JP2006206405A - 水素製造装置 - Google Patents
水素製造装置 Download PDFInfo
- Publication number
- JP2006206405A JP2006206405A JP2005022909A JP2005022909A JP2006206405A JP 2006206405 A JP2006206405 A JP 2006206405A JP 2005022909 A JP2005022909 A JP 2005022909A JP 2005022909 A JP2005022909 A JP 2005022909A JP 2006206405 A JP2006206405 A JP 2006206405A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- temperature
- reforming
- gas
- selective oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
【課題】 触媒のガスの通流方向の温度勾配において温度ピークが得られない場合でも、演算処理を簡素化しながら触媒の劣化を判断できる水素製造装置を提供する。
【解決手段】 原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒が設置されたガスの流路を有する内熱式の燃料改質部3、改質触媒の原燃料の入口部側に設けた入口部側温度計測手段35、改質触媒中を通流するガスの触媒反応の終了位置となる反応終了部の触媒の使用開始当初の位置に対応する改質触媒の部分に設けた反応終了部側温度計測手段37、入口部側温度計測手段35で計測した温度及び反応終了部側温度計測手段37で計測した温度に基づいて改質触媒のガスの通流方向の温度勾配を演算する温度勾配演算手段57、温度勾配演算手段57で演算した温度勾配の経時変化に基づいて反応終了部の位置を演算する反応終了位置演算手段57を備えた構成とする。
【選択図】 図1
【解決手段】 原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒が設置されたガスの流路を有する内熱式の燃料改質部3、改質触媒の原燃料の入口部側に設けた入口部側温度計測手段35、改質触媒中を通流するガスの触媒反応の終了位置となる反応終了部の触媒の使用開始当初の位置に対応する改質触媒の部分に設けた反応終了部側温度計測手段37、入口部側温度計測手段35で計測した温度及び反応終了部側温度計測手段37で計測した温度に基づいて改質触媒のガスの通流方向の温度勾配を演算する温度勾配演算手段57、温度勾配演算手段57で演算した温度勾配の経時変化に基づいて反応終了部の位置を演算する反応終了位置演算手段57を備えた構成とする。
【選択図】 図1
Description
本発明は、原燃料を改質反応により改質して水素を含む改質ガスを生成して燃料電池に供給する水素製造装置に係り、特に、内熱式の燃料改質部を備えた水素製造装置に関する。
原燃料を改質反応により改質して水素を含む改質ガスを生成して燃料電池に供給する水素製造装置として、内熱式つまり部分酸化式の燃料改質部を備えた水素製造装置を用いることが考えられている。内熱式の燃料改質部を備えた水素製造装置では、原燃料を改質反応により改質して水素を含む改質ガスを生成するための改質触媒を有する燃料改質部に加え、この燃料改質部で生成された改質ガス中のCOを除去して改質ガス中のCO濃度を低減するための触媒を有するCO除去部、例えば、燃料改質部で生成された改質ガス中のCOガスと水蒸気とを反応させて水素ガスとCO2ガスとに変換するCOシフト触媒を有するCOシフト部、このCOシフト部からの改質ガス中に含まれるCOを選択的に酸化するCO選択酸化触媒を有するCO選択酸化部などを備えている。
ところで、内熱式の燃料改質部のような内熱式の触媒反応器では、酸化還元反応、例えば起動時には酸化雰囲気、定常時には還元雰囲気での反応が繰返され、触媒は過酷な条件に曝される。特に、CO選択酸化部を備えている場合、CO選択酸化部が有するCO選択酸化触媒は、その活性成分の特性上、最も酸化還元反応の影響を受け易い。したがって、内熱式の触媒による反応器では、触媒の活性を常に把握し、劣化の度合いに応じて触媒の交換もしくは再生を行う必要がある。
これに対して、触媒の入口部側に設けられた温度センサによる温度測定値と運転条件とに基づいて改質触媒で最も高い温度であるピーク温度推定値を推定し、この推定したピーク温度推定値と温度測定値との偏差に基づいて改質触媒の劣化の程度を示す劣化推定値を推定することで触媒の劣化を判断する構成の改質反応器の制御装置が提案されている(例えば、特許文献1参照)。
しかし、このような改質反応器の制御装置では、触媒の入口部側に設けられた温度センサによる温度測定値と運転条件とに基づいて改質触媒で最も高い温度であるピーク温度推定値を推定し、この推定したピーク温度推定値と温度測定値との偏差に基づいて改質触媒の劣化の程度を示す劣化推定値を推定するといった過程で煩雑な演算処理が必要になり、触媒の劣化を判断するための指標を得るためのプログラムの複雑化などといった問題が生じる。
一方、触媒における反応熱の供給又は除去をその周囲に保持された熱媒又は冷媒によって行う、いわゆる外熱式の触媒反応器では、触媒の劣化を把握するため、触媒に、この触媒のガスの入口部側と出口部側の間に複数の温度計を設置した構成とすることが提案されている。そして、複数の温度計により触媒のガスの入口部側と出口部側の間の複数点の温度を計測することで、触媒のガスの通流方向における温度分布のピークの位置の変化を監視し、この温度分布のピークの位置が出口側に現れたことを検出することにより触媒の劣化を検知している(例えば、特許文献2参照)。このような構成であれば、温度分布のピークの位置が出口側に現れたことを検出することにより触媒の劣化を検知できるため、触媒の劣化を判断するための演算処理を簡素化できる。
ところで、内熱式の触媒反応器では、触媒の反応部へ周囲から熱を供給しないために外熱式の触媒反応器と異なり、改質反応つまり吸熱反応終了後、反応部の温度が上昇しない。このため、内熱式の触媒反応器では、外熱式の触媒反応器のような温度ピークが生じない。したがって、内熱式の触媒反応器では、外熱式の触媒反応器のように、触媒にガスの通流方向に沿う複数の位置での温度を測定して出口部に温度ピークが生じることで触媒の劣化を判断することは困難である。そこで、内熱式の触媒反応器のように、触媒のガスの通流方向の温度勾配において温度ピークが得られない場合でも、演算処理を簡素化しながら触媒の劣化を判断できる水素製造装置が必要となっている。
本発明の課題は、触媒のガスの通流方向の温度勾配において温度ピークが得られない場合でも、簡素化し演算処理を簡素化しながら触媒の劣化を判断できるようにすることにある。
本発明の水素製造装置は、原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒が設置されたガスの流路を有する内熱式の燃料改質部と、改質触媒の原燃料の入口部側に設けた入口部側温度計測手段と、改質触媒中を通流するガスの触媒反応の終了位置となる反応終了部の触媒の使用開始当初の位置に対応する改質触媒の部分に設けた反応終了部側温度計測手段と、入口部側温度計測手段で計測した温度及び反応終了部側温度計測手段で計測した温度に基づいて改質触媒のガスの通流方向の温度勾配を演算する温度勾配演算手段と、この温度勾配演算手段で演算した温度勾配の経時変化に基づいて反応終了部の位置を演算する反応終了位置演算手段とを備えた構成とすることにより上記課題を解決する。
このような構成とすれば、温度勾配演算手段が入口部側温度計測手段で計測した温度及び反応終了部側温度計測手段で計測した温度に基づいて改質触媒のガスの通流方向の温度勾配を演算し、反応終了位置演算手段が温度勾配演算手段で演算した温度勾配の経時変化に基づいて反応終了部の位置を演算するといった簡単な演算により、触媒の劣化を判断できる。すなわち、改質反応は吸熱反応のため、改質触媒の入口部から触媒の使用開始当初の反応終了部の位置にかけて、改質触媒の温度は漸次低くなる。そして、時間の経過とともに触媒の劣化が進行すると触媒の使用開始当初の反応終了部の位置の温度とほぼ同じ温度となる所定時間経過したときの反応終了部の位置は、改質触媒の出口部側に移動する。このため、温度勾配の経時変化に基づいて反応終了部の位置がわかれば、改質触媒の入口部から反応終了部までの距離がわかり、この改質触媒の入口部から反応終了部までの距離が改質触媒の長さ以上となれば、触媒が劣化したことを判断できる。したがって、触媒のガスの通流方向の温度勾配において温度ピークが得られない場合でも、演算処理を簡素化しながら触媒の劣化を判断できる。
また、本発明の水素製造装置は、原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒が設置されたガスの流路を有する内熱式の燃料改質部と、この燃料改質部で生成された改質ガス中のCOガスと水蒸気とを反応させて水素ガスとCO2ガスとに変換するCOシフト触媒が設置されたガスの流路を有するCOシフト部と、COシフト触媒の燃料改質部からの改質ガスの入口部側に設けた入口部側温度計測手段と、COシフト触媒中を通流するガスの触媒反応の終了位置となる反応終了部の触媒の使用開始当初の位置に対応するCOシフト触媒の部分に設けた反応終了部側温度計測手段と、入口部側温度計測手段で計測した温度及び反応終了部側温度計測手段で計測した温度に基づいてCOシフト触媒のガスの通流方向の温度勾配を演算する温度勾配演算手段と、この温度勾配演算手段で演算した温度勾配の経時変化に基づいて反応終了部の位置の変化を演算する反応終了位置演算手段とを備えた構成とすることにより上記課題を解決する。
このような構成とすれば、温度勾配演算手段が入口部側温度計測手段で計測した温度及び反応終了部側温度計測手段で計測した温度に基づいてCOシフト触媒のガスの通流方向の温度勾配を演算し、反応終了位置演算手段が温度勾配演算手段で演算した温度勾配の経時変化に基づいて反応終了部の位置を演算するといった簡単な演算により、改質触媒と同様に触媒のガスの通流方向の温度勾配において温度ピークが得られないCOシフト触媒の劣化を判断できる。すなわち、COシフト反応は発熱反応のため、COシフト触媒の入口部から触媒の使用開始当初の反応終了部にかけて、COシフト触媒の温度は、入口部の温度よりも漸次高くなる。そして、時間の経過とともに触媒の劣化が進行すると、触媒の使用開始当初の反応終了部の位置の温度とほぼ同じ温度となる所定時間経過したときの反応終了部の位置は、改質触媒の出口部側に移動する。このため、COシフト触媒でも、温度勾配の経時変化に基づいて反応終了部の位置がわかれば、入口部から反応終了部までの距離がわかり、このCOシフト触媒の入口部から反応終了部までの距離がCOシフト触媒の長さ以上となれば、触媒が劣化したことを判断できる。したがって、触媒のガスの通流方向の温度勾配において温度ピークが得られない場合でも、演算処理を簡素化しながら触媒の劣化を判断できる。
さらに、本発明の水素製造装置は、原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒が設置されたガスの流路を有する内熱式の燃料改質部と、この燃料改質部で生成された改質ガス中のCOガスと水蒸気とを反応させて水素ガスとCO2ガスとに変換するCOシフト触媒が設置されたガスの流路を有するCOシフト部と、このCOシフト部からの改質ガス中に含まれるCOを選択的に酸化するCO選択酸化触媒が設置されたガスの流路を有するCO選択酸化部と、CO選択酸化触媒のCOシフト部からの改質ガスの入口部側に設けた入口部側温度計測手段と、CO選択酸化触媒の、このCO選択酸化触媒中のガスの通流方向の中間部に設けた中間部温度計測手段と、CO選択酸化触媒の、このCO選択酸化触媒中を通流するガスの出口部側に設けた出口部側温度計測手段と、入口部側温度計測手段で計測した温度及び中間部温度計測手段で計測した温度に基づいてCO選択酸化触媒の入口部から中間部に至るCO選択酸化触媒中のガスの通流方向の温度勾配、並びに、中間部温度計測手段で計測した温度及び出口部側温度計測手段で計測した温度に基づいてCO選択酸化触媒の中間部から出口部に至るCO選択酸化触媒中のガスの通流方向の温度勾配を演算する温度勾配演算手段と、この温度勾配演算手段で演算した各温度勾配の経時変化に基づいてCO選択酸化触媒中を通流するガスの触媒反応の終了位置となる反応終了部の位置を演算する反応終了位置演算手段とを備えた構成とすることにより上記課題を解決する。
このような構成とすれば、温度勾配演算手段が入口部側温度計測手段で計測した温度、中間部温度計測手段で計測した温度及び出口部側温度計測手段で計測した温度に基づいてCO選択酸化触媒のガスの通流方向の温度勾配を演算し、反応終了位置演算手段が温度勾配演算手段で演算した温度勾配の経時変化に基づいて反応終了部の位置を演算するといった簡単な演算により、CO選択酸化触媒の劣化を判断できる。すなわち、CO選択酸化反応は発熱反応のため、使用の初期段階では、CO選択酸化触媒の入口部から中間部にかけて、CO選択酸化触媒の温度は、入口部の温度よりも漸次高くなり、中間部から出口部にかけて、CO選択酸化触媒の温度は、漸次低くなる。使用開始から時間が経過すると、中間部から出口部までの温度勾配も温度が漸次高くなる状態となり、温度ピークが得られなくなる。このように、CO選択酸化触媒では、使用開始から時間が経過すると温度ピークが得られなくなるが、温度ピークが得られなくなると触媒反応を制御することができなくなることから、温度ピークが得られなくなると入口部から反応終了部の位置までの距離が触媒の長さ以上となったと判断し、触媒の劣化を判断できる。したがって、触媒のガスの通流方向の温度勾配において温度ピークが得られない場合でも、演算処理を簡素化しながら触媒の劣化を判断できる。
また、CO選択酸化触媒のガスの通流方向の長さと、作動中の入口部から反応終了部までの距離とを比較する比較手段と、この比較手段で入口部から反応終了部までの距離がCO選択酸化触媒のガスの通流方向の長さ以上となったことを検出したとき、改質ガス又は還元性ガス供給時にCO選択酸化触媒を200℃以上に昇温する加熱手段と、CO選択酸化触媒を200℃以上300℃以下の温度範囲に予め設定した時間の間制御する加熱制御手段とを備えた構成とする。これにより、CO選択酸化触媒の劣化を判断して、CO選択酸化触媒の再生を行うことができる。
さらに、改質触媒、COシフト触媒又はCO選択酸化触媒のガスの通流方向の長さと、作動中の入口部から反応終了部までの距離を比較する比較手段と、この比較手段で入口部から前記反応終了部までの距離が改質触媒、COシフト触媒又はCO選択酸化触媒のガスの通流方向の長さ以上となったことを検出したとき、触媒の交換時期を報知する報知手段とを備えた構成とする。これにより、触媒の劣化を判断して使用者に報知することができ、触媒の再生や交換を行う時期などを知らせることができる。
また、原燃料を改質反応により改質して水素を含む改質ガスを生成する内熱式の燃料改質部を有する水素製造装置と、この水素製造装置からの改質ガスを燃料として発電を行う燃料電池と、この燃料電池からの排熱を回収して給湯に利用する給湯部とを備えた燃料電池システムであり、水素製造装置として、上記のいずれかの水素製造装置を備えた構成の燃料電池システムとする。これにより、水素製造装置の触媒の劣化によって生じる問題を抑制でき、燃料電池システムの信頼性を向上できる。
本発明によれば、触媒のガスの通流方向の温度勾配において温度ピークが得られない場合でも、演算処理を簡素化しながら触媒の劣化を判断できる。
以下、本発明を適用してなる水素製造装置及び燃料電池システムの一実施形態について図1乃至図8を参照して説明する。図1は、本発明を適用してなる水素製造装置の概略構成と動作及びこの水素製造装置を備えた燃料電池システムの概略構成と動作を示すブロック図である。図2は、本発明を適用してなる水素製造装置の燃料改質部の概略構成と動作を模式的に示す断面図である。図3は、本発明を適用してなる水素製造装置のCOシフト部の概略構成と動作を模式的に示す断面図である。図4は、本発明を適用してなる水素製造装置のCO選択酸化部の概略構成と動作を模式的に示す断面図である。図5は、本発明を適用してなる水素製造装置の燃料改質部が有する改質触媒の劣化の検知を説明する図である。図6は、本発明を適用してなる水素製造装置のCOシフト部が有するCOシフト触媒の劣化の検知を説明する図である。図7は、本発明を適用してなる水素製造装置のCO選択酸化部が有するCO選択酸化触媒の劣化の検知を説明する図である。図8は、本発明を適用してなる水素製造装置のCO選択酸化部におけるCO選択酸化触媒の劣化の検知と再生動作を示すフロー図である。
本実施形態の水素製造装置1は、図1に示すように、原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒を有する内熱式の燃料改質部3、燃料改質部3で生成された改質ガス中のCOガスと水蒸気とを反応させて水素ガスとCO2ガスとに変換するCOシフト触媒を有するCOシフト部5、COシフト部5からの改質ガス中に含まれるCOを選択的に酸化するCO選択酸化触媒を有するCO選択酸化部7などを備えている。
燃料改質部3は、改質触媒により、例えば炭化水素系燃料、アルコール類燃料又はエーテル類燃料などの原燃料を、酸素、空気と水又は水蒸気などと反応させる改質反応により改質して水素を含む改質ガスを生成する。本実施形態では、原燃料として都市ガスgを、空気a及び水wと反応させる場合を例としている。したがって、燃料改質部3には、都市ガス供給配管9、空気供給配管11、そして、水供給配管13が連結されている。都市ガス供給配管9には、都市ガスg中の付臭剤つまり硫黄成分を除去する脱硫器15、脱硫された都市ガスgを圧縮して高圧にするためのガス圧縮機17が設けられている。空気供給配管11には、空気ポンプ19が、水供給配管13には、水ポンプ21が設置されている。
原燃料である都市ガスg、空気a及び水wは、各々補助燃焼部23で加熱後、燃料改質部3へ供給される。したがって、都市ガス供給配管9、空気供給配管11及び水供給配管13は、各々、ガス圧縮機17、空気ポンプ19及び水ポンプ21よりも、都市ガスg、空気a及び水wの流れに対して下流側に補助燃焼部23が設けられた状態となっている。補助燃焼部23は、都市ガスgを燃料としており、改質部助燃用都市ガス供給管25が連結されており、改質部助燃用都市ガス供給管25には、改質部助燃用都市ガス圧縮機27が設けられている。また、補助燃焼部23には、補助燃焼部23で生じた燃焼排ガスを排出するための燃焼排ガス排出流路29が設けられている。
水供給配管13の水ポンプ21よりも、水wの流れに対して下流側の部分には、燃料改質部3からの改質ガスの熱によって水wを予熱するための改質ガス用熱交換器31が設けられている。したがって、改質ガス用熱交換器31は、燃料改質部3からの改質ガスをCOシフト部5に導く改質ガス配管33にも設けられた状態となっている。なお、改質ガス用熱交換器31は、水供給配管13の補助燃焼部23よりも、水wの流れに対して上流側の部分に設けられている。
本実施形態の燃料改質部3は、燃料改質部3が有する改質触媒の原燃料である都市ガスgの入口部側に設けた入口部側温度計測手段となる入口部側熱電対35、そして、改質触媒中を通流するガスの触媒反応の終了位置となる反応終了部の触媒の使用開始当初の位置に対応する改質触媒の部分に設けた反応終了部側温度計測手段となる反応終了部側熱電対37を有している。
COシフト部5は、改質ガス配管33に設けられており、COシフト部5には、COシフト部用の冷却水c1が通流するCOシフト触媒用熱交換器39が設けられている。また、COシフト部5は、COシフト部5が有するCOシフト触媒の燃料改質部3からの改質ガスの入口部側に設けた入口部側温度計測手段となる入口部側熱電対41、そして、COシフト触媒中を通流するガスの触媒反応の終了位置となる反応終了部の触媒の使用開始当初の位置に対応するCOシフト触媒の部分に設けた反応終了部側温度計測手段となる反応終了部側熱電対43を有している。
CO選択酸化部7は、改質ガス配管33のCOシフト部5よりも改質ガスの流れに対して下流側に設けられており、CO選択酸化部7には、CO選択酸化部用の冷却水c2が通流するCO選択酸化触媒用熱交換器45が設けられている。また、CO選択酸化部7は、CO選択酸化部75が有するCO選択酸化触媒のCOシフト部5からの改質ガスの入口部側に設けた入口部側温度計測手段となる入口部側熱電対47、CO選択酸化触媒中のガスの通流方向の中間部に設けた中間部側温度計測手段となる中間部熱電対49、そして、CO選択酸化触媒の、このCO選択酸化触媒中を通流するガスの出口部側に設けた出口部側温度計測手段となる出口部側熱電対51を有している。
改質ガス配管33のCOシフト部5とCO選択酸化部7の間の部分にはCO選択酸化部7でCOを酸化処理するための酸化用の空気aを供給するための酸化用空気供給管53が合流している。酸化用空気供給管53には、酸化用空気ポンプ55が設けられている。
本実施形態の水素製造装置1は、燃料改質部3の改質触媒、COシフト部5のCOシフト触媒、そして、CO選択酸化部7のCO選択酸化触媒のガスの通流方向の温度勾配を演算する温度勾配演算手段の機能、演算した温度勾配の経時変化に基づいて各触媒における触媒反応の終了位置となる反応終了部の位置を演算する反応終了位置演算手段の機能、改質触媒、COシフト触媒、そして、CO選択酸化触媒のガスの通流方向の長さと、入口部から反応終了部までの距離を比較する比較手段の機能、比較手段の機能によって得た結果から触媒の交換時期を報知するための信号を出力する報知手段の機能を兼ね備えた制御部57を備えている。さらに、本実施形態の水素製造装置1は、制御部57が各触媒の劣化を判断したとき、制御部57からの信号に応じて触媒の交換時期であることを表示して使用者に報知する表示部59を備えている。
制御部57は、燃料改質部3の入口部側熱電対35及び反応終了部側熱電対37、COシフト部5の入口部側熱電対41及び反応終了部側熱電対43、そして、CO選択酸化部7の入口部側熱電対47、中間部熱電対49及び出口部側熱電対51と、各々、配線61を介して電気的に接続されている。また、制御部57は、表示部59と配線61を介して電気的に接続されている。
ここで、燃料改質部3、COシフト部5、そして、CO選択酸化部7の各々における触媒や熱電対の設置位置などの構成について説明する。燃料改質部3には、図2に示すように、ガスの流路3aに、ガスの通流方向に対して上流側から、ハニカム型の燃焼触媒3b、ハニカム型の改質触媒3cが順に設置されている。燃焼触媒3bと改質触媒3cとの間には隙間3dがあり、改質触媒3cの入口部側の温度を計測する入口部側熱電対35は、この隙間3dに挿入された状態で設置されている。改質触媒3cの初期設置時つまり使用開始当初の、ガスの触媒反応の終了位置となる反応終了部に対応する位置には、反応終了部側熱電対37が設置されている。反応終了部側熱電対37は、改質触媒3cの出口部側から入口部に向けて改質触媒3c内に挿入された状態になっている。
COシフト部5には、図3に示すように、ガスの流路5aに、粒状のCOシフト触媒を充填することで、COシフト触媒5bを設置している。COシフト触媒5bのガスの入口部には、入口部側熱電対41が、COシフト触媒5bの初期充填時つまり使用開始当初の、ガスの触媒反応の終了位置となる反応終了部に対応する位置には、反応終了部側熱電対43が設置されている。入口部側熱電対41及び反応終了部側熱電対43は、各々の設置位置で、COシフト触媒5b中に挿入された状態で設置されている。
CO選択酸化部7には、図4に示すように、ガスの流路7aに、ガスの通流方向に対して上流側から、粒状のCO選択酸化触媒を2段に分けて充填することで、前流側CO選択酸化触媒7b及び後流側CO選択酸化触媒7cを順に設置している。前流側CO選択酸化触媒7bと後流側CO選択酸化触媒7cとの間には、COの酸化反応により生じた酸化熱を抑制するための冷却部7dが設けられている。前流側CO選択酸化触媒7bのガスの入口部には、入口部側熱電対47が、前流側CO選択酸化触媒7bと後流側CO選択酸化触媒7cとを合わせて見たときに触媒のガスの通流方向の中間部となる前流側CO選択酸化触媒7bのガスの出口部には、中間部熱電対49が設置されている。また、後流側CO選択酸化触媒7cのガスの出口部には、出口部側熱電対51が設置されている。
さらに、本実施形態のCO選択酸化部7では、前流側CO選択酸化触媒7bに昇温用ヒータ63が設置されている。昇温用ヒータ63には、触媒をできるだけ均一に昇温させるため、渦巻状シースヒータを用いている。昇温用ヒータ63は、中間部熱電対49によって計測した温度に応じて触媒を200℃以上300℃以下の温度範囲に制御するため、図示していない配線を介して制御部57に電気的に接続されている。また、本実施形態の制御部57は、昇温用ヒータ63によって予め設定した時間の間、触媒を200℃以上300℃以下の温度範囲に制御するため、タイマー機能も有している。
このような構成の水素製造装置1を備えた部分酸化式の燃料電池システムとして、固体高分子形燃料電池(以下、PEFCと略称する)システム65の構成について説明する。本実施形態のPEFCシステム65は、図1に示すように、水素製造装置1に、PEFCつまり固体高分子形燃料電池67、インバータ69、貯湯槽71などを加えた構成となっている。固体高分子形燃料電池67は、水素製造装置1から改質ガス配管33を介して送られてくるCO濃度を低減した改質ガスを燃料とする燃料電池であり、アノード67a側に改質ガス配管33が連結されている。一方、固体高分子形燃料電池67のカソード67b側には、空気aを供給するためのカソード用空気配管73が連結されており、カソード用空気配管73には、カソード空気用ポンプ75が設けられている。
そして、固体高分子形燃料電池67は、改質ガス配管33から供給されるCO濃度を低減した改質ガス中に含まれる水素とカソード用空気配管73から供給される空気a中に含まれる酸素とがアノード67a、カソード67bで電極反応することで発電を行なう。このとき、電極反応で発電に利用されなかった水素は発熱し、この熱は、固体高分子形燃料電池67の排熱として、凝縮水の潜熱とともに電池部冷却水配管77を通流する固体高分子形燃料電池67の冷却水c3を介して回収される。貯湯槽71には、電池部冷却水配管77が連結されており、熱回収した冷却水c3は、電池部冷却水配管77によって貯湯槽71へ導かれ、給湯として利用される。アノード67a側の電極反応に利用されなかった水素を含むガス及びカソード67b側のガスは、アノード排ガス排出管79及びカソード排ガス管81から、アノード排ガス及びカソード排ガスとして排出される。
また、貯湯槽71には、貯湯槽71内の湯を供給するための給湯用配管83、貯湯槽71に水wを補給するための給湯補給水供給配管85、追い焚などのための貯湯加熱用配管87などが連結されている。さらに、給湯の追い焚きなどを行なうための給湯器89が設けられている。給湯補給水供給配管85は、給湯器89と貯湯槽71との間を貯湯槽71内の湯が循環するように配管されている。給湯補給水供給配管85は、貯湯槽71よりも水wの流れに対して上流側で給湯器89を水wが通過するように配管されている。給湯器89には、給湯部助燃用の都市ガスgを給湯器89へ供給する給湯部助燃用都市ガス供給配管91が連結されている。給湯部助燃用都市ガス供給配管91には、給湯部助燃用都市ガス圧縮機93が設けられている。
このような構成の水素製造装置1における各触媒の劣化の判断などの動作や本発明の特徴部などについて説明する。燃料改質部3では、図2に示すように、制御部57は、入口部側熱電対35及び反応終了部側熱電対37から伝達されてくる温度に基づいて、改質触媒3cの入口部側から反応終了部側に至るガスの通流方向の温度勾配を演算する。そして、演算した温度勾配の経時変化に基づいて使用期間中の反応終了部の位置の変化を演算する。
このとき、改質反応は吸熱反応のため、図5に示すように、改質触媒3cの入口から使用開始初期の反応終了部までの距離l0の間には、改質触媒3cの入口の温度T1から改質触媒3cの入口の温度T1より低い反応終了部の温度T2,0へ漸次温度が低くなる温度勾配が生じる。燃料改質部3を使用して時間が経過するとともに改質触媒3cの劣化が進行すると、使用開始初期の反応終了部であった改質触媒3cの部分の温度は、温度T2,0から、この温度T2,0よりも高く、改質触媒3cの入口の温度T1よりも低い温度T2まで上昇する。したがって、温度T2,0である反応終了部の位置は改質触媒3cの出口部側に移動し、改質触媒3cの入口と反応終了部との間の温度勾配は、使用時間の経過とともに緩やかになって行く。
そこで、所定時間経過したときの改質触媒3cの入口から反応終了部までの距離をlr、温度T2,0となる反応終了部の位置が使用開始初期の位置から改質触媒3cの出口部側に移動した距離をliとすると、lr(=l0+li)つまり反応終了部の位置は、以下の式(1)を用いて、温度勾配の経時変化に基づいて算出することができる。
lr=(1+(T2−T2,0)/(T1−T2,0))×l0・・・(1)
本実施形態の水素製造装置1の制御部57は、入口部側熱電対35及び反応終了部側熱電対37で計測した温度や、予め入力されている改質触媒3cの入口から使用開始初期の反応終了部までの距離l0から式(1)によって、所定時間経過したときの改質触媒3cの入口から反応終了部までの距離lrを求めている。さらに、本実施形態の水素製造装置1の制御部57は、所定時間経過したときの改質触媒3cの入口から反応終了部までの距離lrと改質触媒3cのガスの通流方向の長さlcとを比較し、所定時間経過したときの改質触媒3cの入口から反応終了部までの距離lrが改質触媒3cのガスの通流方向の長さlc以上となった場合、触媒が劣化したと判断している。このような演算の結果、触媒が劣化して交換時期となっている場合、制御部57は、表示部59へ、改質触媒3cの交換を報知するための表示を行なう指令信号を出力する。
lr=(1+(T2−T2,0)/(T1−T2,0))×l0・・・(1)
本実施形態の水素製造装置1の制御部57は、入口部側熱電対35及び反応終了部側熱電対37で計測した温度や、予め入力されている改質触媒3cの入口から使用開始初期の反応終了部までの距離l0から式(1)によって、所定時間経過したときの改質触媒3cの入口から反応終了部までの距離lrを求めている。さらに、本実施形態の水素製造装置1の制御部57は、所定時間経過したときの改質触媒3cの入口から反応終了部までの距離lrと改質触媒3cのガスの通流方向の長さlcとを比較し、所定時間経過したときの改質触媒3cの入口から反応終了部までの距離lrが改質触媒3cのガスの通流方向の長さlc以上となった場合、触媒が劣化したと判断している。このような演算の結果、触媒が劣化して交換時期となっている場合、制御部57は、表示部59へ、改質触媒3cの交換を報知するための表示を行なう指令信号を出力する。
COシフト部5では、図3に示すように、制御部57は、入口部側熱電対41及び反応終了部側熱電対43から伝達されてくる温度に基づいて、COシフト触媒5bの入口部側から反応終了部側に至るガスの通流方向の温度勾配を演算する。そして、演算した温度勾配の経時変化に基づいて使用期間中の反応終了部の位置の変化を演算する。
このとき、COシフト反応は発熱反応のため、図6に示すように、COシフト触媒5bの入口から使用開始初期の反応終了部までの距離l0の間には、COシフト触媒5bの入口の温度T1からCOシフト触媒5bの入口の温度T1より高い反応終了部の温度T2,0へ漸次温度が高くなる温度勾配が生じる。COシフト部5を使用して時間が経過するとともにCOシフト触媒5bの劣化が進行すると、使用開始初期の反応終了部であったCOシフト触媒5bの部分の温度は、温度T2,0から、この温度T2,0よりも低く、COシフト触媒5bの入口の温度T1よりも高い温度T2まで降下する。したがって、温度T2,0である反応終了部の位置はCOシフト触媒5bの出口部側に移動し、COシフト触媒5bの入口と反応終了部との間の温度勾配は、使用時間の経過とともに緩やかになって行く。
そこで、所定時間経過したときのCOシフト触媒5bの入口から反応終了部までの距離をlr、温度T2,0となる反応終了部の位置が使用開始初期の位置からCOシフト触媒5bの出口部側に移動した距離をliとすると、lr(=l0+li)つまり反応終了部の位置は、改質触媒3cの場合と同様に、上記の式(1)を用いて、温度勾配の経時変化に基づいて算出することができる。
本実施形態の水素製造装置1の制御部57は、入口部側熱電対41及び反応終了部側熱電対43で計測した温度や、予め入力されているCOシフト触媒5bの入口から使用開始初期の反応終了部までの距離l0から式(1)によって、所定時間経過したときのCOシフト触媒5bの入口から反応終了部までの距離lrを求めている。さらに、本実施形態の水素製造装置1の制御部57は、所定時間経過したときのCOシフト触媒5bの入口から反応終了部までの距離lrとCOシフト触媒5bのガスの通流方向の長さlcとを比較し、所定時間経過したときのCOシフト触媒5bの入口から反応終了部までの距離lrがCOシフト触媒5bのガスの通流方向の長さlc以上となった場合、触媒が劣化したと判断している。このような演算の結果、触媒が劣化して交換時期となっている場合、制御部57は、表示部59へ、COシフト触媒5bの交換を報知するための表示を行なう指令信号を出力する。
CO選択酸化部7では、図4に示すように、制御部57は、入口部側熱電対47、中間部熱電対49及び出口部側熱電対51から伝達されてくる温度に基づいて、前流側CO選択酸化触媒7bの入口部側から中間部に至るガスの通流方向の温度勾配、中間部から出口部側に至るガスの通流方向の温度勾配を演算する。そして、演算した温度勾配の経時変化に基づいて使用期間中の反応終了部の位置の変化を演算する。
このとき、CO選択酸化反応は発熱反応のため、図7に示すように、CO選択酸化触媒7bの入口から使用開始初期の反応ピーク部までの距離l0の間には、前流側CO選択酸化触媒7bの入口の温度T1から前流側CO選択酸化触媒7bの入口の温度T1より高い反応ピーク部の温度Tp,0へ漸次温度が高くなる温度勾配が生じる。また、CO選択酸化部7は、CO選択酸化反応をできるだけ最適の状態で進行させるため、触媒温度を200℃以下とする必要があり、そのため、前流側CO選択酸化触媒7bと後流側CO選択酸化触媒7cの間に冷却部7dを備えている。このため、冷却部7dで反応熱を除去することにより、後流側CO選択酸化触媒7cの出口側における温度Tt,0は、冷却部7dに位置する反応ピーク部の温度Tp,0よりも低くなる。つまり、反応ピーク部よりも後流側CO選択酸化触媒7cの出口側へは、漸次温度が低くなる温度勾配が生じる。時間の経過とともに触媒の劣化が進行すると反応ピーク部の温度が下降する。このとき、反応ピーク部が冷却部7dを超えていない場合、つまり、後流側CO選択酸化触媒7cにない場合、後流側CO選択酸化触媒7cの出口における温度Tt, iは、使用開始初期に反応ピーク部があった位置の温度Tp,iより低くなる。
一方、反応ピーク部が冷却部7dを超えた場合、つまり、後流側CO選択酸化触媒7cに位置する場合、後流側CO選択酸化触媒7cの出口における温度Tt, iは、使用開始初期に反応ピーク部があった位置の温度Tp,iより高くなる。そして、前流側CO選択酸化触媒7bの入口から反応ピーク部までの温度勾配、反応ピーク部から後流側CO選択酸化触媒7cの出口までの温度勾配がともに、漸次温度が高くなる状態となる。このように反応ピーク部が温度のピークとはならない状態となると、反応を制御することができなくなるため、後流側CO選択酸化触媒7cの反応終了部までの距離lrが、CO選択酸化触媒7b、7cのガスの通流方向の長さlc以上となったと考えることで、反応終了部の位置を、改質触媒3cなどの場合と同様に、温度勾配の経時変化に基づいて演算し、そして、この反応終了部の位置に基づいて触媒の劣化を判断できる。
本実施形態の水素製造装置1の制御部57は、入口部側熱電対47、中間部熱電対49及び出口部側熱電対51で計測した温度によって、前流側CO選択酸化触媒7bの入口から反応ピーク部までの温度勾配、反応ピーク部から後流側CO選択酸化触媒7cの出口までの温度勾配がともに、漸次温度が高くなる温度勾配となったとき、反応終了部の位置が前流側CO選択酸化触媒7b、冷却部7d、後流側CO選択酸化触媒7cを併せたガスの通流方向の長さlc以上となったことを求めている。さらに、本実施形態の水素製造装置1の制御部57は、反応終了部の位置が触媒のガスの通流方向の長さlc以上となった場合、前流側CO選択酸化触媒7b及び後流側CO選択酸化触媒7cが劣化したと判断している。このような演算の結果、触媒が劣化して交換時期となっている場合、制御部57は、表示部59へ、前流側CO選択酸化触媒7b及び後流側CO選択酸化触媒7cの交換を報知するための表示を行なう指令信号を出力する。
さらに、本実施形態のCO選択酸化部7では、図4に示すように、昇温用ヒータ63が設置されている。そして、制御部57は、図8に示すように、前流側CO選択酸化触媒7b及び後流側CO選択酸化触媒7cの劣化を検知すると(ステップ101)、昇温用ヒータ63の設定温度を240℃に変更する(ステップ103)。このとき、冷却部67の冷却水量を増加させ(ステップ105)、さらに、酸化用空気ポンプ55を停止する(ステップ107)。これにより、改質ガスで前流側CO選択酸化触媒7b及び後流側CO選択酸化触媒7cを再還元して触媒再生を行うことができる。制御部57は、ステップ103−ステップ107の状態を、タイマー制御により予め設定された時間、例えば1時間継続した後(ステップ109)、昇温用ヒータ63の設定温度を運転温度に戻し(ステップ111)、冷却部7dの冷却水量を定常量に戻し(ステップ113)、そして、酸化用空気ポンプ55を作動させ(ステップ115)、定常運転に戻る。
このように、本実施形態の水素製造装置1及びPEFCシステム65では、燃料改質部3に入口部側熱電対35及び反応終了部側熱電対37を、COシフト部5に入口部側熱電対41及び反応終了部側熱電対43を、そして、CO選択酸化部7に入口部側熱電対47、中間部熱電対49及び出口部側熱電対51を温度計測手段として設けている。そして、制御部57は、各温度計測手段で計測した温度に基づいて触媒のガスの通流方向の温度勾配を演算する温度勾配演算手段と、この温度勾配演算手段で演算した温度勾配の経時変化に基づいて反応終了部の位置を演算する反応終了位置演算手段の機能を有している。このため、燃料改質部3、COシフト部5、CO選択酸化部7のように温度ピークが得られない場合でも、各温度計測手段で計測した温度に基づいて触媒のガスの通流方向の温度勾配を演算し、演算した温度勾配の経時変化に基づいて反応終了部の位置を演算するといった簡単な演算により、触媒の劣化を判断できる。すなわち、触媒のガスの通流方向の温度勾配において温度ピークが得られない場合でも、演算処理を簡素化しながら触媒の劣化を判断できる。
さらに、燃料改質部3及びCOシフト部5では、使用開始初期の反応終了部における温度勾配に基づいて、また、CO選択酸化部7の場合、使用開始初期の反応ピーク部における温度勾配に基づいて、水素製造装置1の運転中、継続して各々の触媒の余寿命を判断することができる。加えて、水素製造装置1に搭載した各触媒の交換時期を適切に把握することができる。その結果、水素製造装置1の触媒に起因する種々のトラブルを抑制でき、長期間にわたるPEFCシステムの安定運転が可能となる。
さらに、本実施形態の水素製造装置1及びPEFCシステム65では、制御部57は、改質触媒3c、COシフト触媒5b又はCO選択酸化触媒7b、7cのガスの通流方向の長さと、作動中の入口部から反応終了部までの距離を比較する比較手段や、この比較手段で入口部から反応終了部までの距離が改質触媒3c、COシフト触媒5b又はCO選択酸化触媒7b、7cのガスの通流方向の長さ以上となったことを検出したとき、触媒の交換時期を報知する報知手段の役割を果たしている。このため、触媒の劣化を判断して使用者に報知することができ、触媒の再生や交換を行う時期などを知らせることができる。
加えて、本実施形態の水素製造装置1及びPEFCシステム65では、CO選択酸化部7に昇温用ヒータ63を備えている。そして、制御部57は、水素製造装置1が入口部から反応終了部までの距離がCO選択酸化触媒7b、7cなどのガスの通流方向の長さ以上となったことを検出したとき、昇温用ヒータ63によって改質ガス又は還元性ガス供給時にCO選択酸化触媒7b、7cを200℃以上に昇温し、CO選択酸化触媒7b、7cを200℃以上300℃以下の温度範囲に予め設定した時間の間制御している。これにより、CO選択酸化触媒の劣化を判断して、CO選択酸化触媒の再生を行うことができる。
さらに、本実施形態のPEFCシステム65では、水素製造装置1を備えているため、水素製造装置の触媒の劣化によって生じる問題を抑制でき、信頼性を向上できる。
また、本実施形態の水素製造装置1では、燃料改質部3、COシフト部5、そして、CO選択酸化部7の全てに温度計測手段を設け、燃料改質部3、COシフト部5、そして、CO選択酸化部7の全てで触媒の劣化を判断できる構成としている。しかし、燃料改質部3、COシフト部5、そして、CO選択酸化部7の少なくとも1つに温度計測手段を設け、燃料改質部3、COシフト部5、そして、CO選択酸化部7の少なくとも1つ触媒の劣化を判断できる構成などにすることもできる。ただし、水素製造装置1の信頼性を向上する上では、本実施形態のように、燃料改質部3、COシフト部5、そして、CO選択酸化部7の全てに温度計測手段を設け、燃料改質部3、COシフト部5、そして、CO選択酸化部7の全てで触媒の劣化を判断できる構成とすることが望ましい。
また、本実施形態では、入口部、使用開始当初の反応終了部、中間部、出口部に各々1つずつ熱電対を設けた構成を示したが、各部に複数の熱電対を設けた構成にすることもできる。また、本実施形態では、表示部59を備えた構成を示したが、表示部59を備えていない構成や、その他の報知手段を設けた構成などにすることもできる。
また、本実施形態では、制御部57は、温度勾配演算手段、反応終了位置演算手段、比較手段の全ての機能を果たすものであるが、比較手段の機能を果たさず、反応終了位置演算結果を出力する構成などにすることもできる。また、本実施形態では、温度勾配演算手段、反応終了位置演算手段、比較手段を1つの制御部57が果たす場合を例示しているが、温度勾配演算手段、反応終了位置演算手段、比較手段は別個のユニットとして構成することもできる。さらに、制御部57から、触媒の交換の指令信号を、電気通信回線等などを通じて遠隔地に設けられた報知手段や監視手段などに出力する構成にすることもできる。
このように、本発明は、本実施形態の構成の水素製造装置1やPEFCシステム65に限らず、様々な構成の水素製造装置や燃料電池システムに適用できる。
1 水素製造装置
3 燃料改質部
5 COシフト部
7 CO選択酸化部
35 燃料改質部の入口部側熱電対
37 燃料改質部の反応終了部側熱電対
41 COシフト部の入口部側熱電対
43 COシフト部の反応終了部側熱電対
47 CO選択酸化部の入口部側熱電対
49 CO選択酸化部の中間部熱電対
51 CO選択酸化部の出口部側熱電対
57 制御部
3 燃料改質部
5 COシフト部
7 CO選択酸化部
35 燃料改質部の入口部側熱電対
37 燃料改質部の反応終了部側熱電対
41 COシフト部の入口部側熱電対
43 COシフト部の反応終了部側熱電対
47 CO選択酸化部の入口部側熱電対
49 CO選択酸化部の中間部熱電対
51 CO選択酸化部の出口部側熱電対
57 制御部
Claims (6)
- 原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒が設置されたガスの流路を有する内熱式の燃料改質部と、前記改質触媒の原燃料の入口部側に設けた入口部側温度計測手段と、前記改質触媒中を通流するガスの触媒反応の終了位置となる反応終了部の触媒の使用開始当初の位置に対応する前記改質触媒の部分に設けた反応終了部側温度計測手段と、前記入口部側温度計測手段で計測した温度及び前記反応終了部側温度計測手段で計測した温度に基づいて前記改質触媒のガスの通流方向の温度勾配を演算する温度勾配演算手段と、該温度勾配演算手段で演算した温度勾配の経時変化に基づいて前記反応終了部の位置を演算する反応終了位置演算手段とを備えた水素製造装置。
- 原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒が設置されたガスの流路を有する内熱式の燃料改質部と、該燃料改質部で生成された改質ガス中のCOガスと水蒸気とを反応させて水素ガスとCO2ガスとに変換するCOシフト触媒が設置されたガスの流路を有するCOシフト部と、前記COシフト触媒の前記燃料改質部からの改質ガスの入口部側に設けた入口部側温度計測手段と、前記COシフト触媒中を通流するガスの触媒反応の終了位置となる反応終了部の触媒の使用開始当初の位置に対応する前記COシフト触媒の部分に設けた反応終了部側温度計測手段と、前記入口部側温度計測手段で計測した温度及び前記反応終了部側温度計測手段で計測した温度に基づいて前記COシフト触媒のガスの通流方向の温度勾配を演算する温度勾配演算手段と、該温度勾配演算手段で演算した温度勾配の経時変化に基づいて前記反応終了部の位置を演算する反応終了位置演算手段とを備えた水素製造装置。
- 原燃料を改質反応により改質して水素を含む改質ガスを生成する改質触媒が設置されたガスの流路を有する内熱式の燃料改質部と、該燃料改質部で生成された改質ガス中のCOガスと水蒸気とを反応させて水素ガスとCO2ガスとに変換するCOシフト触媒が設置されたガスの流路を有するCOシフト部と、該COシフト部からの改質ガス中に含まれるCOを選択的に酸化するCO選択酸化触媒が設置されたガスの流路を有するCO選択酸化部と、前記CO選択酸化触媒の前記COシフト部からの改質ガスの入口部側に設けた入口部側温度計測手段と、前記CO選択酸化触媒の、該CO選択酸化触媒中のガスの通流方向の中間部に設けた中間部温度計測手段と、前記CO選択酸化触媒の、該CO選択酸化触媒中を通流するガスの出口部側に設けた出口部側温度計測手段と、前記入口部側温度計測手段で計測した温度及び前記中間部温度計測手段で計測した温度に基づいて前記CO選択酸化触媒の入口部から中間部に至る前記CO選択酸化触媒中のガスの通流方向の温度勾配並びに前記中間部温度計測手段で計測した温度及び前記出口部側温度計測手段で計測した温度に基づいて前記CO選択酸化触媒の中間部から出口部に至る前記CO選択酸化触媒中のガスの通流方向の温度勾配を演算する温度勾配演算手段と、該温度勾配演算手段で演算した各温度勾配の経時変化に基づいて前記CO選択酸化触媒中を通流するガスの触媒反応の終了位置となる反応終了部の位置を演算する反応終了位置演算手段とを備えた水素製造装置。
- 前記CO選択酸化触媒のガスの通流方向の長さと、作動中の前記入口部から前記反応終了部までの距離とを比較する比較手段と、該比較手段で前記入口部から前記反応終了部までの距離が前記CO選択酸化触媒のガスの通流方向の長さ以上となったことを検出したとき、改質ガス又は還元性ガス供給時に前記CO選択酸化触媒を200℃以上に昇温する加熱手段と、前記CO選択酸化触媒を200℃以上300℃以下の温度範囲に予め設定した時間の間制御する加熱制御手段とを備えたことを特徴とする請求項3に記載の水素製造装置。
- 前記改質触媒、前記COシフト触媒又は前記CO選択酸化触媒のガスの通流方向の長さと、作動中の前記入口部から前記反応終了部までの距離を比較する比較手段と、該比較手段で前記入口部から前記反応終了部までの距離が前記改質触媒、前記COシフト触媒又は前記CO選択酸化触媒のガスの通流方向の長さ以上となったことを検出したとき、触媒の交換時期を報知する報知手段とを備えたことを特徴とする請求項1乃至3のいずれか1項に記載の水素製造装置。
- 原燃料を改質反応により改質して水素を含む改質ガスを生成する内熱式の燃料改質部を有する水素製造装置と、該水素製造装置からの改質ガスを燃料として発電を行う燃料電池と、該燃料電池からの排熱を回収して給湯に利用する給湯部とを備えた燃料電池システムであり、
前記水素製造装置として、請求項1乃至5のいずれか1項に記載の水素製造装置を備えたことを特徴とする燃料電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005022909A JP2006206405A (ja) | 2005-01-31 | 2005-01-31 | 水素製造装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005022909A JP2006206405A (ja) | 2005-01-31 | 2005-01-31 | 水素製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006206405A true JP2006206405A (ja) | 2006-08-10 |
Family
ID=36963650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005022909A Pending JP2006206405A (ja) | 2005-01-31 | 2005-01-31 | 水素製造装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006206405A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076398A (ja) * | 2007-09-21 | 2009-04-09 | Nippon Oil Corp | 燃料電池システム及び燃料電池システムの運転方法 |
JP2018009492A (ja) * | 2016-07-13 | 2018-01-18 | 日産自動車株式会社 | 燃料改質触媒の劣化診断方法および劣化診断装置 |
AT522101A1 (de) * | 2019-02-13 | 2020-08-15 | Avl List Gmbh | Brennstoffzellensystem und Verfahren zur Ermittlung eines Degradationszustandes eines Katalysators |
-
2005
- 2005-01-31 JP JP2005022909A patent/JP2006206405A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076398A (ja) * | 2007-09-21 | 2009-04-09 | Nippon Oil Corp | 燃料電池システム及び燃料電池システムの運転方法 |
JP2018009492A (ja) * | 2016-07-13 | 2018-01-18 | 日産自動車株式会社 | 燃料改質触媒の劣化診断方法および劣化診断装置 |
AT522101A1 (de) * | 2019-02-13 | 2020-08-15 | Avl List Gmbh | Brennstoffzellensystem und Verfahren zur Ermittlung eines Degradationszustandes eines Katalysators |
AT522101B1 (de) * | 2019-02-13 | 2021-07-15 | Avl List Gmbh | Brennstoffzellensystem und Verfahren zur Ermittlung eines Degradationszustandes eines Katalysators |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5604309B2 (ja) | 水素生成装置、燃料電池システム、及び水素生成装置の停止方法 | |
JP4105758B2 (ja) | 燃料電池システム | |
JP4912742B2 (ja) | 水素生成装置および燃料電池システム | |
EP2509144A1 (en) | Power generation system | |
JP2001226101A (ja) | 改質器制御装置 | |
KR100784038B1 (ko) | 열교환기 일체형 prox 반응기 및 그 운전 방법 | |
JP5528109B2 (ja) | 水素生成装置及び燃料電池システム | |
JP5049028B2 (ja) | 水素生成装置とその運転方法及びそれを備える燃料電池システム | |
JP2005200260A (ja) | 水素製造装置及び燃料電池発電システム | |
JP2006206405A (ja) | 水素製造装置 | |
JPWO2005018035A1 (ja) | 燃料電池発電システムおよびその改質器の劣化度検出方法、燃料電池発電方法 | |
JP6543802B2 (ja) | 燃料電池システム及びその運転方法 | |
JP4030322B2 (ja) | 燃料処理装置、燃料電池発電システム、燃料処理方法及び燃料電池発電方法 | |
JP2006219328A (ja) | 水素生成装置及びそれを用いた燃料電池システム | |
JP2003112902A (ja) | 燃料改質器の制御装置 | |
JP2008103278A (ja) | 燃料電池システム | |
EP3309123B1 (en) | Hydrogen generation system and fuel cell system | |
JP6628153B2 (ja) | 水素生成装置及びそれを備えた燃料電池システム | |
JP2011021938A (ja) | 改質装置の劣化判定方法及び改質装置 | |
JP2004288387A (ja) | 燃料電池発電システム | |
JP2010019574A (ja) | 流体供給量推定装置および燃料電池システム | |
JP5094202B2 (ja) | 流体送出装置、改質器および燃料電池システム | |
JP5592760B2 (ja) | 燃料電池発電システム | |
EP3118156B1 (en) | Hydrogen generation apparatus, method for driving same, and fuel cell system | |
JP7195196B2 (ja) | 未燃ガス監視方法及び燃料電池システム |