JP3710991B2 - Ground reinforcement method - Google Patents

Ground reinforcement method Download PDF

Info

Publication number
JP3710991B2
JP3710991B2 JP2000153781A JP2000153781A JP3710991B2 JP 3710991 B2 JP3710991 B2 JP 3710991B2 JP 2000153781 A JP2000153781 A JP 2000153781A JP 2000153781 A JP2000153781 A JP 2000153781A JP 3710991 B2 JP3710991 B2 JP 3710991B2
Authority
JP
Japan
Prior art keywords
pipe
reinforcing
tube
natural ground
mouth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000153781A
Other languages
Japanese (ja)
Other versions
JP2001329779A (en
Inventor
孝志 辻
徹 羽馬
Original Assignee
株式会社ケー・エフ・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケー・エフ・シー filed Critical 株式会社ケー・エフ・シー
Priority to JP2000153781A priority Critical patent/JP3710991B2/en
Publication of JP2001329779A publication Critical patent/JP2001329779A/en
Application granted granted Critical
Publication of JP3710991B2 publication Critical patent/JP3710991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主としてトンネル構築時に切羽前方地山を補強する先受け工として用いるのに適する地山補強工法に関する。
【0002】
【従来の技術】
従来、地質条件の悪い地山等でトンネルを掘削する際には、地山を補強しながらトンネルを掘り進めることが行われている。そして、先行する地山を補強しながらトンネルを掘削する場合に行う地山補強工法として、掘削に先立って切羽からトンネル外周にアーチ状に先受け工を形成し、切羽前方地山を補強する長尺先受け工法があり、この長尺先受け工法には山岳トンネル工法に使用する油圧ドリルジャンボなど標準的な掘削機械設備を用いて簡単に施工できる、鋼管を用いた注入式の先受け工法がある。
【0003】
そして、前記注入式先受け工法としては、例えば削孔ロッドの先端に装着した拡径ビット又は鋼管の先端に設けたリングビットにより削孔して、二重管方式で直径100mm程度の孔開き鋼管を順次継ぎ足しながら所定の仰角で打設し、その鋼管周壁の吐出孔を介して周囲の地山に薬液など固結材の注入を施して地山を補強する工法がある。前記工法は様々な地山条件に対応でき長尺先受けが可能なため、地山の先行変位の抑制、地山の緩みの防止、施工の安全性確保等を目的として、広範囲に用いられている。
【0004】
図10は地山に上記注入式先受け工法を施した状態を示すものであって、トンネル空間21に於いて切羽22aから地山22内に鋼管23が打設され、打設された鋼管23の周囲に固結領域24が形成されている。本工法では薬液の注入により、鋼管23と鋼管23が打設された地山22の孔壁との空隙25を充填して鋼管23と前記地山孔壁とを密着させると共に、鋼管23の周囲の地山22に注入した薬液を浸透させ、岩片或いは土粒子間の結合力を高めて固結領域24を形成することにより、切羽前方地山にアーチ状の地山改良体を形成している。
【0005】
上記工法に於いて鋼管23を打設するに際しては、切羽外周に鋼管23より若干大径の下孔を300mm程度先行して削孔し、前記下孔から鋼管23を継ぎ足しながら所定長打設する。その後に前記下孔にコーキング材を詰めて、鋼管23内にウレタン系や場合によってはセメント系の薬液を注入し、鋼管23の周囲に固結領域24を形成する。
【0006】
薬液を注入する例としては例えば図11に示す薬液注入方式がある。本例では鋼管23の中にインサート管23aが内設され、インサート管23a内に薬液注入ホース23bが三本挿入されており、各薬液注入ホース23bの先端にはそれぞれスタティックミキサー23cが設けられ、各薬液注入ホース23bの先端はインサート管23a内で所定距離離れた位置に各々配置されている。また鏡面吹付コンクリート26と鋼管23の端部間には口元コーキング27aが施され、鋼管23の端部と薬液注入ホース23b間には管内コーキング27bが施されている。そして、薬液注入ホース23bから薬液を注入し、インサート管23a及び鋼管23から周囲の地山22内に薬液を浸透させるものである。
【0007】
【発明が解決しようとする課題】
ところが、上記のような地山先受け工法が要求される地山は元来脆弱であることに加えて、掘削で荒らされた切羽近傍の地山はさらに緩んでいるため、所定量の薬液を注入し終わった後に、薬液が亀裂や空隙を通って脆い切羽側に溢れ出してしまう所謂リークが生じて注入改良効果が損なわれることがある。例えば図12(a)で矢印は薬液の進行方向を示し、トンネル空間21から鋼管23内へ注入した薬液は地山22内に浸透して固結領域24が形成されるが、切羽22a側へのリークを生ずると鋼管23の全長周囲に於いて部分的に薬液が回らない等の事態が生じ、この結果、適正な地山改良効果を得ることができないという不都合が生ずる。
【0008】
また、かような地山先受け工法では例えば図12(b)に示すように、鋼管23を鏡面吹付コンクリート26が設けられたトンネル切羽22aに於ける鋼製支保工28aの内側から、後に建て込まれる切羽前方の鋼製支保工28bの背面へ最小限の離れで鋼管23が配置されるようにするため、トンネル空間21から4〜5度程度の仰角をつけて地山22内に打設する。そして、この打設角度Tを維持する為には、ドリルジャンボのガイドセル長分の6m程度の断面拡幅区間Sを設ける必要があるが、この場合に二次覆工コンクリート打設空間29が増加してトンネル断面拡幅分のコンクリート等の材料が余分に必要となると共に、トンネル掘削等の作業量も増加する。
【0009】
断面拡幅区間Sを設けない地山先受け工法もあるものの、かかる工法では鋼管の最後端部の管を塩化ビニル管などの樹脂製管とし、最後端部の樹脂製管は切羽前方に建て込まれる鋼製支保工の3基程度の範囲にある地山内に埋設し、10度程度の仰角をつけて打設するため、オーバーラップ区間の鋼製支保工と既に打設された鋼管との離れが大きく、地山状況によっては鋼管下の地山が緩み、最後端部の樹脂製管の強度に対する不安が生じる。更にこの状態下で先に述べた口元部分など切羽側へのリークが生ずると、地山改良効果が十分とは言い難い。
【0010】
本発明は上記問題点に鑑みなされたものであって、固結材を注入する地山先受け工に於けるリークの発生を防止できると共に、トンネル掘削作業時に断面拡幅を行う必要がなく、適格な地山改良効果を得ることができる地山補強工法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の地山補強工法は、周壁に吐出孔が穿設されている複数本の管を順次接続しながら所定の仰角で地山に打設して、接続された該複数本の管からなる補強管を形成し、該補強管を通して固結材を注入して該補強管の周囲の前方地山に固結領域を形成する地山補強工法に於いて、該補強管の内で少なくとも口元管が多孔管からなり、該多孔管内の所定位置から該固結材を注入して漏出した該固結材で該多孔管の周囲の地山にバルクヘッド領域を形成し、その後に該固結領域を形成することを特徴とする。前記バルクヘッド領域により補強管を打設した孔奥側からのリークの発生を防いで適格な地山改良を行うことができると共に、口元管に多孔管を採用することにより口元管の切断が容易でトンネル掘削時に断面拡幅を行う必要がない。
【0012】
さらに本発明は上記地山補強工法に於いて、前記多孔管に形成された孔の開口率が、該多孔管を掘削機械の刃で切断可能で且つ該多孔管が補強管としての所要強度を維持する所定値に設定されていることを特徴とする。前記孔の開口率を所定値にすることで、多孔管が補強管としての機能を果たすことができ、且つ掘削作業時に切断できることでトンネル掘削作業の施工性が向上する。更に、前記孔の開口率は、口元管以外の管より固結材を速やかに漏出できる所定値とすると好適である。
【0013】
さらに上記地山補強工法に於いて、前記多孔管が剛性等で所要強度を有するものとし、好適には前記多孔管をエキスパンドメタル若しくはパンチングメタル等からなるものとする。前記多孔管をエキスパンドメタルやパンチングメタルなど所要強度を有するものとすることで、切断を容易なものとしつつ補強管として必要な強度を保持させ、地山の十分な安定性を確保できる。
【0014】
さらに本発明は上記地山補強工法に於いて、前記固結材の注入は前記補強管に内設したインサート管により行い、該インサート管は切除可能で、且つ補強管に準ずる強度を有する材料からなることを特徴とする。インサート管に切除可能で且つ補強管に準ずる強度を有する材料からなるものを用いることにより、上記した場合と同等の効果を達成しながら、多孔管の強度を補うことができる。よって多孔管の開口率を自由に大きくしたり、さらに切断容易な材料で多孔管を構成することが可能となる。
【0015】
【発明の実施の形態】
以下、本発明による地山補強工法を図に示す具体的な実施形態に基づいて説明する。図1乃至図3は本発明の地山補強工法に於ける施工状態の概要を、図4は本発明で用いる補強管を示し、図5乃至図9は本発明の地山補強工法の施工手順に沿った縦断面図である。
【0016】
図1乃至図3に示すように本発明を用いて構築中のトンネルでは、地山1の鏡面切羽1aに吹付コンクリート2が施され、切羽1aの後方で既に掘削形成されているトンネル空間3には側壁及びアーチ部分の岩盤表面を覆う形で図に省略した吹付コンクリートが施されており、その内方側には鋼製支保工4がトンネルの横断面形状に沿った形で、トンネル掘進方向に例えば1m毎など所定間隔毎に建て込まれている。
【0017】
トンネル空間3の周囲上部には、掘進作業に先立ち施工された先受け工5が掘進方向に所定間隔毎で設けられ、アーチ状をなす形で形成され地山1中に配置されている。先受け工5は、トンネルの横断面形状に沿って所定ピッチで且つ掘進方向に所定間隔毎に打設された地山補強材となる補強管6と、補強管6内を通して注入された固結材により固結された地山1のバルクヘッド領域7と固結領域8からなる。さらに切羽1aの外周から前方の地山1に向けて、施工中の先受け工5がアーチ状に設けられている。
【0018】
先受け工5の補強管6は、図4に示すように、カプラ61で接続された複数本の鋼管62と、接続された鋼管62の最後端で口元部分に最も近い鋼管62に接続された口元管63とからなる。鋼管62には周壁に多数の吐出孔である小孔62aが穿設され、その端部にはねじ溝62bが形成されており、本実施形態では直径100mm、長さ3mの鋼管62の4本をカプラ61にねじ込むことで接続して用いている。口元管63は多数の孔63aを有し、図4(a)のエキスパンドメタル、図4(b)のパンチングメタル等からなる多孔管で、鋼管62と同径の管状に形成され、少なくとも一端側はカプラ61等を介して鋼管62に接続可能な形状であり、本実施形態では長さ3mの口元管63が用いられている。口元管63の多孔管には、地質状況等に応じて最適な開口率の多孔管を選定するものとし、その長さも地質状況等に応じて1〜5m程度のものから最適なものを選定する。なお補強管6をなす管の素材は本実施形態では金属としたが、所要強度を有するもの等であれば、これ以外の素材を使用してもよい。
【0019】
また固結材注入時に、薬液注入ホースとして補強管6に内設するインサート管に、GFRP等の切除可能で且つ補強管6に準ずる強度のものを用いれば、その分強度が補われるため、口元管63に樹脂のラチス成形品等の所要強度を有しない多孔管を用いることも可能となる。
【0020】
先受け工5では、図1乃至図3に示すように、補強管6の周囲の地山1にバルクヘッド領域7と固結領域8が形成されているが、バルクヘッド領域7及び固結領域8は、補強管6内を通して周囲の地山1に注入された固結材によって形成されたものである。本実施形態における固結材にはウレタン、シリカレジン、無機複合ウレタンなどのウレタン系の薬液で硬化時間が比較的短いものを用いるが、固結材としてセメント系の薬液を使用することも可能である。
【0021】
なお図1乃至図3に於いて、9はドリルジャンボ、1bは掘削予定領域であり、Lはバルクヘッド領域7で口元管63と供に切除される長さである。
【0022】
次に先受け工5の施工手順について図5乃至図9に基づき説明する。なお図5〜図9では吹付コンクリート2等は省略されている。
【0023】
先受け工5の施工に際しては、まず図5に示すように、切羽1aの直前に建て込まれた鋼製支保工4の下端の所定位置から前方の地山1に向けて、直径160mm、深さ300mm程度の下孔10を削孔しておくと共に、ドリルジャンボ(削岩機)9のガイドセル9aに補強管6を構成する鋼管62を装着する。
【0024】
鋼管62の先端にはリングビット11を装着しておき、このリングビット11に鋼管62内を通した削孔ロッド12や削孔ロッド12の先端に装着された先端ビット13からドリルジャンボ9の打撃力や回転力を伝達して削孔を行う。前記のように鋼管62の先端に装着したリングビット11を用いて削孔する方式によれば、リングビットが鋼管62全体を牽引していく形で削孔及び打設が行われるので、最後端となる鋼管62の後端部に接続する口元管63を打撃することなく施工を行うことができ、口元管63が長尺の場合等であっても口元管63が打設の衝撃による負担を受けなくても済む。
【0025】
なお上記以外の削孔方式を採用することも可能であり、鋼管62内に通した削孔ロッド12の先端に拡径ビット(図示せず)を装着し、この拡径ビットを鋼管62の先端から突出させ、削孔ロッド12に連結したドリルジャンボ9の打撃力や回転力を拡径ビットに伝達して削孔しながら鋼管62を打設する方式等としてもよい。
【0026】
削孔及び打設時には、ガイドセル9aを3度から6度、好ましくは5度程度の所定の仰角にセットし、下孔10から切羽1aの前方に位置する地山1に向け、リングビット11等で削孔を行いつつ鋼管62を打設していく。鋼管62を所定本数、本実施形態では4本をカプラ61で接続しながら打設したところで、最後端に口元管63を接続して更なる打設を行い、図6に示すように、これら複数の鋼管62と口元管63を所定長の補強管6として切羽1aの前方地山1内に存置する。前記打設で補強管6を存置した後には、下孔10の部分に例えばコーキングカプセルとウエス等のコーキング材14を充填してコーキングを施す。
【0027】
この状態で、例えば図11に示すような方式で薬液注入ホース(インサート管)を補強管6内にセットし、口元管63内の所定位置に吐出口を有する薬液注入ホースから薬液である固結材を注入すると、図7に示すように、注入開始時に多孔管からなる口元管63の部分に於いて、口元管63の多数の孔63aから速やかに固結材が漏出し、漏出した固結材は口元管63の周辺の地山1に浸透して固結する。即ち、口元管63に多孔管を用いることにより注入初期に固結材を口元管63の周辺に積極的に漏出して、口元管63の周辺の限られた領域にバルクヘッド領域7を形成する。
【0028】
その後に図8に示すように、打設した孔奥側に固結材の注入を行うと、補強管6をなしている鋼管62の周壁の小孔62aから比較的緩やかなスピードで徐々に固結材が漏出し、漏出した固結材がその周辺の地山1を固結して固結領域8を形成する。この際に削孔によって地山1が荒れている口元部分には、まず最初にバルクヘッド領域7を形成することによって、例え周辺の地山1に亀裂や空隙が形成された場合であっても、固結材である薬液がこれらの亀裂や空隙を通って脆い切羽1a側に溢れ出すことを防止でき、打設した補強管6の全長に亘って適正な地山改良効果を得ることができる。
【0029】
上記先受け工5はトンネル内で切羽1aの外周に沿ってアーチ状に施す。切羽1aの外周にアーチ状の先受け工5を施工すると、その下側に位置する掘削予定の地山1の安定性が確保される。そして、更にトンネルを掘進して切羽1aを前進し、切羽1aが前進した分だけ順に支保工4を建て込みながらトンネルの掘進作業を進行する。
【0030】
前記掘進作業を行う時には、直前に打設した先受け工5の口元部分が位置する地山1も掘削することになるが、この際に掘進と共に、図9に示すように、先受け工5の口元管63を切除する。前記口元管63はエキスパンドメタルやパンチングメタルなどの多孔管であるため、掘削機械の刃で容易に切断することが可能である。また口元管63は所定長さに限定されているので、口元管63を接続しているカプラ61からの離脱も容易である。
【0031】
上記多孔管である口元管63により、先受け工を施すトンネル掘進作業において、断面拡幅を行わなくとも同一断面で支保工4の建て込みが可能であり、一方で多孔管からなる口元管63は切断が容易であるものの、鋼材の剛性など所定強度を有する素材で形成され、補強管6としての軸方向の力に対する強度は十分確保される。さらに周辺の地山1への固結材の浸透が確実に達成されているので、地山1の安定性は十分に確保され、安全に掘進作業を行うことができる。
【0032】
なお本実施形態に於ける補強管6の接続には、図4に示すねじ込み式のカプラ61を用いたが、図示例のように補強管61の外側にねじ込む形式ではなく、雄ねじを形成したカプラを雌ねじを形成した補強管の内側にねじ込んで接続しても良い。さらに、その他の接続方式とすることも可能であって、例えば補強管6を構成する鋼管62と口元管63との接続を、口元管63の後の撤去を容易にするために、ねじ方式でない差込式などの手段で取り外しの簡便なカプラ61を用いるようにしてもよい。即ち、上記補強管6の最後端部分を地山1に打設するに際してはカプラ61にかかる負担も軽く、カプラ61の強度は打設によって外れなければよい。またその他の部位のカプラについても、ねじ方式でないカプラとすることも可能である。
【0033】
【発明の効果】
本発明の地山補強工法は補強管の内で口元管を多孔管とし、多孔管内の所定位置から固結材を注入して漏出した固結材で多孔管の周囲の地山にバルクヘッド領域を形成し、その後に前方地山の固結領域を形成するものであるから、薬液など固結材を注入する地山先受け工に於けるリークの発生を防止でき、補強管(先受け材)の全長に亘って確実に固結材が回り、この結果、高い注入効果を得ることができる。さらにトンネル掘削作業時に断面拡幅を行う必要がなく、トンネル掘削に於ける作業量とコストを大幅に減少することができる。
【図面の簡単な説明】
【図1】本発明の地山補強工法の施工状態を示すトンネルの縦断面図。
【図2】本発明の地山補強工法の施工状態を示すトンネルの横断面図。
【図3】図1の切羽から先受け工を施工した状態に於ける切羽部分を示す拡大断面図。
【図4】(a)第一実施例の口元管を鋼管に接続する状態を示す正面図。
(b)第二実施例の口元管を鋼管に接続する状態を示す正面図。
(c)鋼管相互を接続する状態を示す正面図。
【図5】本発明の地山補強工法で補強管を打設する状態を示す縦断面図。
【図6】本発明の地山補強工法で口元管にコーキングを施した状態を示す縦断面図。
【図7】本発明の地山補強工法でバルクヘッド領域を形成した状態を示す縦断面図。
【図8】本発明の地山補強工法で固結領域を形成した状態を示す縦断面図。
【図9】本発明の地山補強工法ので口元管を切除する状態を示す縦断面図。
【図10】(a)従来の地山補強工法の施工状態を示すトンネルの縦断面図。
(b)従来の地山補強工法の施工状態を示すトンネルの横断面図。
(c)地山に打設した鋼管を示す横断面図。
【図11】従来の地山補強工法で薬液の注入状態を示す縦断面図。
【図12】(a)従来の地山補強工法でリークしている状態を示すトンネルの縦断面図。
(b)従来の地山補強工法で拡幅した施工状態を示すトンネルの縦断面図。
【符号の説明】
1 地山
1a 切羽
3 トンネル空間
4 支保工
5 先受け工
6 補強管
61 カプラ
62 鋼管
62a 小孔
63 口元管
63a 孔
7 バルクヘッド領域
8 固結領域
10 下孔
14 コーキング材
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a natural ground reinforcement method suitable for use as a leading construction for reinforcing a natural ground in front of a face when a tunnel is constructed.
[0002]
[Prior art]
Conventionally, when excavating a tunnel in a natural ground with poor geological conditions, the tunnel is being dug while reinforcing the natural ground. Then, as a natural ground reinforcement method when excavating a tunnel while reinforcing the preceding natural ground, a long arch is formed from the face to the outer periphery of the tunnel prior to excavation to reinforce the natural ground ahead of the face. There is a long point receiving method, and this long point receiving method is an injection type receiving method using a steel pipe that can be easily constructed using standard drilling equipment such as a hydraulic drill jumbo used in the mountain tunnel method. is there.
[0003]
And as said injection-type tip receiving construction method, for example, a drilled steel pipe having a diameter of about 100 mm by a double pipe method is drilled by a diameter expanding bit attached to the tip of a drilling rod or a ring bit provided at the tip of a steel pipe. There is a method of reinforcing the natural ground by injecting a solidified material such as a chemical solution into the surrounding natural ground through a discharge hole in the peripheral wall of the steel pipe, and driving it at a predetermined elevation angle. The construction method can be used for various ground conditions and can receive a long tip, so it is widely used for the purpose of suppressing the preceding displacement of the ground, preventing loosening of the ground, and ensuring the safety of construction. Yes.
[0004]
FIG. 10 shows a state in which the above-described injection type pre-receiving method has been applied to the natural ground. In the tunnel space 21, a steel pipe 23 is driven into the natural ground 22 from the face 22a, and the steel pipe 23 thus placed is provided. A consolidated region 24 is formed around the periphery. In this construction method, the steel pipe 23 is filled with a space 25 between the steel pipe 23 and the hole wall of the natural ground 22 in which the steel pipe 23 is cast, so that the steel pipe 23 and the natural hole wall are in close contact with each other. By infiltrating the chemical solution injected into the natural ground 22 and increasing the bonding force between rock fragments or soil particles to form the consolidated region 24, an arch-shaped natural ground improvement body is formed in the natural ground in front of the face. .
[0005]
In placing the steel pipe 23 in the above method, a pilot hole having a diameter slightly larger than that of the steel pipe 23 is drilled about 300 mm on the outer periphery of the face, and the steel pipe 23 is cast for a predetermined length while adding the steel pipe 23 from the lower hole. Thereafter, a caulking material is filled in the lower hole, and a urethane-based or a cement-based chemical solution is injected into the steel pipe 23 to form a consolidated region 24 around the steel pipe 23.
[0006]
As an example of injecting a chemical solution, for example, there is a chemical solution injection method shown in FIG. In this example, an insert pipe 23a is installed in the steel pipe 23, three chemical liquid injection hoses 23b are inserted in the insert pipe 23a, and a static mixer 23c is provided at the tip of each chemical liquid injection hose 23b. The tip of each chemical solution injection hose 23b is arranged at a position separated by a predetermined distance in the insert tube 23a. Further, a mouth caulking 27a is provided between the end of the specular spray concrete 26 and the steel pipe 23, and a pipe caulking 27b is provided between the end of the steel pipe 23 and the chemical solution injection hose 23b. And a chemical | medical solution is inject | poured from the chemical | medical solution injection hose 23b, and a chemical | medical solution osmose | permeates in the surrounding natural ground 22 from the insert pipe | tube 23a and the steel pipe 23. FIG.
[0007]
[Problems to be solved by the invention]
However, in addition to the natural weakness of the natural ground that requires the above-mentioned local ground receiving method, the natural ground in the vicinity of the face that has been damaged by excavation is further loosened. After the injection is completed, a so-called leak may occur in which the chemical liquid overflows to the brittle face through cracks or voids, and the injection improvement effect may be impaired. For example, in FIG. 12A, the arrow indicates the traveling direction of the chemical solution, and the chemical solution injected from the tunnel space 21 into the steel pipe 23 penetrates into the natural ground 22 to form a consolidated region 24, but toward the face 22a side. When the leak occurs, the chemical solution does not partially rotate around the entire length of the steel pipe 23. As a result, there is a disadvantage that an appropriate ground improvement effect cannot be obtained.
[0008]
Further, in such a natural ground tip receiving method, for example, as shown in FIG. 12B, the steel pipe 23 is built later from the inside of the steel support 28a in the tunnel face 22a provided with the specular shot concrete 26. In order to place the steel pipe 23 at a minimum distance to the back of the steel support 28b in front of the cut face to be inserted, the steel pipe 23 is placed in the natural ground 22 with an elevation angle of about 4 to 5 degrees from the tunnel space 21. To do. In order to maintain this placement angle T, it is necessary to provide a section widening section S of about 6 m corresponding to the guide cell length of the drill jumbo. In this case, the secondary lining concrete placement space 29 increases. As a result, an extra material such as concrete for expanding the cross section of the tunnel is required, and the amount of work such as tunnel excavation increases.
[0009]
Although there is a natural ground tip receiving method that does not provide a cross-section widening section S, in this method, the pipe at the end of the steel pipe is made of a resin pipe such as a vinyl chloride pipe, and the resin pipe at the end of the pipe is built in front of the face. The steel support works in the overlap section are separated from the steel pipes that have already been placed in order to bury them in a natural ground in the range of about 3 steel support works and place them at an elevation angle of about 10 degrees. Depending on the natural ground condition, the natural ground under the steel pipe is loosened, which causes anxiety about the strength of the resin pipe at the end. Furthermore, if a leak to the face side such as the mouth portion described above occurs in this state, it is difficult to say that the natural ground improvement effect is sufficient.
[0010]
The present invention has been made in view of the above problems, and can prevent the occurrence of leaks in the ground receiving work for injecting the consolidated material, and it is not necessary to widen the cross section during tunnel excavation work. An object of the present invention is to provide a natural ground reinforcement method capable of obtaining a natural ground improvement effect.
[0011]
[Means for Solving the Problems]
The natural ground reinforcement method of the present invention comprises a plurality of pipes connected to each other by placing a plurality of pipes, each having a discharge hole formed in a peripheral wall, by sequentially connecting them to a natural ground at a predetermined elevation angle. In a natural ground reinforcement method in which a reinforcing pipe is formed and a consolidated material is injected through the reinforcing pipe to form a consolidated region in a front ground around the reinforcing pipe, at least a mouth pipe in the reinforcing pipe Is formed of a porous tube, and a bulkhead region is formed in the ground surrounding the porous tube with the consolidated material injected and leaked from a predetermined position in the porous tube, and then the consolidated region It is characterized by forming. It is possible to improve the natural ground by preventing the occurrence of leak from the back side of the hole where the reinforcement pipe is placed by the bulkhead region, and it is easy to cut the mouth pipe by adopting the porous pipe as the mouth pipe It is not necessary to widen the cross section when tunneling.
[0012]
Furthermore, the present invention provides the above-mentioned ground reinforcement method, wherein the aperture ratio of the hole formed in the porous tube is such that the porous tube can be cut with a blade of an excavating machine, and the porous tube has a required strength as a reinforcing tube. It is set to a predetermined value to be maintained. By setting the aperture ratio of the holes to a predetermined value, the porous tube can function as a reinforcing tube, and can be cut during excavation work, thereby improving the workability of tunnel excavation work. Furthermore, it is preferable that the aperture ratio of the hole be a predetermined value that allows the consolidated material to be quickly leaked from a tube other than the mouth tube.
[0013]
Further, in the above ground reinforcement method, the porous pipe is assumed to have rigidity and the required strength, and preferably the porous pipe is made of expanded metal or punched metal. By making the porous tube have a required strength such as an expanded metal or a punching metal, it is possible to maintain the strength required as a reinforcing tube while facilitating cutting, and to ensure sufficient stability of the natural ground.
[0014]
Further, the present invention provides the above ground reinforcement method, wherein the injection of the consolidated material is performed by an insert pipe provided in the reinforcement pipe, and the insert pipe can be excised and has a strength equivalent to that of the reinforcement pipe. It is characterized by becoming. By using the insert tube made of a material that can be excised and has a strength similar to that of the reinforcing tube, the strength of the porous tube can be supplemented while achieving the same effect as described above. Therefore, it is possible to freely increase the aperture ratio of the perforated tube or to construct the perforated tube with a material that can be easily cut.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the natural ground reinforcement method according to the present invention will be described based on specific embodiments shown in the drawings. 1 to 3 show an outline of the construction state in the natural ground reinforcement method of the present invention, FIG. 4 shows a reinforcing pipe used in the present invention, and FIGS. 5 to 9 show construction procedures of the natural ground reinforcement method of the present invention. It is a longitudinal cross-sectional view along line.
[0016]
As shown in FIG. 1 to FIG. 3, in the tunnel under construction using the present invention, spray concrete 2 is applied to the mirror face 1a of the ground 1, and the tunnel space 3 that has already been excavated and formed behind the face 1a. Is covered with shotcrete that is not shown in the figure so as to cover the side wall and the rock surface of the arch part, and the steel support 4 along the cross-sectional shape of the tunnel on the inner side, For example, it is built at predetermined intervals such as every 1 m.
[0017]
In the upper part of the periphery of the tunnel space 3, a receiving work 5 constructed prior to the excavation work is provided at predetermined intervals in the excavation direction, and is formed in an arch shape and disposed in the natural ground 1. The receiving work 5 includes a reinforcing pipe 6 that is a natural ground reinforcing material placed at a predetermined pitch along the transverse cross-sectional shape of the tunnel and at a predetermined interval in the digging direction, and a consolidation injected through the reinforcing pipe 6. It consists of a bulkhead region 7 and a consolidated region 8 of the natural ground 1 consolidated by a material. Further, a leading work 5 under construction is provided in an arch shape from the outer periphery of the face 1a toward the natural ground 1 ahead.
[0018]
As shown in FIG. 4, the reinforcing pipe 6 of the receiving work 5 is connected to a plurality of steel pipes 62 connected by a coupler 61 and a steel pipe 62 closest to the mouth portion at the rearmost end of the connected steel pipes 62. It consists of a mouth tube 63. The steel pipe 62 is provided with a plurality of small holes 62a, which are discharge holes, on its peripheral wall, and a thread groove 62b is formed at the end thereof. In this embodiment, four steel pipes 62 having a diameter of 100 mm and a length of 3 m are formed. Are used by being screwed into the coupler 61. The mouth tube 63 has a large number of holes 63a, and is a porous tube made of the expanded metal of FIG. 4 (a), the punching metal of FIG. 4 (b), and the like. Has a shape that can be connected to the steel pipe 62 via the coupler 61 or the like. In this embodiment, a mouth pipe 63 having a length of 3 m is used. As the perforated pipe of the mouth pipe 63, a perforated pipe having an optimum opening ratio is selected according to the geological situation and the optimum length is selected from about 1 to 5 m depending on the geological situation. . The material of the tube forming the reinforcing tube 6 is metal in this embodiment, but other materials may be used as long as they have the required strength.
[0019]
In addition, when the binder is injected, if the insert tube provided in the reinforcing tube 6 as a chemical injection hose is GFRP or the like that can be excised and has the strength equivalent to that of the reinforcing tube 6, the strength is compensated accordingly. It is also possible to use a porous tube having no required strength, such as a resin lattice molded product, for the tube 63.
[0020]
As shown in FIGS. 1 to 3, in the receiving work 5, the bulkhead region 7 and the consolidated region 8 are formed in the natural ground 1 around the reinforcing pipe 6. 8 is formed by a consolidated material injected into the surrounding natural ground 1 through the reinforcing pipe 6. The caking agent in this embodiment is a urethane type chemical solution such as urethane, silica resin, inorganic composite urethane, etc., which has a relatively short curing time, but it is also possible to use a cement type chemical solution as the caking agent. .
[0021]
1 to 3, 9 is a drill jumbo, 1 b is a planned drilling area, and L is a length to be cut together with the mouth tube 63 in the bulkhead area 7.
[0022]
Next, the construction procedure of the receiving work 5 will be described with reference to FIGS. 5 to 9, the shotcrete 2 and the like are omitted.
[0023]
At the time of construction of the front receiving work 5, first, as shown in FIG. 5, a diameter of 160 mm and a depth of 160 mm from the predetermined position at the lower end of the steel support 4 built just before the face 1a toward the front natural ground 1 A pilot hole 10 having a length of about 300 mm is drilled, and a steel pipe 62 constituting the reinforcing pipe 6 is attached to a guide cell 9 a of a drill jumbo (rock drill) 9.
[0024]
The ring bit 11 is attached to the tip of the steel pipe 62, and the drilling jumbo 9 is hit from the drill bit 12 passing through the steel pipe 62 through the ring bit 11 and the tip bit 13 attached to the tip of the drill rod 12. Drilling holes by transmitting force and rotational force. According to the method of drilling using the ring bit 11 attached to the tip of the steel pipe 62 as described above, the drilling and driving are performed in such a manner that the ring bit pulls the entire steel pipe 62. Construction can be performed without striking the mouth pipe 63 connected to the rear end portion of the steel pipe 62, and even if the mouth pipe 63 is long, the mouth pipe 63 bears a burden due to the impact of the placement. You do n’t have to.
[0025]
It is also possible to adopt a drilling method other than the above, and a diameter expansion bit (not shown) is attached to the tip of the hole drilling rod 12 passed through the steel pipe 62, and this diameter expansion bit is attached to the tip of the steel pipe 62. It is good also as a system etc. which drive the steel pipe 62, making it drill, drilling by transmitting the striking force and rotational force of the drill jumbo 9 connected to the drilling rod 12 to the diameter expansion bit.
[0026]
At the time of drilling and placing, the guide cell 9a is set at a predetermined elevation angle of 3 to 6 degrees, preferably about 5 degrees, and the ring bit 11 is directed from the lower hole 10 toward the natural ground 1 located in front of the face 1a. The steel pipe 62 is driven while drilling. When a predetermined number of steel pipes 62, four in this embodiment, are connected while being connected by the coupler 61, the mouth pipe 63 is connected to the rearmost end for further driving. As shown in FIG. The steel pipe 62 and the mouth pipe 63 are placed in the front ground 1 of the face 1a as a reinforcing pipe 6 having a predetermined length. After the reinforcement pipe 6 is placed by the placement, the caulking material 14 such as a caulking capsule and waste cloth is filled in the portion of the lower hole 10 to perform caulking.
[0027]
In this state, for example, a chemical solution injection hose (insert tube) is set in the reinforcing tube 6 in the manner shown in FIG. 11, and the chemical solution is consolidated from the chemical solution injection hose having a discharge port at a predetermined position in the mouth tube 63. When the material is injected, as shown in FIG. 7, in the portion of the mouth tube 63 made of a porous tube at the start of pouring, the consolidated material quickly leaks from the numerous holes 63a of the mouth tube 63, and the leaked consolidation The material penetrates and solidifies in the natural ground 1 around the mouth tube 63. That is, by using a porous tube for the mouth tube 63, the consolidated material is actively leaked to the periphery of the mouth tube 63 in the initial stage of injection, and the bulkhead region 7 is formed in a limited region around the mouth tube 63. .
[0028]
Thereafter, as shown in FIG. 8, when the caking material is injected into the back side of the hole that has been laid, it gradually solidifies at a relatively moderate speed from the small hole 62 a on the peripheral wall of the steel pipe 62 constituting the reinforcing pipe 6. The binding material leaks, and the leaked consolidation material consolidates the surrounding natural ground 1 to form a consolidated region 8. At this time, even if cracks or voids are formed in the surrounding natural ground 1 by first forming the bulkhead region 7 in the mouth portion where the natural ground 1 is roughened by drilling. Further, it is possible to prevent the chemical liquid as the consolidated material from overflowing to the brittle face 1a side through these cracks and voids, and to obtain an appropriate ground improvement effect over the entire length of the reinforced reinforcement tube 6. .
[0029]
The front receiving work 5 is applied in an arch shape along the outer periphery of the face 1a in the tunnel. When the arch-shaped tip receiving work 5 is constructed on the outer periphery of the face 1a, the stability of the natural ground 1 scheduled to be excavated located below is secured. Then, the tunnel is further excavated to advance the face 1a, and the tunnel excavation work is proceeded while the supporting work 4 is built in order as the face 1a advances.
[0030]
When the excavation work is performed, the natural ground 1 where the mouth portion of the prior receiving work 5 placed immediately before is also excavated. At this time, as shown in FIG. The mouth tube 63 is excised. Since the mouth pipe 63 is a porous pipe such as an expanded metal or a punching metal, it can be easily cut with a blade of an excavating machine. In addition, since the mouth tube 63 is limited to a predetermined length, it can be easily detached from the coupler 61 connecting the mouth tube 63.
[0031]
In the tunnel excavation work in which a receiving work is performed, the support pipe 4 can be built in the same cross section without performing the cross section widening, while the mouth pipe 63 made of a porous pipe Although it is easy to cut, it is made of a material having a predetermined strength such as the rigidity of the steel material, and the strength against the axial force as the reinforcing tube 6 is sufficiently secured. Furthermore, since the penetration of the consolidated material into the surrounding natural ground 1 is reliably achieved, the stability of the natural ground 1 is sufficiently ensured and the excavation work can be performed safely.
[0032]
Note that the screw-in type coupler 61 shown in FIG. 4 is used for the connection of the reinforcing pipe 6 in the present embodiment, but it is not a type of screwing outside the reinforcing pipe 61 as in the illustrated example, but a coupler in which a male screw is formed. May be connected by being screwed into the inside of the reinforcing pipe formed with the female thread. Furthermore, other connection methods are possible, for example, the connection between the steel tube 62 and the mouth tube 63 constituting the reinforcing tube 6 is not a screw method in order to facilitate removal after the mouth tube 63. The coupler 61 that can be easily removed may be used by means such as a plug-in type. That is, when placing the rearmost end portion of the reinforcing pipe 6 on the ground 1, the burden on the coupler 61 is light and the strength of the coupler 61 does not have to be removed by the placement. Also, the couplers in other parts can be made into couplers that are not screw type.
[0033]
【The invention's effect】
Natural ground reinforcing construction method of the present invention is a mouth Motokan the perforated pipe within the stiffening tube, bulkhead around the natural ground of the perforated tube in consolidation material injected to leak caking material from a predetermined position of the porous tube Since the area is formed and then the consolidation area of the front ground is formed, it is possible to prevent the occurrence of leaks at the ground receiving work where the solidified material such as chemical solution is injected, and the reinforcement pipe ( The solidified material reliably rotates over the entire length of the material, and as a result, a high injection effect can be obtained. Furthermore, it is not necessary to widen the cross section during tunnel excavation work, and the amount and cost of tunnel excavation work can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a tunnel showing a construction state of a natural ground reinforcement method according to the present invention.
FIG. 2 is a cross-sectional view of a tunnel showing a construction state of the natural ground reinforcement method of the present invention.
FIG. 3 is an enlarged cross-sectional view showing a face portion in a state where a tip receiving work is applied from the face of FIG. 1;
FIG. 4A is a front view showing a state in which the mouth pipe of the first embodiment is connected to a steel pipe.
(B) The front view which shows the state which connects the mouth pipe | tube of a 2nd Example to a steel pipe.
(C) The front view which shows the state which connects steel pipes.
FIG. 5 is a longitudinal sectional view showing a state where a reinforcement pipe is driven by the natural ground reinforcement method of the present invention.
FIG. 6 is a longitudinal sectional view showing a state in which caulking is applied to the mouth pipe by the natural ground reinforcement method of the present invention.
FIG. 7 is a longitudinal sectional view showing a state in which a bulkhead region is formed by the natural ground reinforcement method of the present invention.
FIG. 8 is a longitudinal sectional view showing a state where a consolidated region is formed by the natural ground reinforcement method of the present invention.
FIG. 9 is a longitudinal sectional view showing a state in which a mouth tube is excised by the natural ground reinforcement method of the present invention.
FIG. 10A is a longitudinal sectional view of a tunnel showing a construction state of a conventional natural ground reinforcement method.
(B) The cross-sectional view of the tunnel which shows the construction state of the conventional natural ground reinforcement construction method.
(C) The cross-sectional view which shows the steel pipe cast in the natural ground.
FIG. 11 is a longitudinal sectional view showing a state in which a chemical solution is injected by a conventional ground reinforcement method.
FIG. 12A is a longitudinal sectional view of a tunnel showing a leaking state by a conventional ground reinforcement method.
(B) The longitudinal cross-sectional view of the tunnel which shows the construction state expanded by the conventional natural ground reinforcement construction method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ground 1a Face 3 Tunnel space 4 Supporting work 5 Prior receiving work 6 Reinforcement pipe 61 Coupler 62 Steel pipe 62a Small hole 63 Mouth pipe 63a Hole 7 Bulkhead area 8 Consolidation area 10 Pilot hole 14 Caulking material

Claims (3)

周壁に吐出孔が穿設されている複数本の管を順次接続しながら所定の仰角で地山に打設して、接続された該複数本の管からなる補強管を形成し、該補強管を通して固結材を注入して該補強管の周囲の前方地山に固結領域を形成する地山補強工法に於いて、
補強管の内の口元管を、補強機能を果たす所要強度を有する素材で形成された多孔管とし、
該多孔管の吐出孔の開口率は、掘削機械の刃で切断可能で、且つ補強管としての所要強度を維持できると共に、口元管以外の管より固結材を速やかに漏出できる所定値に設定されており、
該多孔管内の所定位置から固結材を注入して漏出した該固結材で該多孔管の周囲の地山にバルクヘッド領域を形成し、その後に補強管の周囲に固結領域を形成することを特徴とする地山補強工法。
A plurality of pipes having discharge holes formed in the peripheral wall are sequentially connected to a natural mountain at a predetermined elevation angle to form a reinforcing pipe composed of the connected plurality of pipes. In the ground reinforcement method for injecting the caking material through and forming a consolidation area in the front ground around the reinforcing pipe,
The mouth tube in the reinforcing tube is a porous tube made of a material having the required strength to perform the reinforcing function,
The opening rate of the discharge hole of the perforated pipe is set to a predetermined value that can be cut with a blade of an excavating machine, can maintain the required strength as a reinforcing pipe, and can quickly leak the consolidated material from pipes other than the mouth pipe Has been
A bulkhead region is formed in a ground around the perforated pipe with the caking material injected and leaked from a predetermined position in the perforated pipe, and then a consolidated area is formed around the reinforcing pipe. A natural ground reinforcement method characterized by this.
前記多孔管をエキスパンドメタル若しくはパンチングメタルとすることを特徴とする請求項1記載の地山補強工法。2. The natural ground reinforcement method according to claim 1, wherein the porous pipe is an expanded metal or a punching metal. 前記固結材の注入を前記補強管に内設したインサート管で行い、該インサート管は切除可能で、且つ補強管に準ずる強度を有する材料からなることを特徴とする請求項1又は2記載の地山補強工法。The injection of the consolidated material is performed by an insert pipe provided in the reinforcing pipe, and the insert pipe is made of a material that can be excised and has a strength equivalent to that of the reinforcing pipe. Natural mountain reinforcement method.
JP2000153781A 2000-05-24 2000-05-24 Ground reinforcement method Expired - Lifetime JP3710991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153781A JP3710991B2 (en) 2000-05-24 2000-05-24 Ground reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153781A JP3710991B2 (en) 2000-05-24 2000-05-24 Ground reinforcement method

Publications (2)

Publication Number Publication Date
JP2001329779A JP2001329779A (en) 2001-11-30
JP3710991B2 true JP3710991B2 (en) 2005-10-26

Family

ID=18658976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153781A Expired - Lifetime JP3710991B2 (en) 2000-05-24 2000-05-24 Ground reinforcement method

Country Status (1)

Country Link
JP (1) JP3710991B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162256A (en) * 2002-11-08 2004-06-10 Tohoku Neji Seizo Kk Removable buried pipe
JP4646704B2 (en) * 2005-06-01 2011-03-09 株式会社ケー・エフ・シー Ground reinforcement method and bit for forming a pilot hole used therefor
JP6742755B2 (en) * 2016-02-26 2020-08-19 公益財団法人鉄道総合技術研究所 Rock improvement rock bolt reinforcement method
JP7026562B2 (en) * 2018-04-16 2022-02-28 清水建設株式会社 Tunnel construction method

Also Published As

Publication number Publication date
JP2001329779A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP4793655B2 (en) Tunnel construction method
KR101665515B1 (en) Direct-boring pipe roof tunnel construction method and structure non-cutting natural ground
JP4958035B2 (en) Shield roof construction method
JP2007217910A (en) Underground cavity construction method and tunnel construction method
JP3833403B2 (en) Large-section tunnel sushi bone method
WO1999028595A1 (en) Whale skeleton construction method for tunnel having large section
CN104632249A (en) Tunnel system supporting technology used in loose and soft broken surrounding rock
KR101677017B1 (en) construction methods of close-twin tunnel using tube hollow
JP4296549B2 (en) Underground support structure, its construction method and tunnel construction method
WO2001023711A1 (en) Ground reinforcing method
JP3710991B2 (en) Ground reinforcement method
JP2005029964A (en) Work execution method for long face bolt
JP2007126878A (en) Construction method of underground cavity, and tunnel construction method
JP5012149B2 (en) Ground support structure and ground support method
JP3515046B2 (en) Ground reinforcement method
JPS6149473B2 (en)
JP3524493B2 (en) Ground reinforcement method
JP2006097272A (en) Method of removing redundant portion of pipe bodies in natural ground reinforcing works
JP3675705B2 (en) Ground reinforcement method
JP3711094B2 (en) Ground reinforcement method
JP3267571B2 (en) Ground reinforcement method
JP2002242581A (en) Tunnel excavating method
JPH09279985A (en) Freeze expansion pressure reducing structure and building method thereof
JP2002147163A (en) Reinforcing method for natural ground
JPH08109790A (en) Shield shaft reinforcing structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3710991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term