているアウター121の取り付け部が変形しようとするが、この変形の応力はすり割を設けているために強い力とならず緩和される。また、鏡筒111の固定部111aとアウター121との間には、アウターパッド120を設けた。このアウターパッド120は、線膨張係数の低い剛性の高い材質(例えばスーパーインバー材など)を使用している。このため、アウター121で発生した温度変化による寸法変化の応力は、このアウターパッド120でくい止められ、鏡筒111には伝わらない。よって、アウターの変形しようとする応力が鏡筒に伝わらないため、レンズを保持する位置が変化せず、高画質を維持することができる。
また、レンズの外周部に当接するパッド112は、当接面積が広いため、レンズを押さえる荷重が緩和され、レンズの一部分にかかる応力が減り変形も低減することができる。
また、レンズを支持しているこれらの部材の固定をレンズの径方向に締め付けるビスで行っているために、レンズの鏡筒への組み込み後にレンズを光軸周りに回転して調整することが可能となる。例えば、ネジ124aを外せば、レンズを中心に向かって支持しているロッド122が外せ、鏡筒の内径とレンズの外径との差を十分に取っていれば、レンズは回転できる。
ロッドの先端部分を図9に示す。図9において、レンズ101の一部が示され、Fはその外周部である。レンズ101は、平面部分を追加工で作成する場合、わずかな誤差で、平面部がレンズの光軸と平行でなく製作される場合がある。平行でなく製作された平面部Fでは、この傾斜したレンズの平面部分Fに沿ってパッドが傾斜する。ロッド122先端部分が球面ではなく平面で構成されている場合、ロッド122の外周部の稜線の近くだけに荷重がかかり、高い応力が生じる。ヤング率が高い材質を使っているとはいえ、ロッド122の先端の稜線部分が変形したり破損したりする恐れがある。ロッド122の先端部が球面で構成される場合、パッド112に接触するロッド122の球面部分は、傾斜したロッド122の先端が平面の場合に比べて広くできる。よって、接触部の応力を減らすことができる。これより、接触部での荷重による破損が生じにくい。
図10・図11を参照してスペーサー123を説明する。図10・図11は、図8の構成の断面図を示す。スペーサー123の厚みを選定することで、レンズ101の半径に対して、ロッド122のレンズの光軸に近い側の先端部分を適切な位置に配置することができる。図10の(b)に、スペーサー123Mを示している。この厚みD1のスペーサー123Mを組み込んだ様子が図10の(a)である。図11の(b)は、厚みD2(>D1)のスペーサー123Nを示し、このスペーサーをアウターに組み込んだ様子が図11の(a)である。図11は、図10に比べてスペーサー123の厚みを厚くしたもので、直径が大きいレンズに対応できる。スペーサーの交換は、アウター端部の着脱自在のキャップ124を外して行う。
この構成を使って、レンズの平行偏芯調整も可能となる。各アウター121の先に固定しているスペーサー123の厚みを選択すれば、鏡筒の位置(軸)に対してレンズの中心位置を調節することができる。
(実施形態4)
図12を参照して実施形態4を説明する。
鏡筒1010の外周部には、ロッド125二本が平行に貫通する穴が近接して配置されている。パッド112、ロッド125 スペーサー126、およびキャップ127は、それぞれ2つずつあって前述した図8の部材と同様のものであるが、アウター128は、ロッド125二本を保持できる構成としている。このパッド112、ロッド125、スペーサー126、キャップ127、およびアウター128で構成されるアウターセット150の配置を図13に示す。
図13の下部の矢印は、水平線近くの天体を観察しているときに望遠鏡にかかる重力の方向を示す。この重力方向に垂直な方向に、アウターセット150を対向して(この図では左右に)配置し、レンズ101を左右から挟み込むことで、レンズの回転を抑制する。ここで、図7で示した外周の一部を平面にしたレンズと組み合わせることにより、鏡筒の中でのレンズの回転を抑制することが可能となる。
なお、レンズ101の回転を抑制する目的を以下に説明する。光軸に関して対称な形状のレンズは、厳密には、いくらかの製造誤差を持つ。望遠鏡の性能をより高く望めば、その製造誤差は小さくしなくてはいけない。しかし、製造誤差を小さくするのには限界がある。このため、他の光学素子の製造誤差も考慮して、光学系全体として高性能になるように、レンズをその光軸を軸として回転させて調整し固定する場合がある。この調整後は、レンズが回転すると、わずかながらも性能が低下するため、これを防ぐことが好ましい。望遠鏡の姿勢変更などで生じる振動等でレンズに回転力が作用した場合、レンズ外周部の平面部Fの角度が変化しうる。この場合、図12の一方のロッド先端のパッドが平面部Fに突き当たり荷重を与えるために、レンズの回転を抑制することができる。これにより、長期にわたって高性能が維持できる。
(実施形態5)
図14を参照して実施形態5を説明する。
前述したアウター121およびロッド122を含んで構成されたユニットを「アウターセット100」と呼ぶ。図14の下部の矢印は、重力方向を示す。アウターセット100を鏡筒111の下部真中には配置せず、鏡筒の外周に沿って左右対称に配置する。すなわち、重力の方向に対して傾けた鏡筒の軸の方向と重力の方向とを含む平面に関して、アウターセット(第1の部材と第2の部材との組)が対称に複数配置されている。そして、当該平面上には、アウターセットが配置されていない。
このようにすれば、アウターセットを上記真中に配置したときに比べてレンズに生じる応力を減らせる。また、アウターセットは、重力のかからない上部は少なく配置する。このようなアウターセットの不等角度間隔の配置により、光学系を軽量化できる。
(実施形態6)
図15・図16を参照して、実施形態6を説明する。
図15は、アウター131の内部にスプリング(弾性部材)133を配置している。このスプリング133は押されると収縮するが、このとき押し返すように伸びようとする。このスプリング133により、アウター131の中でショートロッド132を押圧する構成としている。このアウター131・スプリング133・ショートロッド132で構成されたユニットをスプリングセット200と呼ぶことにする。このスプリングセット200を図16のように配置する。
図16において、重力のかかる頻度が高い鏡筒の下部には、図14で説明したアウターセット100を配置する。一方、上部の対向位置には、図15で説明したスプリングセット200を配置する。
本実施形態の効果を説明する。例えば、設置のため、望遠鏡またはその一部の光学系を輸送する際、振動により、ロッドやアウターを介して、鏡筒からレンズに力が加わる。この結果、レンズが破損してしまう恐れがある。本実施形態のスプリングセット200は、この恐れを減らす効果が有る。
なお、このスプリングセット200があっても、輸送後に架台に設置された望遠鏡は、鏡筒の下部に配置されたアウターセット100にレンズが当接し、レンズは鏡筒の中心に配置されるため、レンズの偏芯は生じず、高画質を実現できる。
(実施形態7)
図17を参照して、実施形態7を説明する。
本実施形態は、下面が平面の平凸レンズを鏡筒に組み込んだ例である。レンズ上面の外周近傍部は、凸面受けリング41を介して、レンズ押さえパッド15に押圧される。
(実施形態8)
図18を参照して、実施形態8を説明する。
本実施形態は、下面が凸面の平凸レンズを鏡筒に組み込んだ例である。レンズ下面の凸面部と鏡筒11との間に凸面受けリング51を配置している。
(実施形態9)
図19を参照して、実施形態9を説明する。
本実施形態は、上下の面が凸面の両凸レンズを鏡筒に組み込んだ例である。レンズ上面の凸面部には、実施形態7で使用した凸面受けリング41を配置し、下面の凸面部には、実施形態7で使用した凸面受けリング51を配置している。
なお、上面および下面が平面である平板形状の光学素子も組み込むことが可能である。この場合は、平板の光学素子とパッドまたは鏡筒との間には、何も配置しなくてもよい。
平板ガラスやレンズと鏡筒との間や、レンズとレンズ押さえパッドとの間の摩擦力が高く、図の下部の矢印Sの方向に動かすのに大きな力が必要な場合がある。この場合は、凸面受けリング41や凸面受けリング51の表面に摩擦力を低減させるテフロン(登録商標)コート等の処理をすることで、摩擦力を低減させ、レンズや鏡筒の温度変化による直径方向の膨張収縮をスムーズに行わせることができる。光学素子と鏡筒やレンズ押さえパッドとの間での摩擦係数が高い場合で、スムーズな膨張収縮ができない恐れが有る場合も、光学素子や鏡筒、レンズ押さえパッドの摺動部にテフロン(登録商標)コート等の摩擦係数低減処理を施せば同様の効果が得られる。
(実施形態10)
図20を参照して、実施形態10を説明する。
本実施形態では、図10または図14で示したアウターセット100の外周部に断熱部材を配置している。断熱部材は、固体の中に気体の小胞を多量に持つ物でよく、例えば、ポリスチレンフォームなどの発泡樹脂等は、軽量かつ安価で好ましい。
望遠鏡は外気温度の影響を受けるが、その温度は建屋のドームの開閉や外気の風速により大きく影響を受ける。温度変化は、望遠鏡の外側から徐々に内側へ進行する。建屋の中で望遠鏡の温度が全体として20℃になっている状態から、建屋のドームが開いて、例えば、10℃の外気に触れた場合、望遠鏡は急速に10℃に向かって冷却される。
図22は、この様子を示すグラフである。グラフの縦軸は温度、横軸は時間経過である。アウターセットの温度をAで示し、鏡筒内部のレンズの温度をCで示している。レンズは、約180分程度で環境温度と同じ温度になり、また、アウターセットは、約60分で環境温度と同じ温度になる。レンズとアウターセットとの温度差は、約50分のときに7.5degとなる。
実施形態1のように、レンズ101およびアウター121の線膨張率が高く、鏡筒111およびロッド122の線膨張率が低い場合、望遠鏡の外側にあるアウターセット100が望遠鏡の内側にあるレンズよりも早く低温となり短くなる。これによりロッド先端の半径Brがレンズの半径Lrよりも小さくなると、ロッド先端部分がレンズ外周部分を押すこととなる。これにより、レンズに応力が生じ、レンズの面形状が変化して性能が低下することが考えられる。
レンズとアウターとの温度差を減らすために断熱材を配置した場合のアウターセットの温度をBで示す。この場合、経過時間が90分の時に最大温度差3.5degとなる。このように温度差を減らすことができるため、アウターセットのロッドの先端部がレンズの外周部を押し付ける力を緩和することができる。
時間が経過すると、レンズ101の温度とアウターセット100の温度とが外気と同じ温度になって、継続的に高画質(光学的性能)を維持することができる。
レンズユニットが20℃の環境からより高温の環境にさらされた場合も、レンズとアウターセットとの間の温度差を低減する断熱材の効果により、継続的に高画質を維持できる。
(実施形態11)
図21を参照して実施形態11を説明する。
本実施形態は、実施形態10と同様に外気の温度変化の影響を受けにくくした実施形態であり、アウターの周囲にヒーター(加熱器)を配置している。ヒーターは、ニクロム線などのヒーター線に難燃性の被覆を施して布状にしたもので、アウターセット100の外周に巻き付けている。ヒーター線の両端から電圧をかければヒーターの温度は上昇し、アウターセットに熱が伝わり、アウターセットの温度が高められる。その結果、アウターセットとレンズとの間の温度差を低減でき、まだ冷えていないレンズの外周部をロッド先端が押し付けないようにすることができる。
このアウターセットの近傍とレンズの近傍とに温度センサー(例えば熱電対)を配置し、レンズの温度とアウターの温度とが一致するようにヒーターに流れる電流を制御するのが好ましい。これにより、実施形態10の構成の場合と比較して、より大きな温度変化に対しても性能の変化を抑制できる。この効果を図22に示す。Dが本実施形態でのアウターセットの温度を示している。温度変化が遅いレンズよりもさらに遅く冷えるように制御することもできる。よって、望遠鏡の外気の温度が急激に低下しても、アウターセットの急冷により生じるレンズへの押し付け力を小さくできる。すなわち、外気の温度変化に対して高画質を維持するうえでさらに好ましい。
(実施形態12)
図23を参照して、実施形態12を説明する。この図は、大型の反射型望遠鏡の例である。
66は、望遠鏡を支持し、観察する方向に望遠鏡の向きを変更する機能を持つ架台である。この架台は、ジョイント65を介して、筐体64を保持している。筐体64の底には放物面鏡67が配置されている。筐体64の右上には、フレーム63に固定されたカメラユニット鏡筒62が配置されている。
この図の右上の天体から筐体64に入射した光束は、フレーム63の横を抜けて主反射鏡67で反射される。放物面鏡である主反射鏡67で反射した光束は、放物面鏡の焦点に向かい、この焦点近傍には、固体撮像素子69に高画質で結像するためのカメラユニットが配置されている。
このカメラユニットにはレンズ系61が配置されており、このレンズ系は、例えば、特開平6−230274号公報に開示されている収差補正系である。本発明の光学素子保持装置は、このような収差補正系の保持に用いても、先の実施形態で説明したような効果を発揮する。
また、アウターセット100と同様な機能を有するアウターセット68を、主鏡67を支持する筐体64に配置している。この場合も、先の実施形態で説明したような効果を発揮するのはいうまでもない。
(実施形態13)
図24・図25を参照して、実施形態13を説明する。
71は、テレビカメラ用ズームレンズである。このズームレンズは、特開2001−183584 号公報に記載されているように、競技場などの屋外で使用される場合がある。夏の屋外では日光の照射により40℃以上の気温となる場合があり、また、冬の屋外では0℃以下の気温となる場合もある。また、特開2001−183584号公報で説明されているレンズの仕様として、焦点距離が660mmで、Fnoが3.3との記載がある。これより、瞳の直径は、200mmであり、一般の写真用カメラレンズの直径と比べてかなり大きい。
図24は、このようなズームレンズが組み込まれたレンズユニットの外観図である。図24の矢印Fの方向から見たところのレンズ71の支持部分を図25に示す。79はカバーで、72は鏡筒で、71はレンズである。レンズが外れないようにしている押え環は、実際の商品では構成されるが、この図では説明しやすくするために不図示とした。
レンズ71の下部には、図8で説明したものと同様の構成・機能を持つアウターセット76が2個配置され、レンズを支持している。一方、レンズ71の上部には、図15で説明したものと同様の構成・機能を有するスプリングセット75が配置され、レンズを上から保持している。アウターセット76とスプリングセット75とは、円筒の鏡筒72に支持され、四角筒状のカバー71の対角線に概略沿って配置されている。このようにテレビカメラ用のズームレンズに本発明を適用した場合でも、図16を参照して説明したように、温度変化に対してレンズの偏芯を発生させず、高画質(高い光学的性能)を維持できる効果が有る。
以上では、レンズや曲面ミラーに本発明を適用した例を説明したが、他の光学素子、例えば、フィルターや平面ミラー等の光学素子に適用してもよく、同様の効果を発揮させることができる。また、大口径の写真用超望遠レンズの光学素子など、他の大型の光学素子の保持に適用しても同様の効果を発揮できることはいうまでもない。また、保持する光学素子の形状も、光軸に関して回転対称の形状に限定されるものではない。
以下に設計例を示す。
1.レンズと鏡筒との線膨張係数の差で生じる半径方向の寸法変化の差を吸収するため、鏡筒に固定したコップ状のアウター部品と、棒状のロッドとを用いる。このアウターの底とレンズの外周とに接触するようにロッドを配置する。このアウター・ロッドそれぞれの材質(線膨張係数)と長さとを最適化する。
2.レンズよりも膨張係数が低く軽いセラミック材を鏡筒に使う場合は、アウターに線膨張係数の高い材質を使い、ロッドに線膨張係数が低い材質を使う。
3.レンズよりも線膨張係数が高い金属材料を鏡筒に使う場合は、アウターに線膨張係数の低い材料を使い、ロッドに線膨張係数の高い材料を使う。
4.鏡筒・アウター・ロッドには、ヤング率が30GPa以上の材料(金属やセラミック材など)を使う。
上記の設計例によれば、次の効果がある。
1.レンズ・鏡筒の材質の線膨張係数の違いで生じる隙間や応力の変化を低減でき、良好な光学性能を維持できる。
2.鏡筒にセラミック、例えばコージライト(ヤング率:140[GPa]、比重2.6[g/cm])を使用した場合、チタン材(ヤング率:107[GPa]、比重4.5[g/cm])を使用した場合と比較して、鏡筒は約50%軽量化できる。鏡筒の径が大きいほど、その重量の差は大きくなる。
3.レンズを保持する部品は、プラスチック材などの柔らかい(ヤング率の低い)材料を使用しないため、レンズの荷重による変形が少なく、光学素子の偏芯を低減でき、良好な光学性能を維持できる。
なお、上記設計例3の場合、鏡筒にアルミニウム等の安価な材料を用いることができる。
本発明は、光学素子を含む光学装置に利用でき、大型の光学素子を含む光学装置に特に好適に利用可能である。
実施形態1の説明図 温度が上昇した場合の効果の説明図 温度が下降した場合の効果の説明図 図1の構成を光軸方向から見た図 実施形態2の説明図 温度が下降した場合の効果の説明図 実施形態3において、レンズ外周の平面部を示す図 実施形態3の説明図 ロッド先端部の形状の効果の説明図 実施形態3の説明図 実施形態3の説明図 実施形態4の説明図 実施形態4の説明図 実施形態5の配置説明図 実施形態6の説明図 実施形態6の説明図 実施形態7の説明図 実施形態8の説明図 実施形態9の説明図 実施形態10の説明図 実施形態11の説明図 実施形態10・11の効果の説明図 実施形態12の説明図 実施形態13の説明図 実施形態13の説明図
符号の説明
1 凹レンズ(光学素子)
11 鏡筒
18 穴
21 アウター(第1の部材)
22 ロッド(第2の部材)

Claims (20)

  1. 光学素子を保持する保持装置であって、
    前記光学素子を収容し、側面に穴を有する鏡筒と、
    前記鏡筒に一端が固定され、前記鏡筒の軸に直交する方向に前記一端から離れて前記鏡筒の外側に他端を有する第1の部材と、
    前記穴を貫通する第2の部材であって、前記第1の部材の前記他端に一端が固定され、前記第1の部材の前記他端から前記方向に離れて前記鏡筒の内側に他端を有する第2の部材と、
    を有し、
    前記第2の部材の前記他端が前記光学素子の側面に接触し且つ温度変化による前記光学素子の側面の変位量と前記第2の部材の前記他端の変位量とが一致するように、前記鏡筒の線膨張係数、前記第1の部材の線膨張係数、前記第2の部材の線膨張係数、前記方向における前記鏡筒の寸法、前記方向における前記第1の部材の寸法、および前記方向における前記第2の部材の寸法が設定されている、
    ことを特徴とする保持装置。
  2. 前記鏡筒の線膨張係数を前記光学素子の線膨張係数より小さく設定し、
    前記第1の部材の線膨張係数を前記光学素子の線膨張係数より大きく設定し、
    前記第2の部材の線膨張係数を前記光学素子の線膨張係数より小さく設定する、
    ことを特徴とする請求項1に記載の保持装置。
  3. 前記鏡筒の線膨張係数を前記光学素子の線膨張係数より大きく設定し、
    前記第1の部材の線膨張係数を前記光学素子の線膨張係数より大きく設定し、
    前記第2の部材の線膨張係数を前記光学素子の線膨張係数より大きく設定する、
    ことを特徴とする請求項1に記載の保持装置。
  4. 前記光学素子の側面に形成された平面部に前記第2の部材の前記他端が接触するようにした、ことを特徴とする請求項1乃至3のいずれかに記載の保持装置。
  5. 前記平面部に接触する平面を有する第3の部材が前記第2の部材の前記他端と前記平面部との間に配置されている、ことを特徴とする請求項4に記載の保持装置。
  6. 前記第3の部材に接触する前記第2の部材の前記他端は、凸の球面形状である、ことを特徴とする請求項5に記載の保持装置。
  7. 前記第1の部材にすり割が設けられている、ことを特徴とする請求項2に記載の保持装置。
  8. 前記第1の部材の前記他端と前記第2の部材の前記一端との間にスペーサを有する、ことを特徴とする請求項1乃至7のいずれかに記載の保持装置。
  9. 前記第2の部材の前記一端が固定される前記第1の部材の前記他端を含む蓋部材を前記第1の部材の他の部分に対して着脱自在に固定する固定部材を有する、ことを特徴とする請求項1乃至8のいずれかに記載の保持装置。
  10. 前記第2の部材と前記第3の部材との組が前記平面部に対して2つ配置されている、ことを特徴とする請求項5に記載の保持装置。
  11. 前記第1の部材と前記第2の部材との組が前記光学素子の側面に複数配置されている、ことを特徴とする請求項1乃至10のいずれかに記載の保持装置。
  12. 重力の方向に対して傾けた前記鏡筒の軸の方向と重力の方向とを含む平面に関して、前記第1の部材と前記第2の部材との組が対称に複数配置されている、ことを特徴とする請求項11に記載の保持装置。
  13. 前記第1の部材と前記第2の部材との組が前記平面上には配置されていない、ことを特徴とする請求項12に記載の保持装置。
  14. 前記第1の部材と前記第2の部材との組が不等角度間隔で複数配置されている、ことを特徴とする請求項11に記載の保持装置。
  15. 重力の方向に対して前記鏡筒の軸を傾けたときに前記光学素子の荷重が作用しない前記第1の部材の前記他端と前記第2の部材の前記一端との間に、前記第2の部材を前記光学素子に押し付ける弾性部材が配置されている、ことを特徴とする請求項1乃至14のいずれかに記載の保持装置。
  16. 前記第1の部材を取り囲む断熱部材を有する、ことを特徴とする請求項1乃至15のいずれかに記載の保持装置。
  17. 前記第1の部材を加熱する加熱手段を有する、ことを特徴とする請求項1乃至15のいずれかに記載の保持装置。
  18. 前記第1の部材および前記第2の部材は、30GPa以上のヤング率を有する、ことを特徴とする請求項1乃至17のいずれかに記載の保持装置。
  19. 光学素子と、
    前記光学素子を保持する請求項1乃至18のいずれかに記載の保持装置と、
    を有することを特徴とする望遠鏡。
  20. 光学素子と、
    前記光学素子を保持する請求項1乃至18のいずれかに記載の保持装置と、
    を有することを特徴とする光学装置。
JP2008268866A 2008-10-17 2008-10-17 保持装置、望遠鏡および光学装置 Active JP5317624B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008268866A JP5317624B2 (ja) 2008-10-17 2008-10-17 保持装置、望遠鏡および光学装置
US12/580,193 US8243378B2 (en) 2008-10-17 2009-10-15 Holding apparatus, telescope, and optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268866A JP5317624B2 (ja) 2008-10-17 2008-10-17 保持装置、望遠鏡および光学装置

Publications (2)

Publication Number Publication Date
JP2010097069A JP2010097069A (ja) 2010-04-30
JP5317624B2 true JP5317624B2 (ja) 2013-10-16

Family

ID=42108452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268866A Active JP5317624B2 (ja) 2008-10-17 2008-10-17 保持装置、望遠鏡および光学装置

Country Status (2)

Country Link
US (1) US8243378B2 (ja)
JP (1) JP5317624B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919724B2 (en) * 2010-08-24 2014-12-30 Raytheon Company Mount for cryogenic fast switching mechanism
JP5456620B2 (ja) * 2010-08-30 2014-04-02 株式会社日立ハイテクノロジーズ プロキシミティ露光装置、プロキシミティ露光装置の露光光照射方法、及び表示用パネル基板の製造方法
JP2013238747A (ja) * 2012-05-15 2013-11-28 Seiko Epson Corp 光学部品、光学部品の製造方法および画像形成装置
DE102013104159A1 (de) * 2013-01-23 2014-07-24 Jenoptik Optical Systems Gmbh Thermisch kompensierte optische Baugruppe mit einem formschlüssig gehaltenen optischen Bauelement
DE102013110750B3 (de) 2013-09-27 2014-11-13 Jenoptik Optical Systems Gmbh Optische Baugruppe mit einer Fassung mit thermisch abhängigem Kraftausgleich
JP2015132723A (ja) * 2014-01-14 2015-07-23 株式会社リコー 投射光学系および画像表示装置
CN105259632A (zh) * 2015-11-17 2016-01-20 江苏永信光学仪器有限公司 镜片胶合用滤光装置
US10067323B2 (en) * 2016-03-07 2018-09-04 Kinghome Enterprise EZ hi-def
CN115268180B (zh) * 2022-07-04 2024-05-31 北京空间机电研究所 一种焦面消热变形支撑结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165514U (ja) * 1985-04-03 1986-10-14
JPS62125308A (ja) * 1985-11-27 1987-06-06 Sumitomo Electric Ind Ltd レ−ザ光集光レンズ用マウント
JPH0420913A (ja) * 1990-05-16 1992-01-24 Mitaka Koki Kk 望遠鏡の主反射鏡支持機構
JPH04152309A (ja) * 1990-10-17 1992-05-26 Fujitsu Ltd スリーブヘのレンズ固定構造
JPH0536766A (ja) 1991-08-02 1993-02-12 Tokyo Electron Ltd プローブ装置
JP3307062B2 (ja) * 1994-02-28 2002-07-24 キヤノン株式会社 光学素子保持装置
JPH08201674A (ja) * 1995-01-31 1996-08-09 Ricoh Co Ltd レンズ保持装置
JP4060155B2 (ja) * 2002-09-25 2008-03-12 富士通株式会社 光装置
DE102004018656A1 (de) * 2004-04-13 2005-11-03 Carl Zeiss Smt Ag Optisches Element
US7495847B2 (en) * 2005-01-26 2009-02-24 Yt Products, Llc Scope with push-in windage/elevation reset
TWI372271B (en) * 2005-09-13 2012-09-11 Zeiss Carl Smt Gmbh Optical element unit, optical element holder, method of manufacturing an optical element holder, optical element module, optical exposure apparatus, and method of manufacturing a semiconductor device
JP5083590B2 (ja) * 2006-08-31 2012-11-28 カシオ計算機株式会社 投影側光学系及びプロジェクタ
JP2008242448A (ja) * 2007-02-28 2008-10-09 Canon Inc 光学要素保持装置
US7675695B2 (en) * 2007-02-28 2010-03-09 Canon Kabushiki Kaisha Optical element holding apparatus
KR20100018581A (ko) * 2007-05-25 2010-02-17 가부시키가이샤 니콘 광학 소자 유지 장치, 경통 및 노광 장치 및 디바이스의 제조 방법

Also Published As

Publication number Publication date
US20100097697A1 (en) 2010-04-22
US8243378B2 (en) 2012-08-14
JP2010097069A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5317624B2 (ja) 保持装置、望遠鏡および光学装置
US20070177261A1 (en) Catadioptric telescopes
JP2011048123A (ja) レンズユニット及び撮像装置
Chambion et al. Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization
US8730597B2 (en) Holding apparatus and optical apparatus
Fata et al. Design of a cell for the wide-field corrector for the converted MMT
KR101338296B1 (ko) 반사굴절식 카세그레인 대물렌즈
CN106443984A (zh) f110mm光学被动无热化镜头
JPH1096843A (ja) 光学素子保持構造
JP7087541B2 (ja) 光学装置
US20200026028A1 (en) Bi-metal optical mount
Suematsu et al. Instrumental design of the Solar Observing Satellite: solar-C_EUVST
JP2018031938A (ja) 反射光学系
US10095041B2 (en) Laser beam expander with adjustable collimation
ter Horst et al. Novel and efficient ADC concept for BlackGEM telescope
CN114935810B (zh) 一种焦距为6.6mm的消热差红外镜头
JP7542959B2 (ja) レンズ保持機構
JP2019045661A (ja) 光学素子保持装置、及び光学装置
JPH05288908A (ja) 光学系
CN215116951U (zh) 一种红外测温镜头
JP7292541B2 (ja) 鏡支持機構および光学装置
Ratliff et al. Opto-mechanical design of shaneao: the adaptive optics system for the 3-meter shane telescope
CN115236852B (zh) 一种全光路低温系统光学补偿装置及设计方法
ter Horst et al. Monolithic Telescopes: design, manufacturing and applications
Qiu et al. Optical design of wide-angle catadioptric lens for LWIR earth sensors

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R151 Written notification of patent or utility model registration

Ref document number: 5317624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151