JP4181777B2 - Boehmite production method - Google Patents

Boehmite production method Download PDF

Info

Publication number
JP4181777B2
JP4181777B2 JP2002019581A JP2002019581A JP4181777B2 JP 4181777 B2 JP4181777 B2 JP 4181777B2 JP 2002019581 A JP2002019581 A JP 2002019581A JP 2002019581 A JP2002019581 A JP 2002019581A JP 4181777 B2 JP4181777 B2 JP 4181777B2
Authority
JP
Japan
Prior art keywords
boehmite
aluminum hydroxide
comparative example
plate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002019581A
Other languages
Japanese (ja)
Other versions
JP2003221227A (en
Inventor
健二 木戸
宏文 満仲
宏和 木方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Lime Industry Co Ltd
Original Assignee
Kawai Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Lime Industry Co Ltd filed Critical Kawai Lime Industry Co Ltd
Priority to JP2002019581A priority Critical patent/JP4181777B2/en
Publication of JP2003221227A publication Critical patent/JP2003221227A/en
Application granted granted Critical
Publication of JP4181777B2 publication Critical patent/JP4181777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチック、ゴム等の難燃化フィラー、電子材料のフィラー、触媒担体、製紙用塗工内填剤、塗料用顔料、高純度アルミナの原料等に用いられるベーマイトの製造方法に関する。
【0002】
【従来の技術】
従来より、ベーマイトの製造方法は種々提供されているが、一般的には原料の水酸化アルミニウムを水熱処理することにより行われている。この製造方法は、水酸化アルミニウムと反応促進剤(金属化合物)に水を加えたスラリーの撹拌混合工程、圧力容器により水蒸気雰囲気下で加熱しながら湿式養生する水熱処理工程、反応生成物の脱水工程、水洗工程、濾過工程、乾燥工程の各工程から成り立っている(例えば、特開平6−263437号公報、特開2000−86235号公報参照)。
【0003】
従来の水熱処理によるベーマイトの製造方法によれば、水酸化アルミニウムに反応促進剤としてアルカリ土類金属やアルカリ金属の水酸化物、酸化物、塩化物、硫酸塩等を加えるため、水洗工程が不可欠で、この水洗工程を経ても反応促進剤に由来するNaやCa等の不純物がなおも残存し易く、高純度のベーマイトを製造し難いということがあった。
水酸化アルミニウムに水を加えたスラリーを水熱処理するため、1バッチ当たりの仕込量が制約され、また、水洗工程の他、脱水工程、濾過工程が不可欠で工程が煩雑であるという課題があった。
また、高収率でベーマイトを得るには長時間養生しなければならず、生産効率を高めるために短時間で養生できる製造方法が望まれていた。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来のベーマイトの製造方法に鑑みなされたものであり、製造時間が短く少ない工程数で低コストに高純度のベーマイトを効率的に製造できる方法に関する。
【0005】
【課題を解決するための手段】
上記課題を解決する本発明は、粒径が0.8〜2μmの水酸化アルミニウム粉を圧力容器を用いて水蒸気雰囲気下、150〜180℃で加熱しながら乾式養生することを特徴とするアスペクト比が3〜12の板状ベーマイトの製造方法を要旨とする。
ここで、乾式養生とは、出発原料の水酸化アルミニウムに水を加えることなく粉状のままで養生することを意味する。また、本明細書中で用いる湿式養生とは、乾式養生の対語で、水酸化アルミニウムに水を加えスラリー状(液状)にして養生することを意味する
【0006】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
出発原料の水酸化アルミニウムは、粉状のものを用いる。なお、粉状とは、スラリー状で市販される水酸化アルミニウムを乾燥させて粉状にしたものも含む。
製造されるベーマイトの粒径は、水酸化アルミニウムの粒径との依存性があるので、必要とするベーマイトの粒径に対応させて種々の粒径の水酸化アルミニウムを選択して用いることができる。水酸化アルミニウムの粒度調整は、ボールミル等で粉砕して行っても良い。また、用途に応じて、NaやCa等の不純物の少ない高純度の水酸化アルミニウムを用いることもできる。
【0007】
上記の水酸化アルミニウム粉を容器に充填し、オートクレーブなどの圧力容器内で水蒸気雰囲気下、加熱しながら乾式養生する。加熱温度は、140〜300℃が好ましく、145〜250℃がより好ましく、150〜180℃が最も好ましい。加熱温度が、140℃より低いとベーマイトを十分に得られないからであり、300℃より高いとコスト面で好ましくないからである。
【0008】
上記の乾式養生終了後、オートクレーブを放冷した後、乾燥させることによりベーマイトを得る。なお、本発明の製造方法によるベーマイトは、水分含有量が少ないため、ベーマイトの用途に応じて乾燥を省略しても良い。
【0009】
以上説明した本発明のベーマイトの製造方法によれば、水を加えて水酸化アルミニウムをスラリー状にする必要がなく、粉状のままで製造に供することができるため、1バッチ当たりの仕込量を増量させることができ、ひいては生産性の向上に資することができる。また、水への加熱エネルギーが不要のため、エネルギーコストを低減させることも可能となる。更に、スラリー状の水酸化アルミニウムを水熱処理しないことにより、脱水、水洗、濾過の各工程が不要で、簡易な工程でベーマイトを製造できるばかりか、廃水処理の付帯施設も不要となり、この点でも製造コストを低減化できる。また、スラリー状の水酸化アルミニウムを用いて水熱処理する場合に比し、本発明で得られるベーマイトは付着する水分が少なく、乾燥工程を短時間で仕上げることができ、効率的にベーマイトを製造できる。
【0010】
また、反応促進剤が不要で出発原料の水酸化アルミニウム粉のみで足りるため、反応促進剤に由来するNaやCa等の不純物が残存することがなく、高純度のベーマイトを得ることができる。更に、反応促進剤が不要なことから製造コストを低減化させることもできる。
【0011】
また、本発明のベーマイトの製造方法によれば、短時間でベーマイトを製造することができる。本発明のベーマイトの製造方法は、板状ベーマイトの製造に好適であるが、製造条件を検討することにより針状など他の形態のベーマイトの製造も可能である。
【0012】
【実施例】
次いで、本発明を実施例を挙げて詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0013】
所定時間養生後得られるベーマイトの収率(%)と養生(反応)時間との関係、粒径及びアスペクト比を各々実施例と比較例について調べた。実施例1〜実施例5は、表1〜表4に示すように各々粒径が異なる水酸化アルミニウム粉1kgを容器に充填し、オートクレーブを用いて飽和状態の水蒸気雰囲気下、所定温度で所定時間加熱しながら乾式養生した。養生後、オートクレーブを自然放冷し、130℃で乾燥させて板状ベーマイトが得られた。
【0014】
比較例1〜比較例6は、表1〜表4に示すように各々粒径の異なる水酸化アルミニウム粉1kgと所定量の水を容器に入れ、十分に撹拌混合してスラリーとし、これをオートクレーブを用いて水蒸気雰囲気下、所定温度で所定時間加熱しながら湿式養生した。養生後、脱水、水洗、濾過、乾燥の各工程を経て板状ベーマイトが得られた。
なお、比較例3〜比較例5については、反応促進剤を添加した(比較例3と比較例4:NaOH、85.5g(対Al(OH)16.7モル%、比較例5:CaAc、251.0g(対Al(OH)11.1モル%))。また、水酸化アルミニウムに加えた水の量は、比較例1、比較例3及び比較例6では各々5kg、比較例2では10kg、比較例4と比較例5では各々3kgであった。表2中、CaAcは、酢酸カルシウム・一水和物である。
【0015】
結果は、表1〜表4に示した。実施例1は、乾式養生後1時間で収率が100%に達したが、比較例1と比較例2は長時間を要した(表1参照)。また、比較例3は、5時間でほぼ100%の収率であった。実施例1に比べ水酸化アルミニウムの粒径が大きい実施例2は、3時間で収率100%に達し、反応促進剤が添加された比較例4及び比較例5より短時間で製造できた(表2参照)。粒径が実施例1と同様で加熱温度を150℃で乾式養生した実施例3は、5時間で収率100%に達したが、同じ条件で湿式養生した比較例6は、6時間でも39%に過ぎなかった(表3参照)。また、実施例5と実施例6から、水酸化アルミニウムの粒径が大きい場合も本発明の製造方法が適用でき、大きな粒径の板状ベーマイトを短時間で製造できることが判明した。
【0016】
反応促進剤を添加した比較例3〜比較例5では、水洗工程を繰り返しても、板状ベーマイトに含まれるNaは0.1wt%(NaO換算の実測代表値、比較例3及び比較例4参照)、Caは0.5wt%(CaO換算の実測代表値、比較例5参照)であり、反応促進剤に由来するNaやCaを十分に除去することができなかった。一方、実施例では、板状ベーマイトに反応促進剤に由来するNaやCaが含まれることがないので、例えば、Naが0.002wt%(NaO換算)の純度の高い水酸化アルミニウムを出発原料として用いた場合、極めて高純度の板状ベーマイトを容易に得ることができる。
【0017】
表1〜表4から明らかなように、本発明の製造方法により得られた板状ベーマイトの粒径は、出発原料の水酸化アルミニウムの粒径に良く対応し、所望の粒径の板状ベーマイトを容易に製造できる。
【0018】
また、反応促進剤を加えることなく乾式養生した実施例と湿式養生した比較例を比べると、実施例の方が相対的にアスペクト比の大きな板状ベーマイトが得られた(実施例1と比較例1、比較例2、実施例3と比較例6を各々参照)。このことより、本発明の板状ベーマイトの製造方法によれば、反応促進剤を添加することなく、アスペクト比の大きな高純度の板状ベーマイトの製造が可能となる。
なお、アスペクト比は、板状ベーマイトの長径と厚みの比である。
【0019】
なお、板状ベーマイトの同定は、X線回析により行った。また、図1から図3は、各々実施例1〜実施例3の電顕写真像を示し、図4と図5は各々比較例1と比較例5の電顕写真像を示すが、いずれも板状のベーマイトが観察された。板状ベーマイトの収率は、X線回析と熱重量分析(TG)により導出した。
【0020】
【表1】

Figure 0004181777
【0021】
【表2】
Figure 0004181777
【0022】
【表3】
Figure 0004181777
【0023】
【表4】
Figure 0004181777
【0024】
【発明の効果】
本発明は、上記のように構成されるため、以下の効果を奏する。
本発明によれば、水酸化アルミニウムに水を加えることなく粉末のままで製造に供することができるため、1バッチ当たりの仕込量を増量させることができ、ひいては生産性の向上に資するベーマイトの製造方法を提供できる。また、水への加熱エネルギーが不要なことによるエネルギーコストの低減、廃水処理の付帯施設の不要なことによる製造コストの低減が可能で、安価なベーマイトの製造方法を提供できる。脱水、水洗、濾過の各工程が不要で、簡易な工程で効率的なベーマイトの製造方法を提供できる。更に、得られるベーマイトに付着する水分が少ないので、乾燥工程を短時間で仕上げることもでき、効率的なベーマイトの製造が可能となる。
【0025】
また、本発明によれば、反応促進剤は不要で出発原料の水酸化アルミニウム粉のみで足りるため、反応促進剤に由来するNaやCa等の不純物が残存することがなく、高純度のベーマイトを製造できる。また、反応促進剤が不要なため製造コストを低減化させることもできる。
【0026】
また、本発明によれば、短時間でベーマイトの製造ができるので、生産性に優れた安価なベーマイトの製造方法を提供できる。
【0027】
上記より、本発明の製造方法により製造されるベーマイトは、プラスチック、ゴム等の難燃化フィラー、触媒担体、製紙用塗工内填剤、塗料用顔料等に用いることができることは勿論のこと、高純度のベーマイトが得られることより電子材料のフィラー、絶縁材、高純度アルミナの原料等に用いることもできる。
【図面の簡単な説明】
【図1】実施例1により製造された板状ベーマイトの電顕写真像を示す。
【図2】実施例2により製造された板状ベーマイトの電顕写真像を示す。
【図3】実施例3により製造された板状ベーマイトの電顕写真像を示す。
【図4】比較例1により製造された板状ベーマイトの電顕写真像を示す。
【図5】比較例5により製造された板状ベーマイトの電顕写真像を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing boehmite used as a flame retardant filler such as plastic and rubber, a filler for electronic materials, a catalyst carrier, a coating filler for papermaking, a pigment for paint, a raw material for high-purity alumina, and the like.
[0002]
[Prior art]
Conventionally, various methods for producing boehmite have been provided. Generally, it is carried out by hydrothermally treating a raw material aluminum hydroxide. This manufacturing method includes a stirring and mixing step of slurry in which water is added to aluminum hydroxide and a reaction accelerator (metal compound), a hydrothermal treatment step in which wet curing is performed in a water vapor atmosphere with a pressure vessel, and a dehydration step of the reaction product. , Water washing step, filtration step, and drying step (for example, see JP-A-6-263437 and JP-A-2000-86235).
[0003]
According to the conventional boehmite production method by hydrothermal treatment, alkaline earth metal or alkali metal hydroxide, oxide, chloride, sulfate, etc. are added to aluminum hydroxide as a reaction accelerator, so the water washing process is indispensable Thus, even after this water washing step, impurities such as Na and Ca derived from the reaction accelerator are still likely to remain, and it is difficult to produce high-purity boehmite.
Since the slurry in which water is added to aluminum hydroxide is hydrothermally treated, the amount of charge per batch is restricted, and there is a problem that the dehydration step and the filtration step are indispensable in addition to the water washing step, and the process is complicated. .
Moreover, in order to obtain boehmite with a high yield, it must be cured for a long time, and a production method capable of curing in a short time in order to increase production efficiency has been desired.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described conventional boehmite production method, and relates to a method capable of efficiently producing high-purity boehmite at a low cost with a short production time and a small number of steps.
[0005]
[Means for Solving the Problems]
The present invention for solving the above problems, an aspect ratio of a particle size of a water vapor atmosphere with a pressure vessel of aluminum hydroxide powder 0.8~2Myuemu, characterized by dry curing with heating at 150 to 180 ° C. The gist is a method for producing plate boehmite having 3 to 12 .
Here, dry curing means curing in the form of powder without adding water to the starting aluminum hydroxide. Moreover, the wet curing used in the present specification is the opposite of dry curing and means that water is added to aluminum hydroxide to form a slurry (liquid) for curing .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The starting aluminum hydroxide is powdery. In addition, the powder form includes those obtained by drying aluminum hydroxide commercially available in a slurry form.
Since the particle size of the boehmite produced depends on the particle size of aluminum hydroxide, aluminum hydroxide having various particle sizes can be selected and used in accordance with the required particle size of boehmite. . The particle size of aluminum hydroxide may be adjusted by pulverizing with a ball mill or the like. Moreover, high-purity aluminum hydroxide with few impurities, such as Na and Ca, can also be used according to a use.
[0007]
The above aluminum hydroxide powder is filled in a container, and is dry-cured while heating in a water vapor atmosphere in a pressure container such as an autoclave. The heating temperature is preferably 140 to 300 ° C, more preferably 145 to 250 ° C, and most preferably 150 to 180 ° C. This is because if the heating temperature is lower than 140 ° C., boehmite cannot be obtained sufficiently, and if it is higher than 300 ° C., it is not preferable in terms of cost.
[0008]
After completion of the above dry curing, the autoclave is allowed to cool and then dried to obtain boehmite. In addition, since the boehmite by the manufacturing method of this invention has little water content, you may abbreviate | omit drying according to the use of boehmite.
[0009]
According to the boehmite production method of the present invention described above, it is not necessary to add water to form a slurry of aluminum hydroxide, and it can be used for production in the form of powder, so the amount of charge per batch can be reduced. The amount can be increased, and as a result, the productivity can be improved. Moreover, since heating energy to water is unnecessary, it is possible to reduce energy costs. Furthermore, by not hydrothermally treating slurry aluminum hydroxide, the steps of dehydration, water washing and filtration are unnecessary, and not only can boehmite be produced in a simple process, but there is no need for incidental facilities for wastewater treatment. Manufacturing cost can be reduced. In addition, the boehmite obtained in the present invention has less moisture adhering to the case where hydrothermal treatment is performed using slurry-like aluminum hydroxide, so that the drying process can be completed in a short time, and boehmite can be produced efficiently. .
[0010]
Further, since no reaction accelerator is required and only the starting aluminum hydroxide powder is sufficient, impurities such as Na and Ca derived from the reaction accelerator do not remain, and high-purity boehmite can be obtained. Furthermore, since no reaction accelerator is required, the manufacturing cost can be reduced.
[0011]
Moreover, according to the boehmite manufacturing method of the present invention, boehmite can be manufactured in a short time. The boehmite production method of the present invention is suitable for the production of plate boehmite, but other forms of boehmite such as needles can be produced by examining the production conditions.
[0012]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to a following example.
[0013]
The relationship between the yield (%) of boehmite obtained after curing for a predetermined time and the curing (reaction) time, the particle size and the aspect ratio were examined for each of Examples and Comparative Examples. In Examples 1 to 5, as shown in Tables 1 to 4, 1 kg of aluminum hydroxide powders each having a different particle size was filled in a container, and the autoclave was used for a predetermined time at a predetermined temperature in a saturated water vapor atmosphere. Dry-cured while heating. After curing, the autoclave was naturally cooled and dried at 130 ° C. to obtain plate boehmite.
[0014]
In Comparative Examples 1 to 6, as shown in Tables 1 to 4, 1 kg of aluminum hydroxide powder having a different particle size and a predetermined amount of water are put in a container and sufficiently stirred and mixed to form a slurry. This is an autoclave. Was subjected to wet curing while heating at a predetermined temperature for a predetermined time in a steam atmosphere. After curing, plate boehmite was obtained through the steps of dehydration, washing with water, filtration and drying.
For Comparative Examples 3 to 5, a reaction accelerator was added (Comparative Example 3 and Comparative Example 4: NaOH, 85.5 g (compared to Al (OH) 3 16.7 mol%, Comparative Example 5: CaAc). 2 , 251.0 g (vs. Al (OH) 3 11.1 mol%)) The amount of water added to aluminum hydroxide was 5 kg in Comparative Example 1, Comparative Example 3 and Comparative Example 6, respectively. 2 was 10 kg, and Comparative Example 4 and Comparative Example 5 were each 3 kg In Table 2, CaAc 2 is calcium acetate monohydrate.
[0015]
The results are shown in Tables 1 to 4. In Example 1, the yield reached 100% in 1 hour after dry curing, but Comparative Example 1 and Comparative Example 2 required a long time (see Table 1). In Comparative Example 3, the yield was almost 100% in 5 hours. Example 2 in which the particle size of aluminum hydroxide is larger than Example 1 reached a yield of 100% in 3 hours, and could be produced in a shorter time than Comparative Example 4 and Comparative Example 5 to which a reaction accelerator was added ( (See Table 2). In Example 3 where the particle size was the same as in Example 1 and dry-cured at a heating temperature of 150 ° C., the yield reached 100% in 5 hours, but in Comparative Example 6 wet-cured under the same conditions, Comparative Example 6 was 39 in 6 hours. % (See Table 3). Further, from Examples 5 and 6, it was found that the production method of the present invention can be applied even when the particle size of aluminum hydroxide is large, and plate-like boehmite having a large particle size can be produced in a short time.
[0016]
In Comparative Example 3 to Comparative Example 5 to which the reaction accelerator was added, even if the washing process was repeated, Na contained in the plate boehmite was 0.1 wt% (measured representative value in terms of Na 2 O, Comparative Example 3 and Comparative Example). 4), Ca was 0.5 wt% (measured representative value in terms of CaO, see Comparative Example 5), and Na and Ca derived from the reaction accelerator could not be sufficiently removed. On the other hand, in the examples, Na or Ca derived from the reaction accelerator is not contained in the plate boehmite, so, for example, high purity aluminum hydroxide having Na of 0.002 wt% (Na 2 O conversion) is started. When used as a raw material, extremely high purity plate boehmite can be easily obtained.
[0017]
As apparent from Tables 1 to 4, the particle size of the plate boehmite obtained by the production method of the present invention corresponds well to the particle size of the starting aluminum hydroxide, and the plate boehmite having a desired particle size. Can be easily manufactured.
[0018]
Moreover, when compared with the example which carried out dry curing without adding a reaction accelerator and the comparative example which carried out wet curing, the plate-like boehmite with a relatively larger aspect ratio was obtained in the example (Example 1 and comparative example) 1, see Comparative Example 2, Example 3 and Comparative Example 6, respectively). From this, according to the manufacturing method of plate boehmite of the present invention, it becomes possible to manufacture high purity plate boehmite having a large aspect ratio without adding a reaction accelerator.
The aspect ratio is the ratio of the major axis to the thickness of the plate boehmite.
[0019]
The plate boehmite was identified by X-ray diffraction. 1 to 3 show the electron microscopic images of Examples 1 to 3, respectively. FIGS. 4 and 5 show the electron microscopic images of Comparative Example 1 and Comparative Example 5, respectively. Plate-like boehmite was observed. The yield of plate boehmite was derived by X-ray diffraction and thermogravimetric analysis (TG).
[0020]
[Table 1]
Figure 0004181777
[0021]
[Table 2]
Figure 0004181777
[0022]
[Table 3]
Figure 0004181777
[0023]
[Table 4]
Figure 0004181777
[0024]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
According to the present invention, it is possible to use aluminum hydroxide in the form of powder without adding water, so that the amount of charge per batch can be increased, and as a result, the production of boehmite that contributes to the improvement of productivity. Can provide a method. Further, it is possible to reduce the energy cost due to the fact that heating energy to the water is unnecessary, and it is possible to reduce the manufacturing cost due to the fact that the incidental facility for wastewater treatment is unnecessary, thereby providing an inexpensive boehmite manufacturing method. Each step of dehydration, washing with water, and filtration is unnecessary, and an efficient method for producing boehmite can be provided with simple steps. Furthermore, since less water adheres to the obtained boehmite, the drying process can be completed in a short time, and efficient boehmite can be produced.
[0025]
Further, according to the present invention, since no reaction accelerator is required and only the starting aluminum hydroxide powder is sufficient, impurities such as Na and Ca derived from the reaction accelerator do not remain, and high purity boehmite can be obtained. Can be manufactured. Moreover, since a reaction accelerator is unnecessary, manufacturing cost can also be reduced.
[0026]
In addition, according to the present invention, boehmite can be manufactured in a short time, and therefore an inexpensive boehmite manufacturing method excellent in productivity can be provided.
[0027]
From the above, boehmite produced by the production method of the present invention can be used for flame retardant fillers such as plastic and rubber, catalyst carrier, paper coating coating filler, paint pigment, etc. Since high-purity boehmite is obtained, it can be used as a filler for electronic materials, insulating materials, raw materials for high-purity alumina, and the like.
[Brief description of the drawings]
1 shows an electron micrograph of plate boehmite produced according to Example 1. FIG.
2 shows an electron microscopic image of plate boehmite produced in Example 2. FIG.
3 shows an electron microscopic image of plate-like boehmite produced in Example 3. FIG.
4 shows an electron micrograph of plate boehmite produced in Comparative Example 1. FIG.
5 shows an electron microscopic image of a plate-like boehmite produced by Comparative Example 5. FIG.

Claims (1)

粒径が0.8〜2μmの水酸化アルミニウム粉を圧力容器を用いて水蒸気雰囲気下、150〜180℃で加熱しながら乾式養生することを特徴とするアスペクト比が3〜12の板状ベーマイトの製造方法。 A plate boehmite having an aspect ratio of 3 to 12, characterized in that the aluminum hydroxide powder having a particle size of 0.8 to 2 μm is dry-cured while being heated at 150 to 180 ° C. in a water vapor atmosphere using a pressure vessel. Production method.
JP2002019581A 2002-01-29 2002-01-29 Boehmite production method Expired - Lifetime JP4181777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019581A JP4181777B2 (en) 2002-01-29 2002-01-29 Boehmite production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019581A JP4181777B2 (en) 2002-01-29 2002-01-29 Boehmite production method

Publications (2)

Publication Number Publication Date
JP2003221227A JP2003221227A (en) 2003-08-05
JP4181777B2 true JP4181777B2 (en) 2008-11-19

Family

ID=27743373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019581A Expired - Lifetime JP4181777B2 (en) 2002-01-29 2002-01-29 Boehmite production method

Country Status (1)

Country Link
JP (1) JP4181777B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032677A (en) 2007-07-04 2009-02-12 Hitachi Maxell Ltd Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
JP5265905B2 (en) * 2007-11-21 2013-08-14 河合石灰工業株式会社 Cubic boehmite
JP5324112B2 (en) * 2008-03-19 2013-10-23 関東電化工業株式会社 Boehmite fine particles and method for producing the same
JP5530353B2 (en) * 2008-06-09 2014-06-25 日立マクセル株式会社 Porous membrane for separator, battery separator, battery electrode and manufacturing method thereof, and lithium secondary battery
JP2011028947A (en) * 2009-07-23 2011-02-10 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013035980A (en) * 2011-08-10 2013-02-21 Toray Ind Inc Flame retardant thermoplastic polyester resin composition and molded article
CN105836770B (en) * 2016-03-24 2017-11-21 中铝山东有限公司 A kind of preparation method of high temperature resistant boehmite
WO2019049668A1 (en) 2017-09-07 2019-03-14 株式会社Adeka Composition, and flame-retardant resin composition
CN109626404A (en) * 2019-01-28 2019-04-16 云南文山铝业有限公司 The washing methods of boehmite
CN113860340B (en) * 2021-10-28 2023-10-27 中化学科学技术研究有限公司 Method for preparing high-purity granular boehmite by dry method and boehmite
CN113860341B (en) * 2021-10-28 2023-10-27 中化学科学技术研究有限公司 High-purity platy boehmite and preparation method thereof
CN113955779B (en) * 2021-11-05 2023-10-27 中化学科学技术研究有限公司 Method for preparing high-purity boehmite by dry method and high-purity boehmite
CN115353134B (en) * 2022-09-02 2023-10-24 宁波大浦新材料科技有限公司 Preparation method of high-purity large-grain boehmite
CN115340115B (en) * 2022-09-02 2023-09-01 安徽壹石通材料科技股份有限公司 High-cleanliness boehmite and preparation method thereof, boehmite slurry and preparation method thereof
CN115784282B (en) * 2022-12-06 2024-06-25 中南大学 Preparation method of boehmite

Also Published As

Publication number Publication date
JP2003221227A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
JP4181777B2 (en) Boehmite production method
US4117105A (en) Process for preparing dispersible boehmite alumina
CN105836770B (en) A kind of preparation method of high temperature resistant boehmite
WO2019184637A1 (en) Calcium magnesium silicate thermal insulation material, preparation method therefor and use thereof
CN107512725A (en) With core shell structure TON MFI composite molecular screens and preparation method thereof
JPH02239113A (en) Production of boehmite
CN109052446B (en) Method for preparing calcium-aluminum hydrotalcite by using industrial waste residues as raw materials
KR101243610B1 (en) Manufacturing method of precipitated calcium carbonate using egg shell
CN110026151B (en) Method for improving adsorption capacity and strength of binderless nalsx molecular sieve
CN106946267B (en) A kind of EU-1 molecular sieve and its synthetic method
JP3322308B2 (en) Synthetic method of zeolite
JP2869287B2 (en) Method for producing plate-like boehmite particles
CN107381591B (en) Preparation method of petal-shaped sodalite at room temperature
JP2011051834A (en) Method of producing high purity vaterite-type spherical calcium carbonate
CN113559920A (en) ZSM-5 molecular sieve/titanium dioxide composite material and preparation method thereof
JPH04362012A (en) Production of high-dispersive magnesium hydroxide
CN106672991B (en) A kind of preparation method of nano level superfine analcime
JP6814433B2 (en) Method for producing beta-type zeolite
JPH02267115A (en) Preparation of barium borate
JP2005008445A (en) Method for manufacturing barium titanate powder
JPH0558633A (en) Production of strontium titanate
JPS63252927A (en) Production of fine particle powder of sodium hexatitanate
JPH0239451B2 (en)
JPS5969428A (en) Manufacture of ultrafine powder of zirconium oxide
JP2564581B2 (en) Manufacturing method of high silica content zeolite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4181777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term