JP4644972B2 - Steel pipe joint structure - Google Patents

Steel pipe joint structure Download PDF

Info

Publication number
JP4644972B2
JP4644972B2 JP2001140149A JP2001140149A JP4644972B2 JP 4644972 B2 JP4644972 B2 JP 4644972B2 JP 2001140149 A JP2001140149 A JP 2001140149A JP 2001140149 A JP2001140149 A JP 2001140149A JP 4644972 B2 JP4644972 B2 JP 4644972B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe
joint
steel
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001140149A
Other languages
Japanese (ja)
Other versions
JP2002332611A (en
Inventor
慎吾 水谷
敏雄 篠原
公寿 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001140149A priority Critical patent/JP4644972B2/en
Publication of JP2002332611A publication Critical patent/JP2002332611A/en
Application granted granted Critical
Publication of JP4644972B2 publication Critical patent/JP4644972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鋼管の継手構造、特に、山岳部などを通過する高速道路などの高橋脚に採用されている鋼管コンクリート合成橋脚の引張部材の継手構造に関する。
【0002】
【従来の技術】
図10は従来の鋼管コンクリート合成橋脚の説明図であり、図10の(a)は正面図、図10の(b)は図10の(a)のA−A矢視図である。図10において、鋼管コンクリート合成橋脚121は、複数本の鋼管123を縦方向に連結した引張部材124と、横方向に配設された帯鉄筋125と、該鋼管123および該帯鉄筋125を包み込んで打設されたコンクリート126により構成されている。
【0003】
該鋼管コンクリート合成橋脚は、山岳部を通過する高速道路などの高橋脚の橋梁を能率良く施工するものとされている。このとき、橋脚の高さが30m〜100m以上にも亘ることがある。
【0004】
前記引張部材の連結は、▲1▼鋼管の端部同士を突合せ溶接するもの。▲2▼下記重ね継手構造などがあり、前者は、雨風などの天候により工程が左右され、この溶接接合が工期上のクリティカルパスとなっていた。
【0005】
図11は特開平7−18016号公報に開示された従来の、鋼管・コンクリート複合構造柱状体における鋼管の重ね継手構造の概略を示す断面図である。
【0006】
図11において、上下2本の鋼管101、102がほぼ同一軸上に配置され、該鋼管101、102の端部の内周面にはリブ110、120が突設されている。一方、該鋼管101、102の継ぎ目部分200の内周部には両鋼管をまたいでジョイント鋼材(短鋼管)103が配設され、該ジョイント鋼材103の外周面にはリブ130が突設されている。そして、前記鋼管101、102および前記ジョイント鋼材103の隙間にはコンクリート105が打設されている。
【0007】
すなわち、該鋼管の重ね継手構造においては、下方の鋼管101の上端部の内部に、ジョイント鋼材103を配置し、次に、該下方の鋼管101の上に上方の鋼管102を配置し、これら鋼管101、102の内部にコンクリート104を打設するだけで、これら鋼管101、102を接合することができるものである。
【0008】
したがって、前記鋼管101、102内部のコンクリート打設に引き続きまたは並行して、これら鋼管101、102の外周部にもコンクリート106を打設すれば、鋼管コンクリート合成橋脚の一部が容易に形成され、順次継ぎ足しできるから、前記工程を繰り返すことにより、簡単な工事で能率良く、また十分な強度の鋼管コンクリート合成橋脚を構築することが可能になる。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来技術においては、以下のような問題がある。すなわち、
1)背が高い高橋脚では、橋脚自体の自重を低減するために橋脚内部に内型枠を配置してコンクリートを打設するのが一般的であるものの、従来技術では、鋼管内部にもコンクリートが充填されている。
【0010】
2)鋼管とジョイント鋼材の隙間に、該鋼管内に充填するコンクリートを侵入させ、該侵入したコンクリートにより、鋼管とジョイント鋼材の接合を図っているから、その接合強度が不足し、また、前記充填したコンクリートが固化するまで、次工程(もう一段上の鋼管との接合工程)に移ることができないため、工期の短縮が困難である。
【0011】
3)さらに、鋼管の端面同士の付き当て部に隙間が生じ、前記充填されたコンクリートが流逸する。
【0012】
4)鋼管の内リブとジョイント鋼材の外リブが同じ位相で向かい合っているから、該部分のコンクリートが極端に薄くなり、亀裂が発生し易いいため、鋼管とジョイント鋼材との間で力の伝達に支障が生じる。
【0013】
本発明はかかる問題点を解決するためになされたものであり、鋼管内部にコンクリートを充填せずに、鋼管が、迅速に容易に接合され、かつ十分な接合強度を保証する、鋼管コンクリート合成橋脚の引張部材の継手構造を提供することを目的とする。
【0014】
【課題を解決するための手段】
このような課題を解決するための本発明の、鋼管の継手構造の特徴は、以下のとおりである。
【0015】
[1]鋼管内部にコンクリートを充填せずに縦方向に連結した複数本の鋼管と、横方向に配設された帯鉄筋と、前記鋼管および前記帯鉄筋を包み込んで打設されたコンクリートを備えた鋼管コンクリート合成橋脚における鋼管の継手構造であって、
前記鋼管のうちの一対の鋼管の突き合せ端部を含む外周部または内周部に配置された継手管と、該一対の鋼管の端部と該継手管との隙間に打設されたグラウト材を有し、
前記鋼管の前記グラウト材が打設される範囲の下端に設置され、前記グラウト材の流逸を防止し、前記継手管が載置される底部材と、
前記鋼管の前記グラウト材が打設される範囲に設置された、突起または突条からなる支圧材と、
前記継手管の前記グラウト材が打設される範囲に設置された、突起または突条からなる支圧材とを具備し、
前記底部材が前記鋼管の内周または外周に配置された環状のもので、かつ該部材の上面が円錐状にテーパ加工されたものであって、前記継手管の下端面が前記底部材の上面に整合するように円錐状にテーパ加工されていることを特徴とする鋼管の継手構造。
[2]前記グラウト材が、設計基準強度σck=6000kPaの速硬性高強度モルタルであることを特徴とする[1]記載の鋼管の継手構造。
[3]前記鋼管の突き合せ端面に、モルタルの漏れ止め用の樹脂またはパッキングを配置、あるいは、該配置に重ねて速硬性高強度モルタルを打設することを特徴とする[1]または[2]記載の鋼管の継手構造。
[4]前記鋼管に設置された支圧材と、前記継手管に設置された支圧材とが、管軸方向で互い違いに配置されていることを特徴とする[1]〜[3]の何れか一つに記載の鋼管の継手構造。
[5]前記継手管が、グラウト材の打設を確認するための空気抜き兼充填確認穴を、管軸方向に複数有すことを特徴とする[1]〜[4]の何れか一つに記載の鋼管の継手構造。
[6]前記継手管が、突条付き圧延鋼板により形成された内面リブ付鋼管または外面リブ付鋼管であることを特徴とする[1]〜[5]の何れか一つに記載の鋼管の継手構造。
[7]前記鋼管に設置された支圧材または前記継手管に設置された支圧材が、管軸方向または周方向にそれぞれ複数配置され、該支圧材間の隙間が略T字状をなすことを特徴とする[1]〜[5]の何れか一つに記載の鋼管の継手構造。
[8]前記継手管が、前記鋼管の一方に前記底部材または取付材を介して溶接されていることを特徴とする[1]〜[]の何れか一つに記載の鋼管の継手構造。
【0016】
【発明の実施の形態】
[実施の形態1]
図1、図2および図3は、本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の一実施形態を示す全体斜視図、部分斜視図および部分断面図である。図1、図2および図3において、引張部材1は、第一の鋼管10と第二の鋼管20と第三の鋼管30を、継手管40および継手管50により接合したものであって、継手管40と第一の鋼管10の隙間61、継手管40と第二の鋼管20の隙間62、継手管50と第二の鋼管20との隙間63、継手管50と第三の鋼管30との隙間64には、それぞれ速硬性高強度モルタル70(以下、モルタル70と称す)が圧入されている。
【0017】
すなわち、それぞれの前記第一の鋼管10と前記第二の鋼管20は、前記継手管40の略中央で突き当たり、該突き当たり部80には、樹脂またはパッキン81が配置され、前記モルタル70の流逸を防止している。また、継手管40の下端面は、第二の鋼管20に設置された底部材22に、樹脂またはパッキン91を介して載置されている。また、該底部材22には、継手管40の水平方向の位置を決める位置決め部材23が設置されている。
【0018】
さらに、継手管40の下端部には、モルタル70を圧入するためのモルタル圧入口42が穿設され、該モルタル圧入口42にモルタルを圧送するモルタル圧送管43が接合される。また、継手管40の側面には管軸方向に複数の空気抜き兼充填確認穴44が穿設されている。
【0019】
したがって、あらかじめ第二の鋼管20に底部材が設置されている場合は、1)継手管40内に第一の鋼管10を挿入し、該第一の鋼管10の下端面を樹脂またはパッキン81を介して前記第二の鋼管20の上端面に載置する。
2)該状態(前記第一の鋼管10は図示しない吊り上げ手段により吊り下げられている)において、継手管40を、第二の鋼管20に設置された底部材22に樹脂またはパッキン91を介して載置し(位置決め部材23により位置決めされている)。
3)該状態(前記第一の鋼管10は図示しない吊り上げ手段により吊り下げれている)において、前記モルタル圧入口42よりモルタルを圧入する。
4)該モルタル圧入により、圧入されたモルタルは、まず、円周方向に充填され、やがて、管軸方向で上方に充填されていく。
5)したがって、下方の空気抜き兼充填確認穴44から充填されたモルタル70が押出されることにより、該充填が確認され、該押出し現象は下方から上方の充填確認穴44に移動していく。
6)ここで、モルタル70が押出されている空気抜き兼充填確認穴44を、別途用意した栓45により閉塞して、7)前記モルタルの圧入を継続し、前記確認と前記閉塞を繰り返す。
【0020】
または、第二の鋼管20に底部材が設置されていない場合は、1)継手管40内に第二の鋼管20を挿入し、2)第一の鋼管10の下端面を樹脂またはパッキン81を介して前記第二の鋼管20の上端面に載置する。
3)該状態(前記第一の鋼管10は図示しない吊り上げ手段により吊り下げられている)において、継手管40を、第一の鋼管10の外周を包囲する位置まで持ち上げ、
4)底部材22を第二の鋼管20の所定位置に設置し、
5)該底部材22に樹脂またはパッキン91を介して、前記継手管40を載置する(位置決め部材23により位置決めされている)。
6)該状態(前記第一の鋼管10は図示しない吊り上げ手段により吊り下げられている)において、前記モルタル圧入口42よりモルタルを圧入する。
7)該モルタル圧入により、圧入されたモルタルは、まず、円周方向に充填され、やがて、管軸方向で上方に充填されていく。
8)したがって、下方の空気抜き兼充填確認穴44から充填されたモルタル70が押出されることにより、該充填が確認され、該押出し現象は下方から上方の充填確認穴44に移動していく。
9)ここで、モルタル70が押出されている空気抜き兼充填確認穴44を、別途用意した栓45により閉塞して、10)前記モルタルの圧入を継続し、前記確認と前記閉塞を繰り返すし、11)やがて、最高位置にある空気抜き兼充填確認穴44から前記モルタルが流れ出た時点で、前記モルタルの圧入を完了する。
【0021】
以上の工程により、引張部材1を容易に、かつ確実に製造することが可能になる。
【0022】
図3において、前記第一の鋼管10および前記第二の鋼管20の外周面には、円周上に複数の鋼管側支圧材11および21が管軸方向に複数段設置され,一方、前記継手管40の内周面にも同様に、円周上に複数の継手管側支圧材41が管軸方向に複数段設置されている。さらに、鋼管側支圧材11と継手管側支圧材41、および鋼管側支圧材21と継手管側支圧材41は何れも、管軸方向で互い違いに配置されている。したがって、鋼管側支圧材11と継手管側支圧材41、および鋼管側支圧材21と継手管側支圧材41が同じ位相で対峙することがないから、前記モルタル70の充填に際し、モルタル70が移動する隙間が保証される。
【0023】
図4は、本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の一実施形態におけ力の伝達を説明する部分断面図である。なお、図3で説明した実施の形態1と同じ部分には、これと同じ符号を付し、一部の説明を省略する。
【0024】
図4の(a)において、モルタル70が固化した状態において、第一の鋼管10と第二の鋼管20の間に引張り力が作用した場合、第一の鋼管10と継手管40の間のせん断力、および第二の鋼管20と継手管40の間のせん断力を受けるモルタル層の厚さが保証されると共に、これらせん断力が、鋼管側支圧材11と継手管側支圧材41の間のモルタル70、および鋼管側支圧材21と継手管側支圧材41の間のモルタル70に圧縮力として作用するため、該モルタル70が破損し難い。一方、図4の(b)においては、鋼管側支圧材11と継手管側支圧材41、および鋼管側支圧材21と継手管側支圧材41が、何れも近接ないし対峙しているから、モルタル70に極端に薄い層が生じ、該部分において亀裂が発生し易い。
【0025】
[実施の形態2]
図5は、本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態における部分断面図である。なお、図3で説明した実施の形態1と同じ部分には、これと同じ符号を付し、一部の説明を省略する。図5において、第一の鋼管10と第二の鋼管20,は、継手管40の略中央で突き当たり、該突き当たり部80には、樹脂またはパッキン81が配置されている。
【0026】
さらに、前記第二の鋼管20の上端部の外周には、外縁部が上向きフランジを有す円環状の先行モルタル受け部材24が設置され、前記隙間61および前記隙間62にモルタル70が打設される前に、先行モルタル受け部材24内にモルタル71を先行して打設する。したがって、該モルタル71は、前記樹脂またはパッキン81と協働して前記モルタル70の流逸を防止している。
【0027】
[実施の形態3]
図6は、本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態における鋼管の部分斜視図である。なお、図3で説明した実施の形態1と同じ部分には、これと同じ符号を付し、一部の説明を省略する。図6において、第一の鋼管10の外周面には、円周上一段目に複数の鋼管側支圧材11a,11bが隙間11cだけ離れて設置され、二段目に複数の鋼管側支圧材11d,11eが隙間11fだけ離れて設置され、三段目に複数の鋼管側支圧材11g,11hが隙間11iだけ離れて設置されている。そして、隙間11cと隙間11f、および隙間11fと隙間11iは、円周方向で位相が異なり、略T字状に隙間を形成している。
【0028】
したがって、これら隙間11c、隙間11f、隙間11iが、充填時においてモルタル70が上昇する経路となり易い。さらに、これら隙間が前記T字状に配置されていることから、上昇してきたモルタル70は、円周方向に流れ易くなり、該円周方向に充満した後、これら隙間を経由して上昇し易くなる。よって、局所的な未充填を防止することができる。
【0029】
なお、これら支圧材の設置形態は、何れの鋼管においても、また、鋼管の上端部または下端部の一方または両方、あるいは、継手管においても実施可能であり、さらに、継手管が鋼管の内面に配置される場合も実施可能である。
【0030】
なお、本発明は、これら支圧材があらかじめ工場において溶接されるものに限定するものではなく、圧延により形成されたリブ付き鋼板から製造された内面リブ付き鋼管または外面リブ付き鋼管の場合には、該リブを所定の間隔で前記T字状に削除してもよい。
【0031】
[実施の形態4]
図7は、本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態における鋼管の部分断面図である。図7において、引張部材2は、第一の鋼管15と第二の鋼管25を、その内面に配置された継手管45により接合したものであって、継手管45と第一の鋼管15の隙間65、継手管45と第二の鋼管25の隙間66には、それぞれ速硬性高強度モルタル70(以下、モルタル70と称す)が圧入されている。
【0032】
なお、第二の鋼管25の内周で管端より所定の距離に底部材85が設置され、該底部材85に継手管45が載置されている。また、前記第二の鋼管25の上端部から所定の距離だけ下方(前記底板材85の設置位置より上方)に、モルタル70を圧入するためのモルタル圧入口27が穿設され、該モルタル圧入口27にモルタルを圧送するモルタル圧送管28が接合される。また、第二の鋼管25の側面には管軸方向に複数の空気抜き兼充填確認穴44が穿設されている。
【0033】
したがって、第一の鋼管15と第二の鋼管25の外周に突出物が無いから、これらの周りに鉄筋を配置する際の妨げとならない。なお、モルタル圧入口27や空気抜き兼充填確認穴17、29を穿設するものの、第一の鋼管15と継手管45、および第二の鋼管25と継手部45がそれぞれ重なっているため、この程度の断面欠損は強度には影響しない。
【0034】
さらに、継手管45の外面には継手管側支圧材46が、略T字状に隙間を形成しながら管軸方向に複数段設置され,一方、第一の鋼管15と第二の鋼管25の内周にも、前記継手管40の内周面と同様に、鋼管側支圧材16、26が管軸方向に複数段設置されている。このとき、鋼管側支圧材16と継手管側支圧材46および鋼管側支圧材26と継手管側支圧材46は何れも、管軸方向で互い違いに配置されている。
【0035】
[実施の形態5]
図8は、本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態における鋼管の部分断面図である。図8において、第一の鋼管15と第二の鋼管25は、継手管45の略中央で突き当たり、該突き当たり部82は、円錐状にテーパ加工され、前記第一の鋼管15と前記第二の鋼管25の位置決めを容易にし,かつ、前記モルタル70の流逸を防止している。
【0036】
また、第二の鋼管25の内周で管端より所定の距離に底部材86が設置され、該底部材86に継手管45が載置されている。このとき、底部材86の上面および継手管45の下端面は、円錐状にテーパ加工され、該底部材86と該継手管45の位置決めを容易にしている。なお、図7で説明した実施の形態4と同じ部分には、これと同じ符号を付し、一部の説明を省略する。
【0037】
なお、本発明は、底板材が鋼管の内周に配置され、すり鉢状の円錐凹部を有すものに限定するものではなく、底板材が鋼管の外周に配置され、円錐台状の凸部を有すものでもよい。
【0038】
[実施の形態6]
図9は、本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態を示す全体断面図である。なお、図3で説明した実施の形態1と同じ部分には、これと同じ符号を付し、一部の説明を省略する。図9において、引張部材3は、第一の鋼管10と第二の鋼管20を、継手管40により接合したものであって、継手管40と第一の鋼管10は、連結用リング材15を介して溶接接合され、継手管40と第二の鋼管20の隙間62には、速硬性高強度モルタル70(以下、モルタル70と称す)が圧入されている。このとき、前記溶接接合は、あらかじめ工場において実施されるものである。また、第一の鋼管10の下端面と第二の鋼管20の上端面の当接部83に、樹脂またはパッキンが配置されていない。
【0039】
したがって、あらかじめ第二の鋼管20に底部材が設置されている場合は、
1)継手管40付き第一の鋼管10の下端面を、第二の鋼管20の上端面に載置する。
2)該状態(前記第一の鋼管10は図示しない吊り上げ手段により吊り下げられている)において、継手管40の下端面が、第二の鋼管20に設置された底部材22に当接する。
3)該状態(前記第一の鋼管10は図示しない吊り上げ手段により吊り下げられている)において、前記モルタル圧入口42よりモルタルを圧入する。
4)該モルタル圧入により、圧入されたモルタルは、まず、円周方向に充填され、やがて、管軸方向で上方に充填されていく。
5)したがって、下方の空気抜き兼充填確認穴44から充填されたモルタル70が押出されることにより、該充填が確認され、該押出し現象は下方から上方の充填確認穴44に移動していく。
6)ここで、モルタル70が押出されている空気抜き兼充填確認穴44を、別途用意した栓45により閉塞して、
7)前記モルタルの圧入を継続し、前記確認と前記閉塞を繰り返すし、
8)該モルタルが、前記当接部83の近傍に達したところで該圧入を完了する。
【0040】
または、第二の鋼管20に底部材が設置されていない場合は、前記工程1)および前記工程2)にかえて、
1)継手管40付き第一の鋼管10の下端面を、底部材22を貫通している第二の鋼管20の上端面に載置する。
2)該状態(前記第一の鋼管10は図示しない吊り上げ手段により吊り下げられている)において、底部材22を持ち上げて継手管40の下端面が当接し、底部材22を第二の鋼管20の側面に固定する。このとき、該当接部に樹脂またはパッキンを挟んでもよい。あるいは、底部材22を継手管40に固定し、このとき、底板材22と第二の鋼管20の側面との隙間に樹脂またはパッキンを挟んでもよい。
【0041】
したがって、モルタル70を第二の鋼管20の側面にのみ配置すればよいから、前記当接部83にモルタル70が到達することがなく、該当接部70に樹脂またはパッキンを配置しなくても、鋼管内部へモルタルが漏れることがない。また、連結用リング材15は第一の鋼管10の下端部近傍に設置しても、力の伝達に支障がないから、継手管40の長さは、継手管40と第ニの鋼管20との間で力を伝達するために必要な長さと略同じにすることができる。つまり、前記実施の形態1の場合に略半分の長さに短縮することができる。
【0042】
[実施例]
前記実施の形態1において、第一の鋼管10および第二の鋼管20が、外径1600mm、肉厚25mmの鋼管であって、これに支圧材11、21が、板厚19mm、幅40mmの平鋼を、管軸方向に隙間238mmで7段配置されている。
【0043】
一方、継手部材40は、外径1760mm、肉厚25mm、長さ3360mmの鋼管であって、これに支圧材41が、板厚19mm、幅40mmの平鋼を、管軸方向に隙間238mmで14段配置されている。
【0044】
また、空気抜き兼充填確認穴44は、各支圧材の直下に、水平方向に約300mmピッチで配置されている。
【0045】
また、モルタル70(速硬性高強度モルタル70)として、設計基準強度σck=6000kPa(キロパスカル)のものを用いた。該モルタル70は、圧入後2〜3時間で2000kPa(キロパスカル)程度の圧縮強度が得られ、7日程度で6000kPa(キロパスカル)程度の圧縮強度を得られるものである。
【0046】
なお、前記継手部材40の支圧材41と、前記鋼管10,20の支圧材11,21はそれぞれ互い違いに配置されているから、該モルタル70の半径方向の厚さは55mmで、最小厚さ(これらの支圧材の位置において)は36mmである。
【0047】
したがって、引張部材1の形成が容易迅速であって、圧入後2〜3時間あれば鋼管の鉛直性などを調整することが可能になり、その後は地震力に十分耐えるものである。
【0048】
なお、支圧材は前記細幅平鋼に限定するものではなく、例えば、丸鋼を溶接してもよく、その形状は設計事項である。さらに、前記支圧材を、円周方向に所定の間隔を設けて設置してもよい。
【0049】
【発明の効果】
以上のべた本発明の鋼管コンクリート合成橋脚の引張部材の継手構造によれば、以下のような顕著な効果が得られる。
1)現場における溶接作業または機械的締結作業を排除するから、迅速かつ安定した施工が可能になる。
2)支圧部材が設置された面の間に速硬性高強度モルタル70を圧入して鋼管と継手部材を接合するから、早期に確実な接合強度を得ることができる。
3)鋼管内部に継手部材を配置しない場合には、該鋼管内部に障害物がないから、該鋼管内部を多目的に利用することが容易になる。
4)鋼管の外周に継手部材を配置しない場合には、該鋼管の外周部に障害物がないから、該鋼管の周囲に鉄筋を自由に配置することができる。
【図面の簡単な説明】
【図1】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の一実施形態を示す全体斜視図である。
【図2】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の一実施形態を示す部分斜視図である。
【図3】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の一実施形態を示す部分断面図である。
【図4】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の一実施形態におけ力の伝達を説明する部分断面図である。
【図5】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態における部分断面図である。
【図6】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態における鋼管の部分斜視図である。
【図7】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態における鋼管の部分断面図である。
【図8】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態における鋼管の部分断面図である。
【図9】本発明に係る鋼管コンクリート合成橋脚の引張部材の継手構造の他の実施形態を示す全体断面図である。
【図10】従来の鋼管コンクリート合成橋脚がある。
【図11】従来の鋼管・コンクリート複合構造柱状体における鋼管の重ね継手構造の概略を示す断面図である。
【符号の説明】
1 引張部材
2 引張部材
3 引張部材
10 第一の鋼管
11 鋼管側支圧材
11a 鋼管側支圧材
11b 鋼管側支圧材
11c 隙間
11d 鋼管側支圧材
11e 鋼管側支圧材
11f 隙間
11g 鋼管側支圧材
11h 鋼管側支圧材
11i 隙間
15 第一の鋼管(図8)または連結用リング材(図9)
16 鋼管側支圧材
17 空気抜き兼充填確認穴
20 第二の鋼管
21 鋼管側支圧材
22 底部材
23 位置決め部材
24 底部材
25 第二の鋼管
26 鋼管側支圧材
27 モルタル圧入口
28 モルタル圧送管
29 空気抜き兼充填確認穴
30 第三の鋼管
40 継手管
41 継手管側支圧材
42 モルタル圧入口
43 モルタル圧送管
44 空気抜き兼充填確認穴
45 継手管
50 継手管
61 隙間
62 隙間
63 隙間
64 隙間
70 速硬性高強度モルタル(モルタル)
80 突き当たり部
81 樹脂またはパッキン
85 底部材
86 底部材
91 パッキン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe joint structure, and more particularly to a steel pipe concrete composite bridge pier tensile member joint structure employed in a high pier such as a highway passing through a mountainous area.
[0002]
[Prior art]
FIG. 10 is an explanatory view of a conventional steel pipe concrete composite bridge pier. FIG. 10 (a) is a front view, and FIG. 10 (b) is an AA arrow view of FIG. 10 (a). In FIG. 10, a steel pipe concrete composite bridge pier 121 encloses a tensile member 124 in which a plurality of steel pipes 123 are connected in the vertical direction, a band reinforcing bar 125 arranged in the horizontal direction, the steel pipe 123 and the band reinforcing bar 125. It is comprised by the concrete 126 laid.
[0003]
The steel pipe concrete composite pier is supposed to efficiently construct a bridge of a high pier such as an expressway passing through a mountainous area. At this time, the height of the pier may extend over 30m to 100m or more.
[0004]
The tension member is connected by (1) butt welding the ends of the steel pipe. {Circle around (2)} The following lap joint structure is available, and the former was affected by the weather such as rain and wind, and the welding joint became a critical path in the construction period.
[0005]
Figure 11 is a sectional view showing a conventional disclosed in Japanese Patent Laid-Open No. 7-1 5 8016, the outline of the lap joint structure of a steel pipe in the steel-concrete composite structure pillar.
[0006]
In FIG. 11, two upper and lower steel pipes 101 and 102 are arranged on substantially the same axis, and ribs 110 and 120 project from the inner peripheral surface of the ends of the steel pipes 101 and 102. On the other hand, a joint steel material (short steel pipe) 103 is disposed across the two steel pipes on the inner peripheral portion of the joint portion 200 of the steel pipes 101 and 102, and ribs 130 project from the outer peripheral surface of the joint steel material 103. Yes. Concrete 105 is placed in the gap between the steel pipes 101 and 102 and the joint steel material 103.
[0007]
That is, in the lap joint structure of the steel pipe, the joint steel material 103 is arranged inside the upper end portion of the lower steel pipe 101, and then the upper steel pipe 102 is arranged on the lower steel pipe 101. The steel pipes 101 and 102 can be joined by simply placing the concrete 104 inside the 101 and 102.
[0008]
Therefore, a part of the steel pipe concrete composite pier can be easily formed by placing concrete 106 on the outer periphery of the steel pipes 101, 102 in succession or in parallel with the concrete placing inside the steel pipes 101, 102. Since it can be added sequentially, it is possible to construct a steel pipe concrete composite bridge pier with sufficient strength and efficiency by simple construction by repeating the above steps.
[0009]
[Problems to be solved by the invention]
However, the above prior art has the following problems. That is,
1) For tall piers, it is common to place concrete inside the pier with an internal formwork in order to reduce the weight of the pier itself. Is filled.
[0010]
2) The concrete filled in the steel pipe is intruded into the gap between the steel pipe and the joint steel material, and the steel pipe and the joint steel material are joined by the intruded concrete. It is difficult to shorten the work period because the next process (joining process with another upper steel pipe) cannot be performed until the concrete is solidified.
[0011]
3) Further, a gap is generated in the abutting portion between the end faces of the steel pipe, and the filled concrete flows away.
[0012]
4) Since the inner ribs of the steel pipe and the outer ribs of the joint steel material face each other in the same phase, the concrete in that part becomes extremely thin and cracks easily occur, so that force is transmitted between the steel pipe and the joint steel material. Cause trouble.
[0013]
The present invention has been made to solve such problems, and the steel pipe-concrete composite pier, in which the steel pipe is rapidly and easily joined and sufficient joining strength is ensured without filling the steel pipe with concrete. It aims at providing the joint structure of the tension member of.
[0014]
[Means for Solving the Problems]
The features of the joint structure of the steel pipe of the present invention for solving such problems are as follows.
[0015]
[1] Provided with a plurality of steel pipes connected in the vertical direction without filling concrete inside the steel pipe , strip reinforcing bars arranged in the transverse direction, and concrete cast around the steel pipe and the strip reinforcing bars. A steel pipe joint structure in a steel pipe concrete composite pier,
A joint pipe disposed in an outer peripheral part or an inner peripheral part including a butted end part of a pair of steel pipes among the steel pipes, and a grout material placed in a gap between the end part of the pair of steel pipes and the joint pipe Have
A bottom member on which the grout material of the steel pipe is installed at the lower end of the range, prevents the grout material from flowing out, and the joint pipe is placed;
A bearing material made of protrusions or ridges installed in a range where the grout material of the steel pipe is placed;
A bearing member made of protrusions or ridges installed in a range where the grout material of the joint pipe is placed ;
The bottom member is an annular member disposed on the inner or outer periphery of the steel pipe, and the upper surface of the member is tapered in a conical shape, and the lower end surface of the joint pipe is the upper surface of the bottom member A steel pipe joint structure characterized by being tapered in a conical shape so as to match the above .
[2] The steel pipe joint structure according to [1], wherein the grout material is a fast-curing high-strength mortar having a design standard strength σck = 6000 kPa.
[3] A resin or packing for preventing leakage of mortar is disposed on the butt end face of the steel pipe, or a fast-curing high-strength mortar is placed over the arrangement, [1] or [2 ] The steel pipe joint structure described.
[4] The bearing members installed in the steel pipe and the bearing members installed in the joint pipe are alternately arranged in the pipe axis direction. The steel pipe joint structure according to any one of the above.
[5] In any one of [1] to [ 4] , the joint pipe has a plurality of air venting / filling confirmation holes for confirming the placement of the grout material in the pipe axis direction. The steel pipe joint structure described.
[6] The steel pipe according to any one of [1] to [ 5] , wherein the joint pipe is a steel pipe with an inner surface rib or a steel pipe with an outer surface rib formed of a rolled steel plate with ridges. Joint structure.
[7] A plurality of bearing members installed in the steel pipe or a bearing member installed in the joint pipe are arranged in the pipe axis direction or the circumferential direction, respectively, and the gap between the bearing members is substantially T-shaped. The steel pipe joint structure according to any one of [1] to [ 5] .
[8] The steel pipe joint structure according to any one of [1] to [ 7 ], wherein the joint pipe is welded to one of the steel pipes via the bottom member or a mounting material. .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
1, 2 and 3 are an overall perspective view, a partial perspective view and a partial sectional view showing an embodiment of a joint structure of a tensile member of a steel pipe concrete composite pier according to the present invention. 1, 2, and 3, a tension member 1 is obtained by joining a first steel pipe 10, a second steel pipe 20, and a third steel pipe 30 with a joint pipe 40 and a joint pipe 50. The gap 61 between the pipe 40 and the first steel pipe 10, the gap 62 between the joint pipe 40 and the second steel pipe 20, the gap 63 between the joint pipe 50 and the second steel pipe 20, and the joint pipe 50 and the third steel pipe 30. In the gaps 64, fast-curing high-strength mortar 70 (hereinafter referred to as mortar 70) is press-fitted.
[0017]
That is, each of the first steel pipe 10 and the second steel pipe 20 abuts at substantially the center of the joint pipe 40, and a resin or packing 81 is disposed at the abutting portion 80. Is preventing. Further, the lower end surface of the joint pipe 40 is placed on the bottom member 22 installed in the second steel pipe 20 via a resin or packing 91. The bottom member 22 is provided with a positioning member 23 that determines the position of the joint pipe 40 in the horizontal direction.
[0018]
Furthermore, a mortar pressure inlet 42 for press-fitting the mortar 70 is drilled at the lower end of the joint pipe 40, and a mortar pressure feed pipe 43 for pumping mortar is joined to the mortar pressure inlet 42. In addition, a plurality of air venting / filling confirmation holes 44 are formed in the side surface of the joint pipe 40 in the pipe axis direction.
[0019]
Therefore, when a bottom member is previously installed on the second steel pipe 20, 1) the first steel pipe 10 is inserted into the joint pipe 40, and the lower end surface of the first steel pipe 10 is made of resin or packing 81. And placed on the upper end surface of the second steel pipe 20.
2) In this state (the first steel pipe 10 is suspended by a lifting means not shown), the joint pipe 40 is connected to the bottom member 22 installed on the second steel pipe 20 via resin or packing 91. Placed (positioned by positioning member 23).
3) In this state (the first steel pipe 10 is suspended by a lifting means not shown), mortar is press-fitted from the mortar pressure inlet 42.
4) By the mortar press-fitting, the press-fitted mortar is first filled in the circumferential direction and eventually filled upward in the tube axis direction.
5) Therefore, when the mortar 70 filled from the lower air bleeder and filling confirmation hole 44 is extruded, the filling is confirmed, and the extrusion phenomenon moves from the lower part to the upper filling confirmation hole 44.
6) Here, the air venting / filling confirmation hole 44 through which the mortar 70 has been extruded is closed by a separately prepared stopper 45, and 7) the press-fitting of the mortar is continued, and the checking and the closing are repeated.
[0020]
Or when the bottom member is not installed in the 2nd steel pipe 20, 1) The 2nd steel pipe 20 is inserted in the joint pipe 40, 2) Resin or packing 81 is used for the lower end surface of the 1st steel pipe 10. And placed on the upper end surface of the second steel pipe 20.
3) In this state (the first steel pipe 10 is suspended by a lifting means not shown), the joint pipe 40 is lifted to a position surrounding the outer periphery of the first steel pipe 10;
4) Install the bottom member 22 at a predetermined position of the second steel pipe 20,
5) The joint pipe 40 is placed on the bottom member 22 via resin or packing 91 (positioned by the positioning member 23).
6) In this state (the first steel pipe 10 is suspended by a lifting means not shown), mortar is press-fitted from the mortar pressure inlet 42.
7) By the mortar press-fitting, the press-fitted mortar is first filled in the circumferential direction and eventually filled upward in the tube axis direction.
8) Therefore, when the mortar 70 filled from the lower air bleeder and filling confirmation hole 44 is extruded, the filling is confirmed, and the extrusion phenomenon moves from the lower part to the upper filling confirmation hole 44.
9) Here, the air venting and filling confirmation hole 44 through which the mortar 70 is extruded is closed by a separately prepared stopper 45, and 10) the press-fitting of the mortar is continued, and the confirmation and the blocking are repeated. Soon, when the mortar flows out from the air vent / filling confirmation hole 44 at the highest position, the press-fitting of the mortar is completed.
[0021]
Through the above steps, the tension member 1 can be easily and reliably manufactured.
[0022]
3 Te smell, wherein the outer peripheral surface of the first steel tube 10 and the second steel pipe 20, a plurality of steel pipes side pressure bearing member 11 and 21 on the circumference a plurality of stages disposed in the axial direction of the tube, whereas, Similarly, a plurality of joint pipe side support members 41 are provided in a plurality of stages in the pipe axis direction on the inner circumference of the joint pipe 40. Furthermore, the steel pipe side bearing material 11 and the joint pipe side bearing material 41 and the steel pipe side bearing material 21 and the joint pipe side bearing material 41 are alternately arranged in the pipe axis direction. Therefore, since the steel pipe side bearing material 11 and the joint pipe side bearing material 41, and the steel pipe side bearing material 21 and the joint pipe side bearing material 41 do not face each other in the same phase, when filling the mortar 70, A gap through which the mortar 70 moves is guaranteed.
[0023]
Figure 4 is a partial cross-sectional view for explaining a put that forces transmitted to an embodiment of the joint structure of the tension member of steel-concrete composite piers according to the present invention. The same parts as those in the first embodiment described with reference to FIG. 3 are denoted by the same reference numerals, and a part of the description is omitted.
[0024]
In FIG. 4A, when a tensile force acts between the first steel pipe 10 and the second steel pipe 20 in a state where the mortar 70 is solidified, the shear between the first steel pipe 10 and the joint pipe 40 is achieved. The thickness of the mortar layer subjected to the force and the shearing force between the second steel pipe 20 and the joint pipe 40 is guaranteed, and these shearing forces are applied to the steel pipe side bearing material 11 and the joint pipe side bearing material 41. Since it acts as a compressive force on the mortar 70 between and the mortar 70 between the steel pipe side bearing material 21 and the joint pipe side bearing material 41, the mortar 70 is hardly damaged. On the other hand, in FIG. 4B, the steel pipe side bearing material 11 and the joint pipe side bearing material 41, and the steel pipe side bearing material 21 and the joint pipe side bearing material 41 are close to each other or confront each other. Therefore, an extremely thin layer is formed in the mortar 70, and cracks are easily generated in the portion.
[0025]
[Embodiment 2]
FIG. 5 is a partial cross-sectional view of another embodiment of a joint structure for a tensile member of a steel pipe concrete composite pier according to the present invention. The same parts as those in the first embodiment described with reference to FIG. 3 are denoted by the same reference numerals, and a part of the description is omitted. In FIG. 5, the first steel pipe 10 and the second steel pipe 20 abut at the approximate center of the joint pipe 40, and a resin or packing 81 is disposed at the abutment portion 80.
[0026]
Further, on the outer periphery of the upper end portion of the second steel pipe 20, an annular leading mortar receiving member 24 whose outer edge portion has an upward flange is installed, and a mortar 70 is placed in the gap 61 and the gap 62. Before the mortar 71 is placed in advance in the preceding mortar receiving member 24. Therefore, the mortar 71 prevents the mortar 70 from flowing in cooperation with the resin or packing 81.
[0027]
[Embodiment 3]
FIG. 6 is a partial perspective view of a steel pipe in another embodiment of the joint structure of the tensile member of the steel pipe concrete composite pier according to the present invention. The same parts as those in the first embodiment described with reference to FIG. 3 are denoted by the same reference numerals, and a part of the description is omitted. In FIG. 6, on the outer circumferential surface of the first steel pipe 10, a plurality of steel pipe side support members 11a and 11b are installed in the first stage on the circumference apart from each other by a gap 11c, and a plurality of steel pipe side support materials are installed in the second stage. The materials 11d and 11e are installed apart by a gap 11f, and the plurality of steel pipe side bearing members 11g and 11h are installed apart by a gap 11i in the third stage. The gap 11c and the gap 11f, and the gap 11f and the gap 11i have different phases in the circumferential direction, and form a gap in a substantially T shape.
[0028]
Accordingly, the gap 11c, the gap 11f, and the gap 11i are likely to be a path for the mortar 70 to rise during filling. Furthermore, since these gaps are arranged in the T-shape, the mortar 70 that has risen is easy to flow in the circumferential direction, and after filling in the circumferential direction, it is easy to rise through these gaps. Become. Therefore, local unfilling can be prevented.
[0029]
In addition, the installation form of these bearing members can be implemented in any steel pipe, one or both of the upper end portion or the lower end portion of the steel pipe, or a joint pipe, and the joint pipe is an inner surface of the steel pipe. It is also possible to implement the arrangement.
[0030]
In addition, this invention is not limited to what these bearing materials are welded beforehand in a factory, In the case of the steel pipe with an inner surface rib or the steel pipe with an outer surface rib manufactured from the steel sheet with a rib formed by rolling The ribs may be deleted in the T shape at a predetermined interval.
[0031]
[Embodiment 4]
FIG. 7 is a partial cross-sectional view of a steel pipe in another embodiment of the joint structure of the tensile member of the steel pipe concrete composite pier according to the present invention. In FIG. 7, the tension member 2 is formed by joining a first steel pipe 15 and a second steel pipe 25 with a joint pipe 45 arranged on the inner surface thereof, and a gap between the joint pipe 45 and the first steel pipe 15. 65, fast-hardening high-strength mortar 70 (hereinafter, referred to as mortar 70) is press-fitted into the gap 66 between the joint pipe 45 and the second steel pipe 25.
[0032]
A bottom member 85 is installed at a predetermined distance from the pipe end on the inner periphery of the second steel pipe 25, and the joint pipe 45 is placed on the bottom member 85. Further, a mortar pressure inlet 27 for press-fitting the mortar 70 is formed below the upper end portion of the second steel pipe 25 by a predetermined distance (above the installation position of the bottom plate member 85). A mortar pressure feeding pipe 28 for pressure feeding mortar is joined to 27. In addition, a plurality of air venting / filling confirmation holes 44 are formed in the side surface of the second steel pipe 25 in the pipe axis direction.
[0033]
Therefore, since there are no protrusions on the outer periphery of the first steel pipe 15 and the second steel pipe 25, there is no hindrance when arranging reinforcing bars around these. Although the mortar pressure inlet 27 and the air venting / filling confirmation holes 17 and 29 are formed, the first steel pipe 15 and the joint pipe 45 and the second steel pipe 25 and the joint part 45 are overlapped with each other. The cross-sectional defect of does not affect the strength.
[0034]
Further, a joint pipe-side bearing material 46 is provided on the outer surface of the joint pipe 45 in a plurality of stages in the pipe axis direction while forming a substantially T-shaped gap, while the first steel pipe 15 and the second steel pipe 25 are provided. As in the inner peripheral surface of the joint pipe 40, a plurality of stages of the steel pipe side bearing members 16 and 26 are installed in the pipe axis direction. At this time, the steel pipe side bearing material 16 and the joint pipe side bearing material 46 and the steel pipe side bearing material 26 and the joint pipe side bearing material 46 are all arranged alternately in the pipe axis direction.
[0035]
[Embodiment 5]
FIG. 8 is a partial cross-sectional view of a steel pipe in another embodiment of a joint structure for a tensile member of a steel pipe concrete composite pier according to the present invention. In FIG. 8, the first steel pipe 15 and the second steel pipe 25 abut at the approximate center of the joint pipe 45, and the abutting portion 82 is tapered into a conical shape, and the first steel pipe 15 and the second steel pipe 25 The positioning of the steel pipe 25 is facilitated, and the mortar 70 is prevented from flowing.
[0036]
Further, a bottom member 86 is installed at a predetermined distance from the pipe end on the inner periphery of the second steel pipe 25, and the joint pipe 45 is placed on the bottom member 86. At this time, the lower end surface of the upper surface and the joint tube 45 of the bottom member 86 is tapered conically to facilitate the positioning of the bottom member 86 and the joint pipe 45. Note that the same parts as in the fourth embodiment described with reference to FIG. 7, the same reference numerals as those which, omitted part of the description.
[0037]
The present invention is not limited to the case where the bottom plate material is disposed on the inner periphery of the steel pipe and has a mortar-shaped conical concave portion, and the bottom plate material is disposed on the outer periphery of the steel pipe, and the truncated cone-shaped convex portion is provided. You may have it.
[0038]
[Embodiment 6]
FIG. 9 is an overall cross-sectional view showing another embodiment of the joint structure of the tensile member of the steel pipe concrete composite pier according to the present invention. The same parts as those in the first embodiment described with reference to FIG. 3 are denoted by the same reference numerals, and a part of the description is omitted. In FIG. 9, the tensile member 3 is obtained by joining a first steel pipe 10 and a second steel pipe 20 with a joint pipe 40, and the joint pipe 40 and the first steel pipe 10 include a connecting ring material 15 . Fast-hardening high-strength mortar 70 (hereinafter referred to as mortar 70) is press-fitted into the gap 62 between the joint pipe 40 and the second steel pipe 20. At this time, the welding joint is performed in advance in a factory. Further, no resin or packing is disposed at the contact portion 83 between the lower end surface of the first steel pipe 10 and the upper end surface of the second steel pipe 20.
[0039]
Therefore, when the bottom member is installed in the second steel pipe 20 in advance,
1) The lower end face of the first steel pipe 10 with the joint pipe 40 is placed on the upper end face of the second steel pipe 20.
2) In this state (the first steel pipe 10 is suspended by a lifting means (not shown)), the lower end surface of the joint pipe 40 comes into contact with the bottom member 22 installed on the second steel pipe 20.
3) In this state (the first steel pipe 10 is suspended by a lifting means not shown), mortar is press-fitted from the mortar pressure inlet 42.
4) By the mortar press-fitting, the press-fitted mortar is first filled in the circumferential direction and eventually filled upward in the tube axis direction.
5) Therefore, when the mortar 70 filled from the lower air bleeder and filling confirmation hole 44 is extruded, the filling is confirmed, and the extrusion phenomenon moves from the lower part to the upper filling confirmation hole 44.
6) Here, the air venting and filling confirmation hole 44 through which the mortar 70 is extruded is closed by a plug 45 prepared separately,
7) Continue to inject the mortar, repeat the check and blockage,
8) When the mortar reaches the vicinity of the contact portion 83, the press-fitting is completed.
[0040]
Or when the bottom member is not installed in the second steel pipe 20, in place of the step 1) and the step 2),
1) The lower end face of the first steel pipe 10 with the joint pipe 40 is placed on the upper end face of the second steel pipe 20 passing through the bottom member 22.
2) In this state (the first steel pipe 10 is suspended by a lifting means (not shown)), the bottom member 22 is lifted so that the lower end surface of the joint pipe 40 comes into contact with the bottom member 22 and the second steel pipe 20 Secure to the side of the. At this time, resin or packing may be sandwiched between the corresponding contact portions. Alternatively, the bottom member 22 may be fixed to the joint pipe 40, and at this time, resin or packing may be sandwiched between the bottom plate material 22 and the side surface of the second steel pipe 20.
[0041]
Therefore, since the mortar 70 only needs to be disposed on the side surface of the second steel pipe 20, the mortar 70 does not reach the contact portion 83, and no resin or packing is disposed on the contact portion 70. Mortar does not leak into the steel pipe. Further, even if the connecting ring member 15 is installed in the vicinity of the lower end of the first steel pipe 10, there is no hindrance to force transmission. Can be approximately the same length required to transmit force between the two. That is, in the case of the first embodiment, the length can be shortened to substantially half.
[0042]
[Example]
In the first embodiment, the first steel pipe 10 and the second steel pipe 20 are steel pipes having an outer diameter of 1600 mm and a wall thickness of 25 mm, and the bearing members 11 and 21 have a plate thickness of 19 mm and a width of 40 mm. Seven stages of flat steel are arranged with a gap of 238 mm in the tube axis direction.
[0043]
On the other hand, the joint member 40 is a steel pipe having an outer diameter of 1760 mm, a wall thickness of 25 mm, and a length of 3360 mm. The bearing member 41 is formed of a flat steel having a plate thickness of 19 mm and a width of 40 mm with a gap of 238 mm in the pipe axis direction. 14 stages are arranged.
[0044]
Moreover, the air venting / filling confirmation holes 44 are arranged at a pitch of about 300 mm in the horizontal direction directly below each supporting material .
[0045]
Further, as the mortar 70 (fast-curing high-strength mortar 70), a material having a design standard strength σck = 6000 kPa (kilopascal) was used. The mortar 70 can obtain a compressive strength of about 2000 kPa (kilopascal) in 2 to 3 hours after press-fitting, and can obtain a compressive strength of about 6000 kPa (kilopascal) in about 7 days.
[0046]
Incidentally, the bearing capacity material 41 of the joint member 40, the since Bearing member 11, 21 of the steel pipe 10, 20 are alternately arranged, the radial thickness of the mortar 70 is 55 mm, minimum thickness The length (at the position of these bearing members ) is 36 mm.
[0047]
Therefore, the tensile member 1 can be formed easily and quickly, and the verticality of the steel pipe can be adjusted within 2 to 3 hours after the press-fitting, and thereafter it can sufficiently withstand the seismic force.
[0048]
The bearing material is not limited to the narrow flat steel, and for example, round steel may be welded, and the shape is a design matter. Further, the pressure bearing member, may be installed with a predetermined interval in the circumferential direction.
[0049]
【The invention's effect】
According to the joint structure of the tensile member of the steel pipe concrete composite pier of the present invention described above, the following remarkable effects can be obtained.
1) Since welding work or mechanical fastening work on site is eliminated, quick and stable construction is possible.
2) Since the fast-hardening high-strength mortar 70 is press-fitted between the surfaces on which the bearing members are installed, and the steel pipe and the joint member are joined, reliable joining strength can be obtained at an early stage.
3) When no joint member is arranged inside the steel pipe, there is no obstacle inside the steel pipe, so that the inside of the steel pipe can be easily used for multiple purposes.
4) When no joint member is arranged on the outer periphery of the steel pipe, there are no obstacles on the outer periphery of the steel pipe, so that reinforcing bars can be arranged freely around the steel pipe.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing an embodiment of a joint structure of a tensile member of a steel pipe concrete composite pier according to the present invention.
FIG. 2 is a partial perspective view showing an embodiment of a joint structure for a tensile member of a steel pipe concrete composite pier according to the present invention.
FIG. 3 is a partial cross-sectional view showing an embodiment of a joint structure for a tensile member of a steel pipe concrete composite pier according to the present invention.
FIG. 4 is a partial cross-sectional view illustrating transmission of force in an embodiment of a joint structure of a tensile member of a steel pipe concrete composite pier according to the present invention.
FIG. 5 is a partial cross-sectional view of another embodiment of the joint structure of the tensile member of the steel pipe concrete composite pier according to the present invention.
FIG. 6 is a partial perspective view of a steel pipe in another embodiment of a joint structure for a tensile member of a steel pipe concrete composite pier according to the present invention.
FIG. 7 is a partial cross-sectional view of a steel pipe in another embodiment of a joint structure for a tensile member of a steel pipe concrete composite pier according to the present invention.
FIG. 8 is a partial cross-sectional view of a steel pipe in another embodiment of a joint structure of a tensile member of a steel pipe concrete composite pier according to the present invention.
FIG. 9 is an overall cross-sectional view showing another embodiment of the joint structure of the tensile member of the steel pipe concrete composite pier according to the present invention.
FIG. 10 shows a conventional steel pipe concrete composite pier.
FIG. 11 is a cross-sectional view showing an outline of a steel pipe lap joint structure in a conventional steel pipe / concrete composite structure columnar body.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tensile member 2 Tensile member 3 Tensile member 10 1st steel pipe 11 Steel pipe side bearing material 11a Steel pipe side bearing material 11b Steel pipe side bearing material 11c Crevice 11d Steel pipe side bearing material 11e Steel pipe side bearing material 11f Gap 11g Steel pipe Side bearing material 11h Steel pipe side bearing material 11i Clearance 15 First steel pipe (FIG. 8) or connecting ring material (FIG. 9)
16 Steel pipe side bearing material 17 Air venting and filling confirmation hole 20 Second steel pipe 21 Steel pipe side bearing material 22 Bottom member 23 Positioning member 24 Bottom member 25 Second steel pipe 26 Steel pipe side bearing material 27 Mortar pressure inlet 28 Mortar pressure feed Pipe 29 Air venting and filling confirmation hole 30 Third steel pipe 40 Joint pipe 41 Joint pipe side bearing material 42 Mortar pressure inlet 43 Mortar pumping pipe 44 Air venting and filling confirmation hole 45 Joint pipe 50 Joint pipe 61 Clearance 62 Clearance 63 Clearance 64 Clearance 70 Fast-curing high-strength mortar (mortar)
80 Butting part 81 Resin or packing 85 Bottom member 86 Bottom member 91 Packing

Claims (8)

鋼管内部にコンクリートを充填せずに縦方向に連結した複数本の鋼管と、横方向に配設された帯鉄筋と、前記鋼管および前記帯鉄筋を包み込んで打設されたコンクリートを備えた鋼管コンクリート合成橋脚における鋼管の継手構造であって、
前記鋼管のうちの一対の鋼管の突き合せ端部を含む外周部または内周部に配置された継手管と、該一対の鋼管の端部と該継手管との隙間に打設されたグラウト材を有し、
前記鋼管の前記グラウト材が打設される範囲の下端に設置され、前記グラウト材の流逸を防止し、前記継手管が載置される底部材と、
前記鋼管の前記グラウト材が打設される範囲に設置された、突起または突条からなる支圧材と、
前記継手管の前記グラウト材が打設される範囲に設置された、突起または突条からなる支圧材とを具備し、
前記底部材が前記鋼管の内周または外周に配置された環状のもので、かつ該部材の上面が円錐状にテーパ加工されたものであって、前記継手管の下端面が前記底部材の上面に整合するように円錐状にテーパ加工されていることを特徴とする鋼管の継手構造。
Steel pipe concrete provided with a plurality of steel pipes connected in the vertical direction without filling concrete inside the steel pipe , strip reinforcing bars arranged in the transverse direction, and concrete cast around the steel pipe and the strip reinforcing bars. A steel pipe joint structure in a composite pier,
A joint pipe disposed in an outer peripheral part or an inner peripheral part including a butted end part of a pair of steel pipes among the steel pipes, and a grout material placed in a gap between the end part of the pair of steel pipes and the joint pipe Have
A bottom member on which the grout material of the steel pipe is installed at the lower end of the range, prevents the grout material from flowing out, and the joint pipe is placed;
A bearing material made of protrusions or ridges installed in a range where the grout material of the steel pipe is placed;
A bearing member made of protrusions or ridges installed in a range where the grout material of the joint pipe is placed ;
The bottom member is an annular member disposed on the inner or outer periphery of the steel pipe, and the upper surface of the member is tapered in a conical shape, and the lower end surface of the joint pipe is the upper surface of the bottom member A steel pipe joint structure characterized by being tapered in a conical shape so as to match the above .
前記グラウト材が、設計基準強度σck=6000kPaの速硬性高強度モルタルであることを特徴とする請求項1記載の鋼管の継手構造。  The steel pipe joint structure according to claim 1, wherein the grout material is a fast-curing high-strength mortar having a design standard strength σck = 6000 kPa. 前記鋼管の突き合せ端面に、モルタルの漏れ止め用の樹脂またはパッキングを配置、あるいは、該配置に重ねて速硬性高強度モルタルを打設することを特徴とする請求項1または2記載の鋼管の継手構造。  The steel pipe according to claim 1 or 2, wherein a resin or packing for leaking mortar is disposed on the butt end face of the steel pipe, or a fast-hardening high-strength mortar is placed over the arrangement. Joint structure. 前記鋼管に設置された支圧材と、前記継手管に設置された支圧材とが、管軸方向で互い違いに配置されていることを特徴とする請求項1〜3の何れか一つに記載の鋼管の継手構造。  The bearing member installed in the steel pipe and the bearing member installed in the joint pipe are alternately arranged in the pipe axis direction. The steel pipe joint structure described. 前記継手管が、グラウト材の打設を確認するための空気抜き兼充填確認穴を、管軸方向に複数有すことを特徴とする請求項1〜の何れか一つに記載の鋼管の継手構造。The steel pipe joint according to any one of claims 1 to 4 , wherein the joint pipe has a plurality of air venting and filling confirmation holes for confirming the placement of the grout material in the pipe axis direction. Construction. 前記継手管が、突条付き圧延鋼板により形成された内面リブ付鋼管または外面リブ付鋼管であることを特徴とする請求項1〜の何れか一つに記載の鋼管の継手構造。The steel pipe joint structure according to any one of claims 1 to 5 , wherein the joint pipe is an internally ribbed steel pipe or an externally ribbed steel pipe formed of a rolled steel plate with ridges. 前記鋼管に設置された支圧材または前記継手管に設置された支圧材が、管軸方向または周方向にそれぞれ複数配置され、該支圧材間の隙間が略T字状をなすことを特徴とする請求項1〜の何れか一つに記載の鋼管の継手構造。A plurality of bearing members installed in the steel pipe or bearing members installed in the joint pipe are arranged in the pipe axial direction or the circumferential direction, respectively, and the gap between the bearing members forms a substantially T-shape. The steel pipe joint structure according to any one of claims 1 to 5 . 前記継手管が、前記鋼管の一方に前記底部材または取付材を介して溶接されていることを特徴とする請求項1〜の何れか一つに記載の鋼管の継手構造。The steel pipe joint structure according to any one of claims 1 to 7 , wherein the joint pipe is welded to one of the steel pipes via the bottom member or a mounting material.
JP2001140149A 2001-05-10 2001-05-10 Steel pipe joint structure Expired - Fee Related JP4644972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140149A JP4644972B2 (en) 2001-05-10 2001-05-10 Steel pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140149A JP4644972B2 (en) 2001-05-10 2001-05-10 Steel pipe joint structure

Publications (2)

Publication Number Publication Date
JP2002332611A JP2002332611A (en) 2002-11-22
JP4644972B2 true JP4644972B2 (en) 2011-03-09

Family

ID=18986801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140149A Expired - Fee Related JP4644972B2 (en) 2001-05-10 2001-05-10 Steel pipe joint structure

Country Status (1)

Country Link
JP (1) JP4644972B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104172A (en) * 2011-11-10 2013-05-30 Shimizu Corp Steel plate concrete structure
JP6263979B2 (en) * 2013-11-18 2018-01-24 株式会社大林組 Natural mountain reinforcement and natural mountain reinforcement structure
KR101630992B1 (en) * 2014-12-24 2016-06-16 주식회사 포스코 Concrete filled steel tube column structure
KR102020441B1 (en) * 2017-05-30 2019-09-11 주식회사 포스코 Concrete filled steel tube column and steel tube column structure
CN109024303A (en) * 2018-09-11 2018-12-18 中建五局土木工程有限公司 Bent cap pours mortar leakage prevention and improves structure and its construction method
CN112813804A (en) * 2020-12-31 2021-05-18 山西省交通科技研发有限公司 Underwater pier protection system based on solid waste recycling

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293359A (en) * 1989-05-02 1990-12-04 Denki Kagaku Kogyo Kk High-strength mortar-concrete
JPH03271407A (en) * 1990-03-20 1991-12-03 Fujita Corp Construction of balustrade for high level road and reinforced precast concrete balustrade
JPH05296217A (en) * 1992-04-22 1993-11-09 Nippon Steel Corp Pipe joint structure using hollow spherical body
JPH05339937A (en) * 1992-06-12 1993-12-21 Nippon Steel Corp Joint structure of hollow pipe
JPH0665907A (en) * 1992-08-20 1994-03-08 P S Co Ltd Building method for cylindrical structure
JPH06146408A (en) * 1992-11-09 1994-05-27 Takenaka Komuten Co Ltd Steel structural member connecting method
JPH0726517A (en) * 1993-07-14 1995-01-27 Mitsui Constr Co Ltd Floor slab construction
JPH07148016A (en) * 1993-12-02 1995-06-13 Chiyou Pura Kogyo Kk Sanitary lunch box
JPH07331748A (en) * 1994-06-06 1995-12-19 Fujita Corp Steel column jointing method
JPH0813692A (en) * 1994-06-30 1996-01-16 Hazama Gumi Ltd Columnar structure and construction method therefor
JPH08209724A (en) * 1995-02-06 1996-08-13 Nichikon:Kk Adjusting method of height of upper surface of existing manhole
JPH0913320A (en) * 1995-06-30 1997-01-14 Ohbayashi Corp Construction method of bridge pier column and structure thereof
JPH09317008A (en) * 1996-06-03 1997-12-09 Shimizu Corp Joint structure for concrete-filled steel pipe column
JPH11222820A (en) * 1998-02-10 1999-08-17 Ohbayashi Corp Construction and vibration-control of bridge pier

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293359A (en) * 1989-05-02 1990-12-04 Denki Kagaku Kogyo Kk High-strength mortar-concrete
JPH03271407A (en) * 1990-03-20 1991-12-03 Fujita Corp Construction of balustrade for high level road and reinforced precast concrete balustrade
JPH05296217A (en) * 1992-04-22 1993-11-09 Nippon Steel Corp Pipe joint structure using hollow spherical body
JPH05339937A (en) * 1992-06-12 1993-12-21 Nippon Steel Corp Joint structure of hollow pipe
JPH0665907A (en) * 1992-08-20 1994-03-08 P S Co Ltd Building method for cylindrical structure
JPH06146408A (en) * 1992-11-09 1994-05-27 Takenaka Komuten Co Ltd Steel structural member connecting method
JPH0726517A (en) * 1993-07-14 1995-01-27 Mitsui Constr Co Ltd Floor slab construction
JPH07148016A (en) * 1993-12-02 1995-06-13 Chiyou Pura Kogyo Kk Sanitary lunch box
JPH07331748A (en) * 1994-06-06 1995-12-19 Fujita Corp Steel column jointing method
JPH0813692A (en) * 1994-06-30 1996-01-16 Hazama Gumi Ltd Columnar structure and construction method therefor
JPH08209724A (en) * 1995-02-06 1996-08-13 Nichikon:Kk Adjusting method of height of upper surface of existing manhole
JPH0913320A (en) * 1995-06-30 1997-01-14 Ohbayashi Corp Construction method of bridge pier column and structure thereof
JPH09317008A (en) * 1996-06-03 1997-12-09 Shimizu Corp Joint structure for concrete-filled steel pipe column
JPH11222820A (en) * 1998-02-10 1999-08-17 Ohbayashi Corp Construction and vibration-control of bridge pier

Also Published As

Publication number Publication date
JP2002332611A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP5693140B2 (en) Artificial ground such as road and its construction method
JP4800899B2 (en) Pile head joint structure and construction method
KR101322122B1 (en) Connection Apparatus of Steel Pipe for Strut, Steel Pipe Strut Using Thereof and Method of Constructing The Steel Pipe Strut
KR101711202B1 (en) Prefabricated precast concrete bridge deck
JP2007327244A (en) Method and structure for temporarily coffering underwater structure
WO2001084037A1 (en) Duct repairing material, repairing structure, and repairing method
JP4644972B2 (en) Steel pipe joint structure
CN112195750A (en) Structure for preventing concrete from cracking outside steel tube of arch leg steel tube of concrete filled steel tube arch bridge
JP2011137320A (en) Sc pile and method for manufacturing the same
JP4565882B2 (en) Sealing member for preventing grouting outflow between pile and sheath tube
JP4989409B2 (en) Foundation pile structure, ready-made concrete pile, and joint hardware of ready-made concrete pile and steel pipe pile
JP4386804B2 (en) Seismic reinforcement structure for existing steel towers
CN212404776U (en) Structure for preventing concrete from cracking outside steel tube of arch leg steel tube of concrete filled steel tube arch bridge
JP5650030B2 (en) Steel slit dam
KR101187174B1 (en) Pre-founded Column System having Bearing-Shear Band and Beam-Column Connection System using Grouted Jacket having Bearing-Shear Band for Top-Down or Common Construction
CN110306484B (en) Inverted siphon well construction method
JPH09291598A (en) Joint structure of filled steel pipe concrete structural body
KR102087834B1 (en) The hybrid precast concrete pile with all-in-one steel pipe and the manufacturing method thereof
KR101238639B1 (en) Pre-founded Column having Bearing-Shear Band for Top-Down or Common Construction
KR101238640B1 (en) Pre-founded Column having Bearing-Shear Band for Top-Down or Common Construction
JP2011026879A (en) Method for increasing shearing strength of prefabricated concrete pile
JP2000282485A (en) Steel-pipe-crusted concrete pile for pile head and pile head structure thereof
JP2003096716A (en) Structure and method for joining steel pipes together
RU2098555C1 (en) Shishkov's butt joint of tubular pile sections
JP2000352062A (en) Steel pipe pile-to-foundation concrete junction structure and junction method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20030422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20030422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees