JP5311453B2 - Ground reinforcement method - Google Patents

Ground reinforcement method Download PDF

Info

Publication number
JP5311453B2
JP5311453B2 JP2008111107A JP2008111107A JP5311453B2 JP 5311453 B2 JP5311453 B2 JP 5311453B2 JP 2008111107 A JP2008111107 A JP 2008111107A JP 2008111107 A JP2008111107 A JP 2008111107A JP 5311453 B2 JP5311453 B2 JP 5311453B2
Authority
JP
Japan
Prior art keywords
reinforcing
pipe
cement
natural ground
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008111107A
Other languages
Japanese (ja)
Other versions
JP2009263882A (en
Inventor
拓治 山本
敏亮 佐藤
俊行 田中
淳 石原
正 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2008111107A priority Critical patent/JP5311453B2/en
Publication of JP2009263882A publication Critical patent/JP2009263882A/en
Application granted granted Critical
Publication of JP5311453B2 publication Critical patent/JP5311453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a natural ground reinforcing method for forepiling work, face reinforcing work, etc., which reinforces the front natural ground when e.g. a tunnel, an underground opening, etc. are excavated, which enhances adhesion at the weak material age of a cement-based consolidation material for anchoring a reinforcing pipe as a reinforcing material, which prevents the outflow and runway of the consolidation material even in the production of sump water, which can bring about a great anchoring force even in the fragile condition of the natural ground by increasing rigidity so as to enhance a reinforcing effect. <P>SOLUTION: In this natural ground reinforcing method, a drilled hole (h) is formed at a predetermined angle of elevation in the natural ground 1 ahead of a cutting face from inside a tunnel excavation space T; concurrently with that, a reinforcing pipe 6, which is formed by sequentially connecting one or more pipes with an ejection hole for the consolidation material to a peripheral wall, is driven into the drilled hole (h); and an anchoring or consolidation area 8 is formed for reinforcement in the reinforcing pipe 6 and the natural ground 1 around it by injecting the consolidation material into the reinforcing pipe 6. Characteristically, a material, in which glass fibers are mixed into the cement-based consolidation material such as cement milk and cement mortar, is used as the consolidation material. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、例えばトンネルや地下空洞等を掘削する際に前方地山を補強する先受け工や鏡補強工等の地山補強工法に関する。   The present invention relates to a natural ground reinforcing method such as a tip receiving work or a mirror reinforcing work that reinforces a front natural ground when excavating a tunnel, an underground cavity or the like.

従来、地質条件の悪い脆弱な地山等でトンネルを掘削する際には、切羽前方地山を補強しながらトンネルを掘り進めることが行われている。このような切羽前方地山を先行して補強しながらトンネルを掘削する地山補強工法(切羽補強工法)には、下記特許文献1,2のように、トンネルの掘削に先立って天端部の剥落を防止するために切羽から前方地山のトンネル外周に、補強管を用いてアーチ状の地山補強体である先受け材を形成する先受け工と、切羽前方の押出し挙動を抑制するために切羽鏡部の前方地山であるトンネル掘削領域を補強する鏡補強工がある。   Conventionally, when excavating a tunnel in a fragile ground having poor geological conditions, the tunnel has been dug while reinforcing the ground in front of the face. In the natural ground reinforcement method (the face reinforcement method) for excavating a tunnel while reinforcing the ground in front of the face in advance, as described in Patent Documents 1 and 2 below, In order to prevent exfoliation, a tip receiving work that forms a tip receiving material that is an arch-shaped ground reinforcing body using a reinforcing pipe on the outer periphery of the tunnel from the face to the front ground, and to suppress the extrusion behavior in front of the face There is a mirror reinforcement work to reinforce the tunnel excavation area, which is a natural ground in front of the face mirror part.

これらの地山補強工法は、一般に山岳トンネル工法に使用する油圧ドリルジャンボなどの標準的な掘削機械設備を用いて、筒状の削孔ロッドと、その周囲に配置した補強管とのいわゆる二重管方式により削孔を施すと同時に該削孔内に補強管を収容配置して地山を補強することが行われている。すなわち、先端部に削孔用ビットを装着した筒状の削孔ロッドで切羽前方地山内に所定の仰角で削孔を施すと同時に、その削孔ロッドの前進に伴って、その周囲に配置した補強管を上記削孔内に順次引き込んだ後、上記補強管内にセメント系やレジン系等の固結材を注入して該補強管内およびその周囲の地山内に固結領域を形成して補強するものである。この場合、上記補強管としては、周壁に固結材の吐出孔を有する鋼管または樹脂管が用いられ、例えば直径100mm、長さ3000mm程度の複数本の管を順次継ぎ足しながら上記削孔内に引き込むか、或いは長尺の単一の管で補強管を形成することもある。   These natural ground reinforcement methods use a standard drilling machine such as a hydraulic drill jumbo, which is generally used for mountain tunnel construction methods, so-called double drilling of a cylindrical drilling rod and a reinforcing pipe placed around it. It has been practiced to reinforce a natural mountain by making a drilling hole by a pipe method and accommodating and arranging a reinforcing pipe in the drilling hole. In other words, a cylindrical drilling rod with a drilling bit at the tip is drilled at a predetermined elevation in the ground in front of the face, and at the same time, the drilling rod is disposed around it. After sequentially pulling the reinforcing tube into the drilling hole, a cemented or resin-based consolidated material is injected into the reinforcing tube to form a consolidated region in the reinforcing tube and the surrounding natural ground for reinforcement. Is. In this case, as the reinforcing pipe, a steel pipe or a resin pipe having a discharge hole for a consolidated material on the peripheral wall is used. For example, a plurality of pipes having a diameter of about 100 mm and a length of about 3000 mm are sequentially drawn into the drilling hole. Alternatively, the reinforcing pipe may be formed of a long single pipe.

図9は上記のような地山補強工法を先受け工Aに適用した従来例を示すもので、トンネル掘削空間Tにおける切羽1aの前方上部の地山1内に、上記のような二重管方式等により削孔hを施すと同時に該削孔h内に鋼管等よりなる補強管6を収容配置し、その補強管6内およびその周囲の地山1内に固結領域8を形成して切羽1aの前上部の地山を補強したものである。また図10は上記のような地山補強工法を鏡補強工Bに適用した従来例を示すもので、トンネル掘削空間Tの切羽1aの前方の地山1内に、上記のような二重管方式等により削孔hを施すと同時に該削孔h内に樹脂管等よりなる補強管6を収容配置し、その補強管6内およびその周囲の地山1内に固結領域8を形成して前方地山を補強したものである。これらの先受け工および鏡補強工は、切羽前方地山を長尺にわたって拘束することにより、地山の先行ゆるみを抑制することを目的とし、地山1内に形成した削孔h内に補強管6を打設することで前方地山を補強すると共に、その補強管6を通して孔壁周囲の地山1内に固結材を注入することによって、地山の拘束性を高めるものである。   FIG. 9 shows a conventional example in which the above natural ground reinforcement method is applied to the receiving work A, and the double pipe as described above is placed in the natural ground 1 in the upper front part of the face 1a in the tunnel excavation space T. The hole h is formed by a method or the like, and at the same time, a reinforcing pipe 6 made of a steel pipe or the like is accommodated in the hole h, and a consolidated region 8 is formed in the reinforcing pipe 6 and in the surrounding ground 1. This is a reinforced natural ground in front of the face 1a. FIG. 10 shows a conventional example in which the above-described ground reinforcement method is applied to the mirror reinforcement B. In the ground 1 in front of the face 1a of the tunnel excavation space T, the double pipe as described above is provided. The hole h is formed by a method or the like, and at the same time, a reinforcing pipe 6 made of a resin pipe or the like is accommodated in the hole h, and a consolidated region 8 is formed in the reinforcing pipe 6 and in the surrounding ground 1. And reinforced the ground in front. These forehead and mirror reinforcement works are designed to reinforce in the drilling hole h formed in the natural ground 1 for the purpose of suppressing the preceding loosening of the natural ground by constraining the natural ground in front of the face for a long time. By placing the pipe 6, the front ground is reinforced, and the solidified material is injected into the ground 1 around the hole wall through the reinforcing pipe 6, thereby enhancing the restraint of the ground.

上記のような固結材の注入に際しては、補強管が所定位置に設置された後、事前に削孔hの開口端側の補強管6の端部外周にウエスやウレタン系コーキングシール等を配置して上記開口端を閉塞したり、或いは上記補強管6の端部外周に布袋等よりなるパッカーを配置し、そのパッカー内にウレタン系樹脂等を注入し、膨張させて隔壁を形成することによって、上記開口端側からの固結材のリークを抑制している。また上記固結材としては、セメント系またはウレタン系その他のレジン系固結材を用いて、補強管と孔壁周囲の地山を定着させ軸方向の応力を抑制して、トンネル掘削時における切羽前方地山の安定性を高めるようにしている。   When injecting the caking material as described above, after the reinforcing pipe is installed at a predetermined position, a waste cloth, urethane caulking seal or the like is arranged in advance on the outer periphery of the reinforcing pipe 6 on the opening end side of the hole h. Then, the opening end is closed, or a packer made of a cloth bag or the like is arranged on the outer periphery of the end portion of the reinforcing pipe 6, and urethane partition resin is injected into the packer and expanded to form a partition wall. The leakage of the consolidated material from the opening end side is suppressed. In addition, cement-based, urethane-based or other resin-based consolidated materials are used as the above-mentioned consolidated materials to fix the ground around the reinforcing pipe and the hole wall and suppress axial stress. The stability of the front ground is improved.

特開平8−121073号公報JP-A-8-121073 特開平4−357293号公報JP-A-4-357293

ところで、未固結または軟岩等の脆弱な地山にトンネルを掘進する際には、そのトンネル掘削時の応力開放に伴う地山の緩みによって、図11(a)の破線領域1sの地山1を切羽1a側に押し出す方向の地山挙動(押出し挙動)が生じる。そのため、上記のような削孔内に打設した補強管に固結材を注入して、該補強管内およびその周囲の地山内に固結領域を形成して定着させる工法においては、図11(a)のように前方地山を先受け工Aや鏡補強工Bで補強した状態はもとより同図(b)のように次のトンネル掘削領域が掘削された後も上記補強管が切羽前方地山に定着させた状態が維持されて、該補強管の軸剛性、剪断剛性を効果的に発揮させる必要がある。   By the way, when a tunnel is dug into a weak ground such as unconsolidated or soft rock, the ground 1 in the broken line region 1s in FIG. A natural ground behavior (extrusion behavior) occurs in the direction of pushing out to the face 1a side. Therefore, in the construction method in which a consolidation material is injected into a reinforcement pipe placed in the above-described drilling hole, and a consolidation region is formed and fixed in the reinforcement pipe and the surrounding natural ground, FIG. In addition to the state in which the front ground has been reinforced by the leading construction A and mirror reinforcement construction B as shown in a), the reinforcement pipe remains in the front of the face after the next tunnel excavation area is excavated as shown in FIG. It is necessary to maintain the state fixed to the mountain and to effectively exhibit the axial rigidity and shear rigidity of the reinforcing pipe.

しかし、上記の補強管等を定着させる固結材としては、一般にセメント系の固結材が多く用いられ、その固結材が充分に固まるまでには比較的長い養生時間を必要とするが、実施工時に固結材を注入してから次のトンネル掘削までの養生時間を長くすると、施工能率が大幅に低下するため充分な養生時間を確保するのは難しい。そのため、地山状況によっては充分な付着強度が得られていない状態、または孔壁周囲に充分に大きな地山固結領域を確保できない状態で、また地山との定着は僅かな範囲の浸透領域が確保された程度で、トンネル掘削を進行しなければならず、定着不良が生じて充分な補強効果が得られないおそれがある。   However, as a caking material for fixing the above-mentioned reinforcing pipe and the like, generally a cement-based caking material is often used, and a relatively long curing time is required until the caking material is sufficiently hardened. If the curing time from the injection of the binder to the next tunnel excavation is lengthened at the time of construction, it is difficult to ensure sufficient curing time because the construction efficiency is greatly reduced. Therefore, depending on the natural ground conditions, sufficient adhesion strength is not obtained, or in the state where a sufficiently large natural ground consolidation area cannot be secured around the hole wall, and the settlement with the natural ground is a slight penetration area However, tunnel excavation must proceed to the extent that is secured, and there is a risk that poor fixing will occur and a sufficient reinforcing effect will not be obtained.

そこで、強度発現が早く、定着効果が高いウレタン系固結材を用いる方法があるが、以下のような不具合がある。特に補強管を設置した孔壁から湧水が生じるような場合には、従来のセメント系固結材のみを用いると、それが凝結または硬化する前に上記固結材が湧水によって上記削孔内から流出したり、孔壁の亀裂等に逸走して定着不良が生じるおそれがあるが、ウレタン系固結材を用いると、上記の不具合を解消もしくは低減することができる。しかし、上記のウレタン系固結材はセメント系固結材と比較して高価であるため、施工コストが増大する等の問題がある。   Therefore, there is a method of using a urethane-based consolidated material having a high strength development and a high fixing effect, but has the following problems. In particular, when spring water is generated from the hole wall where the reinforcing pipe is installed, if only a conventional cement-based consolidated material is used, the consolidated material is drilled by the spring before it congeals or hardens. Although there is a possibility that fixing failure may occur due to escape from the inside or cracks in the hole wall, the use of a urethane-based solidifying material can eliminate or reduce the above-mentioned problems. However, since the urethane-based consolidated material is more expensive than the cement-based consolidated material, there is a problem that the construction cost increases.

さらに、一般に固結材の若材齢時の強度が足りないと、付着強度が不足し、トンネルの掘削開始時点で地山を充分に支えることができないが、初期強度の発現に重きをおいたウレタン系または超早強セメント系固結材は、施工性に難がある。即ち、強度発現が早いということは硬化開始が早いということで、例えば極端な場合には注入作業完了時点で既にポンプや注入管内で硬化が始まるため、ハンドリング(取扱い)に細心の注意が必要となる。   Furthermore, in general, if the strength of the consolidated material is not sufficient at an early age, the adhesion strength is insufficient, and the natural ground cannot be sufficiently supported at the start of tunnel excavation, but the initial strength is emphasized. Urethane or ultra-high strength cement-based consolidated materials have difficulty in workability. In other words, the rapid onset of strength means that the curing starts quickly. For example, in an extreme case, the curing has already started in the pump or the injection tube when the injection operation is completed, so careful handling is required. Become.

本発明は上記の課題を解決するためになされたもので、その目的とするところは、上記のような補強管の定着を図るセメント系固結材の弱材齢時の付着力が向上し、湧水が生じる場合においても固結材の流出や逸走を防止し、かつ固結材の剛性の向上により補強効果を高めて、脆弱な地山状況においてもセメント系固結材によって容易に高い定着力を得ることのできる地山補強工法を提供することにある。   The present invention was made in order to solve the above-mentioned problems, and the purpose thereof is to improve the adhesive strength at the time of weak material age of the cement-based consolidated material for fixing the reinforcing pipe as described above, Even when spring water is generated, it prevents the outflow and runaway of the consolidated material, and enhances the reinforcement effect by improving the rigidity of the consolidated material. The purpose is to provide a natural ground reinforcement method that can gain strength.

上記の目的を達成するために本発明による地山補強工法は、以下の構成としたものである。即ち、トンネル掘削空間内から切羽前方地山内に所定の仰角で削孔を施すと同時に、周壁に固結材の吐出孔を有する単一の管または複数本の管を順次接続して形成される補強管を上記削孔内に打設し、その補強管内に固結材を注入して該補強管内およびその周囲の地山内に定着または固結領域を形成して補強する地山補強工法において、上記固結材としてセメントミルクやセメントモルタル等のセメント系固結材中にガラス繊維を混入したものを用い、上記ガラス繊維として長さ2〜10mmのものを上記セメント系固結材中に1.0〜2.0重量%の割合で混入してなり、上記補強管全長を形成する単一の管または複数本の管としてガラス繊維強化樹脂管を用いることを特徴とする。 In order to achieve the above object, the ground reinforcement method according to the present invention has the following configuration. That is, it is formed by drilling at a predetermined elevation angle from the tunnel excavation space into the ground in front of the face at the same time, and simultaneously connecting a single pipe or a plurality of pipes each having a discharge hole for a consolidated material on the peripheral wall. In a natural ground reinforcement construction method in which a reinforcing pipe is placed in the drilling hole, and a consolidated material is injected into the reinforcing pipe to form a fixing or consolidated area in the reinforcing pipe and surrounding natural ground. As the above-mentioned solidification material, a cement-type solidification material such as cement milk or cement mortar mixed with glass fiber is used . A glass fiber reinforced resin tube is used as a single tube or a plurality of tubes which are mixed at a ratio of 0 to 2.0 % by weight and form the entire length of the reinforcing tube.

上記のように本発明によれば、トンネル掘削時の脆弱な地山状況における切羽補強工の注入固結材として、セメント系固結材中にガラス繊維を混入したものを用いるため、削孔内に打設した補強管内とその周囲の地山内に上記固結材を浸透させて定着させる際に、上記固結材中のガラス繊維が分散した状態で、ガラス繊維同士またはガラス繊維と補強管もしくは地山とが互いに絡み付きつつ凝結および硬化する。そのため、固結材の若材齢時およびその後の強度や剛性ならびに付着抵抗力を確実に高めることができる。   As described above, according to the present invention, since the cement consolidation material mixed with glass fiber is used as the injection consolidation material of the face reinforcement in a fragile ground condition during tunnel excavation, When the above-mentioned consolidated material is infiltrated and fixed in the reinforcing tube placed in and around the surrounding ground, the glass fibers in the above-mentioned consolidated material are dispersed with each other, or between the glass fibers and the reinforcing tube or The natural ground congeals and hardens while tangling with each other. Therefore, it is possible to reliably increase the strength and rigidity and adhesion resistance of the consolidated material when it is young.

また上記のガラス繊維として、長さ2〜10mmのものを、セメント系固結材中に0.3〜5重量%、より好ましくは1.0〜2.0重量%の割合で混入すれは、孔壁に存する開口亀裂等の空隙を良好に閉塞してセメント系固結材の流出や逸走を抑制することができる。また固結材が凝結および硬化する前に湧水の影響を受けた場合にも、ガラス繊維によってセメント系固結材の流通抵抗が高められているので湧水と共に流失するのを可及的に低減することが可能となる。   Moreover, as said glass fiber, a thing with a length of 2-10 mm mixes in the ratio of 0.3-5 weight%, more preferably 1.0-2.0 weight% in a cement-type solidified material, It is possible to satisfactorily block voids such as opening cracks existing in the hole wall, thereby suppressing the outflow and escape of the cement-based consolidated material. In addition, even if the consolidated material is affected by spring water before it congeals and hardens, the flow resistance of the cement-based consolidated material is increased by glass fiber, so it is possible for it to flow away with the spring water as much as possible. It becomes possible to reduce.

以下、本発明による地山補強工法を、図に示す実施形態に基づいて具体的に説明する。図1(a)は本発明による地山補強工法により先受け工と鏡補強工とを施工している状態のトンネルの縦断面図、同図(b)はその横断面図、図2は上記先受け工と鏡補強工の一部の拡大縦断面図である。   Hereinafter, the ground reinforcement method according to the present invention will be described in detail based on the embodiment shown in the drawings. FIG. 1 (a) is a longitudinal sectional view of a tunnel in which a receiving work and a mirror reinforcing work are being constructed by the ground reinforcement method according to the present invention, FIG. 1 (b) is a transverse sectional view thereof, and FIG. It is an enlarged longitudinal cross-sectional view of a part of a front receiving work and a mirror reinforcement work.

本実施形態は脆弱な地山にトンネルを掘削するに当たり、切羽1aの安定性を確保するために切羽1aの前方地山1に削孔hを施して該削孔h内に挿入した補強材としての補強管6により地山1を拘束する長尺先受け工Aと長尺鏡補強工Bに適用したもので、上記補強管6内にガラス繊維を含むセメント系固結材を注入して該補強管6内およびその周囲の地山内に上記固結材による固結領域8を形成して切羽1aの前方地山1を補強するようにしたものである。   In the present embodiment, when excavating a tunnel in a fragile natural ground, in order to ensure the stability of the face 1a, a hole h is provided in the front ground 1 of the face 1a, and the reinforcing material is inserted into the hole h. This is applied to the long tip receiving work A and the long mirror reinforcing work B for restraining the natural ground 1 by the reinforcing pipe 6, and a cement-based solidified material containing glass fiber is injected into the reinforcing pipe 6 A consolidation region 8 made of the above-mentioned consolidation material is formed in the reinforcement pipe 6 and in the surrounding natural ground to reinforce the front natural ground 1 of the face 1a.

図の実施形態ではトンネル掘削時の切羽挙動を抑制すべく、切羽前方地山には既に長尺鏡補強工が打設されている。トンネル上半盤切羽近傍にはドリルジャンボ9が配置され、そのドリルジャンボ9のガイドシェル9aの先端は、既にトンネル掘削後の切羽鏡部直近に建て込まれた鋼製支保工の下にセットされている。この実施形態では既に掘削したトンネル掘削空間Tの切羽鏡部1aには所定厚さの一次吹付けコンクリート2が施され、トンネル掘削空間Tの上部に建て込まれた鋼製支保工4b・4b間には二次吹付けコンクリート4aが施されている。   In the embodiment shown in the figure, a long mirror reinforcement is already placed in the ground in front of the face in order to suppress the face behavior during tunnel excavation. A drill jumbo 9 is arranged near the upper half face of the tunnel, and the tip of the guide shell 9a of the drill jumbo 9 is set under a steel support that has already been built in the immediate vicinity of the face mirror after tunnel excavation. ing. In this embodiment, a primary shot concrete 2 having a predetermined thickness is applied to the face mirror part 1a of the tunnel excavation space T that has already been excavated, and between the steel supports 4b and 4b built in the upper part of the tunnel excavation space T. Is provided with secondary sprayed concrete 4a.

上記ガイドシェル9aには、削孔ロッド3が削岩機5に連結された状態で装着され、その削孔ロッド3の先端に設けた不図示の削孔用ビットにより切羽1a側の鋼製支保工4bの下側から所定の仰角で前方地山1に削孔hを施すと同時に、上記削孔ロッド3の前進動作に伴って該削孔ロッド3の周囲に配置した補強管6が上記削孔h内に順次引き込まれて打設されている。上記のように構成された先受け工Aの下側の鏡補強工Bにも上記と同様の要領で補強管6が打設されている。上記先受け工Aおよび鏡補強工Bの各補強管6の材質および長さは適宜であるが、本実施形態においては、長さは13.5mのFRP管(繊維強化樹脂管)、特にGFRP管(ガラス繊維強化樹脂管)が用いられている。   A drill rod 3 is attached to the guide shell 9a in a state of being connected to the rock drill 5, and a steel support on the face 1a side is supported by a drill bit (not shown) provided at the tip of the drill rod 3. A hole h is formed in the front ground 1 at a predetermined elevation angle from the lower side of the work 4b, and at the same time, the reinforcing pipe 6 disposed around the hole rod 3 as the hole rod 3 moves forward is provided with the above-mentioned hole. The holes are sequentially drawn into the hole h. The reinforcing pipe 6 is also driven in the same manner as described above on the mirror reinforcing work B below the receiving work A configured as described above. The material and length of each of the reinforcing pipes 6 of the receiving work A and mirror reinforcing work B are appropriate, but in the present embodiment, the length is 13.5 m FRP pipe (fiber reinforced resin pipe), particularly GFRP. A tube (glass fiber reinforced resin tube) is used.

また本実施形態においては、上記先受け工Aおよび鏡補強工Bの各補強管6の後端部(切羽1a側の端部)に、リーク抑制のためにバルクヘッド形成用の多孔管6aが添設され、その多孔管6a内に設けた不図示のパッカー内に不図示のパッカー用注入管から浸透性の高いパッカー用ウレタンを注入することによって、上記多孔管6aの周囲の地山内にバルクヘッド領域7が形成されている。そして上記多孔管6aよりも孔奥側の各補強管6内に注入管10から固結材を注入して、その各補強管6内およびその各補強管6の周壁に形成した吐出孔から削孔h内を経て、その周囲の地山1内に上記の固結材を浸透固化させて固結領域8を形成したものである。図中、12は上記補強管6内に固結材を注入する際に該補強管6内および削孔h内に残留する空気を削孔hの外に排出するための排気パイプである。   Further, in this embodiment, a porous pipe 6a for forming a bulkhead is provided at the rear end portion (end portion on the face 1a side) of each of the reinforcing pipes 6 of the above-described receiving construction A and mirror reinforcement construction B in order to suppress leakage. By injecting urethane with high permeability from a packer injection pipe (not shown) into a packer (not shown) provided in the perforated pipe 6a, a bulk is put in the ground surrounding the porous pipe 6a. A head region 7 is formed. Then, a caking material is injected from the injection pipe 10 into each reinforcing pipe 6 on the deeper side of the hole than the porous pipe 6a, and is cut from the discharge holes formed in the respective reinforcing pipes 6 and the peripheral walls of the respective reinforcing pipes 6. The solidified region 8 is formed by penetrating and solidifying the above solidified material into the surrounding natural ground 1 through the hole h. In the figure, reference numeral 12 denotes an exhaust pipe for discharging the air remaining in the reinforcing tube 6 and the drilling hole h to the outside of the drilling hole h when the consolidated material is injected into the reinforcing tube 6.

そして上記の固結材として、本発明においてはセメントミルクやセメントモルタル等のセメント系固結材中にガラス繊維を混入したものを用いるようにしたもので、上記実施形態においてはプレミックスモルタルよりなるセメント系固結材中に、長さ2〜10mmのガラス繊維を0.5〜5重量%の割合で混入したものを用いたものである。   In the present invention, the above-mentioned consolidated material is a mixture of glass fibers in a cement-based consolidated material such as cement milk or cement mortar. In the above embodiment, the consolidated material is a premixed mortar. In the cement-based consolidated material, a glass fiber having a length of 2 to 10 mm mixed at a ratio of 0.5 to 5% by weight is used.

上記のように先受け工Aや鏡補強工B等の地山補強工法に用いる固結材として、セメント系固結材中にガラス繊維を混入したものを用いると、上記削孔h内に打設した補強管6内とその周囲の地山1内に上記固結材を浸透させて定着させる際に、上記固結材中のガラス繊維が分散した状態で、ガラス繊維同士またはガラス繊維と補強管もしくは地山とが互いに絡み付きつつ凝結および硬化する。それによって上記補強管6と地山1とが強固に一体化した固結領域8が形成されると共に、上記ガラス繊維によって固結材の若材齢時およびその後の強度や剛性ならびに付着抵抗力を確実に高めることができる。   As described above, when a cement-based consolidated material mixed with glass fiber is used as a solidified material for the ground reinforcement method such as the receiving work A or the mirror reinforcing work B, it is struck into the hole h. When the above-mentioned consolidation material is infiltrated and fixed in the reinforcing tube 6 and the surrounding natural ground 1, the glass fibers in the above-mentioned consolidation material are dispersed, or the glass fibers are reinforced with each other. The tube or ground pile congeals and hardens while tangling with each other. As a result, a consolidated region 8 in which the reinforcing tube 6 and the ground 1 are firmly integrated is formed, and the strength and rigidity and adhesion resistance of the consolidated material at a young age and thereafter are increased by the glass fiber. It can certainly be increased.

また上記のガラス繊維として上記のように長さ2〜10mmのものをセメント系固結材中に0.3〜5重量%、より好ましくは1.0〜2.0重量%の割合で混入すると、上記削孔hの孔壁に開口亀裂等の空隙があっても、その空隙を上記繊維が良好に閉塞してセメント系固結材の流出や逸走を抑制することができると共に、上記固結材が凝結および硬化する前に湧水の影響を受けた場合にも、ガラス繊維によってセメント系固結材の流れ抵抗が高められているので湧水と共に上記固結材が削孔内等から流失するのを可及的に低減することができる。   Moreover, when the glass fiber having a length of 2 to 10 mm as described above is mixed in the cement-based consolidated material in a proportion of 0.3 to 5% by weight, more preferably 1.0 to 2.0% by weight. Even if there is a gap such as an opening crack in the hole wall of the drilling hole h, the fiber can be satisfactorily plugged in the gap to suppress the outflow and escape of the cement-based consolidated material, and the consolidation Even when the material is affected by spring water before it congeals and hardens, the flow resistance of the cement-based consolidated material is increased by glass fiber, so the above-mentioned consolidated material is washed away from the borehole etc. together with the spring water. Can be reduced as much as possible.

しかも、上記のようなガラス繊維を混入したセメント系固結材を用いると、前記図11(a)のように切羽1aの前方地山を先受け工Aや鏡補強工Bで補強した状態で図の破線領域1sの地山1が切羽1a側に押し出されるような地山挙動(押出し挙動)を良好に抑制することができると共に、同図(b)のように次のトンネル掘削領域を掘削した後も上記補強管6の定着および固結材による切羽前方地山が補強された状態を良好に維持して上記補強管6の軸剛性、剪断剛性を効果的に発揮させることができる。   In addition, when a cement-based consolidated material mixed with glass fiber as described above is used, the front ground of the face 1a is reinforced by the front receiving work A or the mirror reinforcement work B as shown in FIG. 11 (a). The natural ground behavior (extrusion behavior) in which the natural ground 1 in the broken line region 1s of the figure is pushed out to the face 1a side can be suppressed well, and the next tunnel excavation region is excavated as shown in FIG. Even after this, the state in which the reinforcing pipe 6 is fixed and the front ground of the face due to the binder is reinforced can be maintained well, and the axial rigidity and shear rigidity of the reinforcing pipe 6 can be effectively exhibited.

さらに図3は各種の固結材を上記のような補強管内に注入するときの時間と強度との関係を示す経時硬化特性であり、図中のAは従来の標準的な固結材、Bはウレタン系や超早強セメント系等の初期強度の発現に重点をおいた固結材、Cはセメント系等の初期ハンドリングに重点をおいた固結材の特性を表す。そして図中のDが固結材を補強管内に注入してから次のトンネル掘削開示時期までの理想的な経時硬化特性であり、上記のようなガラス繊維を混入したセメント系固結材を用いると、上記の理想的な経時硬化特性に近づけることができるものである。   Further, FIG. 3 shows the time-curing characteristics showing the relationship between time and strength when various kinds of consolidated materials are injected into the reinforcing tube as described above. A in the figure is a conventional standard consolidated material, B Represents a caking material with an emphasis on the development of initial strength such as urethane and super early strength cement, and C represents the characteristics of an caulking material with emphasis on initial handling such as cement. And D in the figure is an ideal time-hardening characteristic from the injection of the consolidated material into the reinforcing pipe until the next tunnel excavation disclosure time, and the cement-based consolidated material mixed with the glass fiber as described above is used. Thus, the above-mentioned ideal time-hardening characteristics can be brought close to.

なお、上記実施形態は、補強管6として長さ13.5mのGFRP管を用いたが、それよりも短い管をカプラ等で順次継ぎ足して補強管6を形成してもよい。また上記セメント系固結材に混入するガラス繊維との相性(例えば絡み合うことによって付着力が増す)という観点からはGFRP管がより好ましいが、鋼管を用いた場合にも上記のガラス繊維によって付着力を増大させることができる。   In the above embodiment, a GFRP tube having a length of 13.5 m is used as the reinforcing tube 6. However, the reinforcing tube 6 may be formed by sequentially adding shorter tubes with a coupler or the like. In addition, a GFRP tube is more preferable from the viewpoint of compatibility with glass fibers mixed in the cement-based consolidated material (for example, adhesion increases when entangled). However, even when a steel tube is used, adhesion by the glass fibers is also preferable. Can be increased.

また上記補強管6は必ずしも横断面円形の管状のものに限られるものではなく、例えばフラットバーを組み合わて管状に形成したものでもよい。図4および図5はその一例を示すもので、本例は幅40mm、厚さ6mmのGFRPよりなるフラットバー61を複数枚(図の場合は3枚)組み合わせて横断面多角形状(図の場合は三角形状)の筒状の補強管6を形成し、その補強管6を本実施形態においては長さ12mに形成して前記実施形態と同様に切羽1aから前方地山に向かって形成した削孔h内に挿入配置したものである。   The reinforcing tube 6 is not necessarily limited to a tubular shape having a circular cross section, and may be formed into a tubular shape by combining flat bars, for example. 4 and 5 show an example. In this example, a plurality of flat bars 61 (three in the figure) made of GFRP having a width of 40 mm and a thickness of 6 mm are combined to form a polygonal cross section (in the case of the figure). Is formed in a cylindrical shape with a length of 12 m in the present embodiment, and is formed from the face 1a toward the front ground as in the previous embodiment. It is inserted and arranged in the hole h.

上記複数枚のフラットバー61は、図5(a)および(b)に示すように多角形状(図の場合は三角形状)の保持部材62の周囲に配置すると共に、紐やバンド等の結束部材63によって筒状に保持されている。上記保持部材62の中央部には貫通孔62aが形成され、その貫通孔62aに図5(c)に示す注入管10を挿入して該注入管10から上記のフラットバー61よりなる補強管6内に固結材を注入する構成であり、その補強管6内に注入した固結材が補強管の周囲の削孔h内およびその周囲の地山内に浸透させるために、周方向に隣り合うフラットバー61・61間には固結材が流通可能な隙間Sが形成されている。   The plurality of flat bars 61 are arranged around a holding member 62 having a polygonal shape (triangular shape in the figure) as shown in FIGS. 5A and 5B, and a binding member such as a string or a band. 63 is held in a cylindrical shape. A through hole 62a is formed in the central portion of the holding member 62. The injection tube 10 shown in FIG. 5C is inserted into the through hole 62a, and the reinforcing tube 6 made of the flat bar 61 is formed from the injection tube 10. The caking material is injected into the inside of the reinforcing pipe 6 so that the caking material injected into the reinforcing pipe 6 penetrates into the hole h around the reinforcing pipe and into the surrounding natural ground. A gap S through which the consolidated material can flow is formed between the flat bars 61 and 61.

また上記のフラットバー61よりなる補強管6の後端部には、バルクヘッド形成用のパッカー11と、そのパッカーを膨らませるパッカー用注入管11aが装填され、そのパッカー用注入管11aから上記パッカー11内に浸透性の高いパッカー用ウレタンを注入してバルクヘッドを形成した後、上記フラットバー61よりなる補強管6に前記実施形態と同様のガラス繊維を混入したセメント系固結材を注入して固結領域8を形成することによって鏡補強工Bを施工したものである。上記と同様の構成で先受け工Aを施工することも可能であり、その先受け工Aおよび上記の鏡補強工Bにおいても前記と同様の作用効果が得られる。   Further, a packer 11 for forming a bulkhead and a packer injection tube 11a for inflating the packer are loaded at the rear end portion of the reinforcing tube 6 made of the flat bar 61. The packer injection tube 11a extends from the packer injection tube 11a. 11 is injected with urethane having high permeability to form a bulkhead, and then a cement-based solidified material mixed with glass fibers similar to the above-described embodiment is injected into the reinforcing tube 6 made of the flat bar 61. Thus, the mirror reinforcement B is constructed by forming the consolidated region 8. It is also possible to construct the receiver A with the same configuration as described above, and the same effect as described above can be obtained in the receiver A and the mirror reinforcement B.

なお、上記各実施形態は補強管6の後端部側にバルクヘッド領域やバルクヘッドを形成したが、必ずしも形成しなくてもよく、そのような場合には前記のような多孔管6aを省略して補強管全長をGFRP管等の合成樹脂管や鋼管もしくは前記フラットバー製補強管等よりなる単一の管または複数本の管を順次接続して形成すればよい。   In each of the above embodiments, the bulkhead region and the bulkhead are formed on the rear end side of the reinforcing tube 6. However, in this case, the porous tube 6a as described above is omitted. The total length of the reinforcing pipe may be formed by sequentially connecting a single pipe or a plurality of pipes made of a synthetic resin pipe such as a GFRP pipe, a steel pipe, the flat bar reinforcing pipe, or the like.

本発明の具体的な実施例に代わる試験例として本発明で用いる固結材の特性を調べるために以下のような試験を行った。先ず、図6(a)に示すような容器30にセメント系固結材としてのドライモルタルに繊維長3mmのガラス繊維を、それぞれドライモルタル重量に対して0、0.7、1.0、1.4、1.7、2.0、2.5、3.0重量%の割合で添加した固結材に、それぞれ上記セメント系固結材としてのドライモルタルに対する水量(W/C)が60重量%となるように水を加えて図6(b)に示すような攪拌機31によって撹拌し、混練して練上量6.5リットルの練上モルタルを作製した。   In order to investigate the characteristics of the consolidated material used in the present invention as a test example in place of a specific example of the present invention, the following test was performed. First, in a container 30 as shown in FIG. 6 (a), glass fiber having a fiber length of 3 mm is added to dry mortar as a cement-based consolidated material, and 0, 0.7, 1.0, 1 with respect to the weight of the dry mortar, respectively. The amount of water (W / C) with respect to the dry mortar as the cement-based solidified material is 60 to the solidified material added at a ratio of 0.4, 1.7, 2.0, 2.5, and 3.0% by weight Water was added so that it might become weight%, and it stirred with the stirrer 31 as shown in FIG.6 (b), knead | mixed, and produced the kneaded amount mortar of 6.5 liters.

次いで、その各練上モルタルを図6(c)に示すような外径114.3mm×高さ200mmの鋼製筒体32に充填すると共に、その鋼製筒体32内に幅40mm×厚6mmの標準フラットバーからなる供試片33を挿入し、各練上モルタルを固化させ定着させて図6(d)に示すような試験体34を作製した。図中、33aは上記供試片32の鋼製筒体31内への挿入深さを規制するストッパ、35は鋼製筒体31の下面側に溶接等で一体的に固着した底板、36はその底板35の下面中央部に溶接等で一体的に固着した支持杆である。   Next, each kneaded mortar is filled into a steel cylinder 32 having an outer diameter of 114.3 mm × height of 200 mm as shown in FIG. 6C, and the steel cylinder 32 is 40 mm wide × 6 mm thick. A test piece 33 made of a standard flat bar was inserted, and each kneaded mortar was solidified and fixed to prepare a test body 34 as shown in FIG. In the figure, 33a is a stopper for restricting the insertion depth of the specimen 32 into the steel cylinder 31, 35 is a bottom plate integrally fixed to the lower surface side of the steel cylinder 31 by welding, etc. This is a support rod that is integrally fixed to the center of the lower surface of the bottom plate 35 by welding or the like.

上記のようにしてセメント系固結材へのガラス繊維の添加量を異ならせて作製した上記各試験体34を用いて付着力(引き抜き強度)の試験を行なうと共に、上記各試験体34の作成時にそれぞれ採取した各固結材の一軸圧縮強度試験を行った。それらの結果を下記表1にまとめて示す。なお、下記表1中のフロー値は、JIS規格に基づくPロート試験の測定値であり、また一軸圧縮強度は、上記各固結材を用いて直径5cm×高さ10cmの円柱モールド(円柱供試体)を作製して24時間後に軸線方向一端側から圧縮したときの圧縮強度(耐荷重)である。さらに付着力は、上記各試験体34の供試片32の上部と支持杆36とをそれぞれ試験機のクランプに把持させて、互いに反対方向に引っ張って抜けるときの引き抜き荷重を測定したものである。   A test of adhesion (pull-out strength) is performed using each of the test specimens 34 produced by varying the amount of glass fiber added to the cement-based consolidated material as described above, and the preparation of each test specimen 34 is performed. A uniaxial compressive strength test of each consolidated material that was sometimes collected was performed. The results are summarized in Table 1 below. The flow values in the following Table 1 are measured values in a P funnel test based on JIS standards, and the uniaxial compressive strength is a cylindrical mold (cylinder provided) having a diameter of 5 cm and a height of 10 cm using each of the above-mentioned binders. Compressive strength (withstand load) when compressed from one end in the axial direction 24 hours after the sample was prepared. Further, the adhesion force is obtained by measuring the pulling load when the upper part of the test piece 32 of each test body 34 and the support rod 36 are held by the clamps of the tester and pulled in the opposite directions. .

Figure 0005311453
Figure 0005311453

上記表1のデータから、ガラス繊維添加量に対する付着力を表したものが図7のグラフであり、ガラス繊維添加量に対する付着力比(付着力/圧縮強度)を表したものが図8のグラフである。なお、上記図7および図8中の◆印は実際の測定値の分布状態を示し、曲線は各添加量毎の測定値の平均値曲線である。   From the data in Table 1 above, the graph in FIG. 7 shows the adhesion force with respect to the glass fiber addition amount, and the graph in FIG. 8 shows the adhesion ratio (adhesion force / compression strength) with respect to the glass fiber addition amount. It is. 7 and 8 indicate the distribution state of the actual measurement values, and the curve is an average value curve of the measurement values for each addition amount.

上記の試験結果から各固結材の付着力は、ガラス繊維添加量が1.0〜2.0重量%のときに増大傾向を示し、特に、1.7重量%のときにピークを示している。また、通常の固結材の概念では、圧縮強度が高くなれば付着力が増すが、本実施例を用いた試験結果によれば、圧縮強度に対する付着力の比率も、ガラス繊維添加量が1.0〜2.0重量%のときに増大傾向を示し、特に、1.7%のときにピークを示すことがわかった。従って、ガラス繊維の添加量は多ければ多いほど付着力が増大するのではなく、セメント系固結材であるドライモルタルの重量に対してガラス繊維を1.0〜2.0重量%の割合で添加したときに、過度に硬化してしまうことなく付着力を増大させ、補強材としての補強管の地山定着効果を効率的に高めることができる。   From the above test results, the adhesion of each consolidated material shows an increasing tendency when the glass fiber addition amount is 1.0 to 2.0% by weight, and particularly shows a peak when it is 1.7% by weight. Yes. In addition, in the concept of a normal consolidated material, the adhesive force increases as the compressive strength increases. However, according to the test results using this example, the ratio of the adhesive force to the compressive strength is 1 for the glass fiber addition amount. It was found that when the amount was from 0.0 to 2.0% by weight, an increasing tendency was exhibited, and in particular, when the amount was 1.7%, a peak was exhibited. Accordingly, the greater the amount of glass fiber added, the more the adhesion does not increase, but the glass fiber is in a proportion of 1.0 to 2.0% by weight with respect to the weight of dry mortar which is a cement-based consolidated material. When added, the adhesive force can be increased without being excessively cured, and the effect of fixing the ground of the reinforcing pipe as the reinforcing material can be efficiently enhanced.

なお、上記以外にも種々の試験を行った結果、セメント系固結材中に少なくともガラス繊維を0.5重量%以上添加すると、添加しない場合よりもフロー値が増大することが確認されている。またガラス繊維の添加量を増やすほどフロー値が増大する傾向にあり、それによって固結材の流動性が低下してリーク等が発生しずらくなるが、あまり多いと、ハンドリングがしづらくなったり、材料コストが増大して不経済であるため、ガラス繊維の添加量は5重量%以下とするのが望ましい。また前記のようにセメント系固結材中にガラス繊維を1.0〜2.0重量%の割合で添加すると付着力が増し、特に1.7〜2.0重量%の割合で混入させたセメント系固結材によるGFRP補強材(例えば前記図1および図2の実施形態で用いたGFRP管、前記図1および図2の実施形態で用いたGFRPよりなるフラットバーで形成した補強管など)との付着力は、ガラス繊維を混入していない場合に比べて19〜55%程度向上することが確認されている。   As a result of performing various tests other than the above, it has been confirmed that when at least 0.5% by weight or more of glass fiber is added to the cement-based consolidated material, the flow value is increased as compared with the case where it is not added. . In addition, the flow value tends to increase as the amount of glass fiber added increases, which decreases the fluidity of the consolidated material and makes it difficult for leaks to occur, but if it is too much, handling becomes difficult. Since the material cost increases and it is uneconomical, the amount of glass fiber added is preferably 5% by weight or less. Further, as described above, when glass fibers are added in a proportion of 1.0 to 2.0% by weight in the cement-based consolidated material, the adhesion is increased, and in particular, it is mixed in a proportion of 1.7 to 2.0% by weight. GFRP reinforcing material made of cement-based consolidated material (for example, the GFRP pipe used in the embodiment of FIGS. 1 and 2 and the reinforcing pipe formed of a flat bar made of GFRP used in the embodiment of FIGS. 1 and 2). It has been confirmed that the adhesive force is improved by about 19 to 55% compared to the case where glass fiber is not mixed.

以上のように本発明による地山補強工法によれば、補強材としての補強管と、その周囲の地山を定着させるための固結材としてセメント系固結材にガラス繊維を混入したものを用いることによって、上記固結材中のガラス繊維が分散した状態でガラス繊維同士またはガラス繊維と補強管もしくは地山とが互いに絡み付きつつ凝結および硬化することで確実に固結材の剛性と付着抵抗力を高めることができる。特に、上記のガラス繊維として長さ2〜10mmのものをセメント系固結材中に0.5〜5重量%、より好ましくは1.0〜2.0重量%の割合で混入すれば、補強管を収容配置する削孔の孔壁に開口亀裂等の空隙が存在する場合にも、それらを良好に塞ぐことができ、セメント系固結材の流出、逸走を抑制するとともに、固結材の凝結および硬化する前には湧水の影響を殆ど受けることなく固化して定着性や補強性能を改善することができる。そのため、トンネルの先受け工や鏡補強工に限らず、各種の地山補強工法として産業上も有効に利用できるものである。   As described above, according to the natural ground reinforcing method according to the present invention, the cement pipe-mixed material mixed with glass fiber is used as a solidifying material for fixing the reinforcing pipe as a reinforcing material and the surrounding natural ground. By using the glass fiber in the above-mentioned consolidated material, the rigidity and adhesion resistance of the consolidated material are ensured by condensing and curing the glass fiber or the glass fiber and the reinforcing tube or ground mountain while being entangled with each other. You can increase your power. In particular, if the glass fiber having a length of 2 to 10 mm is mixed in the cement-based consolidated material in a proportion of 0.5 to 5% by weight, more preferably 1.0 to 2.0% by weight, the reinforcement Even when there are voids such as opening cracks in the hole wall of the drilling hole that accommodates and arranges the pipe, they can be blocked well, suppressing the outflow and escape of cement-based consolidated material, and Before setting and hardening, it can be solidified with little influence from spring water to improve its fixability and reinforcement performance. Therefore, it can be effectively used not only for tunnel leading construction and mirror reinforcement work but also for various industrial ground reinforcement works.

(a)は本発明による地山補強工法をトンネル先受け工と鏡補強工に適用した一実施形態のトンネルの縦断面図、(b)はその横断面図。(A) is the longitudinal cross-sectional view of the tunnel of one Embodiment which applied the natural ground reinforcement construction method by this invention to tunnel tip receiving work and mirror reinforcement work, (b) is the cross-sectional view. 上記実施形態の一部の拡大縦断面。The expanded vertical cross section of a part of the said embodiment. 各種固結材の経時硬化特性を示すグラフ。The graph which shows the time-hardening characteristic of various consolidated materials. 本発明による地山補強工法を鏡補強工に適用した他の実施形態のトンネルの縦断面図。The longitudinal cross-sectional view of the tunnel of other embodiment which applied the natural ground reinforcement construction method by this invention to the mirror reinforcement construction. (a)は上記実施形態に用いたフラットバーよりなる補強管の斜視図、(b)はフラットバーを管状の保持する保持部材の斜視図、(c)は注入管の斜視図。(A) is a perspective view of the reinforcement pipe | tube which consists of a flat bar used for the said embodiment, (b) is a perspective view of the holding member holding a flat bar tubular, (c) is a perspective view of an injection tube. (a)〜(d)は固結材の評価用試験体の形成プロセスを示す説明図。(A)-(d) is explanatory drawing which shows the formation process of the test body for evaluation of a consolidated material. セメント系固結材へのガラス繊維添加量と付着力との関係を示すグラフ。The graph which shows the relationship between the glass fiber addition amount and adhesive force to a cement-type solidification material. セメント系固結材へのガラス繊維添加量に対する付着力比を示すグラフ。The graph which shows the adhesive force ratio with respect to the addition amount of the glass fiber to a cement-type solidification material. (a)は従来の先受け工の一例を示すトンネルの縦断面図、(b)はその横断面図、(c)は一部の拡大縦断面図。(A) is the longitudinal cross-sectional view of the tunnel which shows an example of the conventional prior receiving work, (b) is the cross-sectional view, (c) is a partial enlarged vertical cross-sectional view. (a)は従来の鏡補強工の一例を示すトンネルの縦断面図、(b)はその横断面図、(c)は一部の拡大縦断面図。(A) is the longitudinal cross-sectional view of the tunnel which shows an example of the conventional mirror reinforcement work, (b) is the cross-sectional view, (c) is a partial enlarged vertical cross-sectional view. (a)、(b)はトンネル切羽部の地山挙動を示す説明図。(A), (b) is explanatory drawing which shows the natural ground behavior of a tunnel face part.

符号の説明Explanation of symbols

A 先受け工
B 鏡補強工
T トンネル掘削空間
h 削孔
1 地山
1a 切羽
2 鏡部吹付コンクリート
3 削孔ロッド
4a 吹付コンクリート
4b 鋼製支保工
5 削岩機
6 補強管
6a 多孔管
7 バルクヘッド領域
8 固結領域
9 ドリルジャンボ
9a ガイドシェル
10 注入管
11 パッカー
11a パッカー用注入管
12 排気パイプ
A Preliminary work B Mirror reinforcement work
T tunnel excavation space h drilling hole 1 ground mountain 1a face 2 mirror part spraying concrete 3 drilling rod 4a spraying concrete 4b steel support 5 rock drill 6 reinforcement pipe 6a perforated pipe 7 bulkhead area 8 consolidation area 9 drill jumbo 9a Guide shell 10 Injection pipe 11 Packer 11a Packer injection pipe 12 Exhaust pipe

Claims (1)

トンネル掘削空間内から切羽前方地山内に所定の仰角で削孔を施すと同時に、周壁に固
結材の吐出孔を有する単一の管または複数本の管を順次接続して形成される補強管を上記
削孔内に打設し、その補強管内に固結材を注入して該補強管内およびその周囲の地山内に
定着または固結領域を形成して補強する地山補強工法において、
上記固結材としてセメントミルクやセメントモルタル等のセメント系固結材中にガラス
繊維を混入したものを用い、上記ガラス繊維として長さ2〜10mmのものを上記セメン
ト系固結材中に1.0〜2.0重量%の割合で混入してなり、上記補強管全長を形成する単一の管または複数本の管としてガラス繊維強化樹脂管を用いることを特徴とする地山補強工法。
Reinforcing pipe formed by drilling a hole at a predetermined elevation from the tunnel excavation space into the ground in front of the face at the same time, and simultaneously connecting a single pipe or a plurality of pipes having a discharge hole for consolidated material on the peripheral wall In the natural ground reinforcement method of reinforcing and forming a fixed or consolidated region in the reinforcing pipe and surrounding ground in the reinforcing pipe by injecting into the drilling hole, injecting a caking material into the reinforcing pipe,
As the above-mentioned solidification material, a cement-type solidification material such as cement milk or cement mortar mixed with glass fiber is used . A natural ground reinforcement method characterized by using a glass fiber reinforced resin pipe as a single pipe or a plurality of pipes mixed at a rate of 0 to 2.0 % by weight and forming the entire length of the reinforcing pipe.
JP2008111107A 2008-04-22 2008-04-22 Ground reinforcement method Expired - Fee Related JP5311453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111107A JP5311453B2 (en) 2008-04-22 2008-04-22 Ground reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111107A JP5311453B2 (en) 2008-04-22 2008-04-22 Ground reinforcement method

Publications (2)

Publication Number Publication Date
JP2009263882A JP2009263882A (en) 2009-11-12
JP5311453B2 true JP5311453B2 (en) 2013-10-09

Family

ID=41390059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111107A Expired - Fee Related JP5311453B2 (en) 2008-04-22 2008-04-22 Ground reinforcement method

Country Status (1)

Country Link
JP (1) JP5311453B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296976B (en) * 2011-09-02 2013-10-30 安徽理工大学 Asymmetrical bolt-net-cable combined supporting method for special-shaped recovery tunnel of large inclination angle coal bed
JP6263979B2 (en) * 2013-11-18 2018-01-24 株式会社大林組 Natural mountain reinforcement and natural mountain reinforcement structure
CN107083964B (en) * 2017-05-19 2020-10-02 中铁隧道集团有限公司 Advanced support method for shield tunnel construction of stratum with uneven hardness
JP7064832B2 (en) * 2017-06-19 2022-05-11 フジモリ産業株式会社 Ground stabilization method
CN115420161B (en) * 2022-08-29 2023-06-30 四川公路桥梁建设集团有限公司 Underground chamber rock burst prevention and treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610116B2 (en) * 1985-06-04 1994-02-09 恒和化学工業株式会社 Super thick coating material
JP2823369B2 (en) * 1991-02-28 1998-11-11 前田建設工業株式会社 Flexible pipe and its construction method
JP2758138B2 (en) * 1994-07-06 1998-05-28 鹿島建設株式会社 Face independent construction method of collapsed mountain tunnel
JP3101550B2 (en) * 1994-08-31 2000-10-23 飛島建設株式会社 Steel pipe receiving method and equipment used for the method
JP2955279B1 (en) * 1998-07-16 1999-10-04 株式会社熊谷組 Ground reinforcement method
JP3113635B2 (en) * 1998-07-27 2000-12-04 株式会社ササキ技建 Composite injection non-widened steel pipe tip receiving method
JP3524493B2 (en) * 2000-12-25 2004-05-10 株式会社ケー・エフ・シー Ground reinforcement method
JP2002309884A (en) * 2001-04-12 2002-10-23 Sanken Boeki Kk Structure and method for steel pipe forepoling work for tunnel

Also Published As

Publication number Publication date
JP2009263882A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5311453B2 (en) Ground reinforcement method
CN207828965U (en) A kind of pouch expansion variable diameters steel reinforcement cage and anchor pole or pile foundation
KR101147510B1 (en) Complex pile with improved end bearing capacity and piling method of complex pile using the same
KR101605028B1 (en) Structure of Permanent Anchor
KR101582068B1 (en) Ground anchor construction method for anchoring area extended improvement using extended excavation agitator
KR101045727B1 (en) A multistaged equipment of pipe grouting by double packer system and its constructing method
CN104532860B (en) Recoverable soil nail
KR100721786B1 (en) Anchor.nail execution method for the soft ground
KR100925677B1 (en) Complex stability method for slope surface
KR101236765B1 (en) Method for placing adhesive filling into the expanded drill hole to increase bearing capacity of piles and tention members and apparatus therefor
KR101119829B1 (en) Method for cast-in-place pile construction using punctured couplers
JP5808153B2 (en) How to construct a retaining wall
KR100991248B1 (en) Foundation construction method of micro pile using pack and pile used in the same
JP2005029964A (en) Work execution method for long face bolt
KR102185255B1 (en) Construction method of composite pile with extensioned tip
KR101121119B1 (en) Foundation construction method of micro pile with pack
JP6630560B2 (en) Piling method for bedrock
JP5499335B2 (en) Steel pipe pile and support structure and construction method using the steel pipe pile
JPS63280121A (en) Ground anchor
JP4026771B2 (en) Ground reinforcement structure and ground reinforcement construction method
JP3710991B2 (en) Ground reinforcement method
JP5875650B1 (en) Hybrid pile device
JP4853132B2 (en) Construction method of foundation pile
JP2019206868A (en) Micro pile construction method and insertion member for filling grout material used in micro pile construction method
JP3987234B2 (en) Ground mountain tip receiving reinforcement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees