JP5290596B2 - 生体光計測装置 - Google Patents

生体光計測装置 Download PDF

Info

Publication number
JP5290596B2
JP5290596B2 JP2008050116A JP2008050116A JP5290596B2 JP 5290596 B2 JP5290596 B2 JP 5290596B2 JP 2008050116 A JP2008050116 A JP 2008050116A JP 2008050116 A JP2008050116 A JP 2008050116A JP 5290596 B2 JP5290596 B2 JP 5290596B2
Authority
JP
Japan
Prior art keywords
light
light source
signal
probes
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008050116A
Other languages
English (en)
Other versions
JP2009201937A5 (ja
JP2009201937A (ja
Inventor
文男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2008050116A priority Critical patent/JP5290596B2/ja
Publication of JP2009201937A publication Critical patent/JP2009201937A/ja
Publication of JP2009201937A5 publication Critical patent/JP2009201937A5/ja
Application granted granted Critical
Publication of JP5290596B2 publication Critical patent/JP5290596B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、光を用いて被検体の光学特性を計測する生体光計測装置に関するものである。
従来の生体光計測装置では、第1及び第2の半導体レーザにより互いに異なる波長の光が発生される。第1の半導体レーザを駆動する第1のレーザドライバには、第1の擬似雑音系列発生器から第1の擬似雑音系列信号が供給される。第2の半導体レーザを駆動する第2のレーザドライバには、第2の擬似雑音系列発生器から第2の擬似雑音系列信号が供給される。これにより、第1及び第2のレーザドライバが出力する光強度振幅は、スペクトラム拡散方式でデジタル変調(ASK)される(例えば、特許文献1参照)。
特許第3623743号公報
しかし、空間分解能を高めるため、照射プローブ及び検出プローブの配置密度を高めた高精細タイプの生体光計測装置では、スペクトラム拡散方式でレーザ光を変調させても、照射プローブと検出プローブとの間に配置された別の組の照射プローブからの強い光が検出プローブに入射されるため、本来の照射プローブからの計測信号の検出精度が劣化する。
この発明は、上記のような課題を解決するためになされたものであり、光源(半導体レーザ)がオフからオンに切り替わる際に発生する信号の揺らぎを取り除くことができる生体光計測装置を得ることを目的とする。
この発明に係る生体光計測装置は、第1の光源と第2の光源を含む複数の光源部と、スペクトラム拡散方式の擬似雑音信号を用いて変調駆動された第1の光源の光と変調駆動された第2の光源の光をそれぞれ出力させると共に、1周期分の擬似雑音信号の前に少なくとも1ビットのダミー信号を付加する変調制御部と、上記変調駆動された第1の光源の出力光と上記変調駆動された第2の光源の出力光を被検体に照射する複数の照射プローブと、上記照射プローブに対して所定の間隔をおいて配置された上記被検体から戻る光を計測データとして検出する複数の検出プローブと、上記ダミー信号を除いた擬似雑音信号と上記計測データを乗算処理した数値を求め、上記第1の光源の変調駆動の期間に上記数値を加算平均すると共に、及び上記第2の光源の変調駆動の期間に上記数値を加算平均する復調演算部と、を備えている。
この発明の生体光計測装置は、光源(半導体レーザ)がオフからオンに切り替わる際に発生する信号の揺らぎを取り除くことができる。
以下、この発明を実施するための最良の形態について、図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1による生体光計測装置を示すブロック図である。図において、光源部1は、光源である複数(図では1つのみ示す)の半導体レーザ2と、半導体レーザ2をそれぞれ駆動するレーザ駆動回路3とを有している。各半導体レーザ2は、計測対象となる生体物質に応じて、可視から赤外の波長領域中の複数の波長、例えば780nmの光を放射する。
レーザ駆動回路3は、半導体レーザ2に対して直流バイアス電流を印加するとともに、半導体レーザ2から放射される光に擬似雑音信号でコード化された強度変調を与える。この例では、変調方法として、スペクトラム拡散(SS)方式によるデジタル変調(ASK)が用いられる。レーザ駆動回路3には、発振器4により基本周波数(チップ周波数)f0の擬似雑音信号が印加される。発振器4は、例えばFPGAで構成された変調制御部9により制御される。
光源部1で発生された光は、被検体5の頭部に照射される。被検体5を透過した光は、光電変換部である検出器6で検出される。検出器6で検出された光は、皮膚及び頭蓋骨を通過しており、大脳の血流の情報を含んでいる。即ち、検出器6での検出光量は、計測点の生体物質濃度、例えばヘモグロビン濃度に応じて変化する。従って、検出光量の変化から、被検体5の光学特性として生体物質濃度の相対変化を計測することができる。
検出器6からの検出信号は、データ処理部7に入力される。データ処理部7は、発振器4からの擬似雑音信号を参照信号として計測点毎の検出信号の抽出を行う。データ処理部7から出力された信号は、コンピュータ8に入力される。コンピュータ8は、検出信号から検出光量を計測し、その計測結果から各計測点における血液中のヘモグロビン濃度等の変化量を計測し、計測結果に関する情報をモニタに表示する。コンピュータ8としては、例えば汎用のパーソナルコンピュータを用いることができる。
被検体5には、光源部1からの光を被検体5に照射するとともに被検体5から戻る光を検出するためのプローブ装置(図示せず)が装着される。プローブ装置は、被検体5の頭部に装着されるホルダと、ホルダに装着された複数のプローブとを有している。
図2は図1の生体光計測装置におけるプローブの配置状態を示す説明図である。プローブは、複数の第1組(A面)の照射プローブ11a(図2では斜線付きの四角で示す)と、複数の第1組の検出プローブ11b(図2では斜線無しの四角で示す)と、複数の第2組(B面)の照射プローブ12a(図2では斜線付きの円で示す)と、複数の第2組の検出プローブ12b(図2では斜線無しの円で示す)とを含んでいる。
即ち、図2では、第1組のプローブ11a,11bを四角で示し、第2組のプローブ12a,12bを円で示している。また、図2では、照射プローブ11a,12aに斜線を付し、検出プローブ11b,12bを斜線無しで示している。照射プローブ11a,12aは、光源部1からの光を被検体5に照射する。検出プローブ11b,12bは、被検体5を透過した光を受光する。検出プローブ11b,12bで受光された光は、それぞれ検出器6に送られる。
第1組のプローブ11a,11bは、マトリクス状に配置されている。また、第1組の照射プローブ11a及び検出プローブ11bは、交互に配置されている。第2組のプローブ12a,12bも、マトリクス状に配置されている。また、第2組の照射プローブ12a及び検出プローブ12bも、交互に配置されている。さらに、第2組のプローブ12a,12bは、第1組のプローブ11a,11b間に配置されている。各組において、照射プローブ11a,12aと検出プローブ11b,12bとの間のピッチは、30mmである。
図3は図1の生体光計測装置における計測点の分布を示す説明図である。図3では、計測点を四角で示している。照射プローブ11a,12aから照射された光の一部は、計測点で大脳皮質を透過し検出プローブ11b,12bに入射する。従って、計測点は、図2における照射プローブ11aと検出プローブ11bとの間、及び照射プローブ12aと検出プローブ12bとの間に位置している。この例における計測点は、45箇所(45チャンネル)であり、互いに隣接する計測点のピッチは15mmである。
光源部1には、第1組の照射プローブ11aに対応する複数(この例では8個)の第1組の半導体レーザ2と、第2組の照射プローブ12aに対応する複数(この例では6個)の第2組の半導体レーザ2とが設けられている。照射プローブ11a,12a及び検出プローブ11b,12bが図2のように高精細で配置されている場合、第1組の半導体レーザ2と第2組の半導体レーザ2とで光の照射タイミングがずらされる。即ち、第1組の半導体レーザ2と、第2組の半導体レーザ2とは、交互にオン・オフされる。
一方、検出器6には、第1組の検出プローブ11bに対応する複数(この例では8個)の第1組の検出部と、第2組の検出プローブ12bに対応する複数(この例では6個)の第2組の検出部と、検出部による検出動作をそれぞれオン・オフする複数のアナログスイッチとが設けられている。各検出部としては、例えばフォトダイオードが用いられている。また、第1組の検出部と、第2組の検出部とは、対応する半導体レーザ2のオン・オフに同期して、交互にオン・オフされる。
図4は図1のデータ処理部7を示すブロック図である。データ処理部7は、増幅器13、AD変換器14及び復調演算部15を有している。
検出器6で電流に変換された光強度信号は、それぞれ増幅器13で電圧変換される。増幅器13から出力された光強度信号は、それぞれAD変換器14でデジタル信号に変換され、復調演算部15に入力される。
ここで、AD変換器14の変換サイクルは、光源部1の擬似雑音信号の基本周波数に比べて十分に大きい100kHzとする。これにより、デジタル信号のサンプルナイキスト周波数は50kHzとなり、変調信号10kHzを十分な精度でサンプルすることができる。
復調演算部15は、例えばDSP(Digital Signal Processor)により構成され、光源変調に用いた擬似雑音信号を参照信号として、参照信号と同期した信号の抽出、即ち計測点毎の信号の抽出を行う。
ここで、スペクトラム拡散方式について説明する。スペクトラム拡散方式は、擬似雑音信号を用いた通信方式であり、例えば音声信号などの通信信号の変調方式として利用されている。スペクトラム拡散方式を用いることにより、1つの受信機で多数の発信機からの信号を同時に受信し、それぞれの発信機からの信号として復調することができる。
また、擬似雑音信号は、0と1とで構成され、有限の長さを持つ信号列のセットである。このようなセットのうち、特定のセットの中では、相互に異なるコード間での特異的なクロストークやビート信号の発生を防止することができる。また、狭い周波数帯域の中で多数の分離可能な信号を発生することができる。
さらに、スペクトラム拡散方式には、直接拡散方式及びホッピング方式などがある。直接拡散方式は、所定の帯域幅を持った擬似乱数系列を信号データに乗算して、データ列自身の周波数帯域を広げ、それを変調して送信する方法である。また、ホッピング方式は、1チャンネル当たりの使用周波数帯域幅は比較的狭いながらも、非常に短い時間間隔(0.1秒程度)でチャンネルを変えながらデータを送信する方法である。
この実施の形態では、計測に適した直接拡散方式を用いた例を示すが、これにホッピング方式を加えて外部雑音光の影響をさらに小さくすることもできる。
擬似雑音信号の系列には、複数の系列があるが、それらのうちアダマール系列は、系列内の総和が0(0,−1のデジタル値を用いた場合)となり、計測変調方式に適しているとともに、作成が容易である。また、通信に多く利用されているM系列も適用可能である。
レーザの変調波形としては、矩形波によるデジタル変調波形が好ましいが、他の波形、例えば台形波を用いることもできる。
各検出プローブ11b,12bには、複数の照射プローブ11a,12aからの信号が同時に入力するため、各検出プローブ11b,12bに入力した信号を照射プローブ11a,12aに応じて分離する必要がある。このため、この実施の形態では、アダマール系列の擬似雑音信号を用いる。
また、変調制御部9は、第1組の半導体レーザ2と、第2組の半導体レーザ2とを交互にオン・オフするため、第1組の半導体レーザ2を駆動するための擬似雑音信号と、第2組の半導体レーザ2を駆動するための擬似雑音信号とを交互にオン・オフする。さらに、検出器6は、変調制御部9からの信号を参照して、第1組の検出部と第2組の検出部とを交互にオン・オフする。
図5は図4の復調演算部15を示すブロック図である。復調演算部15は、掛け算部16と加算演算部17とを有している。掛け算部16は、変調に用いたアダマール系列の擬似雑音系列の1,0に対応した1,−1の参照信号列と計測データとで掛け算処理を行う。加算演算部17は、掛け算部16で求めた各サンプル点の掛け算後の数値について、オン期間のうちの擬似雑音信号の周期全体にわたる加算平均を求める。
これにより、所望の照射プローブ11a,12aからの信号を選択的に抽出し、かつ他の擬似雑音信号や外来光によるランダムな変動を除去することができる。
さらに、この実施の形態では、図6に示すように、擬似雑音信号の1周期の倍数の周期で半導体レーザ2をオン・オフする。即ち、半導体レーザ2がオンの期間では、擬似雑音信号によりコード化されたパルス状にレーザ光が発生される。また、半導体レーザ2がオフの期間では、0のみを並べた信号列が発振器4からレーザ駆動回路3に供給される。
但し、この実施の形態では、1周期分の擬似雑音信号の前に1パルス以上(少なくとも1ビット)のダミー信号(ダミーパルス)が付加される。そして、復調時には、ダミー信号を除いた擬似雑音信号の1周期分を上記の方法で計算し復調する。これにより、オフからオンに切り替わる際に発生する信号の揺らぎを取り除くことができる。
即ち、25msのオフ期間を経過した後にオンへ移行する際、レーザ光には、急激な温度変化のためにオーバーシュートが生じる。これに対して、ダミー信号を付加することにより、安定した信号を計測することができる。
このとき、付加するダミー信号は、スペクトラム拡散変調のチップ幅のパルス信号を用いれば、回路構成を簡単にすることができる。また、オーバーシュートの発生が想定される時間幅に応じて、追加するダミー信号のパルス数を制御することで、レーザの特性に容易に対応することが可能となる。
このような生体光計測装置では、第1組の半導体レーザ2を駆動するための擬似雑音信号と第2組の半導体レーザ2を駆動するための擬似雑音信号とを交互にオン・オフするので、他の組の半導体レーザ2からの光の影響を除去することができ、スペクトラム拡散方式の変調を用いつつ、チャンネル数を増加させても高い検出精度を保つことができる。
また、第1組の半導体レーザ2用の疑似雑音信号と第2組の半導体レーザ2用の疑似雑音信号とを重複させることもでき、この場合、変調制御部9の構成を容易にすることができる。
さらに、1周期分の擬似雑音信号の前に少なくとも1ビットのダミー信号を付加するので、オフからオンに切り替わる際に発生する信号の揺らぎを取り除くことができ、スペクトラム拡散方式の変調を用いつつ、チャンネル数を増加させても高い検出精度を保つことができる。
ここで、信号分離方式としてロックイン方式を用いた場合、ある半導体レーザ2の変調周波数が10kHzとして、干渉を避けるために信号のオン・オフを20m秒毎、つまり25Hz実施した場合、10kHzで変調を受けたものが25Hzでさらに変調されることになる。このため、計測信号は、例えば計測信号の変調周波数10kHzに加えて、10025Hz、10050Hz、・・・の25Hz間隔のサイドバンド信号成分を持つことになる。
従って、ロックイン方式では、掛け算処理部の後に20050Hzの高周波成分と25Hzの低周波成分とが生成されることになる。この結果、低域濾過フィルタにおける信号の周波数位置は図7のようになり、本来の中心周波数からずれた信号が発生するため、狭帯域の低周波フィルタで全ての信号を捉えることは不可能であり、計測信号の精度が劣化することとなる。
この場合、低周波フィルタを25Hzシフトした位置に十分に狭い帯域幅で作成追加すればSN比を改善できるが、これは困難であり、ロックイン方式の効果である高いノイズ除去効果を得ることができない。
また、この実施の形態のように、照射プローブ11a,12a及び検出プローブ11b,12bが高精細で配置されている場合、変調をオン・オフすると、サイドバンドは25Hzで繰り返し発生することになる。さらに、多数の半導体レーザ2からの信号を同時に検出した場合、変調周波数をずらしても、他の組の半導体レーザ2からの信号のサイドバンドが本来の計測信号に混入する可能性が高くなる。
これに対して、例えばオン・オフの変調波形を使用せず、理想的な正弦波で高密度変調を行えば、サイドバンドは基本周波数の近傍の2個のみになるため、信号の混入は防げる。しかし、レーザは非線形性を有しているため、光源波形を正弦波に合成することは困難である。また、相互干渉を十分に低減することはできない。
このため、生体光計測装置のように複数波長や複数の半導体レーザ2を同時に発光させて効率良く計測を行う必要がある装置では、信号分離のための変調周波数の選択が困難になるという問題がある。この実施の形態では、擬似雑音信号を用いたスペクトラム拡散方式を用いたので、このような問題を解決することができる。
なお、例えば第1組及び第2組のいずれか一方のみの計測点の計測を行う場合など、半導体レーザ2を周期的にオン・オフしない場合には、例えば100kHz程度の適当な間隔の周波数で変調し、ロックイン回路で復調すれば、SN比を向上させることができる。即ち、スペクトラム拡散方式及びロックイン方式の両方の機能を持たせ、いずれか一方の方式を選択可能な装置構成としてもよい。
また、上記の例では、1周期分の擬似雑音信号の前にダミー信号を付加したが、疑似雑音信号の先頭部分にダミーパルスを含ませ、復調演算でダミーパルス部分をキャンセル(無効化)するようにしてもよい。
さらに、上記の例では、計測点を第1組及び第2組の2組に分けたが、3組以上に分けてもよい。
この発明の実施の形態1による生体光計測装置を示すブロック図である。 図1の生体光計測装置におけるプローブの配置状態を示す説明図である。 図1の生体光計測装置における計測点の分布を示す説明図である。 図1のデータ処理部を示すブロック図である。 図4の復調演算部を示すブロック図である。 図1の発信器からレーザ駆動回路に供給される信号の一例を示す説明図である。 ロックイン方式における信号の周波数分布を示す説明図である。
符号の説明
1 光源部、2 半導体レーザ(光源)、6 検出器、7 データ処理部、9 変調制御部、11a 第1組の照射プローブ、11b 第1組の検出プローブ、12a 第2組の照射プローブ、12b 第2組の検出プローブ。

Claims (2)

  1. 第1の光源と第2の光源を含む複数の光源部と
    スペクトラム拡散方式の擬似雑音信号を用いて変調駆動された第1の光源の光と変調駆動された第2の光源の光をそれぞれ出力させると共に、1周期分の擬似雑音信号の前に少なくとも1ビットのダミー信号を付加する変調制御部と
    上記変調駆動された第1の光源の出力光と上記変調駆動された第2の光源の出力光を被検体に照射する複数の照射プローブと、
    上記照射プローブに対して所定の間隔をおいて配置された上記被検体から戻る光を計測データとして検出する複数の検出プローブと、
    上記ダミー信号を除いた擬似雑音信号と上記計測データを乗算処理した数値を求め、上記第1の光源の変調駆動の期間に上記数値を加算平均すると共に、及び上記第2の光源の変調駆動の期間に上記数値を加算平均する復調演算部と、を備えたことを特徴とする生体光計測装置。
  2. 上記変調制御部は、前記第1の光源又は前記第2の光源のオン・オフによるオーバーシュートの発生が想定される時間幅に応じて、追加するダミー信号のパルス数を制御することを特徴とする請求項1に記載の生体光計測装置。
JP2008050116A 2008-02-29 2008-02-29 生体光計測装置 Expired - Fee Related JP5290596B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050116A JP5290596B2 (ja) 2008-02-29 2008-02-29 生体光計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050116A JP5290596B2 (ja) 2008-02-29 2008-02-29 生体光計測装置

Publications (3)

Publication Number Publication Date
JP2009201937A JP2009201937A (ja) 2009-09-10
JP2009201937A5 JP2009201937A5 (ja) 2011-04-14
JP5290596B2 true JP5290596B2 (ja) 2013-09-18

Family

ID=41144775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050116A Expired - Fee Related JP5290596B2 (ja) 2008-02-29 2008-02-29 生体光計測装置

Country Status (1)

Country Link
JP (1) JP5290596B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9400950U1 (de) * 1994-01-20 1995-08-24 Selectronic Vertriebs Gmbh Vorrichtung zur Erfassung lebender Körper sowie deren Verwendung
US6416471B1 (en) * 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
JP3779134B2 (ja) * 2000-06-19 2006-05-24 株式会社日立製作所 生体光計測装置
JP3623743B2 (ja) * 2001-02-26 2005-02-23 株式会社スペクトラテック 生体情報測定装置
JP2004184402A (ja) * 2002-11-19 2004-07-02 Hitachi Ltd 生体光計測装置
JP2004333344A (ja) * 2003-05-09 2004-11-25 Hitachi Ltd 光計測方法および装置
JP4025749B2 (ja) * 2004-05-10 2007-12-26 オリンパス株式会社 送信装置および被検体内導入システム
JP4209837B2 (ja) * 2004-12-14 2009-01-14 日本電信電話株式会社 トランシーバ

Also Published As

Publication number Publication date
JP2009201937A (ja) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4546274B2 (ja) 生体情報計測装置およびその制御方法
CN103733027B (zh) 光纤分布式感测
JP3623743B2 (ja) 生体情報測定装置
JP5188786B2 (ja) 生体情報計測装置
EP1949848B1 (en) Optical measurement instrument for living body
EP1568320A1 (en) Simultaneous signal attenuation measurements utilizing frequency orthogonal random codes
KR20170050059A (ko) 영상 획득 장치 및 영상 획득 방법
US7569821B2 (en) Biological information measuring apparatus
JP5290596B2 (ja) 生体光計測装置
JP5495218B2 (ja) テラヘルツ光検出方法、テラヘルツ光装置及びイメージ化装置
WO2015129118A1 (ja) 特性測定装置、過渡吸収応答測定装置および過渡吸収応答測定方法
JP2004333344A (ja) 光計測方法および装置
JP4722556B2 (ja) 生体光計測装置
JP4714179B2 (ja) 生体情報測定装置及び生体情報測定装置の制御方法
JP6082108B2 (ja) 光信号検出回路および計測装置
JP2004184402A (ja) 生体光計測装置
WO2010122703A1 (ja) 生体光計測装置
JP4961280B2 (ja) 生体光計測装置
JP2015093163A (ja) 脈拍計測装置
JP4202683B2 (ja) 発光ダイオードの光量測定方法及び光量測定装置
JP2000266669A (ja) 濃度測定装置
KR20150133086A (ko) 깊이 영상 획득 방법 및 그 영상 획득 장치
JP6910804B2 (ja) 計測装置、計測方法、コンピュータプログラム及び記録媒体
JP4621374B2 (ja) 時間応答測定方法および装置
JPH05115485A (ja) 生体光計測装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees