JP5265905B2 - Cubic boehmite - Google Patents

Cubic boehmite Download PDF

Info

Publication number
JP5265905B2
JP5265905B2 JP2007301934A JP2007301934A JP5265905B2 JP 5265905 B2 JP5265905 B2 JP 5265905B2 JP 2007301934 A JP2007301934 A JP 2007301934A JP 2007301934 A JP2007301934 A JP 2007301934A JP 5265905 B2 JP5265905 B2 JP 5265905B2
Authority
JP
Japan
Prior art keywords
boehmite
minor axis
ratio
thickness
major axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007301934A
Other languages
Japanese (ja)
Other versions
JP2009126735A (en
Inventor
宏和 木方
健二 木戸
宏文 満仲
順久 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Lime Industry Co Ltd
Original Assignee
Kawai Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Lime Industry Co Ltd filed Critical Kawai Lime Industry Co Ltd
Priority to JP2007301934A priority Critical patent/JP5265905B2/en
Publication of JP2009126735A publication Critical patent/JP2009126735A/en
Application granted granted Critical
Publication of JP5265905B2 publication Critical patent/JP5265905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、合成樹脂等の被充填物の充填剤として用いることができるベーマイトに関し、詳細には、被充填物への充填度を高めることができ、かつ充填による被充填物の物性の低下を抑制できる立方体状ベーマイトに関する。 The present invention relates to Bemai bets that can be used as fillers in the filling material such as synthetic resin, in particular, can increase the degree of filling of the object to be filling, and physical properties with product by the filling about the cubic Bemai bets possible to suppress the deterioration.

ベーマイトは、合成樹脂、ゴム、基板等の難燃剤、化粧品の光輝剤、高温触媒担体、製紙用塗工内填剤、塗料用顔料等の被充填物の充填剤として用いられたり、また高純度アルミナの原料として用いられる。特に、分解温度の高いベーマイトは、ハンダ加工温度に耐える必要のある基板用樹脂難燃剤、あるいは溶融加工温度や混練時のせん断発熱の高い工業用樹脂材料の難燃剤に適しているが、脱水量が少なく難燃効果が他の難燃剤に比べて弱いため充填度を高める必要がある。また、充填度を高めると難燃性が高まる反面、被充填物の物性が低下する傾向にあるため被充填物の物性を低下させずに充填度を高めることが重要である。   Boehmite is used as a filler for filling materials such as flame retardants for synthetic resins, rubber, substrates, cosmetic brighteners, high-temperature catalyst carriers, paper coating fillers, paint pigments, etc. Used as a raw material for alumina. In particular, boehmite with a high decomposition temperature is suitable as a resin flame retardant for substrates that must withstand the soldering temperature, or as a flame retardant for industrial resin materials that have high melting heat during shearing and kneading. Therefore, it is necessary to increase the filling degree because the flame retardant effect is small compared to other flame retardants. Further, when the filling degree is increased, the flame retardancy is increased. However, since the physical properties of the filling material tend to be lowered, it is important to increase the filling degree without lowering the physical properties of the filling material.

従来、ベーマイトは、板状ベーマイト(特許文献1参照)、六角板状ベーマイト(特許文献2参照)、微細板状ベーマイト(特許文献3参照)の種々形態の板状ベーマイト及び針状ベーマイト(特許文献4参照)の提案がある。また、これらのベーマイトの他に立方体状ベーマイトも知られている。
特開2003−2641号公報 特開2003−2642号公報 特開平5−279019号公報 特開2003−54941号公報
Conventionally, boehmite has plate-like boehmite (see Patent Document 1), hexagonal plate-like boehmite (see Patent Document 2), and fine plate-like boehmite (see Patent Document 3) in various forms and needle-like boehmite (Patent Document). 4)). In addition to these boehmites, cubic boehmite is also known.
JP 20032641 A JP 2003-2642 A JP-A-5-279019 JP 2003-54941 A

しかし、板状ベーマイト及び針状ベーマイトは、アスペクト比(長径/厚さ)が立方体状ベーマイトより大きいため配向性に優れるものの、立方体状ベーマイトに比べ嵩高く粘度が高くなるため被充填物への充填度を高めることができないという問題があった。一方、立方体状ベーマイトでも、粒径が小さいものに比べ粒径が大きいものほど比表面積が小さくなり充填度を高めることができるので、被充填物へのベーマイトの充填度を高めるためにはより大きな粒径の立方体状ベーマイトが望ましい。しかし、従来の立方体状ベーマイトは長径が1.3μmより小さく、これより大きい立方体状ベーマイトは多結晶体となり単結晶では得られなかった。また、上記のようにベーマイトの被充填物への充填度を高めると被充填物の物性を低下させるという問題があった。   However, plate-like boehmite and needle-like boehmite are excellent in orientation because the aspect ratio (major axis / thickness) is larger than that of cubic boehmite, but they are bulky and have higher viscosity than cubic boehmite, so filling to be filled There was a problem that the degree could not be increased. On the other hand, even with cubic boehmite, the larger the particle size compared to the smaller the particle size, the smaller the specific surface area and the higher the degree of filling, so it is larger to increase the degree of filling of boehmite into the filling material. Cubic boehmite with a particle size is desirable. However, the conventional cubic boehmite has a major axis smaller than 1.3 μm, and larger cubic boehmite becomes a polycrystal and cannot be obtained as a single crystal. Moreover, when the filling degree of the boehmite to the filling material is increased as described above, there is a problem that the physical properties of the filling material are lowered.

本発明は、上記の事情に鑑みなされたもので、合成樹脂等の被充填物への充填度を高めることができ、かつ充填による被充填物の物性の低下を抑制できる立方体状ベーマイトを提供することを課題とする。 The present invention has been made in view of the above, it is possible to increase the degree of filling of the with product such as a synthetic resin, and provides a cubic Bemai bets can suppress the deterioration of physical properties with product by the filling The task is to do.

本発明者らは、長径が1.3μm以上の立方体状ベーマイトに制御して製造できることを課題として検討を重ね、水酸化アルミニウムを原料として水熱合成でベーマイトを製造する際のベーマイトの生成後の反応ろ液中に含まれるナトリウムイオン濃度に着目し本発明を完成した。すなわち、本発明は、長径が1.3〜3.5μmであり、アスペクト比(長径/厚さ)が2.00〜3.50で、長径と短径の比(長径/短径)が1.68〜1.37で、短径と厚さの比(短径/厚さ)が1.42〜2.55の単一結晶であることを特徴とする立方体状ベーマイトを要旨とする。 The inventors of the present invention have repeatedly studied as a subject that it can be produced by controlling to a cubic boehmite having a major axis of 1.3 μm or more, and after producing boehmite when producing boehmite by hydrothermal synthesis using aluminum hydroxide as a raw material. The present invention was completed by paying attention to the sodium ion concentration contained in the reaction filtrate. That is, the present invention has a major axis of 1.3 to 3.5 μm, an aspect ratio (major axis / thickness) of 2.00 to 3.50, and a ratio of major axis to minor axis (major axis / minor axis) of 1. The gist is cubic boehmite characterized by being a single crystal having a minor axis to thickness ratio (minor axis / thickness) of 1.42 to 2.55.

また、上記の立方体状ベーマイトは、樹脂組成物、特に基板、半導体パッケージ又は工業用樹脂材料に充填してもよい。ここで、工業用樹脂材料とは、耐食、耐薬品性、加工性(特に切断、曲げ、溶接)等が要求される樹脂材料で例えば工業用プレートである。   The cubic boehmite may be filled in a resin composition, particularly a substrate, a semiconductor package, or an industrial resin material. Here, the industrial resin material is a resin material that requires corrosion resistance, chemical resistance, workability (particularly cutting, bending, welding), and the like, for example, an industrial plate.

本発明の立方体状ベーマイトは、合成樹脂等の被充填物への充填度を高めることができるので、被充填物の難燃性を高めることができる。また、本発明の立方体状ベーマイトは、被充填物への充填度を高めても被充填物の物性の低下を抑制できるので実用性に優れる。   Since the cubic boehmite of the present invention can increase the filling degree of the filling material such as a synthetic resin, the flame retardance of the filling material can be increased. In addition, the cubic boehmite of the present invention is excellent in practicality because it can suppress a decrease in physical properties of the filling material even when the filling degree of the filling material is increased.

原料となる水酸化アルミニウムは、特に限定なく使用できるが、バイヤー法で製造される水酸化アルミニウムを使用できる。水酸化アルミニウムの粒径は、一般的に、製造されるベーマイトの粒径と比例するが、水熱合成の際の温度条件等により水酸化アルミニウムの粒径よりもベーマイトの粒径を大きくすることも小さくすることも可能である。通常、原料の水酸化アルミニウムの粒径は、0.5〜5μmが好ましい。   Although aluminum hydroxide used as a raw material can be used without any particular limitation, aluminum hydroxide produced by the Bayer method can be used. The particle size of aluminum hydroxide is generally proportional to the particle size of boehmite to be produced. However, the particle size of boehmite should be larger than the particle size of aluminum hydroxide due to temperature conditions during hydrothermal synthesis. Can also be made smaller. Usually, the particle size of the starting aluminum hydroxide is preferably 0.5 to 5 μm.

本発明の立方体状ベーマイトは、長径が1.3〜3.5μmであり、アスペクト比(長径/厚さ)が2.00〜3.50で、長径と短径の比(長径/短径)が1.68〜1.37で、短径と厚さの比(短径/厚さ)が1.42〜2.55である。ベーマイトの形態が立方体により近くなる点で、長径は1.5〜3.2μmが好ましく、1.8〜3.1μmがより好ましく、アスペクト比は2.00〜3.15が好ましく、2.00〜2.50がより好ましい。また同様の理由により短径と厚さの比(短径/厚さ)は1.42〜2.15が好ましく、1.42〜1.65がより好ましい。長径と短径は、ベーマイトの一番大きな面の対角長である。したがって、立方体の場合、対角長を長径と短径としてアスペクト比(長径/厚さ)を求めると√2(1.41)となる。また、長径と短径の比(長径/短径)は1となる。したがって、これらと比較すると本発明のベーマイトは、アスペクト比(長径/厚さ)が2.00〜3.50で、長径と短径の比(長径/短径)が1.68〜1.37であるので立方体に近い形状となる。また、立方体の場合、対角長を長径と短径として短径と厚さの比(短径/厚さ)を求めると前記と同様に√2(1.41)である。
したがって、本発明のベーマイトは、短径と厚さの比(短径/厚さ)が1.42〜2.55であるので、短径の点からも立方体に近い形状となる。なお、上記の立方体状ベーマイトを規定する数値は、ベーマイトの単一結晶について規定するものである。
The cubic boehmite of the present invention has a major axis of 1.3 to 3.5 μm, an aspect ratio (major axis / thickness) of 2.00 to 3.50, and a ratio of major axis to minor axis (major axis / minor axis). Is 1.68 to 1.37, and the ratio of the minor axis to the thickness (minor axis / thickness) is 1.42 to 2.55. The major axis is preferably 1.5 to 3.2 [mu] m, more preferably 1.8 to 3.1 [mu] m, and the aspect ratio is preferably 2.00 to 3.15, and 2.00 in that the form of boehmite is closer to the cube. -2.50 is more preferable. For the same reason, the ratio of the minor axis to the thickness (minor axis / thickness) is preferably 1.42 to 2.15, more preferably 1.42 to 1.65. The major axis and the minor axis are diagonal lengths of the largest surface of boehmite. Therefore, in the case of a cube, the aspect ratio (major axis / thickness) is obtained as √2 (1.41) with the diagonal length as the major axis and the minor axis. Further, the ratio of the major axis to the minor axis (major axis / minor axis) is 1. Therefore, in comparison with these, the boehmite of the present invention has an aspect ratio (major axis / thickness) of 2.00 to 3.50 and a ratio of major axis to minor axis (major axis / minor axis) of 1.68 to 1.37. Therefore, it becomes a shape close to a cube. In the case of a cube, the ratio of the minor axis to the thickness (minor axis / thickness) is obtained by using the diagonal length as the major axis and the minor axis, which is √2 (1.41) as described above.
Therefore, the boehmite of the present invention has a minor axis / thickness ratio (minor axis / thickness) of 1.42 to 2.55, and thus has a shape close to a cube from the point of the minor axis. In addition, the numerical value which prescribes | regulates said cubic boehmite is prescribed | regulated about the single crystal of boehmite.

次いで、本発明の立方体状ベーマイトの製造方法を説明する。バイヤー法で製造される水酸化アルミニウムは、製造工程で水酸化ナトリウムが使用されるため、製造された水酸化アルミニウムはナトリウムを含有する。立方体状ベーマイトは、水熱合成でベーマイトが生成した後の反応液のろ過後における反応ろ液中に含まれるナトリウムイオン濃度を0.001〜0.100質量%の範囲内になるように水比を予め設定することにより製造できる。ナトリウムイオン濃度が0.001質量%未満だと水比が大きく水量が多くなるので、オートクレーブを所定の反応温度に維持するために必要なエネルギーが多くなり経済性が悪くなる。また、ナトリウムイオン濃度が0.100質量%より高くなるにつれベーマイトの形態は板状に近くなり立方体状ベーマイトを得難くなる。エネルギー面からの経済性及びベーマイトがより立方体に近い形態となることを考慮すると、ナトリウムイオン濃度は、0.001〜0.070質量%が好ましく、0.001〜0.030質量%がより好ましい。立方体状ベーマイトは、予め設定した水比の水を水酸化アルミニウムに加えてよく混合し、両者をオートクレーブ内に投入後、加圧加温し、静置下又は攪拌下にて水熱合成を行い、その後、得られた反応生成物のベーマイトをろ過、洗浄、乾燥等することにより製造できる。水比とは、原料の水酸化アルミニウムの質量に対する水の質量の割合(水の質量/水酸化アルミニウムの質量)をいい、水比5とは例えば水酸化アルミニウム100gを用いる場合、水は500gとなる。   Subsequently, the manufacturing method of the cubic boehmite of this invention is demonstrated. Since aluminum hydroxide produced by the Bayer process uses sodium hydroxide in the production process, the produced aluminum hydroxide contains sodium. Cubic boehmite has a water ratio such that the sodium ion concentration contained in the reaction filtrate after filtration of the reaction liquid after boehmite is generated by hydrothermal synthesis is within the range of 0.001 to 0.100 mass%. Can be manufactured in advance. If the sodium ion concentration is less than 0.001% by mass, the water ratio is large and the amount of water is large, so that the energy required for maintaining the autoclave at a predetermined reaction temperature increases, resulting in poor economic efficiency. Further, as the sodium ion concentration becomes higher than 0.100% by mass, the form of boehmite becomes closer to a plate shape, and it becomes difficult to obtain cubic boehmite. In consideration of economic efficiency and boehmite in a form closer to a cube, the sodium ion concentration is preferably 0.001 to 0.070 mass%, more preferably 0.001 to 0.030 mass%. . Cubic boehmite is prepared by adding water in a preset water ratio to aluminum hydroxide and mixing well. After both are put in an autoclave, pressurize and warm, and hydrothermal synthesis is carried out under standing or stirring. Then, it can manufacture by filtering, washing | cleaning, drying, etc. of the boehmite of the obtained reaction product. The water ratio refers to the ratio of the mass of water to the mass of the starting aluminum hydroxide (the mass of water / the mass of aluminum hydroxide). The water ratio 5 is, for example, when 100 g of aluminum hydroxide is used, Become.

市販の水酸化アルミニウムに含有されるナトリウム量は、製品情報として示されているので、このデータに基づき反応ろ液中に含まれるナトリウムイオン濃度を上記の範囲内の水比に予め設定することは容易である。もちろん、個々のロット毎に水酸化アルミニウムに含有されるナトリウム量を求め、このデータに基づき水比を設定することもできる。   The amount of sodium contained in commercially available aluminum hydroxide is shown as product information. Based on this data, the sodium ion concentration contained in the reaction filtrate should be preset to a water ratio within the above range. Easy. Of course, the amount of sodium contained in aluminum hydroxide can be determined for each lot, and the water ratio can be set based on this data.

水熱合成を行う際のオートクレーブ内の温度は、150〜300℃、好ましくは160〜235℃、より好ましくは170〜215℃である。この温度が150℃未満では反応生成物としてベーマイトを得ることが困難である。また、300℃を越えるとオートクレーブ内の自然発生圧力が8665kPaを越え、設備面でコスト高となるばかりかアルミナの混在の可能性もあるからである。また、水熱合成の行う際の自然発生圧力は、前記のオートクレーブ内の温度に対応する、378〜8665kPa、好ましくは522〜3028kPa、より好ましくは699〜2045kPaである。   The temperature in the autoclave when hydrothermal synthesis is performed is 150 to 300 ° C, preferably 160 to 235 ° C, more preferably 170 to 215 ° C. If this temperature is less than 150 ° C., it is difficult to obtain boehmite as a reaction product. Further, if the temperature exceeds 300 ° C., the spontaneously generated pressure in the autoclave exceeds 8665 kPa, which increases the cost in terms of equipment and may include alumina. Moreover, the naturally generated pressure at the time of hydrothermal synthesis is 378 to 8665 kPa, preferably 522 to 3028 kPa, more preferably 699 to 2045 kPa, corresponding to the temperature in the autoclave.

反応時間は、4〜24時間、好ましくは7〜19時間である。4時間未満では未反応の水酸化アルミニウムが残ることがあり、24時間あれば反応が終了する。   The reaction time is 4 to 24 hours, preferably 7 to 19 hours. If it is less than 4 hours, unreacted aluminum hydroxide may remain, and if it is 24 hours, the reaction is completed.

立方体状ベーマイトは、難燃剤として合成樹脂、ゴム、電線等に充填され、また光輝剤として化粧品や塗料に充填できる。立方体状ベーマイトは被充填物への充填度を高めることができるので、高い難燃性が求められる樹脂組成物、例えば基板、半導体パッケージ又は工業用樹脂材料の難燃剤として有用である。   Cubic boehmite can be filled in a synthetic resin, rubber, electric wire or the like as a flame retardant, and can be filled in cosmetics or paints as a brightening agent. Since cubic boehmite can increase the filling degree of the filling material, it is useful as a flame retardant for resin compositions that require high flame retardancy, such as substrates, semiconductor packages, or industrial resin materials.

本発明の立方体状ベーマイトが充填される樹脂として、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアミド、ABS樹脂、ポリエステル、ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、アルキド樹脂、不飽和ポリエステル、ジアリルフタレート、ポリスチレン、フッ素樹脂、飽和ポリエステル、尿素樹脂、メラミン含有樹脂、ポリウレタン等を例示できる。また、本発明の立方体状ベーマイトが充填されるゴムとして、シリコーンゴム、アクリルゴム、ブチルゴム、エチレンプロピレンゴム、オレフィン系エラストマー等を例示できる。   As the resin filled with the cubic boehmite of the present invention, polyethylene, polypropylene, polyvinyl chloride, polyamide, ABS resin, polyester, polycarbonate, polyacetal, polyphenylene sulfide, polyphenylene ether, polysulfone, polyethersulfone, polyetherimide, poly Examples include ether ether ketone, epoxy resin, silicone resin, phenol resin, alkyd resin, unsaturated polyester, diallyl phthalate, polystyrene, fluororesin, saturated polyester, urea resin, melamine-containing resin, polyurethane and the like. Examples of the rubber filled with the cubic boehmite of the present invention include silicone rubber, acrylic rubber, butyl rubber, ethylene propylene rubber, and olefin elastomer.

次いで、本発明を実施例を挙げて説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated, this invention is not limited to a following example.

〔実施例1〕(立方体状ベーマイトの製造)
水酸化アルミニウム(日本軽金属(株)製、BF-013)を原料として水熱合成によりベーマイトを製造した。表に示す試験例1〜試験例6のベーマイトは、水酸化アルミニウム100gとそれぞれの水比に対応する水100g(水比1)、200g(水比2)、300g(水比3)、500g(水比5)、1000g(水比10)、10000g(水比100)をそれぞれよく混合した後、オートクレーブに入れ、自然発生圧力(約900kPa)下、180℃で12時間水熱処理した後、生成物を脱水、乾燥し得た。
[Example 1] (Production of cubic boehmite)
Boehmite was produced by hydrothermal synthesis using aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., BF-013) as a raw material. The boehmite of Test Examples 1 to 6 shown in the table is 100 g of water (water ratio 1), 200 g (water ratio 2), 300 g (water ratio 3), 500 g (100 g of water) corresponding to 100 g of aluminum hydroxide and each water ratio. The water ratio 5), 1000 g (water ratio 10), and 10000 g (water ratio 100) were mixed well, then placed in an autoclave and hydrothermally treated at 180 ° C. for 12 hours under a naturally generated pressure (about 900 kPa). Could be dehydrated and dried.

各試験例で得られたベーマイトを走査型電子顕微鏡((株)日立製作所製、S-2400)で観察し、ベーマイトの長径、短径、厚さについて各25点づつを測定し平均値を求めた。
長径と短径は、対角長を測定した。結果は表1に示した。
The boehmite obtained in each test example was observed with a scanning electron microscope (manufactured by Hitachi, Ltd., S-2400), and the average value was obtained by measuring 25 points each for the major axis, minor axis, and thickness of boehmite. It was.
The major axis and minor axis were measured for diagonal length. The results are shown in Table 1.

Figure 0005265905
Figure 0005265905

各試験例のベーマイトの生成後の反応ろ液中に含まれるナトリウムイオン濃度をイオン分析計(東亜ディーケーケー(株)製、IA-300)を用い測定した。表2に反応ろ液中のナトリウムイオン濃度(表中、ナトリウムイオン濃度はNaイオン濃度と表示)(質量%)を示した。また、表1の長径、短径、厚さから求めたアスペクト比(長径/厚さ)、長径と短径の比(長径/短径)及び短径と厚さの比(短径/厚さ)を示した。   The sodium ion concentration contained in the reaction filtrate after the formation of boehmite in each test example was measured using an ion analyzer (IA-300, manufactured by Toa DKK Corporation). Table 2 shows the sodium ion concentration in the reaction filtrate (in the table, the sodium ion concentration is expressed as Na ion concentration) (% by mass). Also, the aspect ratio (major axis / thickness) obtained from the major axis, minor axis, and thickness in Table 1, the ratio of major axis to minor axis (major axis / minor axis), and the ratio of minor axis to thickness (minor axis / thickness). )showed that.

Figure 0005265905
Figure 0005265905

表2のアスペクト比(長径/厚さ)、長径と短径の比(長径/短径)及び短径と厚さの比(短径/厚さ)より、試験例1と試験例2は板状に近いベーマイトであり、試験例3〜試験例6は立方体に近いベーマイト(立方体状ベーマイト)であった。また、図1に試験例3で得られたベーマイトの走査型電子顕微鏡による写真像を示したが、これからも試験例3が立方体状ベーマイトであることが分かる。   From the aspect ratio (major axis / thickness), the ratio of major axis to minor axis (major axis / minor axis), and the ratio of minor axis to thickness (minor axis / thickness) in Table 2, Test Example 1 and Test Example 2 are plates. The test examples 3 to 6 were boehmite close to a cube (cubic boehmite). Moreover, although the photographic image by the scanning electron microscope of the boehmite obtained in Test Example 3 was shown in FIG. 1, it turns out that Test Example 3 is cubic boehmite from now on.

〔実施例2〕(ベーマイトの生成後の反応ろ液中に含まれるナトリウムイオン濃度とベーマイトのアスペクト比(長径/厚さ)との関係、ベーマイトの長径と短径の比(長径/短径)との関係並びに短径と厚さの比(短径/厚さ)との関係)
横軸を反応ろ液中に含まれるナトリウムイオン濃度(質量%)、縦軸をアスペクト比とし、試験例1〜試験例6のナトリウムイオン濃度とアスペクト比をプロットしたグラフを片対数グラフを用いて作成した(図2参照、図中、ナトリウムイオン濃度はNaイオン濃度と表示)。図2より、ナトリウムイオン濃度とアスペクト比との間には相関関係があり、ナトリウムイオン濃度の減少に伴いアスペクト比が減少し形態が立方体に近くなることが判明した。また、横軸を反応ろ液中に含まれるナトリウムイオン濃度(質量%)、縦軸を長径と短径の比(長径/短径)とし、試験例1〜試験例6のナトリウムイオン濃度及び長径と短径の比(長径/短径)をプロットしたグラフを片対数グラフを用いて作成した(図3参照、図中、ナトリウムイオン濃度はNaイオン濃度と表示)。図3より、ナトリウムイオン濃度及び 長径と短径の比(長径/短径)との間には相関関係があり、ナトリウムイオン濃度の減少に伴い長径と短径の比(長径/短径)が上昇するが、その数値は2を越えることがなくベーマイトの形態が立方体に近いことが判明した。さらに、横軸を反応ろ液中に含まれるナトリウムイオン濃度(質量%)、縦軸を短径と厚さの比(短径/厚さ)とし、試験例1〜試験例6のナトリウムイオン濃度及び短径と厚さの比(短径/厚さ)をプロットしたグラフを片対数グラフを用いて作成した(図4参照、図中、ナトリウムイオン濃度はNaイオン濃度と表示)。図4より、ナトリウムイオン濃度及び短径と厚さの比(短径/厚さ)との間には相関関係があり、ナトリウムイオン濃度が減少するに伴い短径と厚さの比(短径/厚さ)も減少し、短径と厚さ(短径/厚さ)においてもベーマイトの形態が立方体に近くなることが判明した。これらの結果より、水酸化アルミニウムを原料としてベーマイトを製造する場合、ベーマイトの生成後の反応ろ液中に含まれるナトリウムイオン濃度を一定の範囲になるよう予め水比を設定して水熱合成することにより、長径が1.3μm以上の立方体状ベーマイトに制御して製造できることが明らかとなった。
[Example 2] (Relationship between sodium ion concentration contained in reaction filtrate after formation of boehmite and aspect ratio (major axis / thickness) of boehmite, ratio of major axis to minor axis of boehmite (major axis / minor axis) And the ratio of minor axis to thickness (minor axis / thickness))
Using the semilogarithmic graph, a graph in which the horizontal axis is the sodium ion concentration (mass%) contained in the reaction filtrate, the vertical axis is the aspect ratio, and the sodium ion concentration and aspect ratio of Test Example 1 to Test Example 6 are plotted. It was prepared (see FIG. 2, in which the sodium ion concentration is expressed as Na ion concentration). From FIG. 2, it was found that there is a correlation between the sodium ion concentration and the aspect ratio, and the aspect ratio decreases with decreasing sodium ion concentration, and the shape becomes close to a cube. The horizontal axis is the sodium ion concentration (mass%) contained in the reaction filtrate, the vertical axis is the ratio of the major axis to the minor axis (major axis / minor axis), and the sodium ion concentration and major axis of Test Example 1 to Test Example 6 A graph plotting the ratio of the major axis and the minor axis (major axis / minor axis) was made using a semi-logarithmic graph (see FIG. 3, where the sodium ion concentration is expressed as the Na ion concentration). From FIG. 3, there is a correlation between the sodium ion concentration and the ratio of the major axis to the minor axis (major axis / minor axis), and the ratio of the major axis to the minor axis (major axis / minor axis) decreases with decreasing sodium ion concentration. Although it increases, the value does not exceed 2 and it has been found that the form of boehmite is close to a cube. Furthermore, the sodium ion concentration (mass%) contained in the reaction filtrate on the horizontal axis and the ratio of the minor axis to the thickness (minor axis / thickness) on the vertical axis, the sodium ion concentrations of Test Example 1 to Test Example 6 A graph plotting the ratio of the minor axis to the thickness (minor axis / thickness) was created using a semi-logarithmic graph (see FIG. 4, in which the sodium ion concentration is expressed as the Na ion concentration). From FIG. 4, there is a correlation between the sodium ion concentration and the ratio of the minor axis to the thickness (minor axis / thickness), and the ratio of the minor axis to the thickness (minor axis) as the sodium ion concentration decreases. (Thickness / thickness) also decreased, and it was found that the form of boehmite was close to a cube in terms of the minor axis and thickness (minor axis / thickness). From these results, when producing boehmite using aluminum hydroxide as a raw material, hydrothermal synthesis is performed by setting the water ratio in advance so that the sodium ion concentration contained in the reaction filtrate after the formation of boehmite is within a certain range. As a result, it has been clarified that it can be controlled to be cubic boehmite having a major axis of 1.3 μm or more.

〔実施例3〕(立方体状ベーマイトの充填性の検討)
2軸混練押し出し機((株)テクノベル製、KZW15TW-45MG-NH(-700))で樹脂と充填剤のベーマイトを混練する際の充填性の目安として利用されるスクリュー電流値を測定した。スクリュー電流値は、2軸混練押し出し機に負荷がかかってくると値が上昇するので、スクリュー電流値が高いほど樹脂への充填度が低くなる。被充填物のポリプロピレン樹脂(プライムポリマー社製 J-5051HP、以下、「PP」という)100質量部に対して、本発明の試験例3で示した立方体状ベーマイトを表3に示す各質量部充填して2軸混練押し出し機で混練し、2軸混練押し出し機に表示されるスクリュー電流値を測定した。また、対照としてアスペクト比15〜25の板状ベーマイトとアスペクト比5〜10の板状ベーマイトをそれぞれPPに充填して同様にスクリュー電流値を測定した。結果は表3に示した。
[Example 3] (Examination of filling property of cubic boehmite)
The screw current value used as a measure of filling property when kneading resin and filler boehmite was measured with a twin-screw kneading extruder (KZW15TW-45MG-NH (-700), manufactured by Technobel Co., Ltd.). The screw current value increases when a load is applied to the twin-screw kneading extruder. Therefore, the higher the screw current value, the lower the filling degree of the resin. The cubic boehmite shown in Test Example 3 of the present invention is filled in each part by mass shown in Table 3 with respect to 100 parts by mass of the polypropylene resin (J-5051HP manufactured by Prime Polymer Co., Ltd., hereinafter referred to as “PP”). Then, the mixture was kneaded with a biaxial kneading extruder, and the screw current value displayed on the biaxial kneading extruder was measured. Further, as a control, plate-like boehmite having an aspect ratio of 15 to 25 and plate-like boehmite having an aspect ratio of 5 to 10 were filled in PP, and the screw current value was measured in the same manner. The results are shown in Table 3.

Figure 0005265905
Figure 0005265905

表3より、アスペクト比15〜25の板状ベーマイトは、PP100質量部に対して150質量部を充填することが困難であった。また、アスペクト比5〜10の板状ベーマイトは、PP100質量部に対して225質量部の充填が限界であった。一方、本発明の立方体状ベーマイトは、PP100質量部に対して275質量部を充填することが可能であった。以上の結果より、本発明の立方体状ベーマイトは、被充填物へ充填度を高めることができることが明らかとなった。   From Table 3, it was difficult to fill 150 parts by mass of plate-like boehmite having an aspect ratio of 15 to 25 with respect to 100 parts by mass of PP. The plate boehmite having an aspect ratio of 5 to 10 had a limit of 225 parts by mass with respect to 100 parts by mass of PP. On the other hand, the cubic boehmite of the present invention was able to fill 275 parts by mass with respect to 100 parts by mass of PP. From the above results, it has been clarified that the cubic boehmite of the present invention can increase the filling degree of the filling material.

〔実施例4〕(立方体状ベーマイトが充填された被充填物の物性の検討)
被充填物のPP100質量部に対し、本発明の試験例3で示した立方体状ベーマイト、対照のアスペクト比15〜25の板状ベーマイト、アスペクト比5〜10の板状ベーマイトの各100質量部をそれぞれ2軸混練押し出し機を用いて混練し、アイゾット衝撃強度試験をJISK7110(プラスチック−アイゾット衝撃強さの試験方法、ノッチなし)に準じて行った。結果は図5に示した。
[Example 4] (Examination of physical properties of filling material filled with cubic boehmite)
100 parts by mass of cubic boehmite shown in Test Example 3 of the present invention, plate boehmite having a control aspect ratio of 15 to 25, and plate boehmite having an aspect ratio of 5 to 10 with respect to 100 parts by mass of PP to be filled. Each was kneaded using a biaxial kneading extruder, and an Izod impact strength test was conducted in accordance with JIS K7110 (plastic-Izod impact strength test method, notch). The results are shown in FIG.

図5より、ベーマイトが充填されないPPに比べ、本発明の立方体状ベーマイトを充填したPPはアイゾット衝撃強度が低下するものの、対照のアスペクト比15〜25の板状ベーマイトとアスペクト比5〜10の板状ベーマイトをそれぞれ充填したPPに比べて低下が明らかに少なかった。以上の結果より、本発明の立方体状ベーマイトは板状ベーマイトに比し、被充填物への充填度を高めてもアイゾット衝撃強度の低下が抑制されるので実用性が高いことが判明した。   FIG. 5 shows that the PP with the cubic boehmite of the present invention has a lower Izod impact strength than the PP with no boehmite filled, but the control boehmite with an aspect ratio of 15-25 and a plate with an aspect ratio of 5-10. As compared with PP filled with each of the boehmite, the decrease was obviously small. From the above results, it has been found that the cubic boehmite of the present invention is more practical than the plate boehmite because the decrease in Izod impact strength is suppressed even when the filling degree of the filling material is increased.

また、被充填物のPP100質量部に対し、本発明の試験例3で示した立方体状ベーマイト、対照のアスペクト比15〜25の板状ベーマイト、アスペクト比5〜10の板状ベーマイトの各100質量部をそれぞれ2軸混練押し出し機を用いて混練し、引張試験及び曲げ試験をそれぞれJISK7113(プラスチックの引張試験方法)及びJISK7203(硬質プラスチックの曲げ試験方法)に準じてを行った。結果は図6と図7に示した。   In addition, 100 mass parts each of the cubic boehmite shown in Test Example 3 of the present invention, the plate boehmite having an aspect ratio of 15 to 25, and the plate boehmite having an aspect ratio of 5 to 10 with respect to 100 parts by mass of the PP to be filled. Each part was kneaded using a biaxial kneading extruder, and a tensile test and a bending test were performed in accordance with JISK7113 (plastic tensile test method) and JISK7203 (hard plastic bending test method), respectively. The results are shown in FIG. 6 and FIG.

図6と図7より、本発明の立方体状ベーマイトは対照の板状ベーマイトに比し、引張ひずみと曲げひずみの低下が少なく、充填度を高めても被充填物の柔軟性の低下が抑制され実用性が高いことが判明した。   6 and 7, the cubic boehmite of the present invention has less decrease in tensile strain and bending strain than the control plate boehmite, and even when the filling degree is increased, the decrease in flexibility of the filling material is suppressed. It turned out to be highly practical.

本発明の立方体状ベーマイトの走査型電子顕微鏡による写真像である。It is a photographic image by the scanning electron microscope of the cubic boehmite of the present invention. ベーマイトの生成後の反応ろ液中に含まれるナトリウムイオン濃度(質量%)とアスペクト比との関係を示すグラフである。It is a graph which shows the relationship between the sodium ion concentration (mass%) contained in the reaction filtrate after the production | generation of boehmite, and an aspect-ratio. ベーマイトの生成後の反応ろ液中に含まれるナトリウムイオン濃度(質量%)及び長径と短径の比(長径/短径)との関係を示すグラフである。It is a graph which shows the relationship between the sodium ion concentration (mass%) contained in the reaction filtrate after the production | generation of boehmite, and the ratio of a major axis and a minor axis (major axis / minor axis). ベーマイトの生成後の反応ろ液中に含まれるナトリウムイオン濃度(質量%)及び短径と厚さの比(短径/厚さ)との関係を示すグラフである。It is a graph which shows the relationship between the sodium ion concentration (mass%) contained in the reaction filtrate after the production | generation of boehmite, and the ratio of a short diameter and thickness (short diameter / thickness). アイゾット衝撃強度試験の結果を示すグラフである。It is a graph which shows the result of an Izod impact strength test. 引張試験の結果を示すグラフである。It is a graph which shows the result of a tension test. 曲げ試験の結果を示すグラフである。It is a graph which shows the result of a bending test.

Claims (3)

長径が1.3〜3.5μmであり、アスペクト比(長径/厚さ)が2.00〜3.50で、長径と短径の比(長径/短径)が1.68〜1.37で、短径と厚さの比(短径/厚さ)が1.42〜2.55の単一結晶であることを特徴とする立方体状ベーマイト。 The major axis is 1.3 to 3.5 μm, the aspect ratio (major axis / thickness) is 2.00 to 3.50, and the ratio of major axis to minor axis (major axis / minor axis) is 1.68 to 1.37. Cubic boehmite characterized by being a single crystal having a minor axis / thickness ratio (minor axis / thickness) of 1.42 to 2.55. 請求項1に記載の立方体状ベーマイトが充填されてなることを特徴とする樹脂組成物。   A resin composition comprising the cubic boehmite according to claim 1. 樹脂組成物は、基板、半導体パッケージ又は工業用樹脂材料であることを特徴とする請求項2に記載の樹脂組成物。   The resin composition according to claim 2, wherein the resin composition is a substrate, a semiconductor package, or an industrial resin material.
JP2007301934A 2007-11-21 2007-11-21 Cubic boehmite Active JP5265905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301934A JP5265905B2 (en) 2007-11-21 2007-11-21 Cubic boehmite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301934A JP5265905B2 (en) 2007-11-21 2007-11-21 Cubic boehmite

Publications (2)

Publication Number Publication Date
JP2009126735A JP2009126735A (en) 2009-06-11
JP5265905B2 true JP5265905B2 (en) 2013-08-14

Family

ID=40818027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301934A Active JP5265905B2 (en) 2007-11-21 2007-11-21 Cubic boehmite

Country Status (1)

Country Link
JP (1) JP5265905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728517B1 (en) 2013-07-17 2017-04-26 케이씨 주식회사 Preparation of aluminum nitride using wet-mixed boehmite slurry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324112B2 (en) * 2008-03-19 2013-10-23 関東電化工業株式会社 Boehmite fine particles and method for producing the same
JP5448414B2 (en) * 2008-10-29 2014-03-19 住友ベークライト株式会社 Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
US11591520B2 (en) 2017-04-25 2023-02-28 Konoshima Chemical Co., Ltd. Alumina hydrate particles, flame retardant, resin composition and electric wire/cable

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2887023B2 (en) * 1992-03-30 1999-04-26 ワイケイケイ株式会社 Fine plate-like boehmite particles and method for producing the same
JP2869287B2 (en) * 1993-03-05 1999-03-10 ワイケイケイ株式会社 Method for producing plate-like boehmite particles
JPH1121125A (en) * 1997-07-01 1999-01-26 Ykk Corp Fine thin platy boehmite particles and their production
US6713428B1 (en) * 1998-07-06 2004-03-30 Instuit Francais Du Petrole Dispersible aluminium hydrate, method for preparing same and use for preparing catalysts
JP3663368B2 (en) * 2001-06-18 2005-06-22 河合石灰工業株式会社 Plate-like boehmite and method for producing plate-like alumina
JP3663369B2 (en) * 2001-06-18 2005-06-22 河合石灰工業株式会社 Method for producing hexagonal plate boehmite and hexagonal plate-like alumina
JP3930273B2 (en) * 2001-08-08 2007-06-13 岐阜県 Acicular boehmite and resin composition containing the same
JP4181777B2 (en) * 2002-01-29 2008-11-19 河合石灰工業株式会社 Boehmite production method
US20040265219A1 (en) * 2002-04-19 2004-12-30 Saint-Gobain Ceramics & Plastics, Inc. Seeded boehmite particulate material and methods for forming same
JP4423352B2 (en) * 2003-03-14 2010-03-03 河合石灰工業株式会社 Method for producing flat boehmite intercalated with organic matter and flat boehmite with b-axis direction delamination
JP4487689B2 (en) * 2004-08-26 2010-06-23 日産自動車株式会社 Alumina particles, method for producing alumina particles, resin composition, and method for producing resin composition
JP4556628B2 (en) * 2004-11-16 2010-10-06 日産自動車株式会社 Plate-like alumina particles, method for producing plate-like alumina particles, resin composition, and method for producing resin composition
JP2008195569A (en) * 2007-02-13 2008-08-28 Kanto Denka Kogyo Co Ltd Alumina fine particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728517B1 (en) 2013-07-17 2017-04-26 케이씨 주식회사 Preparation of aluminum nitride using wet-mixed boehmite slurry

Also Published As

Publication number Publication date
JP2009126735A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
KR101873139B1 (en) Thermally conductive complex oxide, production method therefor, thermally conductive complex oxide-containing composition, and use therefor
KR100838231B1 (en) Flame retardant composites
CN105658715B (en) Resin combination, heat sink material and radiating component
JP4947612B2 (en) Magnesium hydroxide flame retardant, method for producing the same, and flame retardant resin composition
EP1499666B1 (en) Boehmite particles and polymer materials incorporating same
JP5839602B2 (en) High aspect ratio magnesium hydroxide
KR102561503B1 (en) Pigment for cosmetics comprising titanium phosphate powder, production method therefor
KR102041284B1 (en) Calcium carbonate filler for resin, and resin composition containing said filler
KR101449773B1 (en) Calcium Carbonate Hydroxodialuminates Comprising a Hexagonal Platelet-Shaped Crystal Habit
JP5256716B2 (en) Resin composition and molded product obtained therefrom
JP5128882B2 (en) Magnesium hydroxide fine particles and method for producing the same
JP5265905B2 (en) Cubic boehmite
KR20160127728A (en) Calcium carbonate filler for resin and resin composition including said filler
EP2806006B1 (en) Thermal conduction enhancer
JP2016135841A (en) Heat-conductive composite oxide, heat-conductive resin composition and coating liquid
JP2017122029A (en) Magnesium hydroxide particle having slow growth late and low aspect ratio method for producing the same
JP5865998B2 (en) Composite flame retardant, resin composition and molded product
JP2012236867A (en) Method for producing crystal nucleating agent for resin
JP2015178543A (en) High-thermal-conductivity inorganic filler composite particle and production method thereof
JP2007217474A (en) Composite magnesium hydroxide particle-containing polyolefin resin composition
JP2007302822A (en) Polyphenylene sulfide resin composition
WO2015008924A1 (en) Method of preparing aluminum nitride using wet-mixed boehmite slurry
JPWO2011162354A1 (en) Crystal nucleating agent for resin and resin composition
JP2017186224A (en) Aluminum phosphite and fire retardant resin composition
JP7152003B2 (en) Highly thermally conductive inorganic filler composite particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Ref document number: 5265905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250