JP5271522B2 - 燃料電池システム及び燃料電池システムの運転方法 - Google Patents

燃料電池システム及び燃料電池システムの運転方法 Download PDF

Info

Publication number
JP5271522B2
JP5271522B2 JP2007246200A JP2007246200A JP5271522B2 JP 5271522 B2 JP5271522 B2 JP 5271522B2 JP 2007246200 A JP2007246200 A JP 2007246200A JP 2007246200 A JP2007246200 A JP 2007246200A JP 5271522 B2 JP5271522 B2 JP 5271522B2
Authority
JP
Japan
Prior art keywords
fuel cell
reformed gas
carbon monoxide
hydrogen production
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007246200A
Other languages
English (en)
Other versions
JP2009076398A (ja
Inventor
明彦 福永
淳 秋本
哲夫 大川
学 樋渡
丈 井深
修平 咲間
義宏 堀
茂 浅井
安美 山口
勝巳 津田
洋一 緑川
琢也 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2007246200A priority Critical patent/JP5271522B2/ja
Publication of JP2009076398A publication Critical patent/JP2009076398A/ja
Application granted granted Critical
Publication of JP5271522B2 publication Critical patent/JP5271522B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

この発明は、燃料電池システム及び燃料電池システムの運転方法に関する。
燃料電池システムとして、例えば特許文献1に開示されてものがある。このような燃料電池システムは、水素製造装置と燃料電池とを備えている。水素製造装置は、灯油等の水素製造用原料を改質して水素リッチな改質ガスを生成する改質部と、改質部からの改質ガスに含まれる一酸化炭素を選択酸化する選択酸化部とを有する。
燃料電池は、電池セルが積層されてなり、アノード側に水素製造装置で生成された水素リッチな改質ガスが供給され、カソード側に空気が供給されることで、酸素と水素との電気化学的な反応により発電を行う。
特開2005−60172号公報
このような燃料電池システムにおいては、燃料電池に供給される改質ガス中の一酸化炭素(CO)が増えたり、燃料電池において水詰まりが生じたりすることで、電池出力が大きく低下することがあるが、従来のシステムでは、このような大きな出力低下が生じた場合、システム全体を停止させていたため、再起動に時間を要してダウンタイムが長くなり、システムの利用効率が悪くなるという問題があった。
本発明は、上記した事情に鑑みてなされたものであり、ダウンタイムを少なくしてシステムの利用効率を高めることができる燃料電池システム及び燃料電池システムの運転方法を提供することを目的とする。
本発明に係る燃料電池システムは、水素製造用原料を改質して水素リッチな改質ガスを製造する水素製造装置と、生成した改質ガスを利用して発電を行う燃料電池と、前記水素製造装置から前記燃料電池に前記改質ガスを送る供給ラインと、前記水素製造装置から所定の退避場所に前記改質ガスを送る退避ラインと、発電中における前記燃料電池の出力電圧を検出する電圧検出手段と、前記出力電圧が閾値を下回った場合に、前記供給ラインから前記燃料電池への前記改質ガスの供給を停止すると共に、前記退避ラインに前記改質ガスが流れるように流路を切替制御する制御手段と、を備え、前記水素製造装置は、前記改質ガス中の一酸化炭素を一酸化炭素除去触媒により除去する一酸化炭素除去部を有し、前記制御手段は、前記出力電圧が閾値を下回った場合に、前記一酸化炭素除去部の温度を還元に適した温度範囲まで上昇させることを特徴とする。
このシステムでは、燃料電池の出力電圧を検出することで、燃料電池の出力低下を検知した場合に、供給ラインから燃料電池への改質ガスの供給を停止することで、燃料電池による発電を中止すると共に、退避ラインに改質ガスを流して水素製造装置の運転を継続することができる。このように、水素製造装置を稼動した状態で燃料電池の運転を停止することができるため、燃料電池にダメージが生じる前に燃料電池の運転を停止し、水詰まりなど燃料電池の側に問題がある場合においては燃料電池を所定時間だけ休ませた後、また水素製造装置側に問題がある場合においては水素製造装置の運転を継続させた状態で様子見したり必要に応じてメンテナンスしたりした後、すぐにシステムを立ち上がらせることができ、システム全体を停止させる場合と比べて、ダウンタイムが少なくなってシステムの利用効率を高めることができる。さらに、改質ガス中の一酸化炭素濃度の増加が燃料電池の出力低下の要因である場合に、一酸化炭素除去部を還元に適した温度に上昇させて改質ガスにより還元することで、一酸化炭素除去触媒を復元させることができる。
制御手段は、出力電圧の低下速度が閾値を上回った場合に、供給ラインから燃料電池への改質ガスの供給を停止すると共に、退避ラインに改質ガスが流れるように流路を切替制御することを特徴としてもよい。
一酸化炭素除去部は、改質ガス中の一酸化炭素を選択酸化して低減させる選択酸化部を有し、制御手段は、出力電圧が閾値を下回った場合に、選択酸化部への空気の供給量を低減させることを特徴としてもよい。このようにすれば、酸素源を減らすことで、選択酸化部における選択酸化触媒の還元を促進することができる。
また、制御手段は、出力電圧が閾値を下回った場合に、選択酸化部への空気の供給量をゼロより大きい所定量に低減させることを特徴としてもよい。
水素製造装置は、改質のための熱源としてのバーナを有しており、所定の退避場所はバーナを含み、退避ラインはバーナと接続されていることを特徴としてもよい。このようにすれば、改質ガスをバーナの燃料として利用することができ、改質ガスを無駄にすることなく有効利用が図られる。
本発明に係る燃料電池システムの運転方法は、水素製造装置において水素製造用原料を改質して水素リッチな改質ガスを製造し、水素製造装置の一酸化炭素除去部において改質ガス中の一酸化炭素を一酸化炭素除去触媒により除去し、生成した改質ガスを利用して燃料電池において電気化学反応によって発電を行う燃料電池システムの運転方法であって、発電中における燃料電池の出力電圧が閾値を下回った場合に、燃料電池への改質ガスの供給を停止して発電を中止すると共に、水素製造装置からの改質ガスを所定の退避場所に送り、一酸化炭素除去部の温度を還元に適した温度範囲まで上昇させることを特徴とする。
この運転方法では、燃料電池の出力電圧が閾値を下回り、燃料電池の出力低下を検知した場合に、供給ラインから燃料電池への改質ガスの供給を停止することで、燃料電池による発電を中止すると共に、退避ラインに改質ガスを流して水素製造装置の運転を継続することができる。このように、水素製造装置を稼動した状態で燃料電池の運転を停止することができるため、燃料電池にダメージが生じる前に燃料電池の運転を停止し、水詰まりなど燃料電池の側に問題がある場合においては燃料電池を所定時間だけ休ませた後、また水素製造装置側に問題がある場合においては水素製造装置の運転を継続させた状態で様子見したり必要に応じてメンテナンスしたりした後、すぐにシステムを立ち上がらせることができ、システム全体を停止させる場合と比べて、ダウンタイムが少なくなってシステムの利用効率を高めることができる。さらに、改質ガス中の一酸化炭素濃度の増加が燃料電池の出力低下の要因である場合に、一酸化炭素除去部を還元に適した温度に上昇させて改質ガスにより還元することで、一酸化炭素除去触媒を復元させることができる。
本発明によれば、ダウンタイムを少なくしてシステムの利用効率を高めることができる燃料電池システム及び燃料電池システムの運転方法を提供することができる。
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、第1実施形態に係る燃料電池システムの構成を示す図である。図1に示すように、燃料電池システム1は、水素製造装置(FPS)10、燃料電池20、電圧検出装置30、制御装置40、バーナ燃料供給装置50、水素製造用原料供給装置60、冷却水供給装置70、及び空気供給装置80を備えている。
FPS10は、水素製造用原料供給装置60からの水素製造用原料を利用して、水素リッチな改質ガスを生成する。水素製造用原料としては、水蒸気改質により水素を含む改質ガスを得られる物質であれば使用できる。例えば、炭化水素類、アルコール類、エーテル類など分子中に炭素と水素を有する化合物を用いることができる。工業用あるいは民生用に安価に入手できる原料として、メタノール、エタノール、ジメチルエーテル、メタン、都市ガス、LPG(液化石油ガス)を挙げることができ、また石油から得られるガソリン、ナフサ、灯油、軽油など炭化水素油を挙げることができる。これらの中でも、液体原料が好ましく、特に灯油は入手容易でありその取扱が容易であるため好ましい。
このFPS10は、改質部11、バーナ12、シフト部13、及び選択酸化部14を有している。改質部11は、改質用水を用いて水素製造用原料を水蒸気改質し、水素リッチな改質ガスを生成する。水蒸気改質のための改質触媒としては、例えば、ニッケル系、ルテニウム系、ロジウム系等の金属をアルミナやジルコニア等からなる担体に担持させたものが挙げられる。バーナ12は、吸熱反応である水蒸気改質に必要な熱を供給する。このバーナ12は、システム1の起動時には、バーナ燃料供給装置50からの燃料を燃焼させる。また、システム1の通常運転時には、燃料電池20で使用されずに排出された改質ガスの余剰分であるオフガスを燃焼させる。また、システム1の異常時には、FPS10で製造した改質ガスを燃焼させる。これについては後述する。
シフト部13は、シフト触媒を用いて水性シフト反応により改質ガス中のCOを数千ppm程度まで除去する。シフト触媒としては、例えば、Cu、Zn、Fe、Cr等をアルミナやジルコニア等からなる担体に担持させたものが挙げられる。シフト触媒による水性シフト反応が活性化される温度範囲は、触媒の種類により異なるものの、凡そ200〜500℃の範囲である。
選択酸化部14は、選択酸化触媒を用いて選択酸化により改質ガス中のCOを数十ppm程度まで除去する。選択酸化触媒としては、例えば、Pt、Ru等をアルミナやジルコニア等からなる担体に担持させたものが挙げられる。選択酸化触媒による選択酸化反応が活性化される温度範囲は、触媒の種類により異なるものの、凡そ120〜180℃の範囲である。また、選択酸化触媒の還元が促進される温度範囲は、触媒の種類により異なるものの、凡そ200〜250℃の範囲である。
空気供給装置80は、選択酸化部14における選択酸化反応に必要な酸素源としての空気を、選択酸化部14に供給する。
冷却水供給装置70は、発熱反応である水性シフト反応を行うシフト部13、及び発熱反応である選択酸化反応を行う選択酸化部14を冷却するための冷却水を供給する。
燃料電池20は、固体高分子形(PEFC)の電池スタックであり、複数の電池セルが積み重ねられて構成され、FPS10で生成された改質ガスを用いて発電する。電池セルは、アノードと、カソードと、アノード及びカソード間に配置された電解質である高分子のイオン交換膜とを有しており、アノード側に改質ガスを導入させると共に、カソード側に空気を導入させることで、各電池セルにおいて電気化学的な発電反応が行われる。
改質ガス供給ラインL1は、FPS10の選択酸化部14と燃料電池20とを接続し、FPS10で生成された改質ガスを燃料電池20に供給する。この改質ガス供給ラインL1上には、改質ガスの流量を調整するための第1調整弁91が設けられている。
退避ラインL2は、FPS10の選択酸化部14とバーナ(所定の退避場所)12とを接続し、FPS10で生成された改質ガスをバーナ12に供給する。この退避ラインL2上には、改質ガスの流量を調整するための第2調整弁92が設けられている。
オフガスラインL3は、燃料電池20とバーナ12とを接続し、燃料電池20で使用されずに余った改質ガスをバーナ12に供給する。このオフガスラインL3上には、改質ガスの流量を調整するための第3調整弁93が設けられている。
電圧検出装置30は、燃料電池20における発電により生じた出力電圧Vを検出する。制御装置40は、この燃料電池システム1の全体を制御する。特に、制御装置40は、電圧検出装置30で検出された出力電圧Vに基づいて、第1〜第3調整弁91〜93を開閉制御し、改質ガス及びオフガスの流路を切替制御する。これについては後述する。また、制御装置40は、バーナ燃料供給装置50からのバーナ燃料の供給量や、水素製造用原料供給装置60からの水素製造用原料の供給量Fを制御する。更に、制御装置40は、冷却水供給装置70からの冷却水の供給量Lや、空気供給装置80からの空気の供給量Dを制御する。
次に、上記した燃料電池システム1の運転方法について、図2のフローチャートを参照して説明する。
通常運転時においては、図1に示すように、水素製造用原料供給装置60から改質部11に灯油などの水素製造用原料が供給され、改質用水を用いて水蒸気改質により、水素リッチな改質ガスが生成される。改質部11で生成された改質ガスは、シフト部13に送られて水性シフト反応により改質ガス中の一酸化炭素が数千ppm程度まで除去される。更に、シフト部13から改質ガスが選択酸化部14に送られ、選択酸化反応により改質ガス中の一酸化炭素が数十ppm程度まで除去される。このとき、選択酸化部14には空気供給装置80から選択酸化反応に必要な空気が供給される。また、これらシフト部13や選択酸化部14における水性シフト反応や選択酸化反応は発熱反応であるため、シフト触媒や選択酸化触媒の活性化に好適な温度範囲に温度調整するために、冷却水供給装置70から所定流量の冷却水が供給される。
選択酸化部14において数十ppm程度まで一酸化炭素が除去された改質ガスは、改質ガス供給ラインL1を通して燃料電池20に送られる。このとき、改質ガス供給ラインL1上の第1調整弁91は開けられている一方、第2調整弁92は閉じられている。また、オフガスラインL3上の第3調整弁93は開けられている。
燃料電池20では、アノード側に改質ガスが導入されると共に、カソード側に空気が導入されることで、各電池セルにおいて電気化学的な発電反応が行われる。そして、燃料電池20において使用されずに余った改質ガスが、オフガスとしてオフガスラインL3を通してバーナ12に送られる。これにより、バーナ12でオフガスが燃焼され、改質部11における吸熱反応に必要な熱が供給される。
このような通常運転時において、図1及び図2に示すように、まず、電圧検出装置30により燃料電池20の出力電圧Vを検出する(ステップS201)。次に、制御装置40において、検出した出力電圧Vが閾値Vth1以上であると判定されると、異常は発生していないとして通常の運転を続ける(ステップS202)。
一方、ステップS202において、検出した出力電圧Vが閾値Vth1を下回ると判定されると、図3(a)及び図3(f)に示すように、FPS10からの改質ガス中の一酸化炭素濃度Nの増加や燃料電池20の水詰まりなど不具合が発生したと判断する。そして、ステップS202における判定がYESである場合は、制御装置40は、第1調整弁91を閉じて改質ガス供給ラインL1から燃料電池20への改質ガスの供給を停止する。これと同時に、退避ラインL2に改質ガスが流れるように、退避ラインL2上の第2調整弁92を開けると共にオフガスラインL3上の第3調整弁93を閉じる(ステップS203)。これにより、図3(a)に示すように、時刻T1において燃料電池20の発電が中止され、出力電圧Vがゼロになる。
これと併せて、図3(b)に示すように、制御装置40は、FPS10の熱バランスを維持するために水素製造用原料の供給量Fを通常量Fから所定量Fまで減らす(ステップS204)。また、制御装置40は、冷却水供給装置70からの冷却水の供給量Lを通常量Lから所定量Lまで減らす(ステップS205)。これにより、選択酸化部14の選択酸化触媒において還元が促進される温度範囲まで温度が上昇される。なお、図3(d)には、選択酸化部14の温度Tが通常温度Tから所定温度Tまで上昇する様子が示されている。更に、選択酸化部14での選択酸化触媒の還元を促進すべく、制御装置40は、空気供給装置80からの空気の供給量Dを通常量Dから所定量Dまで減らす(ステップS206)。ここで、空気の供給量Dは、通常時の1/10以下まで低減されると好ましく、更に1%以下まで低減されるとより好ましい。本実施形態では、所定量Dをゼロとしている。しかしながら、極微量の空気を供給すれば、燃焼熱により触媒層の温度を上昇させることが可能である。したがって、触媒層を還元に適した温度まで上昇させるために必要なバーナ若しくはヒーターなどのエネルギーを低減することが可能となるため、空気の供給量は必ずしもゼロとする必要はない。
この状態で、改質部11で生成した改質ガスを選択酸化部14に通すことで、選択酸化触媒が還元され、触媒が再活性化される。このとき、選択酸化部14を出た改質ガスは、退避ラインL2を通してバーナ12に送られ、そこで燃焼される。
次に、制御装置40は、還元に必要な所定時間(T3−T2)が経過したか否かを判定し(ステップS207)、所定時間が経過していれば、還元が完了したとして、制御装置40は、図3(c)に示すように、冷却水供給装置70からの冷却水の供給量Lを通常量Lに戻す(ステップS208)。これにより、選択酸化部14の選択酸化触媒が一酸化炭素除去のため活性化される温度範囲まで冷却される。なお、図3(d)には、選択酸化部14の温度Tが通常温度Tまで温度低下する様子が示されている。また、制御装置40は、図3(e)に示すように、選択酸化部14への空気供給量Dを通常量Dに戻す(ステップS209)。また、制御装置40は、図3(b)に示すように、水素製造用原料供給装置60からの水素製造用原料の供給量Fを通常量Fに戻す(ステップS210)。
この状態においては、選択酸化触媒が還元により再活性化されているため、図3(f)に示すように、閾値Nth1まで増加していた改質ガス中の一酸化炭素濃度Nが、通常量Nまで低減されている。
そして、制御装置40は、第2調整弁92を閉じて退避ラインL2からバーナ12への改質ガスの供給を停止する。これと同時に、改質ガス供給ラインL1に改質ガスが流れるように、改質ガス供給ラインL1上の第1調整弁91を開けると共にオフガスラインL3上の第3調整弁93を開ける(ステップS211)。これにより、図3(a)に示すように、時刻T4から燃料電池20での発電が開始され、その後、水素製造用原料の供給量を規定の量まで増加させることにより、出力電圧Vが徐々に通常の出力電圧Vまで戻る。
なお、上記実施形態では、改質ガス供給ラインL1から燃料電池20への改質ガスの供給を停止する工程において、流路を即時に切替える場合について説明したが、燃料電池20の耐久性を考慮して、供給量を徐々に低減することが好ましい。そして、退避ラインL2への流路の切り替えは、FPS10の熱バランスを維持するため、発電量が十分に低減されてから切り替えることが好ましい。このように、燃料電池20への改質ガスの供給を徐々に低減した後流路を切替える場合は、流路を即時に切替える図3の場合と異なり、図4(a)に示すように、電池電圧は一度上昇した後でゼロになる。一方で電池電流は、図4(g)に示すように、漸次減少する。また、ガス量が減少することで、図4(d)に示すように、PROX温度は一度減少する。なお、冷却水流量は、図4(c)に示すように、T1からT2の間は一定に維持しておく。
以上詳述したように、第1実施形態の燃料電池システム1では、燃料電池20の出力電圧Vを検出することで、燃料電池20の出力低下を検知した場合に、改質ガス供給ラインL1から燃料電池20への改質ガスの供給を停止することで、燃料電池20による発電を中止すると共に、退避ラインL2に改質ガスを流してFPS10の運転を継続することができる。このように、FPS10を稼動した状態で燃料電池20の運転を停止することができるため、燃料電池20にダメージが生じる前に燃料電池20の運転を停止し、燃料電池20の出力電圧Vが閾値Vth1を下回る場合のように、水詰まりなど燃料電池20の側に問題がある場合においては、燃料電池20を所定時間だけ休ませた後、またCO濃度の増加などFPS10側に問題がある場合においてはFPS10の運転を継続させた状態で様子見したり必要に応じてメンテナンスしたりした後、すぐにシステム1を立ち上がらせることができ、システム1全体を停止させる場合と比べて、ダウンタイムが少なくなってシステム1の利用効率を高めることができる。
また、燃料電池20の出力電圧Vが閾値Vth1を下回り、改質ガス中の一酸化炭素濃度Nの増加が燃料電池20の出力低下の要因であってFPS10側に問題がある場合においては、選択酸化部14の温度を還元に適した温度範囲まで上昇させるため、選択酸化部14の触媒を改質ガスにより還元することで触媒を復元させることができる。その後で、すぐにシステム1を立ち上がらせることができるため、システム1全体を停止させる場合と比べて、ダウンタイムが少なくなってシステム1の利用効率を高めることができる。
また、還元時において選択酸化部14への空気の供給量Dを低減させるため、酸素源を減らすことで、選択酸化部14における選択酸化触媒の還元を促進することができる。
また、異常時に改質ガスを退避させる退避ラインL2はバーナ12と接続されているため、異常時に改質ガスの流路を切り替えて、改質ガスをバーナ12の燃料として利用することができ、改質ガスを無駄にすることなく有効利用することができる。
なお、上記した第1実施形態では、電圧検出装置30において燃料電池20の出力電圧Vを検出し、これに基づいて制御装置40における制御を行っていたが、電圧検出装置30において燃料電池20の出力電圧の低下速度Wを検出し、これに基づいて制御装置40における制御を行ってもよい。すなわち、図6のフローチャートに示すように、ステップS501において燃料電池20の出力電圧の低下速度Wを検出し、検出した低下速度Wが閾値Wth1を下回るか否か判定して、以降の制御を行ってもよい。ここで、出力電圧の低下速度Wは正の値で示され、出力電圧の減少度合いが小さいほど低下速度が大きくなる。
このように、この変形例では、出力電圧の低下速度Wに基づいて制御するのであるが、燃料電池20の水詰まり、燃料不足などの不具合等による突発的な出力低下は、出力電圧の低下速度Wとして顕著に現れるため、出力電圧Vよりも早期に確実に検知することが可能となる。すなわち、図5に示すように、突発的な出力低下が生じる場合は、出力電圧が閾値Vth1を下回るまで待つ必要はなく、出力電圧の低下速度Wが閾値Wth1を下回った場合に、速やかに改質ガス供給ラインL1から燃料電池20への改質ガスの供給を停止することで、燃料電池20による発電を中止すると共に、退避ラインL2に改質ガスを流してFPS10の運転を継続することができるため、システムの利用効率を高めるためには、より有効な制御となる。なお、図6におけるステップS503〜ステップS511までの処理は、それぞれ図2のフローチャートにおける、テップS203〜ステップS211までの処理と同様である。
なお、本発明は上記実施形態に限定されることなく、種々の変形が可能である。例えば、上記した実施形態では、退避ラインL2をバーナ12に接続し、改質ガスをバーナ12の燃料として利用していたが、燃料電池20の停止中は改質ガスをバーナ12以外の他の場所に送って貯蔵等してもよい。
また、上記した実施形態では、異常時における選択酸化部14の温度調整を冷却水量Lを調整することで行っていたが、冷却水量Lの調整以外に、ヒータ等の加熱手段により温度調整してもよい。
第1実施形態に係る燃料電池システムの構成を示す図である。 図1の燃料電池システムの運転方法を示すフローチャートである。 流路を即時に切替える場合の、燃料電池の出力電圧、原料供給量、冷却水量、PROX温度、空気供給量、及び改質ガス中のCO濃度の関係を示すグラフである。 改質ガスの供給を徐々に低減した後流路を切替える場合の、燃料電池の出力電圧、原料供給量、冷却水量、PROX温度、空気供給量、改質ガス中のCO濃度、及び電池電流の関係を示すグラフである。 燃料電池の出力電圧の低下とその回復を示すグラフである。 図1の燃料電池システムの運転方法の変形例を示すフローチャートである。
符号の説明
1,101…燃料電池システム、10…水素製造装置(FPS)、11…改質部、12…バーナ、13…シフト部、14…選択酸化部(一酸化炭素除去部)、20…燃料電池、30…電圧検出装置(電圧検出手段)、40…制御装置(制御手段)、50…バーナ燃料供給装置、60…水素製造用原料供給装置、70…冷却水供給装置、80…空気供給装置、91…第1調整弁、92…第2調整弁、93…第3調整弁、L1…改質ガス供給ライン(供給ライン)、L2…退避ライン、L3…オフガスライン。

Claims (6)

  1. 水素製造用原料を改質して水素リッチな改質ガスを製造する水素製造装置と、
    生成した改質ガスを利用して発電を行う燃料電池と、
    前記水素製造装置から前記燃料電池に前記改質ガスを送る供給ラインと、
    前記水素製造装置から所定の退避場所に前記改質ガスを送る退避ラインと、
    発電中における前記燃料電池の出力電圧を検出する電圧検出手段と、
    前記出力電圧が閾値を下回った場合に、前記供給ラインから前記燃料電池への前記改質ガスの供給を停止すると共に、前記退避ラインに前記改質ガスが流れるように流路を切替制御する制御手段と、を備え
    前記水素製造装置は、前記改質ガス中の一酸化炭素を一酸化炭素除去触媒により除去する一酸化炭素除去部を有し、
    前記制御手段は、前記出力電圧が閾値を下回った場合に、前記一酸化炭素除去部の温度を還元に適した温度範囲まで上昇させることを特徴とする燃料電池システム。
  2. 前記制御手段は、前記出力電圧の低下速度が閾値を上回った場合に、前記供給ラインから前記燃料電池への前記改質ガスの供給を停止すると共に、前記退避ラインに前記改質ガスが流れるように流路を切替制御することを特徴とする請求項1に記載の燃料電池システム。
  3. 前記一酸化炭素除去部は、前記改質ガス中の一酸化炭素を選択酸化して低減させる選択酸化部を有し、
    前記制御手段は、前記出力電圧が閾値を下回った場合に、前記選択酸化部への空気の供給量を低減させることを特徴とする請求項1又は2に記載の燃料電池システム。
  4. 前記制御手段は、前記出力電圧が閾値を下回った場合に、前記選択酸化部への空気の供給量をゼロより大きい所定量に低減させることを特徴とする請求項3に記載の燃料電池システム。
  5. 前記水素製造装置は、前記改質のための熱源としてのバーナを有しており、
    前記所定の退避場所は前記バーナを含み、前記退避ラインは前記バーナと接続されていることを特徴とする請求項1〜のいずれか一項に記載の燃料電池システム。
  6. 水素製造装置において水素製造用原料を改質して水素リッチな改質ガスを製造し、前記水素製造装置の一酸化炭素除去部において前記改質ガス中の一酸化炭素を一酸化炭素除去触媒により除去し、生成した改質ガスを利用して燃料電池において電気化学反応によって発電を行う燃料電池システムの運転方法であって、
    発電中における前記燃料電池の出力電圧が閾値を下回った場合に、前記燃料電池への前記改質ガスの供給を停止して発電を中止すると共に、前記水素製造装置からの改質ガスを所定の退避場所に送り、前記一酸化炭素除去部の温度を還元に適した温度範囲まで上昇させることを特徴とする燃料電池システムの運転方法。
JP2007246200A 2007-09-21 2007-09-21 燃料電池システム及び燃料電池システムの運転方法 Expired - Fee Related JP5271522B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246200A JP5271522B2 (ja) 2007-09-21 2007-09-21 燃料電池システム及び燃料電池システムの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246200A JP5271522B2 (ja) 2007-09-21 2007-09-21 燃料電池システム及び燃料電池システムの運転方法

Publications (2)

Publication Number Publication Date
JP2009076398A JP2009076398A (ja) 2009-04-09
JP5271522B2 true JP5271522B2 (ja) 2013-08-21

Family

ID=40611170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246200A Expired - Fee Related JP5271522B2 (ja) 2007-09-21 2007-09-21 燃料電池システム及び燃料電池システムの運転方法

Country Status (1)

Country Link
JP (1) JP5271522B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638822B2 (ja) * 2010-03-30 2014-12-10 Jx日鉱日石エネルギー株式会社 燃料電池システム及び燃料電池システムの制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120421A (ja) * 2004-10-20 2006-05-11 Ebara Ballard Corp 燃料電池発電システム
JP2006206405A (ja) * 2005-01-31 2006-08-10 Babcock Hitachi Kk 水素製造装置
JP5077614B2 (ja) * 2005-02-08 2012-11-21 カシオ計算機株式会社 電源システム及び電源システムの制御方法

Also Published As

Publication number Publication date
JP2009076398A (ja) 2009-04-09

Similar Documents

Publication Publication Date Title
EP1785394B1 (en) Reformer and Method of Operating a Reformer
KR101240704B1 (ko) 이동가능한 열원을 갖는 연료개질 시스템 및 이를 구비한연료전지 시스템
JP4836969B2 (ja) 固体酸化物形燃料電池システム
JP2008266118A (ja) 改質装置システム
JP4939114B2 (ja) 燃料処理装置及び燃料電池システム
JP2005174745A (ja) 燃料電池システムの運転方法及び燃料電池システム
JP4570904B2 (ja) 固体酸化物形燃料電池システムのホットスタンバイ法及びそのシステム
JP5271522B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP4896901B2 (ja) 固体酸化物形燃料電池システム
JP2009099414A (ja) 燃料電池システム
JP4969955B2 (ja) 燃料電池システム及びその発電停止方法
JP4193257B2 (ja) Co変成器及び水素発生装置
JP5592760B2 (ja) 燃料電池発電システム
JP4917791B2 (ja) 燃料電池システム
JP2011210637A (ja) 燃料電池システム
JP4500092B2 (ja) 水素生成装置及びその運転方法並びにそれを備える燃料電池システム
JP5400425B2 (ja) 水素製造装置及び燃料電池システム
JP5390887B2 (ja) 水素製造装置及び燃料電池システム
JP2016130193A (ja) 水素生成装置およびそれを用いた燃料電池システム並びにその運転方法
JP2014011059A (ja) 固体高分子形燃料電池システム、及び、その起動制御方法
JP5525306B2 (ja) 燃料電池システム
JP2005336029A (ja) 改質装置
JP5314310B2 (ja) 燃料電池システム
JP4836968B2 (ja) 燃料電池のためのガス・水供給システム
JP2008143751A (ja) 燃料プロセッサおよびその運転方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees