JP6263979B2 - Natural mountain reinforcement and natural mountain reinforcement structure - Google Patents

Natural mountain reinforcement and natural mountain reinforcement structure Download PDF

Info

Publication number
JP6263979B2
JP6263979B2 JP2013238242A JP2013238242A JP6263979B2 JP 6263979 B2 JP6263979 B2 JP 6263979B2 JP 2013238242 A JP2013238242 A JP 2013238242A JP 2013238242 A JP2013238242 A JP 2013238242A JP 6263979 B2 JP6263979 B2 JP 6263979B2
Authority
JP
Japan
Prior art keywords
steel pipe
natural ground
tunnel
gfrp
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013238242A
Other languages
Japanese (ja)
Other versions
JP2015098685A (en
Inventor
秀雄 木梨
秀雄 木梨
伊藤 哲
哲 伊藤
吾郎 磐田
吾郎 磐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2013238242A priority Critical patent/JP6263979B2/en
Publication of JP2015098685A publication Critical patent/JP2015098685A/en
Application granted granted Critical
Publication of JP6263979B2 publication Critical patent/JP6263979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、地山補強材および地山補強構造に関するものであり、具体的には、地山の掘削面に生じる軸力に効果的に抵抗し、トンネル地山の安定化を図る技術に関する。   The present invention relates to a natural ground reinforcing material and a natural ground reinforcing structure, and more specifically, to a technique for effectively resisting an axial force generated on a ground excavation surface and stabilizing a tunnel natural ground.

未固結の土砂地山や大土被りの押出し性地山におけるトンネル掘削では、鏡面の押出しや切羽の不安定化対策として、鏡ボルトの施工が行われる。この鏡ボルトは、トンネル切羽面から前方地山に向けて打設される鋼管やGFRP管と、その内外に注入されるモルタル等の充填材から構成され、充填材を介して地山と一体となった鋼管等が鏡面押し出し等に伴う引張に抵抗し、崩壊等を防止する。   In tunnel excavation in unconsolidated earth and sand ground and extrudable ground with large earth cover, mirror bolts are installed as countermeasures against mirror surface extrusion and face destabilization. This mirror bolt is composed of steel pipes and GFRP pipes that are driven from the tunnel face to the front ground, and fillers such as mortar injected into the inside and outside. The steel pipe that has become resistant to the tension accompanying mirror extrusion etc. prevents collapse and the like.

こうした鏡面の補強構造に関しては、以下のような技術が提案されている。すなわち、引っ張り力によってねじ継手部から破断せず、地山を安定した状態に保ち続けることを目的とした、鋼管からなる一般部と、該一般部の両端に設けられたねじ継手部とを備えた地山補強用鋼管であって、上述のねじ継手部を、その引張強度が一般部の引張強度と同程度になるように構成した地山補強用鋼管(特許文献1)などが提案されている。   The following techniques have been proposed for such a mirror reinforcing structure. That is, a general part made of a steel pipe and a threaded joint part provided at both ends of the general part for the purpose of keeping the natural ground in a stable state without breaking from the threaded joint part by a tensile force. A steel pipe for ground reinforcement, in which the above-described threaded joint portion is configured so that its tensile strength is approximately equal to the tensile strength of the general part (Patent Document 1) has been proposed. Yes.

特開2011−7000号公報Japanese Unexamined Patent Publication No. 2011-7000

しかしながら、特に膨張性の強い地山や土被り厚の大きなトンネルにおいては、鏡面の押し出し力が非常に大きいため、鏡ボルトの備える引張耐力を越えた過大な軸力が作用する。自身の引張耐力を越える過大な軸力を受けた各鏡ボルトは、継手部など所定箇所において相次いで破断することになる。こうした鏡ボルトの破断は、鏡面における補強機能喪失につながり、鏡面での押し出し増大、崩落の発生等の問題を生じることになる。   However, particularly in a highly expansive ground and a tunnel with a large covering thickness, the pushing force of the mirror surface is very large, so an excessive axial force that exceeds the tensile strength of the mirror bolt acts. Each mirror bolt that has received an excessive axial force exceeding its tensile strength will break one after another at a predetermined location such as a joint. Such breakage of the mirror bolt leads to loss of the reinforcing function on the mirror surface, and causes problems such as increased extrusion on the mirror surface and occurrence of collapse.

そこで本発明は、トンネル施工時に生じる軸力に効果的に抵抗し、トンネル地山の安定化を図る技術の提供を目的とする。   Then, this invention aims at provision of the technique which resists the axial force produced at the time of tunnel construction effectively, and aims at the stabilization of a tunnel ground.

上記課題を解決する地山補強材は、トンネル地山に打設される鋼管と、当該鋼管内に挿入される棒状のGFRP材と、前記鋼管の内空において鋼管内壁と前記GFRP材との間に充填される充填材とからなり、前記鋼管の内壁沿いに周方向に延びる凸部が設けられ、該凸部は周方向に不連続となっており、前記凸部が、前記鋼管の軸方向に複数列備わっており、隣接する一組の前記凸部の間で、各々の不連続部の位置が、鋼管軸方向において一部のみ一致したものであることを特徴とする。 A natural ground reinforcing material that solves the above-mentioned problems is a steel pipe placed in a tunnel natural ground, a rod-like GFRP material inserted into the steel pipe, and an inner wall of the steel pipe between the steel pipe inner wall and the GFRP material. Ri Do and a filler is filled in, the steel pipe projecting portion extending in a circumferential direction along the inner wall is provided, the convex portion has a discontinuous in the circumferential direction, the convex portion, the axis of the steel pipe A plurality of rows are provided in the direction, and the position of each discontinuous portion between a pair of adjacent convex portions is only partially matched in the steel pipe axial direction .

これによれば、膨張性地山での鏡面に生じる、強い押し出しに伴う軸力に対し、充填材を介して鋼管と一体となったGFRP材が効果的に抵抗して、地山補強材全体の引張軸耐力の向上が図られる。そのため、土被り厚が大きいトンネル等においても、鋼管破断に伴う鏡面の押し出し増大や崩落の発生する事態を回避可能となる。したがって、地山の掘削面に生じる軸力に効果的に抵抗し、確実なトンネル地山の安定化を図ることが可能となる。   According to this, the GFRP material integrated with the steel pipe through the filler effectively resists the axial force caused by the strong extrusion generated on the mirror surface in the expandable natural ground, and the whole natural ground reinforcing material The tensile strength of the tensile shaft is improved. Therefore, even in a tunnel having a large soil covering thickness, it is possible to avoid a situation in which an increase in the extrusion of the mirror surface or a collapse occurs due to the steel pipe fracture. Therefore, it is possible to effectively resist the axial force generated on the excavation surface of the natural ground, and to reliably stabilize the tunnel natural ground.

また、前記鋼管の内壁沿いに周方向に延びる凸部が設けられ、該凸部は周方向に不連続となっていることにより、鋼管打設時に鋼管内を移動する排泥が、上述した凸部の不連続部分を通過可能であるため、特段阻害されることなく効率良く管軸方向に流動可能であり、全体の施工効率を良好に保つことが出来ると共に、鋼管内壁の凸部によって、GFRP材が充填材を介して鋼管に確実に付着し、トンネル地山から鋼管に作用する引張軸力を効果的にGFRP材に伝達することが可能になる。従って、膨張性地山での鏡面に生じる、強い押し出しに伴う軸力に対し、充填材を介してより確実に鋼管と一体となったGFRP材が更に効果的に抵抗可能となる。 Further, a convex portion extending in the circumferential direction is provided along the inner wall of the steel pipe, and the convex portion is discontinuous in the circumferential direction. Since it can pass through the discontinuous part of the part, it can flow efficiently in the direction of the pipe axis without being particularly obstructed, and the overall construction efficiency can be kept good. The material reliably adheres to the steel pipe via the filler, and the tensile axial force acting on the steel pipe from the tunnel ground can be effectively transmitted to the GFRP material. Therefore, the GFRP material integrated with the steel pipe through the filler can be more effectively resisted against the axial force caused by the strong extrusion generated on the mirror surface in the expandable ground.

さらに、上述の地山補強材が、前記凸部が、前記鋼管の軸方向に複数列備わっており、隣接する一組の前記凸部の間で、各々の不連続部の位置が、鋼管軸方向において一部のみ一致していることにより、鋼管内壁に複数列備わる凸部によって、充填材を介したGFRP材と鋼管との付着が更に確実なものとなり、トンネル地山から鋼管に作用する引張軸力を一層効果的にGFRP材に伝達可能になると共に、各凸部の間で不連続部分が少なくとも一部は重なるよう構成され、上述の鋼管内での排泥の流動を妨げないため、全体の施工効率を良好に保つことが出来る。 Furthermore, the above-mentioned ground reinforcing material is provided with a plurality of rows of the convex portions in the axial direction of the steel pipe, and the positions of the discontinuous portions between the adjacent sets of the convex portions are steel pipe shafts. Due to the fact that only part of them match in the direction, the projections provided on the inner wall of the steel pipe provide more reliable adhesion between the GFRP material and the steel pipe via the filler, and the tensile force acting on the steel pipe from the tunnel ground Axial force can be transmitted to the GFRP material more effectively, and at least a part of the discontinuous portion is overlapped between the convex portions, so as not to hinder the flow of waste mud in the steel pipe, The overall construction efficiency can be kept good.

また、本発明の地山補強構造は、上記地山補強材をトンネル地山に施工してなることを特徴とする。 Also, the natural ground reinforcing construction of the present invention is characterized by formed by construction the natural ground reinforcing material to the tunnel natural ground.

これによれば、膨張性地山での鏡面に生じる、強い押し出しに伴う軸力に対し、充填材を介して鋼管と一体となったGFRP材が効果的に抵抗して、地山補強材全体の引張軸耐力の向上が図られた構造を形成する。そのため、土被り厚が大きいトンネル等においても、鋼管破断に伴う鏡面の押し出し増大や崩落の発生する事態を回避可能となる。したがって、地山の掘削面に生じる軸力に効果的に抵抗し、確実なトンネル地山の安定化を図ることが可能となる。   According to this, the GFRP material integrated with the steel pipe through the filler effectively resists the axial force caused by the strong extrusion generated on the mirror surface in the expandable natural ground, and the whole natural ground reinforcing material The structure in which the tensile shaft yield strength is improved is formed. Therefore, even in a tunnel having a large soil covering thickness, it is possible to avoid a situation in which an increase in the extrusion of the mirror surface or a collapse occurs due to the steel pipe fracture. Therefore, it is possible to effectively resist the axial force generated on the excavation surface of the natural ground, and to reliably stabilize the tunnel natural ground.

本発明によれば、地山の掘削面に生じる軸力に効果的に抵抗し、確実なトンネル地山の安定化を図ることが可能となる。   According to the present invention, it is possible to effectively resist the axial force generated on the excavation surface of the natural ground, and to reliably stabilize the tunnel natural ground.

本実施形態における地山補強材の構造例を示す斜視図である。It is a perspective view which shows the structural example of the natural ground reinforcement in this embodiment. 本実施形態における地山補強材の施工形態を示す図である。It is a figure which shows the construction form of the natural ground reinforcement material in this embodiment. 本実施形態における地山補強材の構造例を示す側断面図である。It is a sectional side view which shows the structural example of the natural ground reinforcement material in this embodiment. 本実施形態の地山補強材における断面例1を示す図である。It is a figure which shows the example 1 of a cross section in the natural ground reinforcement material of this embodiment. 本実施形態の地山補強材における断面例2を示す図である。It is a figure which shows the example 2 of a cross section in the natural ground reinforcement material of this embodiment. 他の地山補強材の断面例1を示す図である。It is a figure which shows the cross-sectional example 1 of another natural ground reinforcement. 他の地山補強材の断面例2を示す図である。It is a figure which shows the example 2 of a cross section of another natural ground reinforcement. 本実施形態における地山補強材の使用材料諸元を示す図である。It is a figure which shows the material specification of the natural ground reinforcement material in this embodiment. 本実施形態における地山補強材の供試体種類を示す図である。It is a figure which shows the specimen type of the natural ground reinforcement in this embodiment. 本実施形態における引張試験結果を示す図である。It is a figure which shows the tension test result in this embodiment. 本実施形態における引張試験結果のグラフを示す図である。It is a figure which shows the graph of the tension test result in this embodiment. 本実施形態における継手破断時荷重配分を示す図である。It is a figure which shows the load distribution at the time of the joint fracture | rupture in this embodiment.

以下に本発明の実施形態について図面を用いて詳細に説明する。図1は本実施形態における地山補強材10の構造例を示す斜視図であり、図2は本実施形態における地山補強材の施工形態を示す図である。本実施形態の地山補強材10は、トンネル工事での施工対象が膨張性地山である場合など、鏡面200に強い押し出しが発生する施工状況に際し、上述の押し出しに伴う軸力に確実に抵抗し、地山安定化を図るものである。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a perspective view showing a structural example of the natural ground reinforcing material 10 in the present embodiment, and FIG. 2 is a diagram showing a construction form of the natural ground reinforcing material in the present embodiment. The natural ground reinforcing material 10 according to the present embodiment reliably resists the axial force associated with the above-described extrusion in a construction situation where strong extrusion occurs on the mirror surface 200, such as when the construction target in tunnel construction is an expandable natural ground. However, it is intended to stabilize the natural ground.

地山補強材10は、図1にて例示するように、トンネル地山1に打設される鋼管2と、当該鋼管2内に挿入されるGFRP(Glass fiber reinforced plastics)材3と、鋼管2の内空5において鋼管内壁6とGFRP材3との間に充填されるモルタル等の充填材7とからなる。   As illustrated in FIG. 1, the natural ground reinforcing material 10 includes a steel pipe 2 placed in the tunnel natural ground 1, a GFRP (Glass fiber reinforced plastics) material 3 inserted into the steel pipe 2, and a steel pipe 2. And a filler 7 such as mortar filled between the steel pipe inner wall 6 and the GFRP material 3 in the inner space 5.

このうち鋼管2は、例えば12〜13m程度の長尺鋼管であり、図2にて示すように、トンネル坑内45に配置した油圧ジャンボ50における、ブーム51のドリフタ52にセットされ、鏡面200からトンネル掘進方向のトンネル地山1に打設される。この場合、鋼管2は、先端部に備わる掘削ビット20がドリフタ52で駆動されることでトンネル地山1に対する削孔動作を行い、鏡面200から徐々に掘進し、トンネル地山1に打設されることとなる。打設された鋼管2とその周囲のトンネル地山1との間には、鋼管2の内空5から所定孔を介してグラウト材30が注入され、トンネル地山1と鋼管2とは一体化される。   Among these, the steel pipe 2 is a long steel pipe of about 12 to 13 m, for example, and is set on the drifter 52 of the boom 51 in the hydraulic jumbo 50 arranged in the tunnel pit 45 as shown in FIG. It is placed in the tunnel ground 1 in the direction of excavation. In this case, the steel pipe 2 performs a drilling operation on the tunnel ground 1 by driving the excavation bit 20 provided at the tip portion with the drifter 52, and gradually digs from the mirror surface 200 and is driven into the tunnel ground 1. The Rukoto. A grout material 30 is injected between the cast steel pipe 2 and the surrounding tunnel ground 1 from the inner space 5 of the steel pipe 2 through a predetermined hole, and the tunnel ground 1 and the steel pipe 2 are integrated. Is done.

また、地山補強材10を構成する上述のGFRP材3は、鋼管2の内空5に挿入可能な幅、厚みを有する棒状の部材であり、一例としては、図1にて示すように平板状に成形された部材を採用できる。本実施形態の地山補強材10の場合、こうした平板状のGFRP材3を、スペーサー4を介して3つ組み合わせ、一体のGFRP材3として鋼管2の内空5に挿入した構造となっている。   Moreover, the above-mentioned GFRP material 3 constituting the natural ground reinforcing material 10 is a rod-like member having a width and a thickness that can be inserted into the inner space 5 of the steel pipe 2. As an example, as shown in FIG. A member formed into a shape can be employed. In the case of the natural ground reinforcing material 10 of the present embodiment, three such flat plate-like GFRP materials 3 are combined via a spacer 4 and inserted into the inner space 5 of the steel pipe 2 as an integral GFRP material 3. .

GFRP材3は、ガラス繊維強化プラスチック材であり、母材のプラスチックにガラス繊維を混入し、主に引張強度を高めた複合材料である。このGFRP材3は、地山補強材10に必要となる引張耐力、すなわちトンネル地山1から鏡面200に作用する押し出しに伴う軸力に抵抗可能な強度を備えるよう、予め、部材やサイズの選定を行うものとする。   The GFRP material 3 is a glass fiber reinforced plastic material, and is a composite material in which glass fiber is mixed into a base material plastic and mainly the tensile strength is increased. The GFRP material 3 is selected in advance so as to have a strength capable of resisting the tensile strength required for the natural ground reinforcing material 10, that is, the axial force accompanying the extrusion acting on the mirror surface 200 from the tunnel natural ground 1. Shall be performed.

なお、上述のスペーサー4は、GFRP材3の少なくとも両端において、各GFRP材3の側面と嵌合し、各GFRP材3の位置関係を固定するように構成されている。また、スペーサー4は、その断面中心において、充填材7の注入管8を挿通させる挿通孔11を有している。注入管8は、鋼管2の内空5に対するGFRP材3の挿入後、適宜な圧送装置から供給されたモルタルなどの充填材7を、鋼管2の内空5に導く管路となる。本実施形態における注入管8は、長さの異なる複数の補助注入管9を内包しているものとする。各補助注入管9の長さは、図3にて例示するように、鋼管2の内空5にて偏り無く充填材7が注入されるよう、鏡面200から鋼管2の先端に向けて一定間隔毎の所定位置に至る各長さに対応したものとなる。   The spacer 4 described above is configured to be fitted to the side surface of each GFRP material 3 at least at both ends of the GFRP material 3 to fix the positional relationship of each GFRP material 3. The spacer 4 has an insertion hole 11 through which the injection tube 8 of the filler 7 is inserted at the center of the cross section. The injection pipe 8 serves as a conduit that guides the filler 7 such as mortar supplied from an appropriate pumping device to the inner space 5 of the steel pipe 2 after the GFRP material 3 is inserted into the inner space 5 of the steel pipe 2. The injection tube 8 in this embodiment includes a plurality of auxiliary injection tubes 9 having different lengths. As illustrated in FIG. 3, the length of each auxiliary injection pipe 9 is set at a constant interval from the mirror surface 200 toward the tip of the steel pipe 2 so that the filler 7 is injected without deviation in the inner space 5 of the steel pipe 2. It corresponds to each length reaching each predetermined position.

こうして鏡面200からトンネル地山1に施工された地山補強材10は、押し出しに伴う引張軸力に抵抗する地山補強構造100を形成する。図2の例では、トンネル掘進方向に向けて打設する鏡ボルトとしての地山補強材10を示しているが、この他にも、レッグパイルやサイドパイルのような脚部補強パイル、或いはロックボルトに本実施形態の地山補強材10を適用するとしてもよい。   The natural ground reinforcing material 10 thus constructed from the mirror surface 200 to the tunnel natural ground 1 forms a natural ground reinforcing structure 100 that resists the tensile axial force accompanying extrusion. In the example of FIG. 2, the ground reinforcing material 10 as a mirror bolt to be placed in the tunnel excavation direction is shown, but in addition to this, a leg reinforcing pile such as a leg pile or a side pile, or a lock The natural ground reinforcing material 10 of this embodiment may be applied to the bolt.

続いて、上述した鋼管2における内空5の内壁6の特徴的な構造について説明する。図3は本実施形態における地山補強材10の構造例を示す側断面図であり、図4は本実施形態の地山補強材10における断面例1を示す図、図5は本実施形態の地山補強材10における断面例2を示す図である。鏡面200からトンネル地山1にかけて構築すべき地山補強構造100は、上述した軸力に抗する支点を確保するため、鏡面200からトンネル掘進方向に十分離れ、トンネル地山1において押し出し作用が所定レベル以下と推定される適宜な位置に、その先端部位110を配置し定着させる必要がある。   Then, the characteristic structure of the inner wall 6 of the inner space 5 in the steel pipe 2 mentioned above is demonstrated. FIG. 3 is a side sectional view showing a structural example of the natural ground reinforcing material 10 in the present embodiment, FIG. 4 is a diagram showing a cross sectional example 1 in the natural ground reinforcing material 10 in the present embodiment, and FIG. It is a figure which shows the example 2 of a cross section in the natural ground reinforcement. The ground reinforcement structure 100 to be constructed from the mirror surface 200 to the tunnel ground 1 is sufficiently separated from the mirror surface 200 in the tunnel excavation direction in order to secure a fulcrum against the above-described axial force, and the pushing action in the tunnel ground 1 is predetermined. It is necessary to place and fix the tip portion 110 at an appropriate position estimated to be below the level.

このため鋼管2の打設に際しては、その先端が上述の先端部位110の位置に達するまで、複数の鋼管2を互いの継手構造17により継続的に連結させることになる。この各鋼管2における継手構造17は、鋼管端部に備わるネジ継手である。   Therefore, when the steel pipe 2 is placed, the plurality of steel pipes 2 are continuously connected by the joint structure 17 until the tip of the steel pipe 2 reaches the position of the tip portion 110 described above. The joint structure 17 in each steel pipe 2 is a threaded joint provided at the end of the steel pipe.

また、本実施形態における鋼管2の内壁6には、鋼管端部から所定距離だけ離間した位置に、周方向に延びる凸部15が備わっている。凸部15は、図4、5にも示すように、内壁6の周上において不連続部16を挟んで円周状に配置されている。なお、図4、5においては、この凸部15の構造を明示するため、鋼管2の内空5について、継手構造17から鏡面200側の端部18に向けた視点で観察した場合の内壁6を、遠近感を加味して示している。   Moreover, the inner wall 6 of the steel pipe 2 in the present embodiment is provided with a convex portion 15 extending in the circumferential direction at a position separated from the end of the steel pipe by a predetermined distance. As shown in FIGS. 4 and 5, the convex portion 15 is arranged on the circumference of the inner wall 6 in a circumferential shape with the discontinuous portion 16 interposed therebetween. 4 and 5, in order to clearly show the structure of the convex portion 15, the inner wall 6 when the inner space 5 of the steel pipe 2 is observed from the viewpoint toward the end portion 18 on the mirror surface 200 side from the joint structure 17. Is shown with a sense of perspective.

トンネル地山1に対する鋼管2の打設時、鋼管先端の掘削ビット20で生じた掘削土の後方排出のため、鋼管2の内空5では排泥が効率良く行われる必要がある。この排泥は鋼管2の内壁6の滑らかさに応じて効率が上下するため、内壁6表面が滑らかであると鋼管打設工程に関して好適であるが、一方で、鋼管2とGFRP材3との一体化を確実なものとするためには、両者間に充填される充填材7が内壁6に対し確実に付着する必要もある。そこで、本実施形態における鋼管2の内壁6には、上述した凸部15を不連続部16を挟んで配置し、内空5における排泥が不連続部16を通して鋼管2の軸方向に流動可能な構成としている。従って、鋼管2の内空5において、排泥は特段阻害されることなく効率良く流動可能であり、全体の施工効率を良好に保つことが出来る。他方、内壁6の凸部15によって、GFRP材3が充填材7を介して鋼管2に確実に付着し、トンネル地山1から鋼管2に作用する引張軸力を効果的にGFRP材3に伝達することが可能になる。GFRP材3は十分な引張耐力を発揮するため、鋼管2から伝達された軸力に対して確実に抵抗し、地山補強材10として必要な引張耐力が確保されることとなる。   When the steel pipe 2 is driven to the tunnel ground 1, the mud must be efficiently discharged in the inner space 5 of the steel pipe 2 in order to discharge the excavated soil generated by the excavating bit 20 at the tip of the steel pipe. Since the efficiency of the waste mud increases and decreases depending on the smoothness of the inner wall 6 of the steel pipe 2, a smooth inner wall 6 surface is suitable for the steel pipe placing process, but on the other hand, between the steel pipe 2 and the GFRP material 3 In order to ensure integration, it is also necessary that the filler 7 filled between the two adheres securely to the inner wall 6. Therefore, the convex portion 15 described above is arranged on the inner wall 6 of the steel pipe 2 in the present embodiment with the discontinuous portion 16 interposed therebetween, and the waste mud in the inner space 5 can flow in the axial direction of the steel pipe 2 through the discontinuous portion 16. It has a simple structure. Therefore, in the inner space 5 of the steel pipe 2, the sludge can flow efficiently without being particularly obstructed, and the overall construction efficiency can be kept good. On the other hand, the projection 15 of the inner wall 6 ensures that the GFRP material 3 adheres to the steel pipe 2 via the filler 7 and effectively transmits the tensile axial force acting on the steel pipe 2 from the tunnel ground 1 to the GFRP material 3. It becomes possible to do. Since the GFRP material 3 exhibits a sufficient tensile strength, the GFRP material 3 reliably resists the axial force transmitted from the steel pipe 2, and the tensile strength necessary for the natural ground reinforcing material 10 is ensured.

また、上述した凸部15は、図4のように一列のみの場合と、図5のように、鋼管2の軸方向に複数列備わる場合のいずれも採用できる。このうち凸部15が複数列備わる場合、凸部15の各列間で、各々の不連続部16の位置が、鋼管軸方向において少なくとも一部一致する配置となっている。このような配置であれば、複数列となっている凸部15により、一列のみの凸部15の場合に比べて、GFRP材3が充填材7を介して鋼管2に更に確実に付着することになる。一方、複数列の凸部15が配置された構造であっても、不連続部16が一部連通する配置となっており、排泥は特段阻害されることなく効率良く流動可能である。よって全体の施工効率を良好に保つことが出来る。   Moreover, the case where the convex part 15 mentioned above is only one row like FIG. 4 and the case where multiple rows | lines are provided in the axial direction of the steel pipe 2 like FIG. 5 are employable. Among these, when the convex parts 15 are provided in a plurality of rows, the positions of the discontinuous parts 16 are arranged so as to at least partially coincide with each other between the rows of the convex parts 15. With such an arrangement, the GFRP material 3 is more reliably attached to the steel pipe 2 via the filler 7 by the plurality of rows of projections 15 than in the case of only one row of projections 15. become. On the other hand, even in a structure in which a plurality of rows of convex portions 15 are arranged, the discontinuous portions 16 are partially communicated, and the waste mud can flow efficiently without being particularly disturbed. Therefore, the overall construction efficiency can be kept good.

なお、本実施形態では、凸部15が、継手構造17すなわち鋼管2の端部から所定距離以内の内壁6に位置する例を示したが、製造時点から鋼管2に凸部15を設ける仕様となっている場合、そうした鋼管端部からの距離に無関係に凸部15を配置する構成としてもよい。   In addition, in this embodiment, although the convex part 15 showed the example located in the inner wall 6 within the predetermined distance from the joint structure 17, ie, the edge part of the steel pipe 2, the specification which provides the convex part 15 in the steel pipe 2 from the time of manufacture In this case, the convex portion 15 may be arranged regardless of the distance from the end portion of the steel pipe.

続いて、本実施形態における地山補強材10について、上述のGFRP材3による強度向上効果を把握するために行った引張試験について説明する。ここでは、供試体として長さ1mの鋼管を採用し、各鋼管同士を溶接・ネジ継手で繋ぎ、その内空にGFRP材(幅40mm×厚さ7mm×長さ2.0m:3本)を挿入後、充填材たるモルタル(W/C=61.1%)を充填し、24時間後に引張試験を行った。なお、引張試験に際しては供試体両端の鋼管のみを油圧ジャッキに固定し、引張荷重を与えた。   Then, the tension test performed in order to grasp | ascertain the strength improvement effect by the above-mentioned GFRP material 3 about the natural ground reinforcement material 10 in this embodiment is demonstrated. Here, a steel pipe having a length of 1 m is adopted as a specimen, and each steel pipe is connected by welding and a screw joint, and GFRP material (width 40 mm × thickness 7 mm × length 2.0 m: 3 pieces) is formed in the inner space. After insertion, mortar (W / C = 61.1%) as a filler was filled, and a tensile test was performed 24 hours later. In the tensile test, only the steel pipes at both ends of the specimen were fixed to a hydraulic jack, and a tensile load was applied.

また、鋼管内壁に設ける凸部については、溶接突起全周1列(図6参照)、溶接突起半周(3分割)×1列および2列(上述した図4、5)、の構成を対象とすると共に、削り加工により鋼管内壁に凹部を設けた構成(図7参照)についても検討を行った。なお、供試体としての鋼管、GFRP材、充填材の各材料諸元を図8に、供試体の種類一覧を図9に示す(図中ではGFRP材を「フラットバー」と記載している)。   Moreover, about the convex part provided in a steel pipe inner wall, the structure of welding projection full circumference 1 row (refer FIG. 6), welding projection half circumference (3 divisions) x 1 row, and 2 rows (above-mentioned FIG. 4, 5) is object. At the same time, a configuration (see FIG. 7) in which a recess was provided on the inner wall of the steel pipe by grinding was also examined. In addition, each material specification of the steel pipe, GFRP material, and filler as a specimen is shown in FIG. 8, and a list of types of specimens is shown in FIG. 9 (in the figure, the GFRP material is described as “flat bar”). .

図10は本実施形態における引張試験結果を示す図であり、図11は本実施形態における引張試験結果のグラフ(荷重変位曲線)を示す図である。上述の供試体に対する引張試験結果は、いずれの供試体も、継手破断後、GFRP材の破断もしくはモルタルの引抜けにより破壊に至ったことを示している。なお図10、11における変位は供試体全体(L=2m)の引張変位であり、図11におけるグラフではGFRP材のみの場合に推定される荷重変位も示している。   FIG. 10 is a diagram showing a tensile test result in the present embodiment, and FIG. 11 is a diagram showing a graph (load displacement curve) of the tensile test result in the present embodiment. The tensile test results for the above-described specimens indicate that all specimens were broken due to the fracture of the GFRP material or the mortar pull-out after the joint fracture. The displacement in FIGS. 10 and 11 is the tensile displacement of the entire specimen (L = 2 m), and the graph in FIG. 11 also shows the load displacement estimated when only the GFRP material is used.

また、継手破断時の鋼管とGFRP材の荷重配分について算出し、図12に示す算出結果を得た。荷重配分の算出に際しては、GFRP材のひずみから負担荷重を逆算し、総荷重からそれを除すことで鋼管の負担荷重を算出することとした。   Moreover, it calculated about the load distribution of the steel pipe and GFRP material at the time of a joint fracture | rupture, and obtained the calculation result shown in FIG. When calculating the load distribution, the burden load of the steel pipe was calculated by calculating the burden load backward from the strain of the GFRP material and removing it from the total load.

以上の引張試験の結果によれば、充填モルタルと鋼管の付着強度は供試体(1)の試験結果より、150kN/m程度と推定される。また、継手破断強度は、溶接継手で500kN〜540kN程度、ネジ継手で460kN〜520kN程度であった。また、鋼管の負担荷重によれば、溶接継手単体の破断は365kN〜400kN、ネジ継手単体の破断が300kN程度で発生したことが分かる。また、GFRP材の負担荷重は溶接継手で100〜170kN、ネジ継手で190〜230kNであった。   According to the result of the above tensile test, the adhesion strength between the filled mortar and the steel pipe is estimated to be about 150 kN / m from the test result of the specimen (1). The joint breaking strength was about 500 kN to 540 kN for the welded joint and about 460 kN to 520 kN for the threaded joint. Moreover, according to the burden load of a steel pipe, it turns out that the fracture | rupture of the welded joint single-piece | unit occurred at about 365 kN-400 kN, and the fracture | rupture of the threaded joint single-piece | unit occurred about 300 kN. The burden load of the GFRP material was 100 to 170 kN for the welded joint and 190 to 230 kN for the threaded joint.

また、GFRP材による補強効果は、鋼管内壁における凹凸の別で踏まえると、(削り加工による凹部)<(溶接突起半周1列)<(溶接突起全周1列)<(溶接突起全周2列)の順で補強効果が大きくなることが判明し、本実施形態における凸部による効果の有効性が確認できた。また、GFRP材により、溶接継手・ネジ継手部ともに強度500kN以上の耐力が得られ、継手破断後は、GFRP材が耐力を発揮し、弾塑性的に耐力を発揮することが確認できた。   In addition, the reinforcing effect of the GFRP material is based on the unevenness of the inner wall of the steel pipe. (Concavity by machining) <(1 row of weld projection half circumference) <(1 row of weld projection full circumference) <(2 rows of weld projection full circumference) It was found that the reinforcing effect increased in the order of), and the effectiveness of the effect of the convex portion in this embodiment could be confirmed. Moreover, the strength of 500 kN or more was obtained for both the welded joint and the threaded joint by the GFRP material, and it was confirmed that the GFRP material exhibited the yield strength after the joint breakage and exhibited the elastoplastic strength.

本実施形態によれば、地山の掘削面に生じる軸力に効果的に抵抗し、トンネル地山の安定化を図ることが可能となる。   According to the present embodiment, it is possible to effectively resist the axial force generated on the excavation surface of the natural ground and to stabilize the tunnel natural ground.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

1 トンネル地山
2 鋼管
3 GFRP材
4 スペーサー
5 鋼管内空
6 鋼管内壁
7 充填材
8 注入管
9 補助注入管
10 地山補強材
11 挿通孔
15 凸部
16 不連続部
17 継手構造
18 鋼管端部
20 掘削ビット
30 グラウト材
45 トンネル坑内
50 油圧ジャンボ
51 ブーム
52 ドリフタ
100 地山補強構造
110 先端部位
200 鏡面
DESCRIPTION OF SYMBOLS 1 Tunnel ground 2 Steel pipe 3 GFRP material 4 Spacer 5 Steel pipe inner space 6 Steel pipe inner wall 7 Filler 8 Injection pipe 9 Auxiliary injection pipe 10 Ground mountain reinforcement 11 Insertion hole 15 Convex part 16 Discontinuous part 17 Joint structure 18 Steel pipe end part 20 Drilling Bit 30 Grout Material 45 Tunnel Tunnel 50 Hydraulic Jumbo 51 Boom 52 Drifter 100 Ground Mountain Reinforcement Structure 110 Tip Part 200 Mirror Surface

Claims (2)

トンネル地山に打設される鋼管と、当該鋼管内に挿入される棒状のGFRP材と、前記鋼管の内空において鋼管内壁と前記GFRP材との間に充填される充填材とからなり、
前記鋼管の内壁沿いに周方向に延びる凸部が設けられ、該凸部は周方向に不連続となっており、
前記凸部が、前記鋼管の軸方向に複数列備わっており、隣接する一組の前記凸部の間で、各々の不連続部の位置が、鋼管軸方向において一部のみ一致したものであることを特徴とする地山補強材。
A steel pipe which is Da設the tunnel natural ground, Ri Do from the GFRP material of the rod-shaped to be inserted into the steel pipe, the filling material is filled between the steel pipe inner wall GFRP material in the inner space of the steel pipe,
A convex portion extending in the circumferential direction is provided along the inner wall of the steel pipe, and the convex portion is discontinuous in the circumferential direction,
The convex portions are provided in a plurality of rows in the axial direction of the steel pipe, and the positions of the discontinuous portions are only partially matched in the axial direction of the steel pipe between a pair of adjacent convex portions. A natural reinforcing material characterized by that.
請求項1に記載の地山補強材をトンネル地山に施工してなることを特徴とする地山補強構造。 A natural ground reinforcement structure, wherein the natural ground reinforcement according to claim 1 is applied to a tunnel natural ground.
JP2013238242A 2013-11-18 2013-11-18 Natural mountain reinforcement and natural mountain reinforcement structure Active JP6263979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013238242A JP6263979B2 (en) 2013-11-18 2013-11-18 Natural mountain reinforcement and natural mountain reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238242A JP6263979B2 (en) 2013-11-18 2013-11-18 Natural mountain reinforcement and natural mountain reinforcement structure

Publications (2)

Publication Number Publication Date
JP2015098685A JP2015098685A (en) 2015-05-28
JP6263979B2 true JP6263979B2 (en) 2018-01-24

Family

ID=53375482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238242A Active JP6263979B2 (en) 2013-11-18 2013-11-18 Natural mountain reinforcement and natural mountain reinforcement structure

Country Status (1)

Country Link
JP (1) JP6263979B2 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331748A (en) * 1994-06-06 1995-12-19 Fujita Corp Steel column jointing method
IT1275231B (en) * 1995-02-09 1997-07-31 Sireg S P A Soc It Di Ricerca DEVICE FOR REINFORCEMENT THE CONSOLIDATION AND STABILIZATION OF THE LAND PARTICULARLY SUITABLE FOR PREVENTING LANDSLIDES OR DEFORMATIONS OF THE EXCAVATION FRONT IN GALLERIES OR EXCAVATIONS IN THE TRENCH
JPH11173059A (en) * 1997-12-12 1999-06-29 Ohbayashi Corp Drilling method and coupling therefor
JP3664361B2 (en) * 1998-07-31 2005-06-22 新日本製鐵株式会社 Method of burying steel pipe support piles
JP2002294694A (en) * 2001-04-02 2002-10-09 Sumitomo Metal Ind Ltd Junction structure and junction method for steel pipe
JP4644972B2 (en) * 2001-05-10 2011-03-09 Jfeスチール株式会社 Steel pipe joint structure
JP4026771B2 (en) * 2004-03-24 2007-12-26 大成建設株式会社 Ground reinforcement structure and ground reinforcement construction method
JP4816327B2 (en) * 2006-08-22 2011-11-16 株式会社大林組 Widening part formation method of shield tunnel
JP5012149B2 (en) * 2007-04-03 2012-08-29 株式会社大林組 Ground support structure and ground support method
JP4942211B2 (en) * 2008-01-21 2012-05-30 鹿島建設株式会社 Ground reinforcement method
JP5311453B2 (en) * 2008-04-22 2013-10-09 鹿島建設株式会社 Ground reinforcement method
JP2010077605A (en) * 2008-09-24 2010-04-08 Shimizu Corp Construction method for widening tunnel
JP5677728B2 (en) * 2009-04-23 2015-02-25 株式会社大林組 Tunnel reinforcement method, tunnel reinforcement structure
JP5548398B2 (en) * 2009-06-29 2014-07-16 株式会社大林組 Steel pipe for ground reinforcement and ground reinforcement structure
JP5464961B2 (en) * 2009-10-06 2014-04-09 株式会社熊谷組 tube
JP4958961B2 (en) * 2009-10-19 2012-06-20 鹿島建設株式会社 Construction method of members
JP5806576B2 (en) * 2011-10-06 2015-11-10 鹿島建設株式会社 Pipe roof and pipe roof construction method

Also Published As

Publication number Publication date
JP2015098685A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6390321B2 (en) Threaded joints for steel pipes
JP6395524B2 (en) Steel pipe for ground reinforcement and method for manufacturing the same
JP7366381B2 (en) Steel pipe for ground reinforcement
JP6661449B2 (en) Rock bolt
JP2007205163A (en) Tunnel structure and construction method of tunnel
JP7165347B2 (en) Excavation method using pre-received steel pipes for tunnel construction
CN106869137A (en) One kind mixing steel reinforcement cage and foundation pit supporting pile
JP6263979B2 (en) Natural mountain reinforcement and natural mountain reinforcement structure
JP2014037714A (en) Long mirror bolt construction method
JP2012158969A (en) Natural ground reinforcing steel pipe
JP3889750B2 (en) Face stabilization method in underground structure construction method
JP6071127B2 (en) Coupling structure of natural ground reinforcement pipe, coupler and natural ground reinforcement pipe
CN102434172A (en) Roadway surrounding rock stability control method for back grouting and filling
JP5555050B2 (en) Construction structure of rebar insertion work using composite rebar
US20180291582A1 (en) Anchor having fixing device at side of pressure plate to depress land slope and method of installing same
JP4844477B2 (en) Synthetic wall structure and its construction method
KR100869369B1 (en) The ground reinforcement apparatus and method grouting type using bundle steel pipe
KR100446586B1 (en) Soil-Nail able to Withdraw Itself by Blasting
KR102643419B1 (en) Reusable direct boring bit device with improved straightness
JP5548398B2 (en) Steel pipe for ground reinforcement and ground reinforcement structure
JP5965753B2 (en) Non-widened long steel pipe tip receiving method and injection structure of the injection material in the terminal pipe used in the method
JP5161948B2 (en) Promotion method
KR101508645B1 (en) Connection Pipe for soilnail
KR102134477B1 (en) Construction method of close parallel tunnel for excavating and reinforcing tunnel pillar portion according to ground conditions
JP2009249911A (en) Steel pipe sheet pile and its connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6263979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150