JP5314577B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP5314577B2
JP5314577B2 JP2009267740A JP2009267740A JP5314577B2 JP 5314577 B2 JP5314577 B2 JP 5314577B2 JP 2009267740 A JP2009267740 A JP 2009267740A JP 2009267740 A JP2009267740 A JP 2009267740A JP 5314577 B2 JP5314577 B2 JP 5314577B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
communication
input
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009267740A
Other languages
English (en)
Other versions
JP2011114483A (ja
Inventor
聡 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009267740A priority Critical patent/JP5314577B2/ja
Publication of JP2011114483A publication Critical patent/JP2011114483A/ja
Application granted granted Critical
Publication of JP5314577B2 publication Critical patent/JP5314577B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

本発明は、半導体集積回路に関し、特にクロックに同期して動作し、所定の論理演算を行うデジタル回路と、信号の時間的な変化を連続的に捕らえて処理するアナログ回路とを混載して成る半導体集積回路に関する。
前記のようなデジタル回路とアナログ回路とを混載して成る半導体集積回路において、デジタル回路は、規定の電源電圧を使用して前述のように所定の論理演算を行うのに対して、アナログ回路は、前記電源電圧の範囲で任意の電圧を使用する。たとえば、3.3Vや5Vの電源電圧に対して、前記アナログ回路として、イーサーネット(登録商標)の通信回路の場合、規格(IEEE Std 802.3)上、±1V程度である。
したがって、デジタル回路の動作で多くのノイズが発生し、前記デジタル回路が入出力回路、特に高速にデータをやり取りするメモリへのアクセスを行う入出力回路を備えている場合、外部接続端子で発生したノイズがアナログの通信回路に大きな影響(通信品質の劣化)を与える。
そこで、このような不具合に対応するために、特許文献1では、基板の同じ表面に実装した前記デジタル回路とアナログ回路との内の一方の周囲をガードリングで囲うとともに、回路表面と裏面とに電極を形成し、増幅回路の仮想接地特性を利用することで、前記ガードリングおよびガードリング直下の基板電位をグランド電位とし、デジタル回路の外側へのノイズの放射を抑えている。
国際公開第98−12750号パンフレット
しかしながら、前記ガードリングは受動的な対策であり、ノイズ源のパワーが強力な場合には、それだけでは対策しきれない場合がある。
本発明の目的は、デジタル回路とアナログ回路とを混載して成る半導体集積回路において、デジタル回路側での影響を抑えつつ、該デジタル回路で発生するノイズを抑えることができる半導体集積回路を提供することである。
本発明の半導体集積回路は、外部負荷を駆動する入出力回路を有し、クロックに同期して動作するデジタル回路と、外部回路と通信を行う通信回路を備えるアナログ回路と、前記入出力回路への供給電源電圧を予め定められる下限電圧までの範囲で変化することができる電圧調整回路と、前記通信回路における通信状況を監視し、通信エラーが発生している場合には、前記電圧調整回路に、前記下限電圧までの範囲で前記入出力回路への供給電源電圧を段階的に低下させる電圧制御回路とを含むことを特徴とする。
上記の構成によれば、外部負荷を駆動する入出力回路を有し、クロックに同期して動作するデジタル回路と、外部回路と通信を行う通信回路を備えるアナログ回路とを混載して成る半導体集積回路において、前記入出力回路と電源との間に電圧調整回路を介在して、該入出力回路への供給電源電圧を可変にするとともに、電圧制御回路を設けて、その電圧調整回路を制御する。具体的には、前記電圧制御回路は、前記通信回路における通信状況を監視し、通信エラーが発生している場合には、前記電圧調整回路に前記入出力回路への供給電源電圧を低下させ、解消しない場合は、該入出力回路の動作を保証できる予め定められる下限電圧までの範囲で、そのような動作を繰返す。
したがって、デジタル回路とアナログ回路とを混載して成る半導体集積回路において、デジタル回路側での影響を抑えつつ、すなわち前記入出力回路の動作を保証しつつ、該入出力回路による内部発生ノイズの低減を図り、アナログの通信回路における通信エラーの発生を極力抑制することができる。
また、本発明の半導体集積回路では、前記電圧制御回路が、前記電圧調整回路に調整させた前記入出力回路への供給電源電圧を記憶させる記憶素子をさらに備え、前記電圧制御回路は、前記通信回路の通信再開時に、前記記憶素子に記憶されている電圧値を読出し、前記電圧調整回路から前記入出力回路への供給電源電圧を調整することを特徴とする。
上記の構成によれば、電圧制御回路が、電圧調整回路に、上述のように入出力回路への供給電源電圧を段階的に低下させたその電圧値を、該電圧制御回路は記憶素子に記憶させておき、電源投入時など、通信回路の次回の通信時に、該電圧制御回路はその電圧値を読出し、その電圧値となるように、電圧調整回路から入出力回路への供給電源電圧を調整する。
したがって、通信回路の通信再開時に電圧制御回路が電圧調整回路の調整に掛る時間を短縮することができるとともに、その間に通信回路に通信エラーが生じる可能性が少ないので、通信量を増加させることもできる。
さらにまた、本発明の半導体集積回路では、前記電圧制御回路は、前記通信回路の通信再開時に、前回の電圧値より予め定める値だけ高い電圧となるように、前記電圧調整回路から前記入出力回路への供給電源電圧を調整することを特徴とする。
上記の構成によれば、通信回路の次回の通信時に、電圧制御回路が電圧調整回路から入出力回路への供給電源電圧を調整するにあたって、前回の電圧値より予め定める値だけ高い電圧となるように調整する。
したがって、通信回路の前回の通信時から今回の通信時までに入出力回路の環境が多少変化していても、該入出力回路の動作を安定させることができる。
また、本発明の半導体集積回路では、温度センサを備え、前記電圧制御回路は、前記温度センサの検出結果に対応して、前記電圧調整回路による前記入出力回路への供給電源電圧の前記段階的な低下時の電圧幅を変化することを特徴とする。
上記の構成によれば、入出力回路が前記通信回路に通信エラーを発生させる該入出力回路への供給電源電圧は、周囲温度等、外部環境によっても変化する。一方、前記入出力回路への供給電源電圧が低くなる程、前記下限電圧に対するマージンが小さくなり、前記周囲温度の影響や外来ノイズによって該供給電源電圧が変動した場合に、前記下限電圧を容易に下回ることが懸念される。
そこで、前記外部環境に対応するために温度センサを設け、前記電圧制御回路は、前記温度センサの検出結果に対応して、前記電圧調整回路による前記入出力回路への供給電源電圧の前記段階的な低下時の電圧幅を変化する。
したがって、前記外部環境に対する入出力回路の安定性を向上することができる。
さらにまた、本発明の半導体集積回路では、前記外部負荷はメモリ素子であることを特徴とする。
上記の構成によれば、メモリ素子は、通常、前記入出力回路が、高い周波数かつ高電圧でアクセスするので、前記入出力回路からアナログ回路に与えるノイズの影響は大きく、このノイズへの対策が重要であり、かつ本発明が特に効果的である。
また、本発明の半導体集積回路では、前記通信回路は、イーサーネットの通信回路であることを特徴とする。
上記の構成によれば、イーサーネット(登録商標)の通信回路の場合、前述のように、その通信に用いる電圧は±1Vの範囲と、非常に小さいので、ノイズの影響は大きく、本発明が特に有効である。
本発明の半導体集積回路は、以上のように、外部負荷を駆動する入出力回路を有するデジタル回路と、外部回路と通信を行う通信回路を備えるアナログ回路とを混載して成る半導体集積回路において、前記入出力回路と電源との間に電圧調整回路を介在して、該入出力回路への供給電源電圧を可変にするとともに、電圧制御回路を設けて、前記通信回路における通信状況を監視し、通信エラーが発生している場合には、前記入出力回路の動作を保証できる予め定められる下限電圧までの範囲で、前記電圧調整回路に該入出力回路への供給電源電圧を低下させる。
それゆえ、デジタル回路とアナログ回路とを混載して成る半導体集積回路において、デジタルの入出力回路の動作を保証しつつ、該入出力回路による内部発生ノイズの低減を図り、アナログの通信回路における通信エラーの発生を極力抑制することができる。
本発明の実施の第1の形態に係る半導体集積回路の電気的構成を示すブロック図である。 前記半導体集積回路における電圧制御回路の一構成例を示すブロック図である。 前記半導体集積回路の動作を説明するためのブロック図である。 図1で示す半導体集積回路の動作を説明するための図である。 図1で示す半導体集積回路の動作を説明するためのフローチャートである。 本発明の実施の第2の形態に係る半導体集積回路の電気的構成を示すブロック図である。 図6で示す半導体集積回路における供給電源電圧の設定(探索)動作を説明するための図である。 図1で示す半導体集積回路における供給電源電圧の設定(探索)動作を説明するための図である。 図6で示す半導体集積回路の動作を説明するためのフローチャートである。 本発明の実施の第3の形態に係る半導体集積回路の動作を説明するためのフローチャートである。 図10で示す動作を説明するための図である。 本発明の実施の第4の形態に係る半導体集積回路の電気的構成を示すブロック図である。 本発明の実施の第5の形態に係る半導体集積回路の電気的構成を示すブロック図である。 本発明の実施の第6の形態に係る半導体集積回路の電気的構成を示すブロック図である。
(実施の形態1)
図1は、本発明の実施の第1の形態に係る半導体集積回路1の電気的構成を示すブロック図である。この半導体集積回路1は、CPU2および入出力回路3から成るデジタル回路と、アナログ回路4とを混載して成る。前記CPU2は、クロックに同期して動作して所定の論理演算を行い、入出力回路3を介して、作成したデータ信号で、外部負荷としてのメモリ5を駆動(充放電)する。前記アナログ回路4は、外部回路と通信を行う通信回路41を備え、前記通信回路41としては、たとえばイーサーネット(登録商標)の通信回路である。
注目すべきは、この半導体集積回路1では、前記入出力回路3への供給電源電圧を予め定められる下限電圧までの範囲で変化することができる電圧調整回路(VR)6が設けられていることである。この電圧調整回路6は、前記入出力回路3の入出力パッド31,32の内、ハイ側のパッド31の電位を調整することができる。また注目すべきは、電圧制御回路である前記CPU2は、前記通信回路41における通信状況を監視し、通信エラーが発生している場合には、前記電圧調整回路6に、前記下限電圧までの範囲で前記入出力回路3への供給電源電圧を段階的に低下させることである。前記下限電圧は、メモリ5とのアクセスが可能な最低限の電圧である。
前記通信回路41は、外部からの受信信号に対してエラー判定機能を持つ。たとえば、前記イーサーネット通信であれば、規定の通信フォーマットとしては存在しない波形を受信した際にエラー判定される、いわゆるPHYエラーが挙げられる。前記CPU2は、前記通信回路41に、このPHYエラーが発生していないかどうかを監視している。
図2は、前記電圧制御回路6の一構成例を示すブロック図である。この電圧制御回路6は、外部からの制御信号によって出力電圧を変化させられる構成になっており、前記制御信号は、前述のように通信回路41にPHYエラーが発生していないかどうかに応じて、CPU2によって作成される。
この電圧制御回路6は、電源電圧VDDが一方の入力端に入力され、出力端から出力電圧VDD’を前記入出力回路3への供給電源として出力するアンプ61と、前記アンプ61の出力端から他方の入力端の間に介在される分圧抵抗R1,R2,R3,・・・(総称するときは、以下参照符号Rで示す)および分圧抵抗Rf、ならびにスイッチS1,S2,S3,・・・(総称するときは、以下参照符号Sで示す)とを備えて構成される。前記分圧抵抗Rは、相互に直列に、前記アンプ61の出力端から接続され、それぞれの接続点に前記スイッチSの一端が接続され、前記スイッチSの他端は共通に接続されて、前記分圧抵抗Rfとの間で、前記出力電圧VDD’を分圧してアンプ61の他方の入力端に入力する。
したがって、分圧抵抗R1,R2,R3,・・・と、後位の抵抗が選択される程、前記アンプ61の他方の入力端に入力される電圧は段階的に低くなり、アンプ61は、前記出力電圧VDD’として高電圧を出力することになる。各分圧抵抗Rの抵抗値は、相互に等しくても、或いは異なっていてもよい。
図3は、上述のように構成される半導体集積回路1の動作を説明するためのブロック図である。前記CPU2からメモリ5への高周波の信号が、入出力回路3を介して送受信されると、参照符号F1で示すように、入出力パッド31,32からノイズが発生する。このノイズF1によって通信回路41のイーサーネット通信に前記PHYエラーが発生すると、該通信回路41はCPU2へ、参照符号F2で示すようにエラー通知を行う。そのエラー通知に応答して、CPU2は、電圧制御回路6へ、より低位のスイッチをONさせる、すなわちアンプ61の他方の入力端に入力される電圧を高くするような電圧変更命令である電圧制御信号を、参照符号F3で示すように出力する。
上述のような探索動作によって、図4で示すように、初期(電源投入時や通信回路41の通信開始時)には最大の電圧に設定されている前記入出力回路3への供給電源電圧VDD’は、通信エラーが発生しなくなる、或いは前記入出力回路3の動作を保証できる予め定められる下限電圧までの範囲で、上述のような動作を繰返し、低下してゆくことになる。
図5は、CPU2による電圧制御回路6の制御動作(入出力回路3への供給電源電圧VDD’の探索動作)を説明するためのフローチャートである。ステップS1では、電源投入で、CPU2は電圧制御回路6に、入出力回路3への供給電源電圧VDD’を最大にするような電圧制御信号F3を出力する。その後、ステップS2において、CPU2は、通信回路41でイーサーネットデータが受信されるまで待機し、受信されるとステップS3に移る。
ステップS3では、CPU2は、前記エラー通知の有無から、通信エラー(前記PHYエラー)が発生したか否かを判断し、発生していない場合にはステップS4で、前記通信回路41が通信を完了するまで待機して前記ステップS2に戻り、PHYエラーが発生するとステップS5に移る。
ステップS5では、CPU2は、前記電圧制御回路6に、入出力回路3への供給電源電圧VDD’を1段階低下するような電圧制御信号F3を出力する。ステップS6では、CPU2は、その低下した電圧が、前記下限電圧に達しているか否かを判断し、達していない場合には前記ステップS2に戻って、前述のように通信エラーが解消するまで前記ステップS2−S3−S5の動作を繰返し、達している場合にはステップS7で通信不可の判定を行い、処理を終了する。
すなわち、前記イーサーネットに代表される通信では、受信側がデータを正常に受信できなかった場合、受信側からの再送要求等に基づきデータ再送が行われる。本通信回路41は、その再送データに対して再びエラー判定を行い、再度通信エラーが発生したならば、CPU2は電圧制御回路6に対して電圧変更命令(新たな電圧値を示す電圧制御信号F3)を出力し、前記入出力回路への供給電源電圧VDD’は更に1段階引き下げられる。一方、通信エラーが発生しなければ、前記供給電源電圧VDD’は変更されず、次回の通信においても同電圧が使用される。また、通信エラーが解消しなかった場合は、再度ステップS1から繰返し、通信エラーが解消すると、通信が可能となる。
このように構成することで、外部負荷を駆動するデジタル回路(2.3)と、通信回路41を有するアナログ回路4とを混載して成る半導体集積回路1において、デジタル回路(2.3)側での影響を抑えつつ、すなわち入出力回路3の動作を保証しつつ、該入出力回路3による内部発生ノイズF1の低減を図り、アナログ回路4側の通信回路41における通信エラーの発生を極力抑制することができる。
また、メモリ素子は、通常、前記入出力回路3が、高い周波数かつ高電圧でアクセスするので、前記入出力回路3からアナログ回路4に与えるノイズF1の影響は大きい。そこで、前記外部負荷がメモリ5である場合、前記ノイズF1への対策が重要であり、本発明が特に効果的である。
さらにまた、前記通信回路41がイーサーネットの通信回路である場合、前述のように、その通信に用いる電圧は±1Vの範囲と、非常に小さいので、ノイズF1の影響は大きく、本発明が特に有効である。
(実施の形態2)
図6は、本発明の実施の第2の形態に係る半導体集積回路11の電気的構成を示すブロック図である。この半導体集積回路11は、前述の半導体集積回路1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この半導体集積回路11では、CPU12が、前記電圧調整回路6に調整させた前記入出力回路6への供給電源電圧VDD’を記憶させる不揮発性の記憶素子13をさらに備え、前記CPU12は、前記通信回路41の通信再開時に、前記記憶素子13に記憶されている電圧値を読出し、前記電圧調整回路6から前記入出力回路3への供給電源電圧VDD’を調整することである。
すなわち、上述の半導体集積回路1では、該半導体集積回路1全体への電源VDDの供給が無くなると、CPU2におけるそれまでの情報(状態)は全てリセットされ、前回の通電(動作)時に、上述の図4や図5で示すようにして探索された前記供給電源電圧VDD’の設定、すなわちスイッチSのスイッチング態様を、次回の通信で使用することができなくなる。これに対して、CPU12が、電源OFF時に、その設定を前記記憶素子13に記憶させておくことで、前記入出力回路3への供給電源電圧VDD’の探索動作を省略することができる。前記不揮発性の記憶素子13としては、たとえばフラッシュメモリが挙げられる。
図7および図8は、上述のような供給電源電圧VDD’の設定(探索)動作を説明するための図であり、図7は本実施の形態の半導体集積回路11のCPU12によるもので、図8は前述の実施の形態の半導体集積回路1のCPU2によるものである。CPU12,2は、図7(a)および図8(a)で示すように、通信エラーが発生するたびに前記供給電源電圧VDD’を低下させてゆき、図7(a)および図8(a)では、最大電圧から4段階低下させた状態で、イーサーネットの通信エラーが解消し、通信OKとなっている。その後、通電されている限り、図7(b)および図8(b)で示すように、その電圧VDD’が維持される。
一方、一旦電源がOFFとなってから再通電された際には、CPU12は、図7(c)で示すように、前記供給電源電圧VDD’に、図7(a)および図7(b)で示す前回の設定電圧をそのまま使用して、該供給電源電圧VDD’の探索動作は行わないのに対して、CPU2は、図8(c)で示すように、図8(a)と同様の探索動作を再度行う。図7(d)は、前記供給電源電圧VDD’を前回の設定電圧としても、さらに通信エラーが発生した場合を示し、CPU12は、さらに1段階低下させ、前記下限電圧で通信OKとなっている。このような場合、図7で示すCPU2の場合には、5段階の電圧調整が必要になるのに対して、CPU12の場合には、1段階で済ませることができる。
図9は、CPU12による上述のような電圧制御回路6の制御動作(入出力回路3への供給電源電圧VDD’の探索動作)を説明するためのフローチャートである。図5の処理と同一のステップには同一のステップ番号を付して、その説明を省略する。このCPU12では、電源が投入されると、ステップS11で、前記電圧制御回路6に、入出力回路3への供給電源電圧VDD’を設定する。その設定にあたっては、前記ステップS4で通信が完了すると、ステップS12で電源がOFFされたか否かが判断され、OFFされていない場合は前記ステップS2に戻り、OFFされるとステップS13で、前記記憶素子13にその時の入出力回路3への供給電源電圧VDD’(スイッチSのスイッチング態様)が記憶される。
したがって、前記ステップS11で前記電圧制御回路6に、供給電源電圧VDD’を設定する際、前回が正常に通信を行えていると、CPU12はその時の供給電源電圧VDD’を記憶素子13から読出して設定し、前回の通信がステップS7で不可と判定されていると、記憶素子13への記憶が無く、最大値に設定する。
このように構成することで、通信回路41の通信再開時にCPU12が電圧調整回路6の調整に掛る時間を短縮することができるとともに、その間に通信回路41に通信エラーが生じる可能性が少ないので、通信量を増加させることもできる。
(実施の形態3)
図10は、本発明の実施の第3の形態に係る半導体集積回路における電圧制御回路6の制御動作(入出力回路3への供給電源電圧VDD’の探索動作)を説明するためのフローチャートである。本実施の形態には、前述の半導体集積回路11の構成を用いることができ、前記CPU12の動作が、この図10と前述の図9と異なるだけである。図9の処理と同一のステップには同一のステップ番号を付して、その説明を省略する。注目すべきは、本実施の形態では、前記CPU12が、通信再開時には、ステップS21で、前記入出力回路3への供給電源電圧VDD’を前回の電圧値より予め定める値である1段階だけ高い電圧値とすることである。
したがって、図11(a)で示すように、1回目の通信時には、最大値から4段階下げた電圧でしか通信エラーが解消しなかったのに対して、周辺環境が改善し、図11(b)で示すように、2回目の通信時には、1段階上げた前記最大値から3段階下げた電圧で通信を行えるようになった場合には、CPU12は、前記入出力回路3への供給電源電圧VDD’をその電圧値とする。
しかしながら、図11(c)で示すように、3回目の通信にあたって、CPU12は、前記入出力回路3への供給電源電圧VDD’をさらに1段階上げ、通信エラーが発生した場合、前記供給電源電圧VDD’を2回目と同じ電圧値に戻す。一方、図11(d)で示すように、4回目の通信にあたって、CPU12は、前記入出力回路3への供給電源電圧VDD’を1段階上げ、通信エラーが発生し、3回目と同じ電圧値に戻しても通信エラーが発生する場合には、前記供給電源電圧VDD’をさらに1段階低下する。
ここで、通信回路41の通信にエラーを発生してしまう入出力回路3への供給電源電圧は、周囲温度等、外部環境によっても変化する。一方、探索によって設定された前記供給電源電圧VDD’が低くなる程、設定可能な下限電圧とのマージンが小さくなり、周囲温度の影響や外来ノイズなどによって該供給電源電圧VDD’が変動した場合、容易に前記下限電圧を下回ることが懸念される。そこで上述のようにステップS21で該供給電源電圧VDD’を引上げ、その時々で通信エラーの発生しない最大の供給電源電圧VDD’を探索することで、通信回路41の前回の通信時から今回の通信時までに入出力回路3の環境が多少変化していても、該入出力回路3の動作を安定させることができる。
(実施の形態4)
図12は、本発明の実施の第4の形態に係る半導体集積回路21の電気的構成を示すブロック図である。この半導体集積回路21は、前述の半導体集積回路1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この半導体集積回路21は、温度センサ23およびテーブル24を備えており、CPU22は、前記温度センサ23の検出結果でテーブル24を参照し、前記電圧調整回路6による前記入出力回路3への供給電源電圧VDD’の電圧変化幅を切換えることである。
具体的には、前述の図2で示す電圧調整回路6における分圧抵抗Rおよびそれに対応するスイッチSの素子数を増大し、CPU22は、前記温度センサ23の検出結果が、たとえばノイズの発生し易い(信号の変化が急峻で、かつ受信回路も感度が高いため)低温域である場合には、前記テーブル24から前記スイッチSを1段毎に制御することを読出し、中温域である場合には、前記テーブル24から前記スイッチSを2段毎に制御することを読出し、ノイズの発生し難い高温域である場合には、前記テーブル24から前記スイッチSを3段毎に制御することを読出す。
このように構成することで、前記周囲温度の影響や外来ノイズによって前記供給電源電圧VDD’が変動した場合に、前記下限電圧を下回ることを防止しつつ、前記供給電源電圧VDD’を適正電圧に速やかに切換えることができる。
(実施の形態5)
図13は、本発明の実施の第5の形態に係る半導体集積回路30の電気的構成を示すブロック図である。この半導体集積回路30は、前述の半導体集積回路1に類似している。注目すべきは、この半導体集積回路30では、アナログ回路34の通信回路341は、通信エラーを検出すると、前記CPU2のような制御回路を介さず、直接、前記電圧調整回路6に電圧制御信号F3を出力することである。このように構成することで、CPU33の負荷を低減することができる。
(実施の形態6)
図14は、本発明の実施の第6の形態に係る半導体集積回路41の電気的構成を示すブロック図である。この半導体集積回路41も、前述の半導体集積回路1に類似している。注目すべきは、この半導体集積回路41では、アナログ回路4の周囲に前述の特許文献1で示すガードリング44が設けられていることである。このように入出力回路3への供給電源電圧VDD’の低下とともに、ガードリング44を併用することで該入出力回路3から通信回路41へのノイズの影響を更に軽減することができる。
1,11,21,30,41 半導体集積回路
2,12,22,33 CPU
3 入出力回路
31,32 入出力パッド
4,34 アナログ回路
341 通信回路
41 通信回路
5 メモリ
6 電圧調整回路
61 アンプ
13 記憶素子
23 温度センサ
24 テーブル
44 ガードリング
R1,R2,R3,・・・ 分圧抵抗
Rf 分圧抵抗
S1,S2,S3,・・・ スイッチ

Claims (6)

  1. 外部負荷を駆動する入出力回路を有し、クロックに同期して動作するデジタル回路と、
    外部回路と通信を行う通信回路を備えるアナログ回路と、
    前記入出力回路への供給電源電圧を予め定められる下限電圧までの範囲で変化することができる電圧調整回路と、
    前記通信回路における通信状況を監視し、通信エラーが発生している場合には、前記電圧調整回路に、前記下限電圧までの範囲で前記入出力回路への供給電源電圧を段階的に低下させる電圧制御回路とを含むことを特徴とする半導体集積回路。
  2. 前記電圧制御回路が、前記電圧調整回路に調整させた前記入出力回路への供給電源電圧を記憶させる記憶素子をさらに備え、
    前記電圧制御回路は、前記通信回路の通信再開時に、前記記憶素子に記憶されている電圧値を読出し、前記電圧調整回路から前記入出力回路への供給電源電圧を調整することを特徴とする請求項1記載の半導体集積回路。
  3. 前記電圧制御回路は、前記通信回路の通信再開時に、前回の電圧値より予め定める値だけ高い電圧となるように、前記電圧調整回路から前記入出力回路への供給電源電圧を調整することを特徴とする請求項2記載の半導体集積回路。
  4. 温度センサを備え、
    前記電圧制御回路は、前記温度センサの検出結果に対応して、前記電圧調整回路による前記入出力回路への供給電源電圧の前記段階的な低下時の電圧幅を変化することを特徴とする請求項1〜3のいずれか1項に記載の半導体集積回路。
  5. 前記外部負荷はメモリ素子であることを特徴とする請求項1〜4のいずれか1項に記載の半導体集積回路。
  6. 前記通信回路は、イーサーネットの通信回路であることを特徴とする請求項1〜5のいずれか1項に記載の半導体集積回路。
JP2009267740A 2009-11-25 2009-11-25 半導体集積回路 Expired - Fee Related JP5314577B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267740A JP5314577B2 (ja) 2009-11-25 2009-11-25 半導体集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267740A JP5314577B2 (ja) 2009-11-25 2009-11-25 半導体集積回路

Publications (2)

Publication Number Publication Date
JP2011114483A JP2011114483A (ja) 2011-06-09
JP5314577B2 true JP5314577B2 (ja) 2013-10-16

Family

ID=44236514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267740A Expired - Fee Related JP5314577B2 (ja) 2009-11-25 2009-11-25 半導体集積回路

Country Status (1)

Country Link
JP (1) JP5314577B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318565B2 (ja) * 2013-11-13 2018-05-09 セイコーエプソン株式会社 半導体装置および電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442566A (ja) * 1990-06-08 1992-02-13 Hitachi Ltd ディジタル・アナログ混在lsi
JPH04163959A (ja) * 1990-10-29 1992-06-09 Sony Corp アナログ・ディジタル回路の電源回路
JP2002073181A (ja) * 2000-08-30 2002-03-12 Nec Corp 動作保証電圧制御方式
JP2006018712A (ja) * 2004-07-05 2006-01-19 Ricoh Co Ltd デジタル・アナログ混載型半導体集積回路
JP4666342B2 (ja) * 2004-07-26 2011-04-06 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP4953716B2 (ja) * 2006-07-25 2012-06-13 パナソニック株式会社 半導体集積回路およびその関連技術

Also Published As

Publication number Publication date
JP2011114483A (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
US7602593B2 (en) Semiconductor device
JP6118599B2 (ja) パワーオンリセット回路、電源回路および電源システム
US20150124544A1 (en) Semiconductor devices and semiconductor systems including the same
JP3588599B2 (ja) 半導体バッファ能力調整方法、半導体バッファ能力調整システム、及び半導体装置
JP2011166368A (ja) 半導体装置
KR20180082707A (ko) 온도 보상 발진 제어기 및 그것을 포함하는 온도 보상 수정 발진기
US20170300077A1 (en) Power management circuit and associated power management method
JP5314577B2 (ja) 半導体集積回路
US9501113B2 (en) Voltage detection system and controlling method of the same
JP2014027644A (ja) パワーオンリセット装置及びパワーオンリセット方法
US20090160256A1 (en) Multi-regulator power delivery system for ASIC cores
JP2012226756A (ja) 電源アダプタ回路
US7583556B2 (en) Switching circuit for CMOS circuit
EP4152613B1 (en) Pin state configuration circuit, configuration method and electronic device
JP2009232304A (ja) 水晶発振器
US20120262143A1 (en) Semiconductor integrated circuit for controlling regulator circuit and signal processor which operates based on output voltage thereof
US12074463B2 (en) Battery assembly, electronic device, and battery detection system
KR20070099181A (ko) 전자장치 시스템의 전력 제어 장치 및 제어 방법
JP2017060120A (ja) 半導体装置および発振回路の制御方法
CN107665034B (zh) 便携式设备及其校准方法
US10211819B2 (en) Input buffer circuit
JP5428969B2 (ja) 画像形成装置
JP6672988B2 (ja) 半導体集積回路とその制御方法及び多層回路基板
JP5397109B2 (ja) 半導体装置
JP4697746B2 (ja) 電源瞬停保護回路

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees